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Abstract
With the time-consuming computations incurred by nested double-loop strategy and multiple performance functions, the en-
hancement of computational efficiency for the non-probabilistic reliability estimation and optimization is a challenging problem
in the assessment of structural safety. In this study, a novel importance learning method (ILM) is proposed on the basis of active
learning technique using Kriging metamodel, which builds the Kriging model accurately and efficiently by considering the
influence of the most concerned point. To further accelerate the convergence rate of non-probabilistic reliability analysis, a new
stopping criterion is constructed to ensure accuracy of the Kriging model. For solving the non-probabilistic reliability-based
design optimization (NRBDO) problems with multiple non-probabilistic constraints, a new active learning function is further
developed based upon the ILM for dealing with this problem efficiently. The proposed ILM is verified by two non-probabilistic
reliability estimation examples and three NRBDO examples. Comparing with the existing active learning methods, the optimal
results calculated by the proposed ILM show high performance in terms of efficiency and accuracy.

Keywords Non-probabilistic reliability . Non-probabilistic reliability-based design optimization . Convex model . Importance
learningmethod . Krigingmodel

1 Introduction

Structural design optimization plays a prominent role in practi-
cal engineering analysis, which aims to provide an optimal
design within specified objective functions and constraints.
However, the uncertainties stemming from its environment
and incomplete knowledge about the examined system are un-
avoidable, and how to account for them is of great importance

for optimization design (Li and Azarm 2008; Moon et al. 2018;
Wang and Wang 2012). This can promote the development of
non-deterministic structural optimization method, in which
probabilistic approach and non-probabilistic approach are two
representative methods (Huang et al. 2016b; Keshtegar and Lee
2016; Lee et al. 2013; Youn et al. 2005). The former is dedicat-
ed to performing the optimization design for uncertain struc-
tures, whose input random parameters can be described as the
precise probabilistic distribution (Azarm and Mourelatos 2006;
Du and Chen 2004; Rashki et al. 2014; Youn and Wang 2008).
The latter focuses on handling the optimization design with
uncertain-but-bounded variables (Jiang et al. 2007; Qiu et al.
2009). Unfortunately, it is commonly difficult to acquire
enough experimental data in the complex engineering problems
for constructing the probabilistic model, and thus non-
probabilistic approach becomes a promising way to qualify
the safety level of structures with inherent uncertain factors
(Bae et al. 2018; Karuna and Manohar 2017; Moens and
Vandepitte 2006). Until now, a variety of non-probabilistic
models were proposed, which can be generally divided into
two types, interval model (Elishakoff and Elettro 2014; Liu
et al. 2016; Muscolino et al. 2016) and convex model
(Ganzerli and Pantelides 2000; Jiang et al. 2014).
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Currently, the research interests in the non-probabilistic
theory can be traced to Ben-Haim and Elishakoff’s pioneering
research (Ben-Haim 1994; Ben-Haim 1995; Ben-Haim and
Elishakoff 1995), in which an effective tool for assessing
structural safety level with limited sample information was
developed. Qiu and Elishakoff (1998) introduced the interval
analysis to carry out non-probabilistic reliability-based design
optimization (NRBDO) successfully for a 6-bar plane truss.
Majumder and Rao (2009) established a multi-objective opti-
mization method for minimizing structural weight and energy
required of aircraft wing structures with interval parameters.
Moens and Vandepitte (2006) gave an exhaustive overview
for non-deterministic method and pointed out that the non-
probabilistic approach appears to be less sensitive to the effect
of subjective data by comparing with the probabilistic ap-
proach. Additionally, the definition of non-probabilistic reli-
ability index was also established, which is more conservative
in comparison to the probabilistic model (Guo et al. 2013;
Jiang et al. 2017; Kang and Luo 2010).

For complex engineering problems, the computations of
the performance functions are always time-consuming; the
pursuit of high efficiency for computing the non-
probabilistic reliability indices is vital in real-life engineering
problems. Until now, various advanced methods for non-
probabilistic reliability analysis have been well introduced to
improve the computational efficiency. Based on worst-case-
scenario technique, Lombardi and Haftka (1998) utilized the
inverse optimization technique to enhance the efficiency of
optimization with load uncertainties. Kang et al. (2011) intro-
duced a concerned performance approach to alleviate the un-
bearable computational burden, which was further extended to
solve a topology optimization problem (Kang and Zhang
2016). Luo et al. (2011) established a sequential approximate
programming method for solving the hybrid model involving
the probabilistic and non-probabilistic uncertain parameters
simultaneously. Moreover, Meng et al. (2015) developed a
chaos control method to estimate the concerned point of ellip-
soid convex model, and the computational efficiency was
improved significantly for buckling analysis of stiffened
shells. Hao et al. (2017) investigated the Wolfe-Powell crite-
rion to select a suitable chaos control factor in chaos control
method. Based upon a super parametric convex model, Meng
and Zhou (2018) also created a new target performance ap-
proach to efficiently evaluate the non-probabilistic reliability
of structures.

Recently, some approximate mathematical models, i.e.,
metamodels, are popular as surrogates for improving the effi-
ciency of non-probabilistic reliability calculation through
substituting into the actual performance functions. Jiang
et al. (2008) presented a sequential computation method for
handing the interval parameters, in which the Latin hypercube
sampling (LHS) and response surface method (RSM) are
combined together to evaluate the intervals of constraints.

Based on the moving least square method with function data,
Youn and Choi (2004) integrated the RSM to accelerate the
convergence rate of performance function. Wang and Chen
(2017) suggested an adaptive extreme RSM for solving
time-variant reliability analysis problems. Bai et al. (2014)
combined RSMwith convex model to perform the correlation
analysis technique. Zhang et al. (2017) employed RSM-based
time-dependent reliability estimation technique, which can
decrease the number of function calls to estimate the reliability
of stochastic dynamic structures. Marelli and Sudret (2018)
created an active learning method for polynomial chaos ex-
pansions based on bootstrap resampling.

Compared with RSM surrogate model, the Kriging model
not only can give predicted values for any input variables but
also can estimate the local variance owing to its stochastic
process property (Hawchar et al. 2018; Huang et al. 2016a).
Based on this variance, the Kriging model can carry out the
design of experiments (DoE) in an active learning manner,
which can be considered as a major advantage of Kriging.
The efficient global optimization and sequential Kriging-
based optimization are considered as two distinguished repre-
sentatives (Bichon et al. 2012; Huang et al. 2006; Jones et al.
1998). Inspired from the efficient global optimization and the
contour assessment method of Ranjan et al. (2008), Bichon
et al. (2012) developed a fully active learning method to im-
plement the probabilistic reliability analysis, and then it was
further extended to solve the system reliability problems with
multiple failure modes (Bichon et al. 2011). Khodaparast et al.
(2011) applied the Kriging for interval model updating, which
was able to predict the regions of input and output uncertain
parameters. Wang and Wang (2013) suggested a maximum
confidence enhancement method, in which an ordinary
Kriging model was employed to speed up the calculation pro-
cess. Hu and Du (2015) applied the Krigingmodel to compute
the reliability index of the time-variant problems. Lee and
Jung (2008) constructed a constraint boundary sampling
(CBS) criterion to sequentially add new points in the vicinity
of the limit state function (LSF). Echard et al. (2011) sug-
gested an active learning reliability method combining the
Kriging model and Monte Carlo simulation, in which a new
learning function U is created to efficiently predict the sign of
performance functions (Echard et al. 2013). Moustapha et al.
(2016) established a two stage procedure to enhance the local
and global accuracies of function U. Chen et al. (2014) pre-
sented a local adaptive sampling strategy, which can generate
new sample points around the design point to construct the
Kriging model. Moreover, Yang et al. (2015) developed an
expected risk function (ERF) by using expected improvement
function to approximate the sign of performance functions,
and then the failure probability can be easily calculated
(Yang et al. 2014). Also, Li et al. (2006) utilized the Kriging
variance for dealing with the multi-objective problems. All
these active learning methods devoted to improving the
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computational efficiency of failure probability in probabilistic
domain, but rare works can be found to solve the NRBDO
problem. Besides, the existing active learning methods only
consider the predicted value and variance, which means the
samples on the LSF have the same opportunity to be selected.
However, the most concerned point (MCP), i.e., the most im-
portant point on the LSF, is ignored during the learning pro-
cess. Therefore, it requires a large amount of samples to ap-
proximate the entire LSF accurately. If the new samples are
generated only in the local region around the MCP, the con-
vergence rate can be significantly improved.

The purpose of this paper is to investigate the performance
of the active learningmethods in the non-probabilistic reliabil-
ity estimation and NRBDO problems, and an importance
learning method (ILM) is further developed to enhance the
efficiency. By considering the influence of MCP during
DOE, the task of predicted the entire LSF is degraded into
the simple prediction of MCP. A Kriging model is first con-
structed with a rather small set of sample points and then is
progressively rebuilt using the proposed importance learning
function (ILF). In each iterative step, only the local region at
the neighborhood of the MCP is approximated accurately.
Then, the new sample points are adaptively added into
DOE. Furthermore, a novel active learning function based
on the ILF is established to solve the NRBDO problems with
multiple LSFs. The outline of this paper is presented as fol-
lows: Sect. 2 reviews the basic theory of the non-probabilistic
reliability estimation. Section 3 introduces fundamental of the
Kriging model and several popular active learning functions.
Then, the proposed method is described in detail in Sect. 4.
Section 5 uses two non-probabilistic reliability estimation ex-
amples and two NRBDO examples to verify the accuracy and
efficiency of the proposed method. In Sect. 5, some conclud-
ing remarks are drawn.

2 Review of non-probabilistic reliability
analysis

2.1 Convex model

A n-dimensional interval model is one widely utilized non-
probabilistic model, which can be described as a rectangle, as
shown in Fig. 1a (Kang et al. 2011). The interval model is
formulated as follows,

E ¼ xjx21≤ε21;…; x2i ≤ε
2
i ;…; x2n≤ε

2
n

� � ð1Þ

where n is the number of uncertain-but-bounded variables x. εi
is the radius of interval, which can be determined by its upper
bound xLi and lower bound xUi . The value of εi can be com-

puted by εi ¼ xUi −x
L
i

2 .

A n-dimensional ellipsoid model is another popular non-
probabilistic to handle the uncertain-but-bounded parameters,
as shown in Fig. 1b (Jiang et al. 2013). The ellipsoid model is
described as follows,

E ¼ xj x−xC

xC

� �T

W
x−xC

xC

� �
≤ε2

( )
ð2Þ

where xC is a vector of the nominal values. The uncer-
tain parameter vector contains n variables {x1, x2,…, xn}.
W is a characteristic matrix of the ellipsoid model, which
is a real symmetric positive definite matrix. ε is the ra-
dius of the ellipsoid model, which is similar to the inter-
val model. The diagonal elements of W contain the in-
formation of the reference variation coefficients of uncer-
tain variables, while non-diagonal elements represent the
correlation relationship between different variables. In
general, the matrix W and the number ε can be deter-
mined according to the instrument measurements, where
the minimum volume method can be used to compute
their values (Jiang et al. 2011; Kang and Zhang 2016).
Especially, when the uncertain variables are independent,
all the non-diagonal elements of W become 0. The radi-
us of ith nominal value xi can be obtained by the follow-

ing transformation: xri ¼ xCiffiffiffiffiffi
W ii

p , where Wii is ith diagonal

element of W.
There are various uncertain sources in practical engineer-

ing, and the ellipsoid model is another promising convex
model. To implement the non-probabilistic reliability analysis
conveniently, the uncertain-but-bounded vector x can be trans-
formed into a dimensionless uncertain vector δ that can be
expressed as,

x ¼ 1þ δð Þ⋅xC ð3Þ

When eigenvalue decomposition is implemented for
the characteristic matrix W, an eigenvector Q and eigen-
value matrix Λ can be obtained accordingly. Then, the
uncertain variables vector x can be easily converted into
the normalized uncertain variables vector q using the
following formula,

q ¼ 1=εð ÞΛ1=2QTδ ð4Þ

Through the above normalized transformation, the ellip-
soid model in (2) can be rewritten as,

E ¼ qTq≤1
� � ð5Þ

Thus, the ellipsoid is converted into spheres with unit radi-
us in q-space. Similarly, the normalized uncertain variables
vector q can be reversely transformed as uncertain-but-
bounded variables vector x through the conversion formula,
i.e., x = (1 + ε(Λ1/2QT)−1q) ⋅ xC.
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2.2 Non-probabilistic reliability index

In the structural engineering, the safety level is determined by
the non-probabilistic reliability index, which is defined as the
max-min distance from the origin to corresponding LSF
(G(q) = 0) in q-space. As mentioned in Sect. 2.1, the
uncertain-but-bounded variables x are converted into the nor-
malized uncertain variables q, and then the corresponding
LSF g(x) is transformed as G(q). The LSF divides the uncer-
tain domain into two parts, i.e., safety domain G(q) ≥ 0 and
failure domainG(q) < 0. In the study of Kang et al. (2011), the
non-probabilistic reliability index of interval model and ellip-
soid model can be obtained by,

η ¼ sgn G 0ð Þð Þ min
q:G qð Þ¼0

max jq1j; :::; jqij; :::; jqnjð Þð Þ ð6Þ

η ¼ sgn G 0ð Þð Þ min
q:G qð Þ¼0

qTq
� � ð7Þ

where non-probabilistic reliability index η is called as non-
probabilistic reliability index, the optimal solution q∗ of (7)
is defined as the MCP. sgn(⋅) represents the signum function.
If G(0) > 0, sgn(G(0)) = 1, else if G(0) < 0, sgn(G(0)) = − 1
and if G(0) = 0, sgn(G(0)) = 0. When η = 1, it means the unit
ellipsoid or interval set is tangent to the limit state surface, and
then the critical state is reached. When η > 1, all combinations
of uncertain variables are located in the safety domain, mean-
ing the structure is reliable. When 0 ≤ η < 1, some failure
events may occur, and the structure is unsafe.

2.3 Non-probabilistic reliability-based design
optimization

In NRBDO, the reliability index is selected as the constraint
condition.Without loss of generality, the mathematical formu-
las of NRBDO are typically expressed as,

find d; xC

min
d

C d; xC
� � s:t: η j d; x; pð Þ≥η j; j

¼ 1; 2;…;m d Lð Þ≤d≤d Uð Þ; xC Lð Þ≤xC≤xC Uð Þ ð8Þ

where d and x represent the deterministic and uncertain design
variables, and p is a vector of the uncertain parameters. xC is the
nominal values of x and can be considered as the design vari-
ables vector. d(L) and xC(L) are the low bounds of d and xC,
while d(U) and xC(U) are the corresponding upper bounds. ηj
denotes the jth non-probabilistic reliability index, which is es-
timated by (7). Evidently, the solution of the NRBDO problems
consists of double loops, i.e., the inner loop seeks the non-
probabilistic reliability constraint at the current design point,
while the outer loop updates the design variables based on the
results of inner loop. Herein, the sequential quadratic program-
ming technique can be applied to solve the NRBDO problems.

3 Active learning method for Kriging model

3.1 Basic of the Kriging model

For the sake of convenience, the uncertain parameters y are
denoted as the input parameters of Kriging. In the Kriging
model, the real responses Y = [g(x1), g(x2),…, g(xk)]

T for
the kth sample point can be replaced by the approximate re-
sponse g(x), and it is consisted by a regression part fT(x)β and
a Gaussian process z(x),

g xð Þ ¼ fT xð Þβþ z xð Þ ð9Þ
where f(x) = [f1(x), f2(x),…, fm(x)]

T is the vector of basis func-
tions. β = [β1, β2,…, βm]

T is the vector of regression coeffi-
cients. z(x) is stationary Gaussian process with means zero,
and the covariance function for any two sample points xi and
xj are defined as follows,

cov z xið Þ; z x j

� �� � ¼ σ2
zR xi; x j

� � ð10Þ

where R(xi, xj) is the correlation function that can be assumed
following Gaussian distribution. By using the generalized
least square regression, the regression coefficients and the
process variance can be assessed by,

β ¼ FTR−1F
� �−1

FTR−1Y ð11Þ

Fig. 1 Two types non-
probabilistic parameter models: a
Interval model {‖qi‖ ≤ 1, i = 1, 2,
3}. b Ellipsoid model {‖q1, q2,
q3‖ ≤ 1}
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σ̂̂2z ¼
1

k
Y−Fβð ÞTR−1 Y−Fβð Þ ð12Þ

where F is a matrix with Fij = fj(xi), i = 1, 2, …, k, j = 1, 2,
…, m.

Once the Kriging model is built successfully, a best linear
unbiased predictor and Kriging variance for any unknown
point x0 can be evaluated using the following formulas,

ĝ̂ x0ð Þ ¼ fT x0ð Þβþ rT0R
−1 Y−Fβð Þ ð13Þ

σ̂̂2ĝ̂ x0ð Þ ¼ σ̂̂2 1þ uT FTR−1F
� �−1

u−rT0R
−1r0

	 

ð14Þ

where r0 = [R(x0, x1), R(x0, x2),…, R(x0, xk)]
T and u =

FTR−1r0 − f(x0).
The Kriging ToolboxDACE (Lophaven et al. 2002) is used

to build the Kriging model in this study, which can provide the

important predicted values σ̂2
ĝ x0ð Þ for ĝ x0ð Þ. Benefiting from

the advantage of the Kriging variance, the active learning
technique is widely developed to alleviate the heavy compu-
tational burden in probabilistic domain.

3.2 Expected feasibility function

In reliability analysis, the prediction of the LSF is crucial. An
expected feasibility function (EFF) can be applied to give an
indication for the actual values of the performance functions,
which is expected to satisfy the equality constraints g(x) = a in
efficient reliability analysis method (Bichon et al. 2008). The
EFF makes a trade-off between exploiting the random space
with good results and exploring the random space with higher
variance of the Kriging model for the LSF. It can be formu-
lated as follows,

EFF ĝ̂ xð Þð Þ ¼ ĝ̂ xð Þ−að Þ 2Φ
a−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

 !
−Φ

a−z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A−Φ

aþ z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A

2
4

3
5

−σ̂̂ĝ̂ xð Þ 2ϕ
a−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

 !
−ϕ

a−z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A−ϕ

aþ z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A

2
4

3
5

þ Φ
aþ z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A−Φ

a−z
	 


−ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

0
@

1
A

2
4

3
5

ð15Þ
where Φ(⋅) and ϕ(⋅) are the cumulative distribution function
and probability density function, respectively. z is proportional
to the standard deviation, and the value of z is set as 2σ̂2

ĝ xð Þ,
which refers to the relevant literature (Echard et al. 2011).
Similar to the expected improvement function, the points that
the expected performance function value is close to the thresh-

old and points with a large predicted uncertainty σ̂2ĝ xð Þ should
be sequentially selected as new points. In the case of non-
probabilistic reliability estimation, the threshold value of a is
0, which aims to predict the LSF.

3.3 Expected risk function

Yang et al. (2014) suggested an ERF to improve the predicted
accuracy of the LSF by picking out the wrongly predicted
point with the largest risk. Then, the efficiency of reliability
estimation is improved, and the formulation of ERF is
expressed as follows,

ERF ĝ̂ xð Þð Þ ¼ −sgn ĝ̂ xð Þð Þĝ̂ xð ÞΦ −sgn ĝ̂ xð Þð Þ ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

� �

þ σ̂̂ĝ̂ xð Þϕ ĝ̂ xð Þ
σ̂̂ĝ̂ xð Þ

� �
ð16Þ

where ERF(·) can give the risk degree of the sign of the con-
straint for any point. Thus, this point is expected to be wrongly
predicted by the Kriging model. The larger value of the ERF
is, the higher risk of this point will be wrongly predicted.
Based on the active learningmethod, the LSF can be predicted
accurately; therefore, the computational cost of reliability
analysis will be reduced significantly.

3.4 Learning function U of AK-MCS

Echard et al. (2011) constructed a learning functionU to judge
which point has the largest probability to be wrongly predict-
ed. The definition is as

U ¼ jĝ̂ xð Þj
σ̂̂ĝ̂ xð Þ ð17Þ

This function U gives more opportunities in the vicinity of
predicted LSF rather than those with high Kriging variance
σ̂ĝ xð Þ. The failure probability using function U is assessed
slower than that using EFF, and this function converges to-
ward the actual failure probability more quickly for solving
probabilistic problems.

3.5 Constraint boundary sampling

The CBS uses the normal probability density function to per-
form reliability analysis with multiple probabilistic con-
straints, i.e., gi(x), i = 1, 2, …, m, in which m is the number
of performance functions. The values of the learning function
will become large when the sample points are located near the
LSF or corresponding predicted values with a large error. The
formulation is given as,

CBS ĝ̂ xð Þð Þ ¼ D ∑
m

i¼1
ϕ

ĝ̂i xð Þ
σ̂̂ĝ̂i

xð Þ

 !
if ĝ̂i xð Þ≥0; ∀i

0 otherwise

8><
>:

ð18Þ
where D denotes the minimum distance from the existing
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sample points, which is used to make the samples consecu-
tively located on the LSF. In the CBS, when the predicted
points are located in the infeasible region, the value of sam-
pling criterion becomes 0. For this reason, the computational
efficiency can be further improved by ignoring sample points
to construct the LSF in the infeasible region. Meanwhile, the
minimum distance D is maximized to ensure the sample uni-
formly distribution. Although these active learning methods
are successfully utilized for assessing the failure probability,
the accuracy and efficiency in the non-probabilistic domain
remain unknown.

4 The proposed method

4.1 Importance learning method

As above-mentioned, the Kriging model can speed up the
reliability estimation and optimization process by replacing
the actual performance function, in which the DoE of
Kriging model is the key. A series of active learning tech-
niques were developed to predict the LSF, such as the CBS,
EFF, and ERF. However, these methods ignore the importance
degree of different points on LSF. According to the definition
in (7), once theMCP near the LSF is obtained, we can directly
compute the non-probabilistic reliability index other than
predicting the entire LSF. Therefore, it is more rational to
consider the importance degree of the points for an active
learning function. As plotted in Fig. 2, when the value of
non-probabilistic reliability index of the point q1 is smaller
than that of the q2, it means the point q1 is closer to the
MCP and more important than the point q2. Following this
concept, the prediction of the LSF is converted to search the
MCP, and thus only a small number of samples are required to

find this point. This new active learning function is called the
ILF, and the formulation is defined as,

ILF ĝ̂ xð Þð Þ ¼ 1

η xð Þ ϕ
ĝ̂ xð Þ
σ̂̂ xð Þ
� �

ð19Þ

where η(x) is the value of non-probabilistic reliability index at
the current point, and it can be computed by,

η xð Þ ¼ sgn g xC
� �� �

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F x1ð ÞTF x1ð Þ

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F x2ð ÞTF x2ð Þ

q
; :::;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F xkð ÞTF xkð Þ

q� �� �

ð20Þ
where F(·) denotes the transformation from the uncertain-but-
bounded variables x into normalized uncertain variables q,
which is computed by the mentioned methods in Sect. 2.1.
The proposed ILF considers three different factors, i.e., the
predicted value of performance function, Kriging variance

and importance degree. The term ϕ ĝ xð Þ
σ̂ xð Þ
	 


is employed to

ensure the new points generating near the LSF with large
Kriging variance, while the non-probabilistic reliability index
η(x) contains the information of the importance degree.
Evidently, the smaller value of η(x) is, the more important of
the point becomes (Fig. 2). By considering the importance
degree, the new samples generated using the proposed ILF
move toward the MCP gradually, which results in the improv-
ing both the computational efficiency and accuracy of reliabil-
ity analysis. To fully exploit the potential of ILF, we add one
point each time into the DOE, so it may require a large number
of iterations for high dimensional problems. However, it
should be emphasized that the calculation of predicted perfor-
mance function by Kriging is very cheap, and thus ILF is very
efficient, especially for complex engineering systems.

It is well-known that a terminated criterion needs to provide
for metamodeling-based reliability analysis technique. Herein,
a new relative error is proposed as the terminated criterion to
guarantee the accuracy of the Kriging model, in which the
information of the predicted performance functions and non-
probabilistic reliability index are used. Assume a new sample
point x′ is obtained in the kth iterative step using the proposed
ILF, the proposed termination criterion can be defined as fol-
lows,

δmax ¼ max δ1; δ2f g
δ1 ¼

jĝ̂ x
0� �
−g x

0� �j
max g x1ð Þ;…; g xnð Þf g−min g x1ð Þ;…; g xnð Þf g � 100%

δ2 ¼ j η
k−ηk−1

ηk
j � 100%

ð21Þ

where ĝ ⋅ð Þ and g(⋅) denote the Kriging performance function
and actual performance function, respectively. The point set
{x1, x2,…, xn} represents the existing training sample points
in the design domain. And δ1 represents the maximum value
of relative error between the predicted values and actual per-
formance function values, while δ2 represents the relative error

q1

G(q)=0

q1

q2

q3

q2

1q
2q

3q

Fig. 2 The iterative process of the proposed ILM
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of the non-probabilistic reliability index between the previous
and current iterative steps. Thus, the proposed non-
probabilistic reliability estimation method is considered as
convergent when the relative error is less than a small enough
value Δ, where Δ is set as 10−5 in the procedure.

A flowchart of the proposed method is given in Fig. 4a.
Firstly, the initial DOE is generated uniformly according to the
dimension and computational cost, then a Kriging model is
built using the initial DOE. Secondly, a new point xk is gen-
erated using the proposed ILF in (19), in which the particle
swarm optimization algorithm is used (Birge 2003). Besides,
the actual value of performance function is calculated at this
point. Thirdly, the DOE is updated by adding a new point into
the training sample points set. Finally, a new Kriging model is
reconstructed based on all training samples and relative errors
are calculated based on the newly-established Kriging model.
This process is carried out until the terminated criterion is
satisfied.

4.2 NRBDO based on the proposed ILM

NRBDO always need to deal with the multiple non-
probabilistic reliability index constraints simultaneously,
which means the MCPs of all constraints should be calcu-
lated. To this end, the proposed ILM is extended to solve the
NRBDO problems with multiple performance functions and
constraints. A two-dimensional example with three non-
probabilistic reliability constraints is shown in Fig. 3.
When the constraint functions g1(x) and g2(x) are active
(Fig. 3a), the ILF values of performance functions g1(x)
and g2(x) are larger than that of performance function
g3(x); this is due to η3(x) > η1(x) and η3(x) > η2(x).
Similarly, when the constraint functions g1(x) and g3(x) are
active (Fig. 3b), the ILF values of performance functions
g1(x) and g3(x) are larger than that of performance function
g2(x). Hence, we maximize the ILF values of all constraints
to obtain the MCPs, i.e., the minimum non-probabilistic re-
liability index value from LSFs to the current optimum
point. Note that the points located in the infeasible region

are useless for solving NRBDO problems. The proposed ILF
for NRBDO problems can be redefined as,

ILF ĝ̂ xð Þð Þ ¼

max
1

η1 xð Þ ϕ
ĝ̂1 xð Þ
σ̂̂ĝ̂1

xð Þ

 !
;

1

η2 xð Þ ϕ
ĝ̂2 xð Þ
σ̂̂ĝ̂2

xð Þ

 !
;…;

1

ηm xð Þ ϕ
ĝ̂m xð Þ
σ̂̂ĝ̂m

xð Þ

 !( )
if ĝ̂i xð Þ≥−εg; ∀i

0 otherwise

8><
>:

ð22Þ
According to (19), the computational cost can be greatly

decreased. For NRBDO model with multiple non-
probabilistic reliability constraints, the proposed ILM only
focuses on the active constraints; on the contrary, the inactive
constraints are ignored during the optimization process.
Therefore, we only need to validate the accuracy of the active
constraints. As mentioned above, the proposed ILM first adds
the sample point located near the active LSF, which means
that the accuracy of the active constraints is always higher
than that of the inactive constraints. Similar with ILM in reli-
ability assessment, we also update one point each time. It
should be noted that the active checking condition ĝi xð Þ≥−
εg is established based on Kriging performance functions. εg
is a small value to improve the robustness for highly nonlinear
problems, and it is set to be 10−3 in this study. It should be
noted that the active checking condition may produce some
errors during the initial iterative process. However, as the in-
crease of iterations, the error is gradually decreased until it is
vanished.

During each iterative step of the NRBDO, enough samples
should be generated to guarantee the accuracy of MCP and
movement of design variables. Therefore, the terminated cri-
terion for NRBDO problems is necessary by considering the
reliability system with multiple constraints.

δmin ¼ min δ11; :::; δ1 j:::; δ1m
� �

δ1 j ¼ max
jĝ̂ j x

0� �
−g j x

0� �j
max g j x1ð Þ;…; g j xnð Þ

n o
−min g j x1ð Þ;…; g j xnð Þ

n o � 100%

8<
:

9=
;

ð23Þ
where ĝ j ⋅ð Þ and gj(⋅) are the values of jth Kriging model and

actual performance function, respectively.

1( ) 0xg

2 ( ) 0xg3
( ) 0xg

(a)
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2

3
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1( ) 0xg
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1
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Fig. 3 A sketch of the ILM for
NRBDO problem
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4.3 Procedures and flowcharts

A flowchart of the proposed ILM for NRBDO problems is
given in Fig. 4b, and the procedures are generalized as follows,

(a) Initialize the sample set s0, the design variables d(0), and
xC(0) for NRBDO problems.

(b) Build a Kriging model based on the initial sample set.
Then, the NRBDO approach is carried out based on the
Kriging model.

(c) Select new sample points using the proposed ILF and add
these points to the initial sample set sk. Then, a new
Kriging model is rebuilt for the objective functions and
constraints based on the new sample points and corre-
sponding responses.

(d) Based on the newKriging model in step (3), the NRBDO
approach is performed to update the design variables.

(e) Calculate the relative error according to (23)
(f) If the convergence condition is satisfied, then stop the

iteration. Otherwise, set k = k + 1, back to step (3) to up-
date the Kriging model.

5 Numerical examples

In this section, five numerical examples are applied to verify the
efficiency and accuracy of the proposed ILM by comparing
with LHS method and other four popular active learning
methods from probabilistic domain (i.e., EFF, ERF, function

U, and CBS). The results calculated using the analytical
(Anal.) method are considered as a benchmark solution, in
which the actual LSFs and objective functions are used.
Meanwhile, the Kriging-based learning methods are compared
with the analytical method to validate their effectiveness. For
NRBDO problems, the relative errors of calculated results be-
tween the analytical method and Kriging-based methods are

calculated by ‖d−d*‖
‖d*‖

� 100%, where d∗ denotes the values of

design variables computed using the analytical method at the
optimum point. In addition, the non-probabilistic reliability
analysis and NRBDO approach are performed based on the
advanced nominal value method (Meng et al. 2018) to further
test the accuracy of the proposed method. The finite difference
method is used to calculate the sensitivities of objective and
performance functions during the NRBDO process.

5.1 Mathematical example 1

The first example is a two-dimensional nonlinear function,
which is modified from the reference (Bichon et al. 2008).

g xð Þ ¼ x31 þ x32−18 ð24Þ
where both of two uncertain variables x1 and x2 are assumed to
lie within the range of [5, 15].

The results computed using the analytical method are
shown in Fig. 5, in which the nominal values of x1 and x2
are set as (10.0, 10.0). The location is denoted as black “*.”
The black curve denotes the actual LSF, and the red curve
denotes the Kriging model-based LSF. The red “×” denote
the locations of sample points during the Kriging model-
based non-probabilistic reliability analysis. To compare the
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Initialize sample set s0

Build the Kriging model and

compute the non-probabilistic

reliability index

Termination?

End

k=k+1

Yes

Rebuild the Kriging model

based on the new sample set sk.
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Select a new point xk by ILF and
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Fig. 4 a Non-probabilistic
reliability analysis using the ILF.
b The ILF for NRBDO
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accuracy of different active learning methods in a fair way,
nine initial sample points are generated by the grid sampling
with three-level full factorial design to construct the initial
Kriging model. The relative errors ∣η − η∗ ∣ / ∣ η∗ ∣ × 100%
between different methods are used to compare the accuracy,
where η and η∗ denote the actual and Kriging non-
probabilistic reliability indices, respectively. Besides, the
number of sample size and CPU time are also given to dem-
onstrate the efficiency. The unit of the CPU time is second.

The results computed using the analytical method are listed
in Table 1. The actual non-probabilistic reliability index is
1.5840. The LHS method with 60 sample points is shown in
Fig. 5a, and dotted square denotes the geometric figure of non-
probabilistic model. Since the samples are evenly distributed

in the entire uncertain space, the relative error between the
LHS method and the analytical method is quite small. Since
the calculation of performance function is very cheap, a small
amount of CPU time is required.

The reliability analysis results computed using the EFF, ERF,
functionU, and CBSmethods are illustrated in Fig. 5b–e, respec-
tively. Comparing with LHS, EFF generates most of sample
points near the LSF despite of few samples locating at the top
right corner. Thus, the number of samples of EFF is far less than
that of LHS, while the accuracy is also accordingly increased.
ERF is slightly better than EFF; this may be because EFF re-
quires considering an additional parameter z. Function U in AK-
MCS generates the samples near the LSF with the large value of
Kriging variance, so the LSF is predicted accurately. CBS
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Fig. 5 Non-probabilistic
reliability analysis of different
methods for example 1. a LHS, b
EFF, c ERF, d function U, e CBS,
f ILM
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considers the minimum distance between the existing samples,
so the samples more evenly than that generated by function U. It
is also very efficient and accurate. But all these active learning
methods approximate the LSF in entire design space, it needs a
large number of sample points. The sampling process of the
proposed ILM is illustrated in Fig. 5f, which indicates that the
sample points move toward the CPF gradually. Besides, the CPU
time are also given in Table 1; the CPU time of these active
learning methods is higher than that of LHS, because it needs
constantly solving optimization problem.However, since the pre-
diction byKrigingmodel is efficient, the sampling process is also
very fast. The CPU time of these active learning methods has a
same trend with the sample numbers of these methods, and the
proposed ILM is the most effective method. For complex engi-
neering problem, the DoE of Kriging-based method occupies
most of CPU time, so the proposed method has a great potential
for reducing the CPU time for complex engineering systems.

The compared results of all methods are shown in Table 1.
“Sample size” represents the number of function calls for differ-
ent Kriging model-based non-probabilistic reliability analysis
methods. The efficiency of the active learning methods, i.e.,
EFF, ERF, function U, and CBS, is much improved compared
with the LHS method. In terms of the computational accuracy,
the relative error between the proposed ILM and analytical
method is 0 as shown in Table 1, which is more accurate than
other methods provided in this study. In addition, the sample
size of the proposedmethod is only 16, which is the least among
all the methods; in other words, the number of function calls is
nearly 1/2 of that of ERF and function U. It also needs to point
out that the proposed ILM only generates the sample points on
the LSF in the vicinity of the MCP, which is an obvious im-
provement by comparing with the provided reference methods.

5.2 Mathematical example 2

The second example is a highly nonlinear mathematical ex-
ample, which is modified from reference (Bichon et al. 2008).
The performance function is given as follows,

g xð Þ ¼ x21 þ 4
� �

x2−1ð Þ
20

−sin
5x1
2

−2 ð25Þ

where the nominal values of uncertain variables x1 and x2 are
1.5 and 2.5, and the radii of x1 and x2 are assumed as 1. Thus,
the mathematical expression of the ellipsoid model is formu-

lated as x−xC
xC

	 
T
2:25 0½ 0 6:25� x−xC

xC

	 

≤1.

The performance function is highly nonlinear, as
shown in Fig. 6. The coordinate of the MCP computed
using the analytical method is (1.9406, 3.5924). Nine
initial sample points are also generated by the grid sam-
pling with 3-level full factorial design to construct the
initial Kriging model for the EFF, ERF, function U,
CBS, and ILM. The reliability analysis results of the
LHS method are shown in Fig. 6b, there are totally
120 sample points evenly generated in the entire uncer-
tain space. However, many sample points are located far
from the MCP, which results in the approximate LSF is
inaccurate. The results computed using the EFF, ERF,
and CBS methods are illustrated in Fig. 6c–e, respec-
tively. It is observed that most of sample points gener-
ated using three active learning methods are located
near the LSF; thus, both the efficiency and accuracy
are improved remarkably. Among these three active
learning methods, EFF shows the most accuracy, but it
also needs more sample points.

The compared results of all methods are shown in
Table 2. Unlike the EFF, ERF, and CBS methods, most
of sample points generated using the proposed ILM are
located in the local region around the MCP, and thus,
the LSF near the neighborhood of the MCP can provide
enough accuracy. As shown in Fig. 6, the ILM is more
accurate than the LHS, EFF, ERF, function U, and CBS
methods, while the computational cost of the ILM is
greatly reduced by considering the influence of non-
probabilistic reliability index during the active learning
process. Also, the CPU time of the proposed method is
significantly reduced compared to other active learning
methods.

5.3 NRBDO mathematical example

There are three performance functions and two uncertain var-
iables in this NRBDO example (Meng et al. 2016). The design

Table 1 The optimal results for
example 1 Methods Most concerned point Sample size Time (s) η Error (%)

Anal. (2.0818,2.0818) – – 1.5840 –

LHS (2.1072,2.1072) 60 0.692 1.5786 0.340909

EFF (2.0759,2.0759) 36 21.820 1.5848 0.050505

ERF (2.0811,2.0811) 31 16.932 1.5838 0.012626

Function U (2.0813,2.0813) 28 12.193 1.5839 0.006313

CBS (2.0766,2.0766) 29 14.341 1.5847 0.044192

ILM (2.0818,2.0818) 16 6.695 1.5840 0
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Fig. 6 Non-probabilistic
reliability analysis of different
methods for example 2. a LHS, b
EFF, c ERF, d function U, e CBS,
f ILM

Table 2 The optimal results for
example 2 Methods MCP Sample size Time (s) η Error (%)

Anal. (1.9406,3.5924) – – 1.1852 –

LHS (1.9420,3.6095) 120 0.361 1.1815 0.312183

EFF (1.9409,3.5997) 82 185.547 1.1849 0.025312

ERF (1.9390,3.6027) 75 134.537 1.1870 0.151873

Function U (1.9390,3.6027) 66 101.063 1.1845 0.050618

CBS (1.9420,3.6014) 71 115.621 1.1869 0.143436

ILM (1.9412,3.5999) 18 9.688 1.1851 0.008438
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Table 3 The optimal results for example 3

Methods Objective Design variables Sample size η1 η2 η3 Time (s) Error (%)

Anal. 6.3177 (3.3425,2.9752) – 1 1 4.6994 – –

LHS 6.3152 (3.3406,2.9746) 80 0.9971 1.0001 4.7021 1.628 0.044526

EFF 6.3174 (3.3423,2.9751) 58 0.9996 0.9999 4.6997 129.768 0.004997

ERF 6.3178 (3.3426,2.9752) 50 1.0001 0.9999 4.6993 96.706 0.002235

Function U 6.3172 (3.3422,2.9750) 49 0.9994 0.9998 4.6999 91.824 0.008057

CBS 6.3188 (3.3434,2.9755) 38 1.0013 1.0000 4.6981 76.428 0.021200

ILM 6.3178 (3.3426,2.9752) 24 1.0001 1.0000 4.6994 45.821 0.002235
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variables are selected as the nominal values, and the reference
variation coefficients of nominal values are assumed as 10%.
The NRBDO model is defined as follows,

find d ¼ xC1 ; x
C
2

� �T
min xC1 þ xC2
s:t: ηi gi xð Þ≥0½ �≥ηi; i ¼ 1; 2; 3;

0≤xC1 ≤10; 0≤xC2 ≤10;

where g1 xð Þ ¼ x21x2
20

−1;

g2 xð Þ ¼ x1 þ x2−5ð Þ2
30

þ x1−x2−12ð Þ2
120

−1;

g3 xð Þ ¼ 80

x21 þ 8x2 þ 5
� � −1;

η1 ¼ η2 ¼ η3 ¼ 1;
d 0ð Þ ¼ 5:0; 5:0½ �T

ð26Þ

The compared optimization results and NRBDO solutions of
different methods for example 3 are listed in Table 3 and Fig. 7.
To compare the optimal results of different methods, the non-
probabilistic reliability index at the optimum is tested byANVM.
The optimal results are identical to those in reference (Meng et al.
2016). The initial sample sizes of different Kriging model-based
NRBDO approaches are equal to nine, which is also generated
using grid sampling with three-level full factorial design.

FromTable 3 and Fig. 7, it can be observed that the samples
generated by the LHS method are evenly distributed in the
design space, which requires a large number of sample points
to find the optimum. As shown in Fig. 7b, c, the EFF and ERF
methods generate new sample points near the LSF, so they are

Table 4 The optimal results for
speed reducer Methods Objective Design variables Sample size Time (s) Error(%)

Anal. 3068.85 (3.5700,0.7,17,7.3,7.9091,3.3841,5.3397) – – –

LHS 3071.50 (3.5716,0.7,17,7.3,7.9091,3.3923,5.3395) 100 3.241 0.039048

EFF 3071.47 (3.5707,0.7,17,7.3,7.9088,3.3920,5.3401) 66 418.461 0.037131

ERF 3070.73 (3.5700,0.7,17,7.3,7.9093,3.3923,5.3393) 61 207.381 0.038371

Function U 3068.27 (3.5708,0.7,17,7.3,7.9110,3.3801,5.3399) 61 208.117 0.021109

CBS 3069.97 (3.5698,0.7,17,7.3,7.9091,3.3867,5.3405) 57 202.314 0.012745

ILM 3068.94 (3.5700,0.7,17,7.3,7.9099,3.3844,5.3401) 47 108.969 0.004408

Pinion

x6x7

Gearx 5

x 4

Shaft 1

Shaft 2

Fig. 8 A speed reducer

Table 5 Non-probabilistic reliability index of speed reducer at the optimum

Methods η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11

Anal. Inact. Inact. Inact. Inact. 1 1 Inact. 1 Inact. Inact. 1

LHS Inact. Inact. Inact. Inact. 1.2405 0.9961 Inact. 1.0229 Inact. Inact. 1.0019

EFF Inact. Inact. Inact. Inact. 1.2317 1.0075 Inact. 1.0100 Inact. Inact. 0.9948

ERF Inact. Inact. Inact. Inact. 1.2405 0.9924 Inact. 1.0000 Inact. Inact. 1.0050

Function U Inact. Inact. Inact. Inact. 0.8810 1.0037 Inact. 1.0114 Inact. Inact. 1.0127

CBS Inact. Inact. Inact. Inact. 1.0755 1.0150 Inact. 0.9971 Inact. Inact. 0.9938

ILM Inact. Inact. Inact. Inact. 1.0078 1.0075 Inact. 1.0000 Inact. Inact. 1.0030
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more efficient than the LHS method. For functionU, the sam-
ples located on the LSF g3 are more than those located on the
LSFs g1 and g2, so it is less accurate than EFF and ERF. But
the number of samples of function U is less than that of EFF
and ERF. For CBS, the samples are evenly distributed on LSF
in the feasible region, whose efficiency is further improved to
a certain extent than function U. Compared with the EFF,
ERF, and CBS methods, the proposed ILM only adds the
sample points on the LSFs at the neighborhood of the MCP,
while the inactive constraint g3 is ignored owing to the large
value of non-probabilistic reliability constraint. Therefore, it is
a more efficient and accurate approach than other prevalent
active learning methods for solving the NRBDO problems in
terms of the number of function calls and CPU time.

5.4 A speed reducer

A speed reducer contains seven uncertain variables and 11 non-
probabilistic reliability constraints, as shown in Fig. 8. The
objective functions are the structural weight, while physical
quantities, involving bending stress, contact stress, longitudinal
displacement, stress of the shaft, and geometry constraints, are
deemed as the constraints. All uncertain parameters are consid-
ered as the uncertain-but-bounded variables, and the reference
coefficients of variation of nominal values are assumed as 1%.
The deterministic optimum solution is selected as the initial
design and the NBRDO model is formulated as follows,

find d ¼ xC1 ; x
C
2 ; x

C
3 ; x

C
4 ; x

C
5 ; x

C
6 ; x

C
7

� �T
min f dð Þ ¼ 0:7854xC1 xC2

� �2
3:3333 xC3

� �2 þ 14:9334xC3 −43:0934
	 


−1:508xC1
xC6
� �2 þ xC7

� �2	 

þ 7:477 xC6

� �3 þ xC7
� �3	 


þ 0:7854

xC4 xC6
� �2 þ xC5 xC7

� �2	 

s:t: ηi gi xð Þ≥0½ �≥ηi; i ¼ 1; 2;…; 11;

g1 xð Þ ¼ 27

x1x22x3
−1; g2 xð Þ ¼ 397:5

x1x22x
2
3

−1;

g3 xð Þ ¼ 1:93x34
x2x3x46

−1; g4 xð Þ ¼ 1:93x35
x2x3x47

−1;

g5 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4= x2x3ð Þð Þ2 þ 16:9� 106

q
0:1x36

−1100;

g6 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5= x2x3ð Þð Þ2 þ 157:5� 106

q
0:1x37

−850;

g7 xð Þ ¼ x2x3−40; g8 xð Þ ¼ 5−
x1
x2
;

g9 xð Þ ¼ x1
x2
−12; g10 xð Þ ¼ 1:5x6 þ 1:9

x4
−1;

g11 xð Þ ¼ 1:1x7 þ 1:9

x5
−1;

η1 ¼ η2 ¼ … ¼ η11 ¼ 1:0;
2:6≤xC1 ≤3:6; 0:7≤xC2 ≤0:8; 17≤xC3 ≤28;
7:3≤xC4 ≤8:3; 7:3≤x

C
5 ≤8:3;

2:9≤xC6 ≤3:9; 5:0≤xC7 ≤5:5;
d0 ¼ 3:5; 0:7; 17:0; 7:3; 7:72; 3:35; 5:29½ �T

ð27Þ

The compared results for the speed reducer are listed in
Table 4, while the non-probabilistic reliability index at the
optimum is validated by the ANVM, as shown in Table 5.
The abbreviation “inact.” denotes this non-probabilistic re-
liability constraint is inactive in Table 5. The numbers of
initial sample point for the EFF, ERF, function U, CBS,
and ILM are 36, which is sampled by the LHS method. It
can be seen that the efficiency of the LHS method is low.
EFF, function U, and ERF are more efficient than the
LHS. However, the minimum non-probabilistic reliability
index calculated using the EFF, function U, and ERF
methods are 0.9948, 0.8810, and 0.9924, respectively.
The CBS method is more efficient than the LHS, ERF,
function U, and EFF methods, and the corresponding min-
imum non-probabilistic reliability index at the optimum is
0.9938. The minimum non-probabilistic reliability index of
the proposed ILM is 1.0000, and thus, it is obviously
more accurate than other active learning functions. In ad-
dition, the number of sample size is less than other com-
parative methods. Also, the CPU time of the proposed
method is less than that of other active learning methods.
Therefore, it can be concluded that the proposed ILM
shows a high performance in terms of accuracy and
efficiency.

5.5 A welded beam

As shown in Fig. 9, the weight of weld beam is mini-
mized, while the non-probabilistic reliability constraints
are related to shear stress, bending stress, buckling and
displacement (Meng et al. 2016). There are four
uncertain-but-bounded variables, and their nominal
values are selected as design variables. The reference
coefficients of variation of nominal values are selected
as 5%. The deterministic optimum results are selected

x2

x1
Structure

weldment

Beam

F F

x3

x4

Fig. 9 Awelded beam
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as the initial design, and the NBRDO model is formu-
lated as follows,

find d ¼ xC1 ; x
C
2 ; x

C
3 ; x

C
4

� �T
min f d; zð Þ ¼ c1 xC1

� �2
xC2 þ c2xC3 x

C
4 z2 þ xC2
� �

s:t: ηi gi x; zð Þ≥0½ �≥ηi; i ¼ 1;…; 5;
where g1 x; zð Þ ¼ τ x; zð Þ=z6−1; g2 x; zð Þ ¼ σ x; zð Þ=z7−1;

g3 x; zð Þ ¼ x1=x4−1; g4 x; zð Þ ¼ δ x; zð Þ=z5−1;
g5 x; zð Þ ¼ 1−Pc x; zð Þ=z1;
τ x; zð Þ ¼ t x; zð Þ2 þ 2t x; zð Þtt x; zð Þx2

2R xð Þ þ tt x; zð Þ2
 �1=2

;

t x; zð Þ ¼ z1ffiffiffi
2

p
x1x2

; tt x; zð Þ ¼ M x; zð ÞR xð Þ
J xð Þ ;

σ x; zð Þ ¼ 6z1z2
x23x4

; δ x; zð Þ ¼ 4z1z32
z3x33x4

;

M x; zð Þ ¼ z1 z2 þ x2
2

	 

;R xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x1 þ x3ð Þ2

q
2

0
@

1
A;

J xð Þ ¼
ffiffiffi
2

p
x1x2 x22=12þ x1 þ x3ð Þ2=4

h i
;

Pc x; zð Þ ¼ 4:013x3x34
ffiffiffiffiffiffiffiffi
z3z4

p
6z22

1−
x3
4z2

ffiffiffiffiffi
z3
z4

r� �
;

η1 ¼ η2 ¼ … ¼ η5 ¼ 1:0;
3:175≤xC1 ≤50:8; 0≤xC2 ≤254;
0≤xC3 ≤254; 0≤xC4 ≤50:8;
d 0ð Þ ¼ 6:208; 157:82; 210:62; 6:208½ �T

ð28Þ

The compared results for the welded beam design are
shown in Table 6. The non-probabilistic reliability index at

the optimum is listed in Table 7, which is validated by the
ANVM. The numbers of initial sample points for the EFF,
ERF, function U, CBS, and ILM are 24, which are sampled
by the LHS method.

For the LHS method, 360 samples are generated in the
entire design space, and the optimum converges to (10.1555,
175.8606, 112.7095, and 12.3325). It is obviously found that
the accuracy of the NRBDO results computed by the LHS
method is poor. The EFF method improves the accuracy of
Kriging model to a certain extent through adding the sample
points near the LSF; however, the minimum non-probabilistic
reliability index at the optimum is far less than 1. Thus, the
optimal results computed by EFF have the risk of failure.
Other three active learning methods, including ERF, function
U, and CBS methods, exhibit similar behavior for this highly
nonlinear problem. The approximate difficulty of the pro-
posed ILM is significantly decreased because of only approx-
imating the MCP in the local region, and thus, the accuracy is
significantly improved. Also, the number of function calls and
CPU time are about half of any other comparative methods.

6 Conclusions

This study investigates the active learning methods for the
non-probabilistic reliability analysis and optimization and de-
velops an ILM for improving the computational efficiency
and accuracy. Considering the importance degree of non-
probabilistic reliability index during the active learning pro-
cess, an ILF is proposed to accurately predict the MCP in the
vicinity of LSF. Then, the proposed ILM is further extended to
solve the NRBDO problems with multiple performance func-
tions accurately and efficiently by constructing the system
ILF. In addition, in order to ensure the accuracy, two new
stopping criterions are proposed to distinguish the conver-
gence condition of the non-probabilistic reliability analysis
and optimization, which is also an innovation point of the
proposed algorithm.

The efficiency and accuracy of the proposed ILM are val-
idated through two non-probabilistic reliability analysis exam-
ples and three NRBDO examples. The compared results with
one typical sampling method (LHS) and four popular active

Table 6 The optimal results for
welded beam Methods Objective Design variables Sample size Time (s) Error (%)

Anal. 2.7592 (5.8964,190.8302,221.1275,6.5172) – – –

LHS – – – – –

EFF 2.6723 (5.6595,193.3285,213.8763,6.5419) 224 626.916 2.625859

ERF 2.8204 (7.5169,163.0285,211.9458,6.8155) 247 1099.667 10.03533

Function U 2.6123 (6.1609,165.4338,223.5867,6.4002) 220 640.083 8.732156

CBS 2.5587 (5.7217,151.8503,225.2529,6.6260) 201 541.698 13.41405

ILM 2.7603 (5.8947,190.5902,221.4733,6.5154) 90 394.172 0.143523

Table 7 Non-probabilistic reliability index of welded beam at the
optimum

Methods η1 η2 η3 η4 η5

Anal. 1.0000 1.0000 1.0000 Inact. 1.0000

LHS – – – – –

EFF 0.5127 0.5642 1.4214 Inact. 0.9318

ERF 1.7432 0.7208 − 1.1298 Inact. 1.5971

Function U 0.6208 1.0279 0.3855 Inact. 0.7356

CBS − 0.3621 1.3779 1.4567 Inact. 1.3581

ILM 1.0017 1.0199 0.9999 Inact. 1.0013
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learning methods (EFF, ERF, function U, and CBS) indicated
that the proposed ILM is more efficient and accurate. The
results validated by the advanced nominal value method are
almost identical to the results computed by the actual perfor-
mance functions, which verifies that the proposed ILM is
more accurate than other comparative methods. In the future,
the application of the ILM for large-scale engineering systems
will be reinforced.
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