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Abstract
This paper proposes a non-probabilistic robust design approach, based on optimization with anti-optimization, to handle
unknown-but-bounded loading uncertainties in stress-constrained topology optimization. The objective of the proposed
topology optimization problem is to find the lightest structure that respects the worst possible scenario of local stress
constraints, given predefined bounds on magnitudes and directions of applied loads. A solution procedure based on the
augmented Lagrangian method is proposed, where worst-case local stress constraints are handled without employing
aggregation techniques. Results are post-processed, demonstrating that maximum stress of robust solutions is almost
insensitive with respect to changes in loading scenarios. Numerical examples also demonstrate that obtained robust solutions
satisfy the stress failure criterion for any load condition inside the predefined range of unknown-but-bounded uncertainties
in applied loads.

Keywords Topology optimization · Stress constraints · Uncertainties · Non-probabilistic · Robust · Worst case

1 Introduction

Topology optimization of continuum structures with local stress
constraints was introduced in the literature by Duysinx and
Bendsøe (1998) considering the density approach. Since
then, several papers were developed aiming at overcoming
well-known difficulties associated with this formulation: the
local nature of stress failure criterion (Pereira et al. 2004),
the singularity phenomenon (Cheng and Guo 1997; Duysinx
and Bendsøe 1998), and the artificial stress concentration on
jagged boundaries (Svärd 2015).

While these difficulties were not completely overcome
in the scope of density-based approach, research advanced
over parallel topics, such as the consideration of uncertain-
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ties in the stress-based formulations. These considerations
naturally increase problem nonlinearity and, hence, the dif-
ficulty of obtaining topology optimization solutions. In a
comprehensive literature review, we identified few papers
addressing topology optimization problems of continuum
structures with stress constraints under uncertainty (Luo
et al. 2014; Holmberg et al. 2017; da Silva and Cardoso
2017; Thore et al. 2017; da Silva et al. 2018; da Silva
and Beck 2018). These works can be classified into two
categories: probabilistic and non-probabilistic.

In probabilistic approaches, uncertainties are quantified in
terms of probabilities, and uncertain variables are represented
as random variables. These approaches can be divided
in two categories: reliability-based topology optimization
(RBTO) and robust topology optimization (RTO). In the
RBTO approach, stress constraints are imposed in terms of
an allowable probability of failure for each point of stress
computation (Luo et al. 2014; da Silva and Beck 2018).
In the RTO approach, stress constraints are rewritten as a
weighted sum between their expected value and standard
deviation (da Silva and Cardoso 2017; da Silva et al. 2018).
Both approaches are suitable for handling uncertainties
described as random variables. RBTO approaches may be
used when marginal probability density functions of random
variables are available, whereas RTO approaches require
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only first- and second-order moments (expected values,
standard deviations, and covariances).

Unfortunately, there are situations where there is no suf-
ficient information to evaluate either marginal probability
density functions or statistical moments. In some cases, only
the bounds of uncertain variables are known. In such sit-
uations, one can formulate the problem in terms of these
bounds in a non-probabilistic approach. Thus, the devel-
opment of non-probabilistic approaches is indeed impor-
tant, also for stress-based problems. Herein, we are not
discussing which is the best approach for solving stress-
constrained problems under uncertainty. We believe that
both probabilistic and non-probabilistic approaches are
complementary, and there are situations where one approach
may be more suitable than the other. For a deeper dis-
cussion on probabilistic and non-probabilistic approaches
for optimization under uncertainty, the reader is referred to
Elishakoff and Ohsaki (2010).

Non-probabilistic methods for optimization under uncer-
tainty are often formulated as a two-level optimization-
anti-optimization problem (Elishakoff and Ohsaki 2010).
When the unknown-but-bounded parameters are the only
sources of uncertainty in the formulation, and for a deter-
ministic objective function, the optimization problem can
be formulated as the minimization (or maximization) of
the objective function subjected to the worst-case scenario
of constraints. The inner optimization problems solved for
achieving the most critical constraints are sometimes called
anti-optimization problems in the literature (Elishakoff et al.
1994; Lombardi 1998; Lombardi and Haftka 1998), hence
this nomenclature is adopted in this paper.

In recent years, the interest in developing worst-case non-
probabilistic approaches for solving continuum topology
optimization problems under uncertainty has been growing.
Our literature review revealed a variety of formulations
developed to solve several kinds of continuum topology
optimization problems under the effect of unknown-but-
bounded uncertainties. In (Sigmund 2009; Wang et al.
2011b), a formulation is developed to handle uniform
boundary variation on optimized topologies, through
consideration of eroded and dilated topologies during
optimization. This formulation was then extended to solve
a variety of problems, like the design of photonic crystal
waveguides with tailored dispersion properties (Wang et al.
2011a) and the design of robust electromechanical actuators
(Qian and Sigmund 2013). In Guo et al. (2013), a
formulation is proposed to solve compliance minimization
and fundamental frequency maximization problems under
arbitrary boundary variations considered via level set
approach. In Guo et al. (2015), concurrent optimization
of material and structure under load uncertainties is
investigated in a multi-scale framework. In Holmberg et al.
(2015), a formulation is proposed to solve the compliance

optimization problem, where both load uncertainty due to
the worst possible acceleration of applied masses and the
weight of the structure itself are addressed. In Holmberg
et al. (2017), a game theoretic framework is proposed to
solve continuum topology optimization problems (including
the stress-constrained problem) under load uncertainty. In
Thore et al. (2017), a formulation is developed considering
the ellipsoidal uncertainty model for solving continuum
problems subjected to Euclidean norm for the stress
constraints under load uncertainty. In Liu and Gea (2018),
a formulation is developed to solve compliance-based
problems under uncertainties in multiple applied loads.

In this work, a novel non-probabilistic RTO approach is
proposed for solving stress-constrained topology optimiza-
tion problems under unknown-but-bounded uncertainty in
applied loads.

The main objectives/contributions of this work are:

1. Proposing a non-probabilistic robust formulation, based
on the two-level optimization with anti-optimization
framework, to handle the problem of volume minimiza-
tion with local stress constraints under unknown-but-
bounded uncertainties in magnitude and direction of
applied loads;

2. Proposing a solution procedure, based on the aug-
mented Lagrangian method (Birgin and Martı́nez
2014), to handle the worst-case local stress constraints
without employing aggregation techniques;

3. Showing, through proper post-processing, that opti-
mized structures are truly robust with respect to uncer-
tainties in applied loads, in the sense that local stress
constraints are satisfied for any load condition inside
given bounds of uncertain variables.

The formulation proposed herein to solve (non-
probabilistic robust) stress-constrained topology optimiza-
tion problems is remarkably similar to the formulation
developed in da Silva et al. (2018) for solving the prob-
abilistic version of the robust optimization problem, and
in da Silva and Beck (2018), for solving the reliability-
based version of the same problem. Although the techniques
proposed herein for solving the outer design optimization
problem were already explored in da Silva et al. (2018)
and da Silva and Beck (2018), it remains fundamental
to demonstrate that they are also useful for solving the
non-probabilistic robust topology optimization problem.

2 Deterministic topology optimization

In this work, the traditional density approach (Sigmund
and Maute 2013) is employed to address the volume
minimization problem subjected to local stress constraints.
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The deterministic problem, in discrete form, can be
written as Le et al. (2010) and Bruggi and Duysinx (2012)

Min.
ρ

V (ρ) =
∑Ne

e=1
Vefv

(
ρe

)

s. t.
σ

(k)
eq (ρ)

σy
− 1 � 0 k = 1, 2, ..., Nk ,

K(ρ)U(ρ) = F

0 � ρe � 1 e = 1, 2, ..., Ne

(1)

where ρ ∈ R
Ne are the design variables of the optimization

problem, V (ρ) is the objective function of the optimization
problem, which depends on the physical relative densities
ρ ∈ R

Ne , Ne is the number of elements in the finite element
mesh, Ve is the structural volume of finite element e, σ (k)

eq (ρ)

is the von Mises equivalent stress at point k, σy is the yield
stress, Nk is the number of points where the von Mises
equivalent stress is computed, K(ρ) is the global stiffness
matrix, U(ρ) is the global displacement vector, and F is the
global load vector. The local stiffness matrix of element e is
computed with the solid isotropic material with penalization
(SIMP) approach, as ke(ρe) = (

ρ
p
e + ρmin

)
kb

e , following
Guest et al. (2011) and Tootkaboni et al. (2012), where
ρmin = 1 × 10−9 is adopted to ensure a well-conditioned
system of linear equations, p > 1 is a penalization factor,
and kb

e is the stiffness matrix considering base material.
The objective function V (ρ) is chosen equal to fv

(
ρe

) =
1−e−δvρe+ρee−δv , where δv � 0 is the volume penalization
parameter (da Silva and Beck 2018).

The von Mises equivalent stress at any point k is
computed based on Duysinx and Bendsøe (1998), and can
be written as

σ (k)
eq (ρ) =

√
σ T

k (ρ)Mσ k (ρ) + σ 2
min, (2)

where the constant σmin = 1 × 10−4σy is included in our
implementation to ensure a positive von Mises equivalent
stress when σ T

k (ρ)Mσ k (ρ) → 0, in order to avoid
numerical instabilities during the sensitivity analysis.

σ k (ρ) is the stress vector at any point k, computed as

σ k (ρ) = Ck(ρk)Bkuk(ρ), (3)

and M is a constant matrix, defined as

M =
⎡

⎣
1 − 1

2 0
− 1

2 1 0
0 0 3

⎤

⎦ , (4)

for plane stress problems.
In (3), Ck(ρk) = fσ

(
ρk

)
Cb

k depends on the constitutive
matrix of base material of the element which contains point
k, Cb

k ; Bk is the strain-displacement transformation matrix
evaluated at point k; and uk(ρ) is the local displacement
vector of the element which contains point k. The local
displacement vector can be associated with the global

displacement vector through use of a localization operator
Hk (Bathe 1996), such that uk(ρ) = HkU(ρ).

In this work, we choose f δ
σ

(
ρk

) = 1 − e−δσ ρk + ρke−δσ

for stress constraint relaxation in both deterministic and
robust formulations, where δσ > 0 is the stress interpolation
parameter (da Silva and Beck 2018).

In this work, density filtering with Heaviside step
function, originally proposed by Guest et al. (2004), is
employed, in order to avoid checkerboard-like areas and
to impose a minimum length scale in the solid phase
of the optimized solution. Our implementation follows
Sigmund (2007). The physical relative density of element e

is computed as

ρe = 1 − e−δρ̃e + ρ̃ee−δ, (5)

where δ is a penalization parameter which governs
nonlinearity of the smoothed Heaviside projection, and ρ̃e

is the filtered relative density of element e, obtained from a
linear projection

ρ̃e =
∑

n∈ϑe
w(xn)Vnρn∑

n∈ϑe
w(xn)Vn

, (6)

over the design variables ρ, in a circular neighborhood
ϑe, centered in element e, which contains all the elements
whose center is within a radius R specified by the designer.

A linear weighting function is employed and defined as

w(xn) = R − ‖xn − xe‖, (7)

where xn contains the coordinates of the center of element
n and xe contains the coordinates of the center of the
neighborhood ϑe.

For δ = 0, in (5), a linear behavior between physical
and filtered relative densities is obtained, ρe = ρ̃e, whereas
for δ → ∞, the Heaviside step function is approximated
(Guest et al. 2004). Large values of δ are usually employed
as an attempt to achieve crisp black and white solutions,
reducing the blurred boundaries effect related to linear
density filtering (Sigmund 2007). In this paper, parameter
δ is updated through continuation approach, as described in
Section 4.2.

3 Non-probabilistic robust topology
optimization

When there is uncertainty in applied loads, optimization
problem defined in (1) is no longer appropriate, since von
Mises equivalent stresses become uncertain.

Considering a non-probabilistic robust framework, where
magnitude and direction of applied loads are unknown-but-
bounded, stress constraints should be given for the worst-
case scenario, considering any magnitude and direction
inside given bounds. In this paper, the non-probabilistic
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problem is addressed considering the classical nested two-
level approach (Elishakoff et al. 1994; Guo et al. 2009),
where the outer problem is devoted to finding the optimal
topology subjected to worst-case stress constraints and the
inner problems are devoted to finding the worst-case von
Mises equivalent stresses (due to the worst sets of applied
loads).

The outer optimization problem is defined as:

Min.
ρ

V (ρ) = ∑Ne

e=1 Vefv

(
ρe

)

s. t.
σ

(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

σy
− 1 � 0 k = 1, 2, ..., Nk

K(ρ)U(ρ, f, θ) = F(f, θ)

0 � ρe � 1 e = 1, 2, ..., Ne

,

(8)

where f ∈ R
N and θ ∈ R

N are vectors which contain the
magnitudes and directions of applied loads, respectively, N

is the number of applied loads, and
(
f(k)

)∗
and

(
θ (k)

)∗
are

optimal sets of magnitudes and directions of applied loads,
respectively, which leads to the worst possible (maximal)

von Mises equivalent stress σ
(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)
, at

point k.
The inner anti-optimization problems are written as

maximization problems, defined for each point of stress
computation k as

Max.
f,θ

σ
(k)
eq (ρ, f, θ)

s. t. finf � f � fsup
θ inf � θ � θ sup

(9)

where the uncertain variables of the optimization problem,
magnitudes f and directions θ of applied loads, are the
design variables of the anti-optimization problems. In (9),
finf and fsup are the bounds for magnitudes, and θ inf and
θ sup are the bounds for directions of applied loads.

The two-level solution procedure adopted to solve the
non-probabilistic problem is very simple: the outer opti-
mization problem (associated with the structural problem),
(8), is solved as the deterministic problem, (1), except for
the stress constraints, which are evaluated at the worst sets
of applied loads, given bounds of uncertain variables. Thus,
at each step of outer optimization, (8), one must find the
worst possible scenario for the stress constraints by solving
Nk anti-optimization problems, (9).

As discussed in Guo et al. (2009), global optimum
solutions of anti-optimization problems are essential to
guarantee robustness of outer problem solutions. The anti-
optimization problems, (9), are in general non-convex; and
guaranteeing global optimum for non-convex optimization
problems is always a challenging task (Arora 2012). In

this paper, each anti-optimization problem is solved with a
sequential approach: 1) a simple grid search method (Rao
2009) is first employed; 2) from the best point obtained
with the grid search method, a modified steepest descent
(here ascent, since maximum stress is desired) method is
employed, following implementation proposed in da Silva
et al. (2018), until a specified tolerance is attained. In this
paper, we use a simple convergence criterion over design
variables of anti-optimization problems: maximum change
on design variables of anti-optimization problem must be
smaller than predefined tolerance specified by the designer,
tolf,θ . The outcome of the sequential grid-local search
approach is considered as solution of the anti-optimization
problem.

Obviously, there is no guarantee that a point obtained
from this sequential procedure is a global optimum. How-
ever, from our experience with the proposed formulation,
good solutions can be achieved. Indeed, numerical results
obtained herein confirm that optimized topologies became
fully robust with respect to uncertainties in applied loads.

The formulation developed in this paper is quite general,
in the sense that solution algorithm employed to solve anti-
optimization problems can be replaced, without loss of
generality. An alternative, for instance, is employment of
algorithms that absolutely guarantee global optimum under
a specified tolerance. The authors refer the reader to Thore
(2016), where a branch-and-bound algorithm is employed
to find the worst possible P-norm von Mises stress value,
given bounded uncertainty in applied load.

4 Solution procedure

In this section, details of solution procedure are presented.
In Section 4.1, principle of superposition is shown, fol-
lowing da Silva and Beck (2018), but adding uncertainty
in direction of applied loads. Principle of superposition
is employed herein to speed evaluation of objective func-
tions (von Mises equivalent stresses) and their sensitivities
with respect to uncertain parameters (magnitudes and direc-
tions of applied loads), during the anti-optimizations. In
Section 4.2, the augmented Lagrangian method, employed
to solve the outer optimization problem, (8), is briefly
explained.

4.1 Principle of superposition

Considering hypothesis of linear elasticity, principle of
superposition holds (Bathe 1996; Bucalem and Bathe 2011).
Figure 1 shows a solid body (in 2D) where principle of
superposition is employed in order to determine global
displacements in terms of f and θ . Boundary S of solid
body illustrated in Fig. 1 is split in two parts: Su with
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Fig. 1 Illustration of principle of superposition in 2D solid body
subjected to null prescribed displacements and concentrated load

prescribed displacements and Sf with prescribed tractions.
For simplicity, we assume homogeneous essential boundary
conditions on Su. In this problem, Sf is split in two parts:
Sf0 , subjected to surface traction 0; and Sfi

subjected to
concentrated load1 with magnitude fi and direction θi .

Introducing the displacement-based finite element
method, with density parameterization, for topology opti-
mization, and generalizing this particular problem for N

concentrated loads applied in non-intersecting boundaries
Sf1 , Sf2 , ... , SfN

, one can compute nodal displacements of
problem on the left hand side of Fig. 1 as

U (ρ, f, θ) =
N∑

i=1

fi

(
U

1

i (ρ) cos(θi) + U
2

i (ρ) sin(θi)

)
,

(10)

where nodal displacements U
1

i (ρ) and U
2

i (ρ) are computed

considering unitary magnitude horizontal F
1

i and vertical

F
2

i applied loads, respectively, associated with concentrated
load i, as

K(ρ)U
j

i (ρ) = F
j

i , (11)

for j = 1, 2. Equation 11 can be seen as a set of
auxiliary equilibrium equations, necessary to obtain the
equilibrium configuration of the problem due to horizontal

and vertical applied loads with unitary magnitude, F
1

i and

F
2

i , respectively, for i = 1, 2, ..., N .
Equation 10 is extremely useful in obtaining solutions

of anti-optimization problems, since nodal displacements

U
1

i (ρ) and U
2

i (ρ) are evaluated only at the beginning of
each iteration, for each applied load. The factorization of
the global stiffness matrix K(ρ) can be performed only
once, in the sense that only 2N substitutions are needed

to obtain U
1

i (ρ) and U
2

i (ρ) for i = 1, 2, ..., N . Additional

1It is worth noting that concentrated load is employed in the
illustration, instead of surface traction, due to the easier decomposition
into horizontal and vertical components. In the numerical examples
(results section), concentrated loads are distributed over the boundary
defined by Sfi

, in order to avoid stress concentration.

calculations are trivial and can be performed explicitly, like
the evaluation of U (ρ, f, θ) at any set of unknown variables
f and θ , computation of von Mises equivalent stress, and
sensitivity analysis with respect to uncertain variables f and
θ .

In the mathematical developments performed in this
paper, magnitude and direction of all applied loads are
considered uncertain, without loss of generality. If there
is a set of deterministic applied loads in the problem
being addressed, or applied loads with uncertainty in
either magnitude or direction only, one can attribute a
deterministic value to fi and/or θi and employ (10) without
any difficulty.

Generalization of results presented in (10), in order
to explicitly include displacements due to deterministic
applied loads, displacements due to applied loads with
unknown magnitude only, and displacements due to applied
loads with unknown direction only, is straightforward (da
Silva and Beck 2018). This generalization is not performed
herein, since the expression obtained in (10) is quite general
in the sense that attribution of deterministic value to fi

and/or θi can be easily performed.

4.2 Augmented Lagrangianmethod

In this paper, the outer optimization problem, (8), is solved
with an augmented Lagrangian method. The augmented
Lagrangian method consists in a sequence of optimization
subproblems, where the solution of previous subproblem
is used as a starting point for solving current subprob-
lem (Birgin and Martı́nez 2014). Optimization subprob-
lems are derived from original problem, in the sense that
desired constraints of original problem are included in the
objective function of optimization subproblems, resulting
in the augmented Lagrangian function. The included con-
straints, which are now part of the objective function, are
weighted by penalization parameters and are associated
with Lagrange multipliers. After solving an optimization
subproblem, Lagrange multipliers and penalization param-
eters are updated, then, another optimization subproblem is
solved, and so on, until convergence.

In this work, only stress constraints are included in the
augmented Lagrangian function, and only one penalization
parameter is considered for the whole set of constraints. The
augmented Lagrangian function associated with the outer
problem, (8), is defined as

L
(
ρ, f∗, θ∗, μ, r

) = V (ρ) + r

2

Nk∑

k=1

〈
μk

r

+
σ

(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

σy

− 1

〉2

, (12)
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where 〈·〉 = max(0, ·).
Optimization subproblems are subjected to bound

constraints, since they are not included in the augmented
Lagrangian function. Optimization subproblems are defined
as

Min.
ρ

L
(
ρ, f∗, θ∗, μ(c), r(c)

)

s. t. K(ρ)U(ρ, f, θ) = F(f, θ)

0 � ρe � 1 e = 1, 2, ..., Ne

, (13)

where f∗ ∈ R
N×Nk and θ∗ ∈ R

N×Nk are matrices
containing all solutions of anti-optimization problems,

namely
(
f(k)

)∗
and

(
θ (k)

)∗
, at current step, r is the

penalization parameter, μ ∈ R
Nk is a vector which contains

the Lagrange multipliers, and μk is the Lagrange multiplier
associated with k-th stress constraint. The index c indicates
c-th optimization subproblem.

Lagrange multipliers and penalization parameter are
updated by:

μ
(c+1)
k ←

〈
r(c)

⎛

⎜⎝
σ

(k)
eq

((
ρ(c)

)∗
,
(
f(k)

)∗
,
(
θ (k)

)∗)

σy

− 1

⎞

⎟⎠ + μ
(c)
k

〉
, (14)

and

r(c+1) ←
{

min
(
γ r(c), rmax

)
if δσ

(c)
max > ω δσ

(c−1)
max

r(c) otherwise
,

(15)

respectively, where
(
ρ(c)

)∗
is the solution of the c-th

subproblem, (13), γ > 1 and ω < 1 are update
parameters, rmax is an upper value of penalization parameter

and δσmax =
((

σmax
eq

)

σy
− 1

)
, where σmax

eq represents the

maximum value among all computed von Mises equivalent
stresses. In this paper, we choose to increase the value
of penalization parameter r by a factor of γ only if
maximum value of stress constraints reduces less than a
factor of ω, i.e., if there is reasonable progress regarding
feasibility of optimized topology, we do not update the
penalization parameter, in order to not unnecessarily
increase nonlinearity of optimization subproblems.

Convergence is reached when maximum change on

design variables max
∣∣∣
(
ρ(c)

)∗ − (
ρ(c−1)

)∗∣∣∣ becomes smaller

than tolρ and feasibility is guaranteed, such that δσmax <

tolσ .
After convergence, solution of the optimization problem

is obtained for a specific value of δ, which consists
in the parameter that controls nonlinearity of Heaviside
projection, (5). As an attempt to alleviate blurred boundaries
effect and achieve topologies with well-defined interface
between solid and void, solution for large values of δ

is usually required. In this paper, continuation approach
proposed in da Silva et al. (2018) is employed, where the
optimization problem is initially solved for δ = 0; then, the
obtained topology is used as initial starting point for solving
optimization problem with higher value of δ, and so on, until
a large value δmax defined by the designer is reached.

A steepest descent-based method is employed to solve
optimization subproblems, as proposed in da Silva et al.
(2018); convergence is reached either when maximum
change in design variables becomes smaller than tolerance
tolsub imposed by the designer or when maximum number
of iterations nitmax is reached.

Figure 2 shows the flowchart of the solution procedure.

5 Sensitivity analysis

This section has the purpose of showing analytical first-
order derivatives necessary to perform anti-optimization
and optimization. In Section 5.1, derivative of von Mises
equivalent stress is computed with respect to uncertain
parameters fm and θm, that represent the m-th components
of the vectors f and θ , which contain the magnitudes and
directions of applied loads, respectively, which are design
variables of anti-optimization problems. In Section 5.2,
derivative of augmented Lagrangian function is computed
with respect to ρm, that represents the m-th component of
the vector ρ, which contains the design variables of the outer
optimization problem.

5.1 Anti-optimization problems

The derivatives of von Mises equivalent stress at point k, (2),
with respect to uncertain variables fm and θm, are computed
as

∂σ
(k)
eq (ρ, f, θ)

∂fm

= uT
k (ρ, f, θ)

σ
(k)
eq (ρ, f, θ)

BT
k Ck(ρk)MCk(ρk)Bk

∂uk (ρ, f, θ)

∂fm

, (16)

and

∂σ
(k)
eq (ρ, f, θ)

∂θm

= uT
k (ρ, f, θ)

σ
(k)
eq (ρ, f, θ)

BT
k Ck(ρk)MCk(ρk)Bk

∂uk (ρ, f, θ)

∂θm

, (17)

respectively.
Derivatives of local displacements uk (ρ, f, θ) with

respect to fm and θm are directly computed through
derivative of (10) and are written as

∂uk (ρ, f, θ)

∂fm

= HkU
1

m(ρ) cos(θm) + HkU
2

m(ρ) sin(θm),

(18)
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Fig. 2 Flowchart of the proposed solution procedure

and

∂uk (ρ, f, θ)

∂θm

=fm

(
HkU

2

m(ρ) cos(θm) − HkU
1

m(ρ) sin(θm)

)
, (19)

respectively, where localization operator Hk is employed.

5.2 Outer optimization problem

Before presenting sensitivity analysis associated with the
outer problem, (8), it is important to note that there is
an implicit dependence of solutions of anti-optimization
problems, namely f∗ and θ∗, with respect to physical
relative density ρm (Guo et al. 2009). In this paper, this
dependence is not taken into consideration. Optimal design
variables associated with k-th anti-optimization problem,

namely
(
f(k)

)∗
and

(
θ (k)

)∗
, are considered constant during

a given iteration in optimization subproblems, (13). This
assumption has three implications:

1. Derivative of
(
f(k)

)∗
and

(
θ (k)

)∗
with respect to ρm is

assumed equal to 0;
2. This simplification saves numerical operations and

computational time, since f∗ and θ∗ are computed only
in the beginning of each iteration, while solving the
optimization subproblems;

3. With the proposed simplification, there is no guarantee
of obtaining even a local minimum point, since f∗ and
θ∗ may oscillate near optimal solution. However, in the
numerical problems addressed herein, no convergence
problems were encountered.
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This assumption has parallels with the cycle-based
method described in Elishakoff and Ohsaki (2010), devel-
oped for decoupling the two-level optimization with anti-
optimization, in the sense that design variables are kept con-
stant while solving the anti-optimization problems. How-
ever, the procedure proposed herein is essentially different
than cycle-based method, since anti-optimization problems
are solved in each iteration of outer optimization, instead
of solving optimization and anti-optimization problems
sequentially until convergence, as in the cycle-based method
(Elishakoff and Ohsaki 2010).

In the formulation proposed herein, although
(
f(k)

)∗

and
(
θ (k)

)∗
are kept constant during a given iteration in

optimization subproblems, we update these values at every
step of outer optimization, hence greatly reducing the gap
between two consecutive combinations of worst possible
sets of applied loads. This small gap ensures an almost
continuum evolution of worst possible sets of applied loads
during optimization, eliminating the need of employing
additional load conditions to ensure numerical stability of
the algorithm, as performed in Holmberg et al. (2017). In
this way, we believe our procedure of keeping worst cases
unaltered during a given iteration is reasonable.

In order to obtain the derivative of augmented
Lagrangian, (12), with respect to design variables, adjoint
technique is used. First, derivative of augmented Lagrangian
with respect to physical relative density ρm is obtained;
then, chain rule is applied to obtain derivative with respect
to design variable ρm.

In the adjoint technique, auxiliary equilibrium equations,
(11), are included in the augmented Lagrangian function, for
j = 1, 2, to facilitate mathematical manipulations. Hence,
the augmented Lagrangian of outer problem, (8), can be
written as

L
(
ρ, f∗, θ∗,μ, r

) = V (ρ)

+ r

2

Nk∑

k=1

〈
μk

r
+

σ
(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

σy

− 1

〉2

+
N∑

i=1

(
λ1

i

)T
(
K(ρ)U

1

i (ρ) − F
1

i

)

+
N∑

i=1

(
λ2

i

)T
(
K(ρ)U

2

i (ρ) − F
2

i

)
, (20)

where λ
j
i , for i = 1, 2, ..., N and j = 1, 2, are arbitrary

vectors, since K(ρ)U
j

i (ρ) − F
j

i = 0 for any ρ. The
derivative of the augmented Lagrangian L

(
ρ, f∗, θ∗, μ, r

)

with respect to physical relative density ρm is not
straightforward, but it can be easily performed based on
detailed sensitivity analysis presented in da Silva and Beck

(2018). Thus, in this paper, we do not show the step-by-
step development of the sensitivity analysis, only the final
derivative. The derivative of the augmented Lagrangian with
respect to a physical relative density is written as

∂L

∂ρm

= ∂V (ρ)

∂ρm

+
hm

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗
, μm, r

)

σ
(m)
eq

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗)

×gm

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗)

+
N∑

i=1

[(
λ1

i

)T

m

∂km(ρm)

∂ρm

(
u

1
i

)

m
(ρ)

+
(
λ2

i

)T

m

∂km(ρm)

∂ρm

(
u

2
i

)

m
(ρ)

]
, (21)

with

hm

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗
, μm, r

)

=
〈
μm + r

⎛

⎜⎝
σ

(m)
eq

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗)

σy

− 1

⎞

⎟⎠

〉
1

σy

, (22)

and

gm

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗) = uT
m

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗)
BT

m

∂Cm(ρm)

∂ρm

×MCm(ρm)Bmum

(
ρ,

(
f(m)

)∗
,
(
θ (m)

)∗)
,

(23)

where
(
λ1

i

)
m

,
(
λ2

i

)
m

, km(ρm),
(
u

1
i

)

m
(ρ), and

(
u

2
i

)

m
(ρ)

represent local quantities and can be obtained through use

of localization operator Hm, as
(
u

1
i

)

m
(ρ) = HmU

1

i (ρ),

for instance, allowing fast computation of the derivative of
the augmented Lagrangian with respect to physical relative
density.

It can be demonstrated that the arbitrary vectors λ1
i and

λ2
i , for i = 1, 2, ..., N , must be chosen in order to satisfy

K(ρ)λ1
i = −

Nk∑

k=1

hk

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗
, μk, r

)

σ
(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

×
(
f

(k)
i

)∗
cos

(
θ

(k)
i

)∗
HT

k ak

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)
, (24)

and

K(ρ)λ2
i = −

Nk∑

k=1

hk

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗
, μk, r

)

σ
(k)
eq

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

×
(
f

(k)
i

)∗
sin

(
θ

(k)
i

)∗
HT

k ak

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)
, (25)
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respectively, where

aT
k

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)

= uT
k

(
ρ,

(
f(k)

)∗
,
(
θ (k)

)∗)
BT

k Ck(ρk)MCk(ρk)Bk . (26)

Finally, since density filtering with Heaviside step
function is employed, one can compute the derivative of the
augmented Lagrangian with respect to design variable ρm

through a chain rule (Sigmund 2007), such that

∂L

∂ρm

=
∑

n∈ϑm

∂L

∂ρn

∂ρn

∂ρ̃n

∂ρ̃n

∂ρm

, (27)

where

∂ρ̃n

∂ρm

= w(xm)Vm∑
j∈ϑn

w(xj )Vj

, (28)

is obtained with the derivative of (6) and

∂ρn

∂ρ̃n

= δe−δρ̃n + e−δ, (29)

is obtained with the derivative of (5).

6 Numerical results

In this section, three example problems are solved, with
several variants. For all problems, hypotheses of plane
stress and linear elasticity under static loads are considered.
In Section 6.1, two traditional versions of the L-shaped
problem are solved, considering one applied load of
deterministic magnitude and unknown direction: problem
(L1) solved for load at the middle of the rightmost boundary,
and problem (L2) solved for load at the top of the same
boundary (Fig. 3). In Section 6.2, a variant of the L-shaped
problem (L1) is solved (T-shaped problem), considering two
applied loads in several loading scenarios, with and without
uncertainty in magnitude and direction of applied loads.

x

x
1

2

1m

0.06m

1m

0.4m

0.2m

0.2m

1m

0.05m1m

0.4m

0.4m

)2L()1L(

Fig. 3 L-shaped design domains considered in topology optimization
with geometrical dimensions and boundary conditions

In Section 6.3, the U-shaped problem is solved, based in
Amir (2017), considering two applied loads with uncertain
magnitude. Solutions of the robust problem are compared
with respective deterministic counterparts.

Input data associated with optimization solver are as
follows: r(1) = 0.01, rmax = 10000, γ = 10, and ω = 0.8,
associated with the augmented Lagrangian method, unless
specified otherwise; tolρ = 0.1 and tolσ = 0.01 as
tolerances of outer problems; tolf,θ = 1×10−3 as tolerance
of anti-optimization problems; tolsub = 0.01 or maximum
number of iterations of nitmax = 50 as stopping criteria
for optimization subproblems. For additional information
regarding subproblems solver, as the moving limits updating
strategy, the reader may consult (da Silva et al. 2018).

The tolerance tolρ may be seem very large at first
sight. However, note that this tolerance is applied over
maximum change on design variables between solutions
of two consecutive optimization subproblems. The authors
verified that a smaller tolerance, in this case, would lead
to much larger number of iterations, without significantly
improving quality of the optimized solutions.

Input data associated with numerical model are as
follows: p = 3 for stiffness parameterization (SIMP); δσ =
3 for stress interpolation; δv = 5 for volume penalization;
δ(1) = 0 and δ(d+1) ← min[(δ(d) + 5), 100], associated
with continuation approach, related to density filtering
with Heaviside step function, where index d indicates
d-th iteration that satisfied convergence criteria of outer
problems (maximum change on design variables and local
feasibility of von Mises equivalent stresses).

Input data associated with material properties and
geometrical characteristics are Young’s modulus of 1MPa,
thickness of 1 mm, Poisson’s ratio of 0.3, yield stress of
16 kPa, and a filter radius of R = 0.02m, unless specified
otherwise.

Additional data: initial value of design variables is ρ(1) =
1 for all problems. In order to properly scale the objective
function, the volume is divided by the volume of one
finite element Ve in the augmented Lagrangian function.
Parameter rmax was reached while δ = 0, in the solution
of every problem, such that for δ > 0 only the Lagrangian
multipliers were updated at each subproblem iteration.
Structural problems are discretized with traditional four-
node bilinear isoparametric finite elements and stress is
computed at the center of each finite element, since this is
the superconvergent point for stress computation (Barlow
1976).

Topologies are illustrated with traditional gray scale:
white represents no material (ρ = 0) and black represents
solid material (ρ = 1). Von Mises stress graphs are
illustrated with color images: red represents maximum
normalized von Mises equivalent stress (∼= 1) and blue
represents minimum stress (∼= 0).
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Additional necessary data, as geometrical dimensions,
discretization, and boundary conditions, are presented
specifically for each problem, in next subsections.

6.1 L-shaped problems with one uncertain variable

As first example, two L-shaped problems are solved.
Figure 3 shows design domains with respective dimensions.
Structured meshes with 57,600 finite elements are employed
to discretize design domains. Note that applied loads are
distributed along either 0.06 m, problem (L1), or 0.05 m,
problem (L2), in order to avoid stress concentration.
Applied loads have deterministic magnitude of 0.3N.

Both L-shaped problems are solved considering four
different loading scenarios, as shown in Figs. 4 and 5: (1)
only one vertical deterministic load; (2) four deterministic
load conditions (not simultaneously applied), with an angle
of π/2 rad between them; (3) eight deterministic load
conditions (not simultaneously applied), with an angle of
π/4 rad between them; (4) direction of applied load is
considered unknown, and anti-optimization is employed,
considering θ ∈ [0, 2π ] rad. Optimized topologies for
four and eight loads were obtained under the framework

of stress-constrained topology optimization under multiple
load conditions (Fancello and Pereira 2003), where stress
constraints are satisfied for each load separately. Hence,
these problems are solved considering 230,400 and 460,800
stress constraints, respectively (57,600 stress constraints
associated with each load condition).

The anti-optimization problems associated with both
robust L-shaped problems are initially evaluated for a grid
with 10 equally spaced directions for the applied loads:
θgrid = [π/5, 2π/5, ..., 9π/5, 2π ]T rad. The direction
which gives the largest von Mises stress is then used as
initial estimate for the local search method.

Solutions of all problems are post-processed considering
θ ∈ [0, 2π ] rad, in order to verify maximum von Mises
equivalent stress related to each angle θ of applied load.
Post-processed stresses are also shown in Figs. 4 and 5;
these are computed considering 1 × 104 equally spaced
angles in 0 � θ � 2π .

Analyzing topologies and post-processed von Mises
equivalent stresses in Figs. 4 and 5, one can verify
that maximum normalized von Mises equivalent stress,

max
(
σmax

eq /σy

)
, decrease as the number of load conditions

increase, up to the limiting case of optimization with anti-

V/Vmax = 34.18% V/Vmax = 39.60% V/Vmax = 46.12% V/Vmax = 52.13%

max(σ     /σ ) = 5.841
max
eq y max(σ     /σ ) = 1.403

max
eq y max(σ     /σ ) = 1.074

max
eq y max(σ     /σ ) = 1.004

max
eq y

θ

Fig. 4 Optimized topologies obtained as solution of stress-constrained L-shaped problem (L1) considering, from left to right, optimization with:
1 deterministic load; 4 deterministic load conditions; 8 deterministic load conditions; and anti-optimization with θ ∈ [0, 2π ] rad
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V/Vmax = 36.88% V/Vmax = 38.98% V/Vmax = 42.41% V/Vmax = 49.70%

max(σ     /σ ) = 5.448
max
eq y max(σ     /σ ) = 1.387

max
eq y max(σ     /σ ) = 1.081

max
eq y max(σ     /σ ) = 1.009

max
eq y

Fig. 5 Optimized topologies obtained as solution of stress-constrained L-shaped problem (L2) considering, from left to right, optimization with:
1 deterministic load; 4 deterministic load conditions; 8 deterministic load conditions; and anti-optimization with θ ∈ [0, 2π ] rad

optimization. On the other hand, the larger the number of
load conditions, up to the limiting case of optimization
with anti-optimization, the larger the structural volume of
the optimized topology. This is intuitively right, from a
structural engineering point of view, since more material
is needed in order to guarantee feasibility of optimized
topology, considering a larger number of load conditions.

The topologies obtained for only one load condition,
considering both problems (L1) and (L2), have no material
between the vertical members, unlike the other topologies.
Topologies obtained for four and eight load conditions,
considering both problems (L1) and (L2), are the same,
presenting one member between the vertical ones, differing
only in shape. Robust solution for problem (L1) presents
two crossed members between the vertical ones, whereas
robust solution for problem (L2) presents only one member
between the vertical ones, as solutions for four and eight
load conditions.

These results demonstrate how deterministic designs
are unstable and dependent on the parameters used in
optimization, confirming results obtained in Beck and
Gomes (2012) and Beck et al. (2015) for simpler design
optimization problems. Even when several load conditions

are considered (up to eight deterministic load conditions in
both of these examples), feasibility of optimized structure
can only be guaranteed for the load conditions for which the
topology was designed, as clearly seen in Figs. 4 and 5, for
four load conditions, where stress constraints are satisfied
for θ = 0.0π, 0.5π, 1.0π , and 1.5π rad. Any perturbation
in the load conditions could cause failure of the structure,
as demonstrated by post-processing. The only solutions
that resulted truly robust with respect to uncertainty in
direction of applied load are the solutions of topology
optimization with anti-optimization, for which maximum
normalized von Mises equivalent stresses are 1.004 for
problem (L1) and 1.009 for problem (L2); hence, maximum
von Mises stresses are 0.4% and 0.9% higher than yield
stress, respectively, being smaller than specified tolerance
tolσ = 1%.

Moreover, solution of deterministic problems consider-
ing several load conditions is rather difficult, due to the
necessity of adjusting penalization parameter associated
with the augmented Lagrangian method. In this work, penal-
ization parameter r and its maximum value rmax were
divided by the number of load conditions, in order to
guarantee well-conditioned optimization subproblems.
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Figure 6 shows the von Mises equivalent stress graphs
for the deterministic (subjected to one load condition)
and robust optimized structures. The stress graphs related
to the deterministic structure are computed considering
the deterministic load condition, whereas the robust stress
graphs are computed using the worst possible set of applied
loads.

Analyzing the stress graphs, one can verify that both
deterministic and robust solutions resulted in stressed
structures. Moreover, all solutions successfully avoided the
sharp corner on the design domain: the optimized structures
show rounded corners in the re-entrant corner region and,
more importantly, the stress constraints are satisfied in these
regions.

Table 1 shows total number of iterations necessary for
convergence, for problems (L1) and (L2). It is verified that
total number of iterations for solving robust problems is
almost twice the number of iterations for solving traditional
deterministic problem, for only one load condition. This
additional number of iterations is justified since we are
handling with a much more challenging problem, where
each local stress constraint must be satisfied for the worst
direction, given by a continuum range of load directions.

Figure 7 shows history of convergence of deterministic
(for one load condition) and robust solutions, of the problem
(L1). One can verify, at first sight and despite the total
number of iterations, that the graphs of the robust solution
are similar to the graphs of the deterministic solution, in the
sense that both graphs exhibit the same behavior.

Since a small penalization parameter, r(1), is employed
to start the optimization process, the stress constraints have

(L1) (L2)
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σ      /σ  = 1.004
max
eq y σ      /σ  = 1.009

max
eq y

σ      /σ  = 1.006
max
eq y σ      /σ  = 0.977

max
eq y

Fig. 6 Deterministic and worst-case von Mises stress distributions
for the L-shaped (L1) and (L2) optimized deterministic and robust
solutions, respectively

Table 1 Total number of iterations necessary to reach convergence for
problems (L1) and (L2)

Load cases Problem (L1) Problem (L2)

1 1675 1308

4 2479 2832

8 3153 3731

Robust 2583 2595

a small influence over the augmented Lagrangian function
(see (12)), and hence, the optimization is dominated by the
volume minimization. This phenomenon is clearly seen in
the volume graphs, where the structural volumes reach a
very small fraction (∼= 10%, from the graphs) in a few
iterations.

Within the first iterations, one can see very large stress
values (up to sixteen times the yield stress), as well as
some oscillatory behavior in the stresses, which is also
explained by the low influence of the stress constraints over
the augmented Lagrangian function. In the initial stages
of the optimization process, after the Lagrange multipliers
and penalization parameter are updated a few times,
the weight of the stress constraints over the augmented
Lagrangian function is increased, directly affecting behavior
of the numerical procedure, which starts becoming stress
dominated. The effect caused by increasing the influence
of stress constraints over the objective function is verified
in both graphs: the maximum von Mises equivalent stress
starts decreasing, while the structural volume fraction starts
increasing.

From the stress convergence graphs, one can verify that,
after the initial stabilization phase, the maximum von Mises
stresses decrease in a very stable and smooth manner,
without much oscillations. After the maximum normalized
stresses get close to 1, one can verify only one stress peak
per stress graph: next to 1100 iterations in the deterministic
solution, and next to 1500 iterations in the robust solution.
These stress peaks indicate the first stage of the optimization
process is complete, i.e., the solution of the optimization
problems considering the linear density filter (δ = 0)
is reached. From this point on, the smoothed Heaviside
step is employed to reduce the blurred boundaries effect.
Since the employed Heaviside function is a dilation operator
(Sigmund 2007), at the first time the Heaviside projection
is employed the topology dilates and its boundary hits the
re-entrant corner of the design domain, leading to a small
stress peak. As one can see in the stress graphs, within a
few iterations, the algorithm overcomes this issue, and the
maximum normalized stress is reduced again, until reaching
a value next to 1. The dilation effect is also observed in
volume graphs, where volume increases at the same time
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Fig. 7 Convergence history of
problem (L1): deterministic
(left) and robust (right)

Deterministic Robust

that a small stress peak occurs. After occurrence of this
small peak of stress, the procedure continues until the
maximum value of δ is reached, and the convergence criteria
are satisfied.

Regarding computational cost, robust problems are
surely more costly than the deterministic ones. In the
approach adopted herein for solving the non-probabilistic
robust problems, worst-case stress constraints are found at
the beginning of each iteration, which can lead to high
computational cost if there is no use of parallel computing.

Although not employed in our implementations, the use
of parallel computing can greatly improve computational
efficiency associated with finding the whole set of worst-
case stress constraints, at the beginning of each iteration.
Once anti-optimization problems, (9), are independent of
each other, and can be solved simultaneously, the use
of parallel computing is very effective in reducing total
computation cost, as demonstrated in Gurav et al. (2005)
for the design of MEMS subjected to unknown-but-bounded
uncertainties.

Also, since principle of superposition is employed,
computational cost for solving a given anti-optimization
problem becomes negligible, since there is no need for
solving equilibrium equations in order to evaluate von
Mises equivalent stress and their sensitivities with respect to
uncertain variables at each iteration of anti-optimization.

6.2 T-shaped problemwith up to four uncertain
variables

The second problem solved herein is a variant of the L-
shaped problem (L1). The design domain consists in a
mirrored variant of L-shaped domain, as shown in Fig. 8. A
structured mesh with 115,200 finite elements is employed
to discretize the design domain.

Three different problems are solved: (1) deterministic
problem with two vertical applied loads (simultaneously
applied); (2) robust problem with two vertical applied
loads of uncertain magnitude; and (3) robust problem with
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0.06m

0.8m

0.2m

0.2m0.2m
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Fig. 8 Design domain considered in topology optimization with
geometrical dimensions and boundary conditions
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f1 = 0.3Nf2 = 0.3N

f1 [0.0,0.3]Nf2 [0.0,0.3]N

f1 [0.0,0.3]Nf2 [0.0,0.3]N

θ2 [-π/6,π/6]rad θ1 [-π/6,π/6]rad

σ      /σ  = 0.985
max
eq y

σ      /σ  = 1.000
max
eq y

σ      /σ  = 1.007
max
eq y

Fig. 9 Optimized topologies (middle) and worst-case von Mises stresses (right) for: (1) two deterministic vertical loads (top); (2) two vertical
loads of uncertain magnitude (middle); and (3) two vertical loads of uncertain magnitude and uncertain direction (bottom)

two applied loads of uncertain magnitude and uncertain
direction, as shown in Fig. 9. For loads with uncertain
magnitude, we have f ∈ [0.0, 0.3]N; for loads with
uncertain direction we have θ ∈ [−π/6, π/6]rad. Uncertain
variables may assume any value inside prescribed ranges,
being independent of each other.

Initial grids for solving the anti-optimization problems
are constructed by the combination of the following points:
[0.0, 0.15, 0.3]T N (magnitudes of applied loads) and
[−π/6, 0, π/6]T rad (directions of applied loads); thus,
initial grids have 3×3 and 3×3×3×3 points, considering
the problems subjected to two and four uncertain variables,
respectively.

Solutions of both deterministic and robust problems are
presented in Fig. 9. The stress graphs demonstrate that the
local stress constraints are satisfied in every point the von
Mises stress is computed. The obtained structures avoided
both re-entrant corners on the design domain, and the
stresses in these regions are well distributed on rounded
corners.

Analyzing topologies in Fig. 9 and structural volumes in
Table 2, one verifies there are differences among topologies

Table 2 Total number of iterations necessary to reach convergence and
structural volumes for optimized results

Case Iterations V/Vmax(%)

Deterministic 1287 19.13

Unknown f1 and f2 1494 23.94

Unknown f1, f2, θ1, and θ2 1288 28.90

and structural volumes of deterministic and robust solutions.
Robust solutions have larger number of structural members
and larger structural volumes, when compared with
the deterministic solution. Interestingly, although the
magnitudes f1 and f2 and the angles θ1 and θ2 can vary
independently and asymmetrically, both robust topologies
are symmetrical.

Comparison can also be made between both robust solu-
tions. One verifies that solution obtained for applied loads
with uncertain magnitude and direction has larger structural
volume and larger number of structural members when com-
pared with solution for loads with uncertain magnitude only.
This is totally expected from a structural engineering point
of view, since in this case, more uncertainty implies in addi-
tional sets of load conditions; hence, additional material is
needed to satisfy stress feasibility of optimized structure.

As shown in Fig. 9, consideration of uncertainty only in
magnitude of applied loads provides a different topology,
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Fig. 10 U-shaped design domain considered in topology optimization
with geometrical dimensions and boundary conditions
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Fig. 11 Optimized topologies
(middle) and worst-case von
Mises stresses (right) for: (1)
two deterministic loads (top);
and (2) two loads of uncertain
magnitude (bottom)

f1 = 0.4N

f2 = 0.2N

f1 [0.0,0.4]N

σ      /σ  = 1.003
max
eq y

f2 [0.0,0.2]N

σ      /σ  = 1.009
max
eq y

V/Vmax = 32.39%

V/Vmax = 35.91%

indicating that we cannot simply substitute the uncertain
magnitude by its maximum value, as also observed in
Elishakoff et al. (1994) for truss optimization.

Regarding computational cost, although number of itera-
tions necessary for convergence is basically the same, as
shown in Table 2, robust solutions are harder to obtain due
to the necessity of solving the anti-optimization problems
in the beginning of each iteration of the outer problem.
However, the possible countermeasure discussed in previous
subsection is also valid if more than one unknown variable is
considered, i.e., the use of parallel computing is suitable to
reduce computational cost associated with solution of whole
set of anti-optimization problems, since these problems can
be solved simultaneously.

6.3 U-shaped problemwith two uncertain variables

The third problem addressed in this paper is the U-shaped
problem (Fig. 10). The U-shaped design domain is non-
symmetrical and has two re-entrant corners, being very
challenging from a stress-based design point of view. The
U-shaped design problems are solved by employing a
structured mesh with 70,000 finite elements and a filtering
radius of R = 0.03 m.

Two problems are solved: (1) deterministic problem,
where the design domain is subjected to two loads of
deterministic magnitude; and (2) robust problem, where
the magnitude of both applied loads are unknown-but-
bounded. Both problems, as well as optimized topologies
and worst-case von Mises equivalent stresses, are shown in
Fig. 11.

Initial grids for solving the anti-optimization problems
are constructed by the combination of the following points:
[0.0, 0.2, 0.4]T N (magnitude of horizontal load, f1) and
[0.0, 0.1, 0.2]T N (magnitude of vertical load, f2); thus,
initial grid has 3 × 3 points.

Both deterministic and robust topologies avoided the re-
entrant corners present on the design domain. The shapes

of the optimized topologies at these sharp regions are
rounded and, moreover, the von Mises equivalent stresses
at these regions satisfy the stress failure criterion, within
the tolerance of 1%. The structural volume ratio of robust
solution is larger than the deterministic one, indicating that
the robust structure requires a larger amount of material to
guarantee stress constraints feasibility when applied loads
have uncertain magnitude.

Number of iterations to reach convergence is as follows:
1968, for the deterministic problem; and 2180, for the robust
problem. However, although number of iterations is almost
the same, robust solution becomes more costly than the
deterministic one, since the anti-optimization problems are
solved to evaluate the worst-case von Mises stresses at each
outer iteration, as discussed in previous subsections.

7 Concluding remarks

This work presented a novel formulation for solving con-
tinuum stress-constrained topology optimization problems
under unknown-but-bounded uncertainty in applied loads.
A non-probabilistic robust approach was developed based
on the worst-case scenario of stress constraints, resulting
in a two-level optimization with anti-optimization. An aug-
mented Lagrangian formulation was employed to solve
the problem due to the large number of worst-case stress
constraints.

The importance of developing non-probabilistic robust
approaches, for solving the stress-constrained problem
under uncertainty in applied loads, is demonstrated through
numerical examples and post-processing. Deterministic
solutions resulted very sensitive to uncertainties in direction
of applied loads, in contrast to solutions of the robust
problems. Even by increasing the number of load conditions
in the deterministic design, robustness with respect to
a continuum range of unknown variables could only be
ensured through non-probabilistic robust approach.
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Although anti-optimization problems are non-convex
with respect to unknown variables, post-processing demon-
strates that solutions obtained with the proposed approach
are indeed robust with respect to uncertainties in applied
loads. Maximum von Mises equivalent stresses, among von
Mises stresses computed for the whole range of unknown
variables, only exceeded yield stress within a predefined
convergence tolerance.

Problems with up to four unknown variables were solved
to demonstrate the differences between deterministic and
robust solutions. It was shown that number of structural
members of optimized topology increases as the unknown
set of applied loads is increased. It was also shown that
we cannot replace uncertainty in magnitude of applied load
by its maximum value, since different topology is obtained
if the whole range of magnitude uncertainty is considered
during optimization.
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