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Abstract
In many practical applications, probabilistic and bounded uncertainties often arise simultaneously, and these uncertainties can be
described by using probability and convex set models. However, the computing cost becomes unacceptable when directly solving
the reliability-based design optimization (RBDO) problem with these uncertainties involved. To address this issue, in this study, a
sequential sampling strategy by extending classical sequential optimization and reliability assessment (SORA) method for
RBDO is developed. The proposed strategy can successively select sample points to update the surrogate model at each step
of the optimization process. New samples for reliability constraints are mainly chosen from the local region around the approx-
imate minimum performance target point (MPTP) and worst-case point (WCP). Typical design examples, including one engi-
neering application, are investigated to demonstrate the efficiency and accuracy of the proposed method.

Keywords Reliability-based design optimization . Krigingmodel .Mixed uncertainty model . Probability . Convex set model

1 Introduction

Various methods have been developed to treat uncertainties re-
lated to reliability analysis and reliability-based design optimiza-
tion (RBDO) of engineering systems (Au et al. 2003; Chen et al.
1997; Du and Chen 2004; Wang et al. 2011; Youn et al. 2005,
Liu et al. 2016; Liu and Wen 2018). In RBDO, reliability is
defined as the probability that system performance will meet its
marginal value while taking uncertainties into account. While
uncertainty can be probabilistic and/ or non-probabilistic. In the
former case, the uncertainty is generally characterized using ran-
dom variable and random field. At the academic level, tremen-
dous efforts have focused on improving the accuracy and effi-
ciency of RBDO techniques. For example, new reliability

estimation methods have been developed to improve the effi-
ciency and stability of numerical algorithms (Most and Knabe
2010; Youn et al. 2005; Youn et al. 2008), including two main
optimization strategies, namely, the double-loop and decoupled
approaches (Chen et al. 1997; Cheng et al. 2006; Du and Chen
2004; Liang et al. 2007). In traditional RBDO, reliability analysis
requires the precise probability distribution of uncertain vari-
ables, which may be impossible to obtain for some uncertainties
due to limited experimental data. To overcome the deficiency of
the probability approach, in the last two decades a number of
attempts have been made to apply non-probabilistic models (the
convex model or interval model) for RBDO. Ben-Haim (1994)
and Ben-Haim and Elishakoff (1995) first proposed the concept
of non-probabilistic reliability based on convex model theory.
Since then, non-probabilistic reliability-based design optimiza-
tion using convex models has been addressed by a number of
studies(such as anti-optimization technique (Elishakoff et al.
1994), the interval analysis method (Qiu and Elishakoff 1998),
the convex model superposition method (Qiu and Elishakoff
1998). Kang and his colleagues (Kang and Luo 2009; Luo
et al. 2009b) proposed a non-probabilistic reliability-based con-
tinuum topology optimization method based on convex models,
in which reliability constraints are reformulated into equivalent
constraints on the concerned performance. They further extend-
ed this method to address nonlinear topology optimization prob-
lems (Kang and Luo 2009). Cheng (2009) proposed a novel
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robust reliability optimization method for designing mechanical
components based on a non-probabilistic interval model. Jiang
et al. (2011a) proposed a correlation analysis technique of con-
vex models when non-probabilistic uncertainties were involved.
In addition, RBDO method considering dependent interval var-
iables was also investigated via using the sequence optimization
strategy (Du 2012).

The researches discussed previously consider only one
kind of uncertainties; in other words, either probabilistic un-
certainty or non-probabilistic uncertainty are involved.
However, it is well-known that practical engineering normally
consists of various kinds of uncertainties. Some uncertainties
can be characterized with probabilistic models with precise
distributions, while others need to be treated with non-
probabilistic models with bounded information. New strate-
gies should be further developed to deal with such circum-
stances. To this end, several structural reliability analysis
methods have been emerged recently in the presence of mixed
uncertain variables. Guo and Lu (2002) developed a hybrid
probabilistic and non-probabilistic reliability approach based
on interval analysis for linear problems via a two-stage limit-
state function. Penmetsa and Grandhi (2002) used a function
approximation method to improve the efficiency of reliability
analysis with random and interval variables. For direct reli-
ability analysis and inverse reliability analysis, Du et al.
(2005), and Guo and Du (2009) proposed a semi-analytic
method for hybrid reliability sensitivity analysis with both
random and interval variables. Qiu and Wang (2010) and
Wang and Qiu (2010) put forward two hybrid models through
the use of interval arithmetic, namely, a probabilistic and non-
probabilistic hybrid model and probabilistic and interval
hybrid model. An iterative procedure was developed by Luo
et al. (2009a) for obtaining the worst-case point and the most
likely point from a probability and convex set model. Later,
different forms of limit state strips resulting from the interval
uncertainties were considered and summarized, based on
which some more efficient hybrid reliability analysis methods
(Jiang et al. 2013; Jiang et al. 2011a) were further formed.

Compared to reliability analyses, research on RBDO of hy-
brid uncertainty systems remains in its infancy. Du et al. (2005)
addressed a hybrid RBDO problem in which reliability was
determined with the worst-case combination of interval vari-
ables. Kang and Luo (2010) presented an RBDO approach
based on a probability and convex set hybrid model. Yao
et al. (2013) quantified mixed uncertainties from statistical
laws and evidence theory and then attempted to formulate an
optimization design obtained from the given hybrid reliability
index. Wang et al. (2016) investigated a new formulation and
numerical solution for the RBDO of structures exhibiting ran-
dom and uncertain-but-bounded (interval and convex) mixed
uncertainties. Xia et al. (2015) proposed a hybrid perturbation
random moment method and hybrid perturbation inverse map-
ping method that transform nested loop optimizations into

single loop optimizations. The sequential optimization and re-
liability assessment (SORA) method is one of the most famous
strategy to efficiently solve the RBDO problems. However,
algorithms that use SORA methods to solve RBDO problems
with hybrid models have seldom been studied.

The difficulty of direct evaluation of probabilistic
models of RBDO with complex practical problems using
expensive black-box simulation models renders the com-
putational cost extremely prohibitive. To improve practical
utility, a preferable approach is to employ approximation
models, which are often referred to as metamodels, to re-
place the actual limit-state functions with expensive simu-
lation models during reliability analysis and RBDO. To
improve the e ff i c i ency of RBDO, a var ie ty of
metamodelling techniques have been applied to replace
true constraint function evaluations. Youn and Choi
(2004) and Lee and Song (2011) used moving least square
methods for RBDO. Kim and Choi (2008) proposed an a
response surface method (RSM) with prediction interval
estimation. Lee and Jung (2008) suggested a constraint
boundary sampling (CBS) method and Kriging model for
RBDO. Bect et al. (2012) proposed the sequential design
of computer experiments for the estimation of the proba-
bility of failure. Basudhar and Missoum (2008) proposed
adaptive explicit decision functions for probabilistic design
and optimization using support vector machines (SVM).
Hu and Youn (2009) applied adaptive-sparse polynomial
chaos expansion to the reliability analysis and design of
complex engineering systems. Bichon et al. (2008) pro-
posed an efficient global reliability analysis method for
nonlinear implicit performance functions. Echard et al.
(2011) proposed an active learning reliability method com-
bining Kriging and Monte Carlo simulation. Cheng and Li
(2008) proposed a reliability analysis method using artifi-
cial neural network (ANN)-based genetic algorithms. Zhao
et al. (2011b) used the RSM and sequential sampling for
probabilistic design. Basudhar and Missoum(2008) pro-
posed an adaptive sampling technique for RBDO based
on support vector machine (SVM). Picheny et al. (2010)
addressed the issue of designing metamodel experiments
with sufficient accuracy for a certain level of the response
value. Zhao et al. (2011a) proposed a dynamic Kriging
approach for design optimization. Chan et al. (2010) de-
veloped a modified efficient global optimization algorithm
for measuring maximal reliability in a probabilistic
constrained space; Zhuang and Pan (2012) proposed a
new sequential sampling method for design under uncer-
tainty. Wang and Wang (2013) developed a maximum con-
fidence enhancement (MCE)-based sequential sampling
approach for RBDO using surrogate models. Chen et al.
(2014) proposed a local adaptive sampling method for
RBDO using the Kriging model. Li et al. (2016) presented
a new local approximation method that employs the most
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probable point (MPP) for RBDO. Applications of various
metamodelling techniques have been extensively studied in
support of conventional probability-based structural reliability
analysis and design. In the conventional probability model,
the limit state defines a unique surface referred to as the limit
state surface. However, when random and uncertain-but-
bounded variables coexist, there are a cluster of limit-state
surfaces that form a critical region of the band in the standard
space for all possible values of bounded uncertainties. Due to
these characteristics, it is quite difficult to accurately construct
a cluster of limit-state surfaces from an approximating model,
and thus some computational costs are wasted in reliability
assessments of an inactive probabilistic constraint. The pro-
posed method involves local sampling around the minimum
performance target point (MPTP) and worst-case point (WCP)
(i.e., worst-case realization of bounded uncertainties) rather
than requiring the whole limit state boundaries within the
design region to be accurate. Since probability and convex
set theory is fundamentally different from conventional prob-
ability theory, the applicability of different metamodelling
techniques to RBDO with the hybrid model may vary con-
siderably, and it seems very important for developing cor-
responding efficient algorithms.

In this paper, a sequential sampling method is proposed to
solve RBDO problem based on the hybrid model of probability
and convex set, which significantly improves the computational
efficiency and accuracy of RBDO. The remainder of this paper is
organized as follows. A definition of reliability based on proba-
bility and convex set hybrid models is introduced in Section 2. A
sequential optimization reliability assessment method is intro-
duced in Section 3. The Kriging technique employed and a se-
quential improving sampling strategy are proposed in Section 4.
Three numerical examples are investigated in Section 4. Finally,
conclusions are given in Section 5.

2 Reliability definition based on probability
and convex set hybrid models

2.1 Classical probabilistic-based reliability model

In a reliability analysis where only random variables X are
involved, the failure probability can be given as

P f ¼ Pr G Xð Þ≤0½ �; ð1Þ

where X denotes an m-dimensional vector of independent
random variables, G(⋅) is a limit-state function, G(X) ≤ 0 de-
fines the failure event, and Pfdenotes the failure probability,
which can be computed from the following equation:

P f ¼ ∫⋯∫G Xð Þ≤0pX Xð ÞdX; ð2Þ

where pX(X) denotes the joint probability density function
(PDF) of X. It appears to be difficult to directly solve the
above integral, and the first-order reliability method
(FORM) is widely used in uncertainty analysis. When apply-
ing FORM, random variables X = (X1, X2,⋯, Xm) in X-space
can be changed to standard normal random variables u = (u1,
u2,⋯, um) in u-space:

Φ uið Þ ¼ FX i X ið Þ; ð3Þ
ui ¼ Φ−1 FX i X ið Þ½ �; i ¼ 1; 2; ;⋯;m; ð4Þ

where FX i is the cumulative distribution function (CDF) of
the random variable Xi andΦ

−1denotes the inverse CDF of the
standard normal distribution. A limit-state function G in u-
space can be written as

g Xð Þ ¼ g T uð Þð Þ ¼ G uð Þ ð5Þ

where T is a probability transformation function.
The integral included in Eq. (2) can be rewritten in u-space:

Pr G Xð Þ≤0½ � ¼ ∫G uð Þ≤0pu uð Þdu ð6Þ

wherepu(u)is the joint CDF of u. Eq. (6) can ultimately be
solved using the reliability index approach (RIA) (Liu and
Der Kiureghian 1991; Tu et al. 1999)where an equivalent
optimization problem should be constructed as follows:

β ¼ min
u

‖u‖ s:t: g uð Þ ¼ 0 ð7Þ

where ‖ ⋅ ‖ denotes the vector norm. The optimum solutionu
of the above problem is called the most probable point (MPP)
or the design point.

Due to its efficiency, computational robustness and conve-
nience in sensitivity analysis, the performance measurement
approach (PMA) is widely used for reliability-based design
optimization(Lee et al. 2002; Tu et al. 1999). The basic pre-
mise of PMA is to determine the minimum performance target
point (MPTP) rather than theMPP. Using PMA, the feasibility
of a given design can be evaluated by solving the following
optimization problem:

min
u

g uð Þ s:t:‖u‖ ¼ βt ð8Þ

where βt denotes the target reliability index. The optimum
point uRMPTP is the MPTP.

2.2 Non-probabilistic reliability model based
on a convex model

Convex models are used to describe bounded uncertain vari-
ables without using a precise probability distribution. The two
convex models that are most widely used are the “interval
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model” and the “ellipsoidal model”. In practical situations, it
might be suitable to classify bounded uncertain variables into
different groups such that variables in the same group are
correlated, whereas variables of different groups are uncorre-
lated. Denote the vector of convex variables as Y ∈ Rn.
Suppose the uncertain variables are divided into NE groups;
then, Y can be written as

YT ¼ YT
1 ;Y

T
2 ; :::;Y

T
NE

h i
ð9Þ

Y∈Ε ¼ Yj Yi−Ŷ̂ i
� �T

Wi Yi−Ŷ̂ i
� �

≤ε2i ; i ¼ 1; 2; :::;NE

n o
ð10Þ

where Ŷ i is the nominal value of Yi, Wi is a symmetric
positive-definite matrix called the characteristic matrix of an
ellipsoid, and εi is a real number defining the magnitude of
parameter variability. ni is the number of bounded uncer-
tainties in the i-th group, and ∑NE

i¼1ni ¼ n. As shown in
Fig. 1 (a)–(c), there are three specific multi-ellipsoid cases of
problems involving three uncertain parameters in which the
pa r ame t e r s may be d i v i d ed i n t o t h r e e g roup s
(Y = {[Y1], [Y2], [Y3]}

T), two groups (Y = {[Y1,Y2], [Y3]}
T)

and one group (Y = {[Y1,Y2,Y3]}
T). We direct the reader to

research articles by Luo et al. (2009a).
In Eq.(10), the ith characteristic matrix can be decomposed

by solving the following eigenvalue problem:

QT
i WiQi ¼ Λi; QT

i Qi ¼ I; ð11Þ

where Qi is an orthogonal matrix, Λi is the diagonal matrix of
eigenvalues ofWi and Ι is the identity matrix.

By introducing the vectors defined as

qi ¼ 1=εið ÞΛ1=2
i QT

i Y i−Ŷ̂ i
� � ð12Þ

The convex model in (9) becomes

Ε ¼ qj
ffiffiffiffiffiffiffiffiffi
qTi qi

q
≤1 i ¼ 1; 2; :::;NEð Þ

� �
ð13Þ

where qi is the normalized or standard vector of the ith group
of uncertain variablesYi.Here, the ellipsoids are transformed
into spheres of unit radius in the normalized space (q-space).E
is the ellipsoid set.

For the more general case of a multi-ellipsoid model for k
groups of uncertainties, the non-probabilistic reliability index
η can be defined as

η ¼ min max
ffiffiffiffiffiffiffiffiffiffi
qT1q1

q
;
ffiffiffiffiffiffiffiffiffiffi
qT2q2

q
; :::;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qTNEqNE

q� �� �
s:t: g qð Þ ¼ 0

ð14Þ

2.3 Reliability definition based on probability
and convex set mixed model

In practical engineering problems, random and bounded
variables may coexist. In order to assess structural reli-
ability, a quantitative definitions of failure states is re-
quired. We assume that the expected performance of the
structure is denoted by G(X,Y)>0.After the normalization
of original uncertain variables XandYinto u and q as de-
scribed in (4) and (12), the limit-state functionG(X,Y) is
transformed into the corresponding normalized limit-state
function g(u, q). Due to the presence of convex variables,
the limit state g(u, q) = 0will form a cluster of limit-state
surfaces in probability space, as shown in Fig. 2. Its lower
boundary surface SL and upper boundary surface SR can
be expressed as:

SL : min
q∈E

g u; qð Þ ¼ 0; SR : max
q∈E

g u; qð Þ ¼ 0 ð15Þ

In fact, SL and SR are two limit-state surfaces with dif-
ferent q values, which have the nearest and furthest
distances to the origin, respectively. We can calculate
the reliability indices of the two bounding limit-state
surfaces, respectively, whereby form the mixed reliabil-
ity index βm (Kang and Luo 2010; Luo et al. 2009a):

(a) (b) (c)

3Y

1Y

2Y

1Y

2Y

3Y

1Y

2Y

3Y

Fig. 1 Specific multi-ellipsoid cases for uncertain parameters (a) Three-
dimensional interval model. (b) Multi-ellipsoid model defined by an
ellipsoid (for Y1 and Y2) and interval (for Y3) (c) Three-dimensional
single-ellipsoid model

Reliable region

1u

2u

O

Failure region
Critical

max ( , ) 0g
q E

u q

*
min ( , ) 0g
q E

u q

q E
L

R

Fig. 2 Limit-state strip caused by convex variables
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βm∈ βL;βR	 
 ð16Þ

where βL and βR represent the reliability indices of the lower
and upper bounding limit state surfaces. Correspondingly, the
failure probability of the structure is also an interval:

pf ∈ pLf ; p
R
f

h i
¼ ϕ −βR� �

;ϕ −βL� �	 
 ð17Þ

wherePL
f and P

U
f are the minimum and maximum failure prob-

ability values, respectively, corresponding to the minimum limit
state function.

With respect to practical problems, the maximal failure
probability is generally our greatest concern. Thus, to ensure
design safety, we use the maximal failure probability (or the
minimal reliability) to measure the design’s reliability. The
following double-layer optimization problem can be obtained:

βL ¼ minuTu
s:t: min

q∈E
g u;qð Þ ¼ 0 ð18Þ

where βLrepresents the minimum reliability index, from

which the maximum failure probability PU
f ¼ ϕ −βL� �

can

be approximated. Obviously, Eq.(18) is a very complex opti-
mization problem. However, it is equivalent to the following
single-layer optimization problem:

βL ¼ min
u;q

uTu s:t: g u; qð Þ ¼ 0 qi
Tqi≤1 i ¼ 1; 2; :::;NEð Þ

ð19Þ

A study (Lee et al. 2002) has shown that PMA can be easily
applied. The equivalent optimization problem for PMA can be
expressed as

min
u;q

g u; qð Þ s:t:uTu ¼ β2
t qi

Tqi≤1 i ¼ 1; 2; :::;NEð Þ ð20Þ

where optimal solutions uRPMPP and q∗ shown in Eq.(20) are
the minimum performance target point (MPTP) and worst-
case point, (WCP), respectively.g uRPMPP; q

*
� �

is the perfor-
mance value of the limit state function andβtis the prescribed
target reliability index.

3 Reliability-based design optimization
under probability and convex set hybrid
models

The general reliability-based design optimization problem
based on probability and convex set hybrid models can be
expressed as

min
d

f dð Þ s:t: βL g j d;u; qð Þ≥0
h i

≥βt; j j ¼ 1; 2; :::; ng
� �

dL≤d≤dR

ð21Þ

wheref(d) is the objective function;d = {d1, d2, ..., dn}
T de-

notes the vector of design variables, which take the mean (or
nominal) value when their variations are modelled as random
(or bounded) uncertainties; βL[gj(d, u, q) ≥ 0] is the mixed re-
liability index corresponding to the jth performance function;
and βt, j(j = 1, 2, ..., ng) is the prescribed target value of the
reliability index.

The optimization problem equivalent to (21) in PMA terms
is expressed as

min
d

f dð Þ s:t: Z j dð Þ≥0 j ¼ 1; 2; :::; ng
� �

dL≤d≤dR

ð22Þ
where Zj(d)is the minimum target performance value.

As shown in Eq.(22), this is a typical nested optimization
problem. The inner reliability analysis loop is embedded with-
in the overall optimization loop. Thus, numerous function
evaluations may be required.

Z j dð Þ ¼ min g j d; u; q
*� �

s:t: uTu ¼ β2
t; j

ð23Þ

Among them, the WCP q∗ is defined as

min
q

g j d; u; qð Þ s:t: uTu

¼ β2
t; j qTi qi≤1 i ¼ 1; 2; :::;NEð Þ ð24Þ

Obviously, the formula (23) and (24) can be integrated into
a single level problem:

Z j dð Þ ¼ min
u;q

g j d; u; qð Þ s:t:uTu

¼ β2
t; j qTi qi≤1 i ¼ 1; 2; :::;NEð Þ ð25Þ

Various methods have been proposed as the means to im-
prove computational efficiency levels. Du and Chen (2004)
developed the sequential optimization and reliability assess-
ment (SORA) method for efficiently solving RBDO prob-
lems. SORA performs RBDO with sequential cycles of deter-
ministic optimization and reliability analysis. After an optimal
design point is identified from the deterministic optimization
loop, PMA is performed on this point in the reliability analysis
loop. The result of the reliability analysis is then used to for-
mulate a new deterministic optimization model for the follow-
ing cycle to improve the reliability. In this paper, SORA is
extended to solve the proposed reliability-based optimization
problem using the hybrid uncertainty model. The determinis-
tic optimization problem of the (k + 1)th cycle is formulated as

min
d

f dð Þs:t: Z j dð Þ ¼ g j d; uR; kð Þ
MPTP; j;q

*; kð Þ
� �

≥0

j ¼ 1; 2; :::; ng
� �

dL≤d≤dR

ð26Þ
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where uR; kð Þ
MPTP; j andq

∗, (k)are the jth MPTP and WCP, respec-

tively, from the reliability analysis conducted in the kth cycle.

This process is repeated until g j d; uRMPTP; j; q
*

� �
≥0; (j = 1,

2, ..., ng) and the objective function becomes stable.

4 A sequential sampling method
for reliability-based design optimization

4.1 Kriging theory

In this study, the Kriging model (Sakata et al. 2003; Simpson
et al. 2001) is used. Kriging assumes that the deterministic
response of a system is a stochastic process y(x)(x = {X
Y}T) comprising a regression model and a stochastic error as

y xð Þ ¼ f xð Þ þ Z xð Þ ð27Þ
wheref(x) is the known regression function, and Z(x) is a sta-
tionary stochastic process with zero mean, zero variance σ2

and non-zero covariance. The f(x) term provides a global ap-
proximation of the design response. Z(x)defines ‘localized’
deviations that can be formulated as

cov Z xi
� �

; Z x j� �	 
 ¼ σ2R R xi; x j� �	 
 ð28Þ

whereRis the n0 × n0 symmetric positive definite matrix with a
unit diagonal, and R(xi, xj) is the correlation function between
sample points xiand xj. The correlation function R(xi, xj) used
in the study is

R xi; x j� � ¼ exp − ∑
k¼1

np

θk xik−x
j
k

 2� �
ð29Þ

where θk is an unknown correlation parameter, npis the num-

ber of design variables, and jxik−x jk j is the distance between the
kth components of points xik and x

j
k . The estimator ~y xð Þ for the

response y(x) made at an untried point x can be formulated by

~y xð Þ ¼ β̂̂þ rT xð ÞR−1 y− fβð Þ ð30Þ
whererT(x) is the correction vector between a predicted x and
n0sample points, vector y represents the responses at each
sampling point, and fis an n0 vector. Vector rT(x) and the

scalar parameter β̂ are given by

rT xð Þ ¼
�
R x; x1½ �;R x; x2½ �;⋯;R x; xn0½ �T ð31Þ

β̂̂ ¼ fTR−1 f
� �−1

fTR−1y ð32Þ

The estimation of varianceσ̂2 for Eq. (28) is given by

σ̂̂2 ¼ y− fβð ÞTR−1 y− fβð Þ=n0 ð33Þ

The maximum likelihood estimate of θk included in Eq.
(29) can be obtained by maximizing the following expression:

max
θ>0

− n0In σ2ð Þ þ In Rð Þ½ �
2

ð34Þ

More information on the calculation method can be found
in the relevant literature (Sakata et al. 2003; Simpson et al.
2001). When constructing Kriging models, the selection of
sampling points can be very important. The design of exper-
iment (DoE) method can be used for the effective selection of
a minimum number of sampling points from the design space.
Many different DoE methods, such as the factorial, Koshal,
composite, Latin hypercube, and D-optimal design methods,
have been proposed (Myers and Montgomery 1995). In this
paper, the Latin hypercube sampling (LHS) scheme (Morris
and Mitchell 1995) is adopted to generate sample points from
non-deterministic design spaces. LHS performs considerably
well in generating a representative distribution of sample
points from a design space with uncertain variables (Jiang
et al. 2008; Zhao et al. 2010; Zhuang and Pan 2012). In this
paper, LHS is used for the initial sampling to construct
Kriging models.

4.2 Sequential improvement sampling

Since being proposed by Jones (1998), the efficient global
optimization (EGO) has been widely employed in various
areas. EGO involves first constructing a Kriging model based
on the initial set of small samples and then adding new sam-
ples that maximize the expected improvement function
(EI).The improvement of a sample X for global minimum of
G(X) is given as

I Xð Þ ¼ max Gmin−G Xð Þ; 0ð Þ ð35Þ

whereGminis the best solution obtained from all sampled train-
ing points. Suppose there are currently n training points;
Gminis equal tomin{G(X(1)), ...,G(X(n))};G(X)follows a nor-

m a l d i s t r i b u t i o n , N ~G Xð Þ; s2 Xð Þ� �
; a n d ~G Xð Þ

ands(X)represent the Kriging predictor and its standard error,
respectively. The expected improvement function is

E I Xð Þ½ � ¼ Gmin−~G
� �

Φ
Gmin−~G

s

 !
þ sϕ

Gmin−~G
s

 !
ð36Þ

whereΦ(⋅) and ϕ(⋅)are the cumulative distribution function and
probability density function, respectively, of a standard
Gaussian variable. In a previous study (Zhuang and Pan
2012), to compare EI with different constraints, the relative
improvement criterion (ERI) is expressed as follows:
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E RI Xð Þ½ � ¼ E
I Xð Þ
Ga

� �
¼ 1

Ga
Gmin−~G
� �

Φ
Gmin−~G

s

 !
þ sϕ

Gmin−~G
s

 !" #

ð37Þ

Therefore, the sequence sampling criterion for RBDO op-
timization with hybrid models can be expressed as

E RI X;Y*� �	 
 ¼ E
I X;Y*
� �

Ga X;Y*
� �

" #

¼ 1

Ga X;Y*
� � h Gmin X;Y*� �

−~G X;Y*� �� �
Φ

Gmin X;Y*
� �

−~G X;Y*
� �

s

 !

þ sϕ
Gmin X;Y*

� �
−~G X;Y*
� �

s

 !i

ð38Þ

where Y∗ is the WCP, which is converted from the q space by
(12) and (24).

Thus, a sampling criterion is used to select a new sample:

max
X

ERI X;Y*� �
s:t:‖u‖ ¼ βt ð39Þ

By maximizing ERI, we can find a new training point.

X nþ1ð Þ;Y*
� �

¼ arg max ERI X;Y*� � ð40Þ

A flowchart of the sequential sampling process is shown in
Fig. 3, and the procedures are as follows:

(1) Initialize the sampling space Eval, which is a combina-
tion of the current design and uncertainty spaces. In other
words, (d,X,Y) corresponds to a sample point forming
the sampling space for the simulation, and LHD is used
to sample points in Eval. Set the number of samples asNs

and the iterative step as k = 0. Use expensive high fidelity
computational models to calculate the objective and con-
straint functions for all sample points.

(2) The responses of objective and constraint functions are

computed for these points. Kriging models ~f d;X;Yð Þ
and ~G d;X;Yð Þ are constructed. Where d, X and Y are
used as input variables for the Kriging model.

(3) A deterministic optimization is performed through (26),
and the design variables can then be obtained. In the first

optimization cycle, set uR; 0ð Þ
MPTP; j ¼ 0; q*; 0ð Þ ¼ 0.

(4) Given d, the original X and Y spaces are transformed
into standard normalizedu and qspaces, respectively.
The reliability analysis is performed according to
Eq.(20) theMPTP is found, the variables are transformed
back to the X and Y space, evaluated through the com-
puter experiment,and it becomes the current minimum
Gmin, If there are multiple constraints, each constraint
will produce Gi, min, (j = 1, 2, ..., ng).The currentGi, min,
(j = 1, 2, ..., ng)can be obtained and added to update the
Kriging model.

(5) The point which maximizes ERI values on the ~G X;Yð Þ
function is chosen as the next sampling point, and is

added to the original Eval to update the Kriging model~G.
Repeat step (5) to choose the maximum ERI in the con-
straint until the maximum ERI is less thanε.ε is a small
positive number used as the convergence criterion for the
maximization of ERI.

If there is only one constraint, the point with maximum ERI
will be added to Eval; if there are multiple constraints, the
point with the largest ERI will be added to Eval. this sample

minmin

Initialize the design variables

and          

Initialize the sample with the LHD 

Construct Kriging model

N

Y

End

k=k+1

Fig. 3 Sequential sampling flowchart
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is used to update only the surrogate of the constraint that has
the largest ERI value.

(6) TheMPTP is found based on the updated Krigingmodel.

If all the ~g kð Þ
i;MPTP≥0, the design variables d can be obtain-

ed. If any ~g kð Þ
i;MPTP < 0, proceed to step (3) and perform

another deterministic optimization cycle.

In Step (1), a basic requirement for an initial design is that
the entire input space should be sampled uniformly so that all
regions of the whole space have same opportunities to be
searched. In addition, the number of points in the initial design
is dependent on the dimension of the input space, that is, the
higher the dimension of the input space, the greater the num-
ber of sampling points in the initial design.

The i-th original ellipsoid model in Eq. (13) becomes a unit
model. By virtue of the spherical coordination transformation

qi;1 < ρicosαi1

qi;2 < ρisinαi1cosαi2

⋮
qi;ni−1 < ρisinαi1sinαi2sinαi3⋯sinαi;ni−2cosαi;ni−1
qi;ni < ρisinαi1sinαi2sinαi3⋯sinαi;ni−2sinαi;ni−1

ð41Þ

With qi;ni the nth component of qi, the uncertain space of

Eq. (13) becomes

Δi ¼ ρi;αij
� �jρi∈ 0; 1½ �;αij∈ 0; 2π½ �� �

; j ¼ 1; 2; :::; ni−1ð Þ
ð42Þ

where ρi is the radical coordinate and αi, jis the jth angular
coordinate for the ith ellipsoid.

For convex variables, the samples are chosen with a uni-
form distribution in the space defined by Eq. (13) and mapped
into the original space defined in Eq. (12) from Eq. (40).

In Step (5), the optimal solution of eq. (39) is the point on
the circle whose origin is located in the u space with a radius

1X

2X

O

Critical
max ( , ) 0G

Y
X Y

min ( , ) 0G
Y

X Y

1 2
( , )X X

MPTP

min ( , ) 0G
Y

X Y�

Failure region

Reliable region

Fig. 4 Max ERI sample point in design space. The initial samplesare
marked by “+,” additional samples are marked by “×,” and “□”
MPTP is the latest additional sample selected by the ERI criterion
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Fig. 5 True constraint boundaries for example 1

0 2 4 6 8 10
0

2

4

6

8

10

X1

X 2

Fig. 6 Initial Latin hypercube sampling
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Fig. 7 Sequential sampling
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of βt. This point is considered to bring the maximum improve-

ment to the approximation model ~G function estimation sub-
ject to the MPTP and WCP constraints. The corresponding

point in the X-space is depicted in Fig. 4. The limit state ~G
= 0 forms a critical failure region, the two bounds of this
region can be represented as min

Y
G X;Yð Þ ¼ 0 and

max
Y

G X;Yð Þ ¼ 0,respectively. The plus signs represent the

initial sample points, and point (μX 1
,μX 2

) is the optimal solu-
tion obtained via deterministic optimization in step (3).

As the current MPTP and WCP may not be sufficiently

accurate due to the prediction error of metamodel ~G X;Yð Þ,
the ERI criterion is employed to find a new sampling point
(denoted by the square mark) on the ellipsis. Then, the Kriging
metamodel is reconstructed and the prediction error in the
neighbourhood of MPTP and WCP will decrease. It is not
necessary to perform uniform sampling on the two bounds
of the limit state surface(i.e. min

Y
G X;Yð Þ ¼ 0 and max

Y
G

X;Yð Þ ¼ 0 ). The sampling criterion can help identify the
regions that should be densified, such as the boundary of a
critical failure region (i.e.min

Y
G X;Yð Þ ¼ 0 ) which we most

care about and neighborhood of MPTP. The precision of the

approximation of the bounds of min
Y

~G X;Yð Þ ¼ 0 is gradually

improved at each step. The major focus is to improve the
precision of the local critical regions rather than the whole
hybrid space. In other words, the samples are distributed uni-
formly in the entire hybrid space by the LHD method, which
will make the accuracy of Kriging model low.

5 Numerical examples

This section presents three examples to illustrate capacities of
the proposed method. The results of the nested optimization
method, which calls the true probabilistic constraint functions,
are considered standard reference values. The results of the
Kriging-based methods are compared with those of the ana-
lytical method to evaluate the errors. All programme codes
were tested in MATLAB. DACE toolbox developed by
Lophaven et al. (2002) was used in the numerical examples
and engineering application.

5.1 Numerical example 1

Two random design variables, two non-probabilistic parame-
ters and two probabilistic constraints are considered in numer-
ical example 1:

Table 1 Iteration history of the sequential ERI sampling strategy

Iteration Optimization Constraint New samples

Design variable Objective MPP1 ~G1 G1 MPP2 ~G2 G2

1 3.9003 0.2628 58.2605 3.6370 0.2471 −1.2296 −1.2296 3.5658 0.2556 −12.423 3.2785 3

2 2.5618 0.9645 46.6512 2.3934 0.9052 −0.0148 −0.0148 2.4239 1.0341 −3.4048 −0.5171 4

3 2.7626 0.8960 48.3865 2.5810 0.8410 −0.0006 −0.0006 2.6878 0.9730 −1.7810 −0.5642 5

4 2.9728 0.8289 50.3356 2.7775 0.7780 −0.0005 −0.0005 2.8121 0.8886 −0.1377 0.0950 3

5 2.9352 0.8404 49.9751 2.7423 0.7887 −0.0000 −0.0000 2.7789 0.9014 −0.5730 −0.4210 4

6 3.1068 0.7912 51.6656 2.9030 0.7424 −0.0003 −0.0003 2.9281 0.8460 −0.0159 0.0773 3

7 3.0742 0.8002 51.3370 2.8726 0.7509 −0.0000 −0.0000 2.8544 0.8439 −0.6337 −0.0236 4

8 3.0850 0.7972 51.4461 2.8827 0.7481 −0.0000 −0.0000 2.9084 0.8526 −0.3423 −0.5467 4

9 3.4389 0.7107 55.2102 2.8827 0.7481 −0.0001 −0.0000 2.9084 0.8526 −0.002 −0.003 4

10 3.5027 0.6970 55.9529 3.2730 0.6540 0 – 3.2882 0.7430 0 –

Table 2 The summary results of the optimization for example 1

Method Design variable Objective Function calls

Nested optimization (3.5045, 0.6966) 55.9733 558

Sequential sampling (3.5027,0.6970) 55.9529 54
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Fig. 8 The Effect of the randomness of the Latin hypercube sampling
technique for generating initial samples on the optimization results for
Numerical Example 1
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min
d

f ¼ d1 þ 3ð Þ2 þ d2 þ 3ð Þ2
s:t: βL G1 x; yð Þ≥0ð Þ≥βt;1

βL G2 x; yð Þ≥0ð Þ≥βt;2
1≤d1≤10; 0:01≤d2≤10

ð43Þ

where
G1 x; yð Þ ¼ x1 x2 þ y1ð Þ−y2
G2 x; yð Þ ¼ x1− x2 þ y1ð Þ2y2

where the design variables d = {d1, d2}
T represent the mean

values of x1 and x2,respectively. The coefficients of variation
(COVs) for x1 and x2 are both 0.03. The variation ranges of y1
and y2 are given by y∈ yj yi−ŷið Þf TW1 yi−ŷið Þ ≤0:52g ; where
their nominal values are ŷ ¼ ŷ1; ŷ2f gT ¼ 0:25; 2f gT and the

characteristic matrix W1 ¼ 4 0
0 1

� �
. The target reliability in-

dex βt, 1 = βt, 2 = 3.0, which denotes the structure’s probability
of failure, must be valued at less than 0.135%.

In Fig. 5, the optimal solution is in the narrow neighbourhood
between the limit-state surfaces G1 = 0 and G2 = 0. The initial
Latin hypercube sampling is shown in Fig. 6 with 20 initial

sample points. Kriging models ~G1 and ~G2 are created from these
sample points. The sample points are evenly distributed through-

out the entire sampled space. The limit-state surface ~G2 ¼ 0 is
inexact around the region of the optimal design point. The results
of the sequential sampling method are shown in Fig. 7.
Additional sample points appear in both feasible and infeasible
regions and are clustered around the optimal solution of d1 and d2.

The iteration history is shown in Table 1. Initially, the op-
timal solution based on the approximate model is close to the

solution of the real function, but the approximate response~G2

is very different from the accurate responseG2 under the same
design variables. The relative error between the approximate
response and accurate response decreases with each iteration,
which indicates that the initial approximation model is not
sufficiently accurate. However, the boundaries of constraints
1 and 2 around the optimal solution are well fitted after several
sequential sampling steps.

The summary results of the optimization for example 1 are
shown in Table 2. The nested optimization involves 558 func-
tion calls. However, using the present method, the total num-
ber of function calls is reduced to only 54. Thus, the total
number of function calls required is less than that of the con-
ventional nested optimization for test function 1.

We repeated the RBDO based on Kriging 10 times, and
summarized the results of relative error. It can be clearly seen
from Fig. 8 that all relative errors are very small, revealing that
the effect of the randomness on optimization results could be
negligible.

5.2 Numerical example 2

Test function 2 includes two random design variables, two non-
probabilistic parameters and three probabilistic constraints:
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Fig. 9 True limit state functions for example 2
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Fig. 10 Initial Latin hypercube sampling
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min
d

f dð Þ ¼ d1 þ d2s:t: βL Gj x; yð Þ≥0� �
≥βt; j j ¼ 1; 2; 3ð Þ

0≤d1≤10; 0≤d2≤10where G1 x; yð Þ
¼ −1þ x21x2= 2y1 þ y2ð Þ G2 x; yð Þ ¼ −2y1y2 þ 4 x1 þ x2−5ð Þ2

þ x1−x2−12ð Þ2 G3 x; yð Þ ¼ −1þ 50þ 3y2ð Þ= x21 þ 8x2 þ y1
� �

ð44Þ
where design variables d = {d1, d2}

T represent the mean
values of x1 and x2, respectively. The standard deviations
of x1 and x2 are σ1 = σ2 = 0.3.The variation ranges of y1
and y2are given by y∈ yj yi−ŷið Þf TW1 yi−ŷið Þ ≤1g ; where

their nominal values are ŷ ¼ ŷ1; ŷ2f gT ¼ 5; 10f gT and the

characteristic matrix is W1 ¼ 4 0
0 1

� �
. The target reliabil-

ity index is βt, j = 3.0(j = 1,2,3).
The objective function decreases down and to the left in the

design region. The third constraint G3 = 0 is highly nonlinear.

The optimal design point ‘*’ for RBDO is located at (3.5878,
3.1678) as shown in Fig. 9. The area enclosed by the three
constraint functions is the feasible region. This circle sur-
rounding the optimal design point is the βt-circle.

The initial 30 LHS sample points are denoted by ‘+’ (plus)
signs in Fig. 10, and the additional 52 sample points selected
by the sequential ERI strategy for constraints G1, G2 and G3

are represented by ‘×’ signs in Fig. 11. As shown in Fig. 10,

the approximate limit-state surfaces of ~G1 =0 and ~G3 =0 are
far from the accurate limit-state surfaces initially. As shown in
Fig. 11, additional samples are positioned in the feasible and
infeasible regions and cluster around the optimal design
point. Consequently, the approximate limit-state surfaces
~G1 =0, ~G2 =0, and ~G3 =0 are more accurate in the area sur-
rounding the optimal solution and limit state function
boundaries.

The iteration history of the present method is shown in
Table 3. Initially, the optimal solution based on the approxi-
mate model agrees with the solution of the real function, but

the approximate response~G1 and ~G3 is far from the accurate
response G1 and G3 under the same design variables. The
difference between the approximate response and accurate
response decreases as the iterations proceed. This result shows
that the initial approximation model has globally low accura-
cy, and approximations in the boundary regions can achieve
high accuracy after several sequential sampling steps.

Table 3 Iteration history of the sequential ERI sampling strategy

Iteration Optimization Constraint New
samples

Design
variable

Objective MPP1 ~G1 G1 MPP2 ~G2 G2 MPP3 ~G3 G3

1 (4.0672,
2.7082)

6.7754 3.7498
1.8660

−4.0682 0.3661 4.3480
1.8531

−18.5236 −18.5236 4.8083
3.2188

0.1982 0.4832 8

2 (3.3169,
3.0438)

6.3607 2.5431
2.5842

−1.4112 −0.1695 3.7036
2.2311

−0.3201 −0.3201 3.7065
3.8551

0.5408 0.5909 8

3 (3.4565,
3.1150)

6.5715 2.6168
2.7910

−0.4195 −0.0594 3.8011
2.2836

−0.0532 −0.0532 3.8011
2.2836

0.3836 0.5969 4

4 (3.5230,
3.1431)

6.6661 2.7311
2.7154

−0.0433 −0.0119 3.8485
2.3040

−0.0106 −0.0106 4.2907
3.6128

0.3659 0.5885 4

5 (3.5356,
3.1483)

6.6839 2.7718
2.6722

−0.0081 −0.0096 3.8575
2.3079

−0.0004 −0.0004 4.2410
3.7072

0.4510 0.5144 4

6 (3.5466,
3.1525)

6.6991 2.7866
2.6705

−0.0001 −0.0010 3.8655
2.3109

−0.0003 −0.0003 4.2096
3.7611

0.4891 0.4946 4

7 (3.5478,
3.1530)

6.7007 2.7625
2.7132

−0.0077 −0.0117 3.8663
2.3112

0.0000 0.0000 4.2032
3.7698

0.4942 0.4950 4

8 (3.5618,
3.1582)

6.7200 2.7923
2.6913

−0.0022 −0.0036 3.8764
2.3150

−0.0004 −0.0004 4.2074
3.7853

0.4821 0.4769 4

9 (3.5663,
3.1599)

6.7261 2.8132
2.6670

−0.0007 −0.0006 3.8796
2.3162

−0.0000 −0.0000 4.2258
3.7722

0.4679 0.4638 4

10 (3.5669,
3.1601)

6.7271 2.7764
2.7300

−0.0069 −0.0111 3.8801
2.3164

0.0000 0.0000 4.2424
3.7549

0.4606 0.4577 4

11 (3.5799,
3.1649)

6.7448 2.7694
2.7736

−0.0090 0.0009 3.8895
2.3198

−0.0004 −0.0004 4.2485
3.7674

0.4405 0.4533 4

12 (3.5868,
3.1674)

6.7542 2.7802
2.7680

0 – 3.8943
2.3216

0 – 4.2587
3.7661

0.4444 – –

Table 4 Summary of optimization results for example 2

Method Design
variable

Objective Function
calls

Nested
optimization

(3.5878,
3.1678)

6.7556 264

Sequential
sampling
method

(3.5868,
3.1674)

6.7542 82
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As shown in Table 4, in terms of efficiency, the present
method requires 12 iterations and a total of 82 sample evalu-
ations, whereas the nested optimization method requires 264
evaluations. Thus, for this problem, our method again exhibits
high precision and efficiency.

We repeated the Kriging-based RBDO 10 times and sum-
marized the various results of relative error. Figure 12 clearly
shows that all relative errors are small, revealing that the effect
of randomness on the optimization results is negligible.

5.3 Numerical example 3

This example is modified from Refs.(Hu and Du 2015; Jiang
et al. 2011b; Wang et al. 2016). As shown in in Fig. 13, a ten-
bar truss is subjected to forcesF1,F2and F3. The vertical dis-
placement on joint 2,dy, must be less than the allowable value
dymax = 0.004 m.The Young’s modulus E of the material is
treated as a normal random variable, whereas F1,F2and F3

are assumed to be interval variables. The details of the uncer-
tainty properties are listed in Table 5.

In this problem, the truss members’ cross-sectional
areasAi(i = 1, 2, ..., 10) are taken as design variables, and the
design objective is to minimize the total area of the structure.
According to the above displacement constraint, the target
reliability index βt is 2.5, i.e., the target failure probability
value is 6.21 × 10−3. This reliability-based design optimiza-
tion problem can be expressed as

min
d

f dð Þ ¼ ∑
10

i¼1
di s:t: βdy A; F1; F2; F3;Eð Þ≥βt

0:0001m2≤di≤0:002m2 i ¼ 1; 2; :::; 10ð Þ

ð45Þ

in which d is computed as described previously (Au et al.
2003)

d ¼ ∑
6

i¼1

N0
i N i

Ai
þ

ffiffiffi
2

p
∑
10

i¼1

N 0
i N i

Ai

� �
L
E

where

N 1 ¼ F2−
ffiffiffi
2

p

2
N8;N2 ¼ −

ffiffiffi
2

p

2
N 10

N 3 ¼ −F1−2F2 þ F3−
ffiffiffi
2

p

2
N8

N 4 ¼ −F2 þ F3−
ffiffiffi
2

p

2
N10

N 5 ¼ −F2−
ffiffiffi
2

p

2
N8−

ffiffiffi
2

p

2
N 10;N6 ¼ −

ffiffiffi
2

p

2
N10

N 7 ¼
ffiffiffi
2

p
F1 þ F2ð Þ þ N8;N 8 ¼ a22b1−a12b2

a11a22−a12a21
N 9 ¼

ffiffiffi
2

p
F2 þ N 10;N10 ¼ a11b2−a21b1

a11a22−a12a21

ð46Þ

whereai, j(i = 1, 2; j = 1, 2) and bi(i = 1, 2)can be defined as

a11 ¼
ffiffiffi
2

p
F1 þ F2ð Þ þ N8; a12 ¼ a21 ¼ L

2A5E

a22 ¼ 1

A2
þ 1

A4
þ 1

A6
þ 2

ffiffiffi
2

p

A9
þ 2

ffiffiffi
2

p

A10

� �
L
2E

b1 ¼ F2

A1
−
F1 þ 2F2−F3

A3
−
F2

A5
−
2
ffiffiffi
2

p
F1 þ F2ð Þ
A7

� � ffiffiffi
2

p
L

2E

b2 ¼
ffiffiffi
2

p
F3−F2ð Þ
A4

−
ffiffiffi
2

p
F2

A5
−
4F2

A9

� �
L
2E

ð47Þ

The results obtained from the two different methods are
given in Table 6. There are ten random design variables, one
random parameter and three non-probabilistic parameters in
this illustrative example, which will increase the number of
calculations compared to the previous examples. The total
number of evaluations conducted for the actual constraint
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Fig. 12 The Effect of the randomness of the Latin hypercube sampling
technique for generating initial samples on the optimization results for
Numerical Example 2
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function is 544, with 350 initial sample points and 194 addi-
tional samples. The total number of functions requires nested
optimization with a true function of 3706. Thus, the proposed
method is highly efficient compared to conventional nested
optimization. In this high-dimension hybrid space, high-
accuracy approximation models are very difficult to construct
from limited samples with a uniform distribution; neverthe-
less, accurate results can be obtained by supplementing the
approach with the sequential sampling method. The example
shows that the proposed method is highly efficient and accu-
rate for the problem of reliability-based optimization with
many variables.

The randomness of the Latin hypercube sampling technique
for generating initial samples as shown in Fig. 14 has some
effects on the optimization result, specifically, the relative errors
are generally smaller than 0.7%. Nevertheless, it may be safe to
say that the accuracy of the Kriging approximation model can
be guaranteed by the sequence sampling method.

6 Engineering application

This section focuses on a family of practical engineering ap-
plications, namely, vehicle crashworthiness designs. Thin-

walled beam structures are typically used to absorb energy
during vehicle frontal and rear collisions. Therefore, it is im-
portant to investigate the design optimization of thin-walled
beam structures with regard to vehicle crashworthiness (Xiang
et al. 2006; Zhao et al. 2010).

The thin-walled beam design problem described herein is
taken from numerical studies in the literature (Xiang et al.
2006; Zhao et al. 2010). Here, the crashworthiness of the
closed-hat beam shown in Fig. 15 is investigated. The
closed-hat beam is impacting a rigid wall with an initial ve-
locity of 13.8 m/s. The beam is formed by a hat beam and a
web plate connected with uniformly distributed spot-welding
points along the two rims of the hat beam.

The FE model comprises 5760 shell elements. A 300-kg
mass is attached to the free end of the beam during the crash
analysis to supply crushing energy. The impact duration time
is 30 ms. The FEM simulation is performed using the explicit
non-linear finite element software package LS-DYNA.
Typical deformation behaviours of the numerical model are
shown in Fig. 16.

Based on previous research (Xiang et al. 2006; Zhao et al.
2010), the closed-hat beam will be optimized to maximize the
absorbed energy when subjected to an average normal impact

Table 5 Uncertainty properties
for ten-truss structure Uncertain variables Distribution Nominal value COV Variation range

Ai(i = 1,2,...,10) (m2) Normal di(i = 1,2,...,10) 0.01 –

E (GPa) Normal 200 0.1 –

F1(kN) Uncertain-but-bounded 60 – 0.2

F2(kN) Uncertain-but-bounded 40 – 0.2

F3(kN) Uncertain-but-bounded 10 – 0.2

Table 6 Design optimization results

Design variables
(10−4 m2)

Nested optimization Sequential sampling method

A1 13.6397 13.5702

A2 1.0000 1.0000

A3 10.5800 10.6778

A4 5.7686 5.7914

A5 1.0000 1.0000

A6 1.0000 1.0000

A7 5.6844 5.7914

A8 11.4441 11.1630

A9 10.6485 11.0505

A10 1.0000 1.0000

Total Area 61.7652 61.7026

NFE 3706 544
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Fig. 14 The Effect of the randomness of the Latin hypercube sampling
technique for generating initial samples on the optimization results for
Numerical Example 3
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force on the rigid wall. The plate thickness t, height h, widthw,
and spacing d between each spot-welding point have promi-
nent effects on the crashworthiness of a closed-hat beam, and
hence these four parameters are used as design variables in
this application. Due to manufacturing variability and mea-
surement errors, Young’s modulus and yield stress values
are treated as bounded uncertainties described by a two-
dimensional ellipsoid model. The plate thickness t, height h,
width w, and spacing d between each spot-welding point are

assumed to be normally distributed random variables. The
uncertainty properties are given in Table 7.

Thus, the hybrid RBDO problem can be formulated as

min
d1;d2;d3;d4

f d1; d2; d3; d4; Ê̂; σ̂̂
� � ¼

−E
s:t: β F F t; d;w; h;E; σð Þ≤120 kNð Þ≥βt

0:8 mm≤d1≤ 2:5 mm
10 mm≤d2≤40 mm
80 mm≤d3≤120 mm
80 mm≤d4≤120 mm

ð48Þ

where the objective function f and constraint F represent the
absorbed energy of the closed-hat beam and the axial impact
force, respectively. Both parameters are obtained via FEM
simulation. The target reliability index βt is set to 3.0 for the
average force constraints. The starting point of the optimiza-

tion is set at (d01; d
0
2; d

0
3; d

0
4 )T = (1.5 mm, 30 mm, 70 mm,

70 mm)T.
Initially, 50 sampling points in the design and uncer-

tainty spaces are generated through LHS to construct
Kriging model approximations of the objective functions.
The stopping criterion of the sequential ERI sampling
strategy is set to a maximum of ERI < 0.005. The results
are given in Table 8. The optimal design vector is found
to be (0.81 mm, 19.07 mm, 92.99 mm, 101.94 mm) T,
with 62 additional sample points selected by sequential
ERI and 112 FEM evaluations.

Fig. 15 Closed-hat beam
impacting a rigid wall and its
cross section (mm)

Fig. 16 Typical deformation behaviour of the finite element model
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7 Conclusion

In this article, a new sequential samplingmethod is introduced
and integrated into the SORA to solve kriging-based RBDO
problems with both stochastic and uncertain-but-bounded un-
certainties. Based on the kriging approximation model, an ERI
criterion for selecting additional samples and improving
RBDO solutions is proposed. The sampling strategy focuses
on the neighborhood of current RBDO solution and maximal-
ly improves the MPTP and WCP estimation, while ignore
other areas of the constraint function that are not important
to the RBDO solution.

Several examples are tested to verify the accuracy and effi-
ciency of the proposed method. The optimization results of the
sequence sampling method are almost the same as those of the
nested optimization, which confirms that the proposed sequence
sampling method is very accurate. In addition, the sequential
sampling method uses the smallest number of samples, which
indicates that the computational cost can be significantly
reduced.The present method is also applied to a practical engi-
neering problem, namely, thin-walled beam crashworthiness
analysis. A stable solution is obtained using only a small number
of iterations and FEM evaluations, illustrating the fine practica-
bility of the proposed method. Additional work is required to
improve the accuracy of RBDOmethods. For example, different
approximationmodels (e.g., response surface methods and radial
basis functions) may be used to fit implicit constraint functions.
In addition, the method may be extended and applied to more
complex problems, such as multi-objective reliability
optimization.
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