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Abstract
Design decisions for complex systems often can be made or informed by a variety of information sources. When optimizing
such a system, the evaluation of a quantity of interest is typically required at many different input configurations. For
systems with expensive to evaluate available information sources, the optimization task can potentially be computationally
prohibitive using traditional techniques. This paper presents an information-economic approach to the constrained
optimization of a system with multiple available information sources. The approach rigorously quantifies the correlation
between the discrepancies of different information sources, which enables the overcoming of information source bias.
All information is exploited efficiently by fusing newly acquired information with that previously evaluated. Independent
decision-makings are achieved by developing a two-step look-ahead utility policy and an information gain policy for
objective function and constraints respectively. The approach is demonstrated on a one-dimensional example test problem
and an aerodynamic design problem, where it is shown to perform well in comparison to traditional multi-information source
techniques.

Keywords Information sources · Constrained optimization · Fusion · Two-step look-ahead utility · Information gain

1 Introduction

Design decisions for complex engineered systems are
increasingly being informed by queries to multiple sources
of information. These information sources may consist
of variable fidelity models, expert opinions, historical
data, or newly conducted physical experiments. Our aim
here is to create a systematic procedure for enabling the
efficient exploitation of all available information sources.
The context we focus on is constrained optimization
problems with expensive to evaluate information sources.
For such problems, traditional optimization strategies,
such as the employment of gradient-based algorithms or
heuristic techniques can be inappropriate. This can be, for
example, due to sheer expense in the case of heuristics,
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and the need to calculate finite differences of say an
experimental information source in the case of gradient-
based algorithms, where resources often would not be spent
on queries in such close proximity in input space. Given
such considerations, the approach we propose for multi-
information source optimization focuses on Bayesian global
optimization strategies, where query points are selected
based on expected contribution to such quality metrics
as information gained regarding a constraint or expected
improvement in an objective. Such a strategy enables the
natural fusion of information from multiple sources, which
we exploit here to ensure that all available information can
be used for the optimization task at hand.

Our work builds generally on concepts from multifidelity
optimization, where several different computational mod-
els are available for a given task. One common approach
in multifidelity optimization is to treat the models as a
hierarchy and replace or calibrate low-fidelity informa-
tion with high-fidelity results (Alexandrov et al. 2000;
Jones et al. 1998; Booker et al. 1999; Jones 2001; Sasena
et al. 2002; Ghoreishi and Allaire 2018a). Trust region
methods are used to approximate the high-fidelity model
for optimizing an objective function when the derivatives
of the objective are available. In refs. Alexandrov et al.
(1998) and Alexandrov et al. (2001), a trust region-based

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-2115-z&domain=pdf
http://orcid.org/0000-0002-4986-2299
mailto: f.ghoreishi88@tamu.edu
mailto: dallaire@tamu.edu


978 S. F. Ghoreishi and D. Allaire

model-management method is employed in which the gra-
dients of the low-fidelity objective function and constraints
are scaled or shifted to match those of a high-fidelity
model. ref. March andWillcox (2012) presents a convergent
multifidelity optimization algorithm using the trust region
method that does not require the high-fidelity derivatives,
and considers hierarchies between the low and high-fidelity
models. In ref. Huang et al. (2006), a multifidelity sequen-
tial kriging optimization method is proposed which uses the
expected improvement as a measure to determine the next
design point and the level of fidelity model to evaluate,
and the autoregressive assumption is used to build the mul-
tifidelity model based on hierarchical relationships among
the information sources. In practice, the fidelity of informa-
tion sources can vary over the design space. Therefore, the
assumption of hierarchical relationship among the informa-
tion sources might not be practical, and all the available data
from different information sources need to be fused to take
into account all potential information any given source may
bring to bear on the optimization problem.

There are several techniques used in practice for achiev-
ing the fusion of information from multiple information
sources. Among them are the adjustment factors approach
(Mosleh and Apostolakis 1986; Reinert and Apostolakis
2006; Riley et al. 2011), Bayesian model averaging (Leamer
1978; Madigan and Raftery 1994; Draper 1995; Hoeting
et al. 1999) which believe that each model has some prob-
ability of being true and the fused estimate is a weighted
average of the available models. The other available tech-
niques are fusion under known correlation (Geisser 1965;
Morris 1977; Winkler 1981a; Ghoreishi and Allaire 2018b;
Ghoreishi et al. 2018), and covariance intersection method
Julier and Uhlmann (1997, 2001). Covariance intersection
algorithm has a tendency to discard lower fidelity infor-
mation sources to achieve the most conservative estimate
possible in cases with scalar quantities of interest. It requires
that the information source with the highest fidelity be used
for the fused estimate. While using the high-fidelity model
at all points in the design space leads to a reduction in uncer-
tainty due to model inadequacy, this approach leads to a
loss of information provided by the low-fidelity models that
could be used to better estimate the model output if the cor-
relation coefficients were known. Accounting for correla-
tion is critical in information fusion. Aggressive approaches,
such as assuming each model is independent from all oth-
ers, are often incorrect, and can lead to potentially serious
misconceptions regarding confidence in quantity of interest
estimates.

In this work, we propose a method for the constrained
optimization of a quantity of interest where multiple
information sources, which are generally expensive to
evaluate, are available for approximating the quantity of
interest and constraints. To enable informed querying of

information sources and to account for each source’s
discrepancy, we construct Gaussian processes for each
source using available evaluations from a given source and
that source’s discrepancy information. Following standard
practice for the fusion of normally distributed data (Winkler
1981b), we create fused Gaussian processes for the
objective function and constraints, that contain all currently
available information from each information source. A
novel aspect of this work is the use of fusion techniques
that support the rigorous incorporation of correlation
both within information sources in terms of information
source estimates, and between information sources in
terms of information source estimate errors. This latter
aspect enables the mitigation of bias among information
sources. Specifically, traditional fusion techniques estimate
a quantity of interest as a weighted average of information
source estimates. This average always resides within the
extremes of the information source estimates. That is, if
all information sources are biased in the same direction
with respect to a quantity of interest, traditional fusion
techniques cannot overcome this bias and will produce a
similarly biased estimate. Our work employs a novel model
reification technique described in detail in ref. Thomison
and Allaire (2017), that overcomes this limitation in the
fused Gaussian processes.

By constructing the fused Gaussian processes, the
next design to evaluate and the information source to
query for the objective function are determined based
on our proposed two-step look-ahead policy. This policy
is achieved by sequential augmentation process and the
knowledge gradient policy as a one-step look-ahead policy
to maximize (or minimize) an objective (Scott et al.
2011; Frazier et al. 2008; Imani et al. 2018; Powell
and Ryzhov 2012; Frazier et al. 2009). Notice that our
proposed two-step look-ahead policy goes beyond the
existing Bayesian optimization techniques which only take
the next step into account for decision-making process.
The next design to evaluate and the information source
to query for the constraints are determined based on our
proposed information gain policy achieved by sequential
augmentation process and the Kullback-Leibler divergence.
This is the novel aspect of our methodology that decision-
making for querying from constraint information sources is
independent of objective function decision-making, and the
constraint information sources can be queried at different
design locations than the objective information source
during the same optimization iteration, and involve entirely
separate information sources than those of the objective.
The proposed method yields several benefits summarized as
follows

– Incorporation of correlations both within and between
information sources;
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– Direct decision-making on the fused model regarding
which information source to query next and where to
query it;

– A two-step look-ahead policy and an information gain
policy for sequential objective function and constraints
decision-making;

– Independent decision-making for querying from con-
straints and objective function information sources.

Our proposed multi-information source optimization
approach is applied to optimize a one-dimensional exam-
ple test problem and an aerodynamic design example,
and the results are compared with a traditional multi-
information source optimization method presented in ref.
Lam et al. (2015) which is currently the state of the art
in constrained Bayesian optimization. It is shown that our
proposed method results in higher quality solutions for
the demonstrations presented, particularly in the case of a
limited budget available for querying.

The rest of the paper is organized as follows. Section 2
describes the problem we aim to address in this work.
Section 3 presents our approach in detail. In Section 4,
the approach is applied to a one-dimensional test function
and an aerodynamic example problem and the results are
discussed. Finally, conclusions are drawn and future work
opportunities are described in Section 5.

2 Problem statement

We consider the problem of optimizing a quantity of interest
subject to m inequality constraints, where multiple sources
of information are available for both the objective and
constraints. A mathematical statement of the problem is
formulated as

x∗ = argmax
x∈χ

f (x)

s.t. gj (x) ≤ 0, j = 1, 2, . . . , m, (1)

where f is the real-world objective function, gj , where j =
1, 2, . . . , m, are the m real-world constraints, and x is a set
of design variables in the vector space χ . In the optimization
process, the real-world objective function and the real-world
constraints must be estimated at each iteration.

For this estimation task, often several information
sources, such as numerical simulation models, experiments,
expert opinions, etc., are available. These sources have
varying fidelities, or approximation accuracies over the
design space, and varying computational costs. The
approach we describe here enables the exploitation of
all available sources of information, in an information-
economic sense, that balances the cost and associated
fidelity of each information source when choosing how
to estimate the quantity of interest and the constraints. In

our formulation, the core issue is how to manage dynamic
querying to choose what new information sources to sample
and with what input, at each step of the overall decision
process. The choice of next design point to query must be
based on how much a sample tells us about the design goal
at hand and if that sample is expected to satisfy the current
constraints. This choice must trade off the costs associated
with a particular information source query and the utility or
information gained by executing the query.

Here, we assume we have available some set of
information sources, fi(x), where i ∈ {1, 2, . . . , S}, that can
be used to estimate the quantity of interest, f (x), at design
point x. In order to predict the output of each information
source at locations that have not yet been queried, an
intermediate surrogate is constructed for each information
source using Gaussian processes (Rasmussen and Williams
2006). These surrogates are denoted by fGP,i(x). We
consider the prior distributions of the information sources
modeled by Gaussian processes as

fGP,i(x) ∼ GP (0, ki(x, x)) , (2)

where ki(x, x) is a real-valued kernel function over the input
space. For the kernel function, we consider the commonly
used squared exponential covariance function, which is
specified as

ki(x, x′) = σ 2
s exp

(
−

d∑
h=1

(xh − x′
h)

2

2l2h

)
, (3)

where d is the dimension of the input space, σ 2
s is the

signal variance, and lh, where h = 1, 2, . . . , d , is the
characteristic length-scale that indicates the correlation
between the points within dimension h. The parameters
σ 2

s and lh associated with each information source can
be estimated via maximum likelihood. Assuming we
have available Ni evaluations of information source i

denoted by {XNi
, yNi

}, where XNi
= (x1,i , . . . , xNi,i)

represents the Ni input samples to information source
i and yNi

= (
fi(x1,i ), . . . , fi(xNi,i)

)
represents the

corresponding outputs from information source i, the
posterior distribution of information source i at design point
x is given as

fGP,i(x) | XNi
, yNi

∼ N
(
μi(x), σ 2

GP,i(x)
)

, (4)

where

μi(x) = Ki(XNi
, x)T [Ki(XNi

,XNi
) + σ 2

n,iI ]−1yNi
,

σ 2
GP,i(x) = ki(x, x) − Ki(XNi

, x)T

[Ki(XNi
,XNi

) + σ 2
n,iI ]−1Ki(XNi

, x), (5)

where Ki(XNi
,XNi

) is the Ni ×Ni matrix whose m, n entry
is ki(xm,i, xn,i), and Ki(XNi

, x) is the Ni × 1 vector whose
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Fig. 1 A depiction of total variance, which includes both the variance
associated with the Gaussian process and variance associated with the
fidelity of the information source

mth entry is ki(xm,i, x) for information source i. Note that
here we have included the term σ 2

n,i , which can be used to
model observation error for information sources based on
experiments and can also be used to guard against numerical
ill-conditioning.

To these Gaussian process surrogates, in order to estimate
the fused value as will be discussed in Section 3, we
further quantify the uncertainty of each information source
with respect to the true quantity of interest by adding a
term associated with the fidelity of the information source.
Specifically, we quantify the total variance which captures
both the variance associated with the Gaussian process
representation and the quantified variance associated with
the fidelity of the information source over the input space,
as

σ 2
i (x) = σ 2

GP,i(x) + σ 2
f,i(x), (6)

where σ 2
f,i(x) is the fidelity variance of information source

i that has been estimated from, for example, expert opinion
or available real-world data. Here, we estimate the fidelity
variance of each information source by computing the
error values which are the absolute difference between the
available data from the true quantity of interest and the
information source. A Gaussian process is then performed
using the square of these error values as training points to
estimate the fidelity variance over the input space as mean
of the Gaussian process. Figure 1 shows a depiction of total
variance for an information source represented by Gaussian
process.

Our approach to information sources that can be used to
evaluate any of the m constraints in Problem (1) follows that
of our approach to the objective based information sources.
For any given constraint, gj , where j ∈ {1, 2, . . . , m},
we have available some set of information sources, gi,j (x),
where i ∈ {1, 2, ..., Gj }, that can be used to estimate the

quantity of interest, gj (x), at the design point x. Following
the same approach taken for the objective information
sources, we quantify the total variance of the ith information
source of the j th constraint as

σ 2
i,j (x) = σ 2

GP,i,j (x) + σ 2
gj ,i(x). (7)

where σ 2
GP,i,j (x) is the variance associated with the

Gaussian process representation of gi,j and σ 2
gj ,i (x) is the

quantified fidelity variance of the information source.

3 Approach

This section describes our multi-information source con-
strained Bayesian optimization approach. We first present
how we fuse the knowledge from information sources, and
construct fused Gaussian processes for the objective func-
tion and the m constraints, required for finding the solution
for the maximization problem in (1). Then, we present our
proposed strategies for choosing the next design points and
information sources of objective function and constraints to
query. We conclude this section with a complete algorithm
for implementing our approach.

3.1 Fusion of information sources

A fundamental claim in this work is that any information
source can provide potentially useful information to a given
task at hand. That is, information sources are not assumed
to be hierarchical and the goal is not to just optimize
whatever is deemed the highest fidelity source. Indeed,
according to (6) and (7), the discrepancy of an information
source can vary over its domain. Thus, a strict hierarchy
of information source fidelity is an unlikely and restrictive
assumption.

To take into account all potential information any given
source may bring to bear on the optimization problem (i.e.,
objective or constraint information at a given input), we
fuse our information sources following standard practice for
the fusion of normally distributed data (Winkler 1981b),
since our information sources are represented as Gaussian
processes. According to the method of Winkler, the fused
mean and variance at point x can be computed as Winkler
(1981b)

μWink(x) = eT �̃(x)−1μ(x)

eT �̃(x)−1e
, (8)

σ 2
Wink(x) = 1

eT �̃(x)−1e
, (9)
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where e = [1, . . . , 1]�, μ(x) = [μ1(x), . . . , μS(x)]� con-
tains the mean values of S models at point x, and �̃(x) is
the covariance matrix between the models given as

�̃(x) =

⎡
⎢⎢⎢⎣

σ 2
1 (x) · · · ρ1S(x) σ1(x)σS(x)

ρ12(x) σ1(x)σ2(x) · · · ρ2S(x) σ2(x)σS(x)
...

. . .
...

ρ1S(x) σ1(x)σS(x) · · · σ 2
S (x)

⎤
⎥⎥⎥⎦ ,

(10)

where σ 2
i (x) is the total variance of model i at point x and

ρij (x) is the correlation coefficient between the deviations
of information sources i and j at point x.

To estimate the correlations between the model devi-
ations, we use the reification process defined in Allaire
and Willcox (2012) and Thomison and Allaire (2017),
which refers to the process of treating each model, in turn,
as ground truth. Following this process, the correlation
between the errors is computed as follows

ρij (x) = σ 2
j (x)

σ 2
i (x) + σ 2

j (x)
ρ̃ij (x) + σ 2

i (x)

σ 2
i (x) + σ 2

j (x)
ρ̃ji(x),

(11)

where σ 2
i (x) and σ 2

j (x) are the total variances of information
sources i and j at point x, and ρ̃ij (x) and ρ̃j i(x) are
computed by reifying models i and j respectively as

ρ̃ij (x) = σi(x)√(
μi(x) − μj (x)

)2 + σ 2
i (x)

,

ρ̃j i(x) = σj (x)√(
μj (x) − μi(x)

)2 + σ 2
j (x)

, (12)

where μi(x) and μj (x) are the mean values of models i and
j , respectively at design point x. Note that the correlation
between the errors in (11) is the variance-weighted average
of the two correlation coefficients in (12). The detailed
process of estimating the correlation between the errors of
two models can be found in Allaire and Willcox (2012) and
Thomison and Allaire (2017).

To imbue the fused model with the complete learned
information, we construct a fused Gaussian process (which
also accounts for correlation between design points). To
accomplish this, we construct the Gaussian process from
a finite set of samples x1:Nf

⊂ χ . Let μWink(x1:Nf
)

and �(x1:Nf
) = diag

(
σ 2
Wink(x1), . . . , σ

2
Wink(xNf

)
)
be the

vector of fused means and a diagonal matrix containing
the fused variances at x1:Nf

obtained according to (8)
and (9) respectively. Considering the squared exponential
covariance function (other options could be employed) and
obtaining the hyperparameters via maximum likelihood,
we construct the fused Gaussian process. The posterior

predictive distribution of fused estimate at any set of
samples X in the design space can be obtained as

f̂ fused(X) ∼ N (μfused(X), �fused(X)), (13)

where

μfused(X) = K(x1:Nf
,X)T [K(x1:Nf

, x1:Nf
)+�(x1:Nf

)]−1

μWink(x1:Nf
),

�fused(X) = K(X,X)−K(x1:Nf
,X)T [K(x1:Nf

, x1:Nf
) +

�(x1:Nf
)]−1K(x1:Nf

,X). (14)

Fused Gaussian processes are also constructed for each
of the constraints to predict the feasibility of the design
to evaluate. This approach follows that of the approach
taken above for the fused Gaussian process of the objective
function.

3.2 Two-step look-ahead utility function
for objective function query

Equipped with fused Gaussian processes for the objective
and each constraint, the next step of our methodology
for solving (1) is identification of the next design point
location to query and with which information source to
execute the query. The design point to evaluate is based
on the fused Gaussian processes of the objective function
and constraints. This choice must trade off the goals of
learning or exploring the fused model of objective function
and maximizing or exploiting this function. Further, this
choice must eventually be feasible with respect to the fused
constraint models. We denote the feasible design space by
χfeas where χfeas ⊂ χ .

To determine the next design point and information
source to query, we generate Latin hypercube samples in the
input design space as alternatives denoted as Xalt. Among
these alternatives, we seek to identify a set of feasible design
points, as determined by dynamically updated constraints
described below. From this feasible set denoted by Xfeas, we
seek to determine which design point and which information
source to query that design point will lead to the maximum
utility in the fused Gaussian process of the objective
function with minimum cost of query. This utility is also
described below.

We define a two-step look-ahead policy as the utility
function which is able to consider both our current best
design given a potential query result and the ability we
would have, armed with this potential query, to find an even
better design on the next query. In our proposed method,
unlike most Bayesian optimization techniques which are
developed based on a one-step look-ahead procedure, a
two-step look-ahead optimization is achieved.

Let (x1:N, y1:N) be the design points and the correspond-
ing objective values, and i1:N be the indices of the queried
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information sources of the objective function up to time step
N . We define the utility obtained by querying the design
point x ∈ Xfeas from information source i as

Ux,i = E

[
max

x′∈χfeas

μfused(x′) + max
x′′∈χfeas

EIx,i (x′′)
∣∣

x1:N, y1:N, i1:N, xN+1 = x, iN+1 = i
]
, (15)

where EIx,i (x′′) is the one-step look-ahead expected
increase in the maximum of the fused Gaussian process
given xN+1 = x and iN+1 = i as

EIx,i (x′′) = E

[
max

x′∈χfeas

μfused(x′) | xN+2 = x′′
]

− max
x′∈χfeas

μfused(x′). (16)

The exact computation of (15) is not possible. Thus in
this paper, we provide a Monte Carlo technique for its
approximation. For a given point x at information source i,
the objective function values are normally distributed based
on the mean and variance of the corresponding Gaussian
process. Drawing Nq independent samples from this normal

distribution as f
q
i (x) ∼ N

(
μi(x), σ 2

GP,i(x)
)

, q =
1, . . . , Nq , results in the following approximation of (15)

Ux,i ≈ 1

Nq

Nq∑
q=1

(
max

x′∈χfeas

μ
fused,q
x,i (x′)

+ max
x′′∈χfeas

EI
q
x,i (x

′′)
)

, (17)

where μ
fused,q
x,i (x′) denotes the mean of the fused Gaussian

process upon temporarily augmenting (x , f
q
i (x)), one at

a time, to the available samples of information source i,
and EI

q
x,i (x

′′) is the one-step look-ahead expected increase
in the maximum of the fused Gaussian process upon
augmentation of query (x , f

q
i (x)) to information source

i. Note that for each generated sample, q = 1, . . . , Nq ,
the previously added sample is removed and the next
new sample is augmented, then the Gaussian process of
information source i and as a result, the fused Gaussian
process of the objective function are updated temporarily.
We compute the second term in (17) by the Knowledge
Gradient (KG) approach over the temporary fused Gaussian
process in a closed form solution (Frazier et al. 2008; Powell
and Ryzhov 2012; Frazier et al. 2009). Letting SN+1

x′′ =
E[f̂ fused(x′′) | x1:N, y1:N, i1:N, xN+1 = x, yN+1 = f

q
i (x),

iN+1 = i] be the knowledge state, the value of being at
state SN+1 is defined as V N(SN+1) = max

x′′∈χ
SN+1
x′′ . The

knowledge gradient which is a measure of expected increase
in the maximum of the objective function, if the design point
x′′ would be queried at the next time step, can be defined as

ν
KG,N+1
x′′ = E[V N+2

(
SN+2(x′′)

)
−V N+1(SN+1) | SN+1],

where the expectation is taken over the stochasticity in the
posterior distribution of the fused model representing the
objective function at design point x′′.

The utility is evaluated for all feasible, as feasibility
will be discussed in the following subsections, alternatives
and all information sources. By denoting Cx,i as the cost
of querying information source i of the objective function
at design point x, we find the query (iN+1, xN+1) that
maximizes the utility per unit cost, given by

(iN+1, xN+1) = argmax
i∈[1,...,S],x∈Xf eas

Ux,i

Cx,i
. (18)

Figure 2 shows a depiction of computation of our
proposed two-step look-ahead utility function for choosing
the next query for an objective function with two
information sources. The left column shows the Gaussian
processes of the two information sources and the fused
Gaussian process constructed from these information
sources. The right column shows the temporary Gaussian
processes of information source 1 and the fused model after
augmenting the query (x, q) to information source 1 (i =
1). The terms of the two-step look-ahead utility function are
shown on the temporary fused Gaussian process.

3.3 Information gain policy for constraints query

We propose to use the information gain for selection of the
next design point and information source of the constraints
to query. In order to measure the information gain, we
use the Kullback-Leibler (KL) divergence (Kullback and
Leibler 1951; Ghoreishi and Allaire 2016, 2017; Ghoreishi
2016) which is a criterion for evaluating the difference
between two probability distributions P and Q with
densities p(x) and q(x), defined as

DKL(P ‖ Q) =
∫ +∞

−∞
p(x) log

p(x)

q(x)
dx. (19)

Latin hypercube sampling is again used for generating
alternatives denoted as Xg in the design space. For a
given point x at information source i of constraint gj ,
the constraint values are normally distributed based on
the mean and variance of the corresponding Gaussian
process. By drawing Nr independent samples from this
normal distribution denoted by gr

i,j (x), r = 1, . . . , Nr ,
and temporarily augmenting each sample, one at a time,
to the available samples of the corresponding information
source, the Gaussian process of information source i and
consequently, the fused Gaussian process of constraint gj

are temporarily updated. We denote the temporary fused
Gaussian process of constraint gj after augmenting sample

(x , gr
i,j (x)) to information source i by ĝ

fused,r
x,i,j , and the

current actual fused Gaussian process before augmenting
any sample by ĝfused

j . We repeat this process for all Nr
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Fig. 2 A depiction of computing
our proposed two-step
look-ahead utility function for
choosing the next design and
information source of objective
function to query

generated samples. Then, we compute the Information Gain
(IG) for the potential query of design point x at information
source i of constraint gj which is the average Kullback-
Leibler divergence between the current and the temporary
Gaussian processes over the design space as

IG
j
x,i = 1

Nr

Nr∑
r=1

Ns∑
s=1

DKL

(
ĝ
fused,r
x,i,j (x′

s) ‖ ĝfused
j (x′

s)
)

, (20)

where the Kullback-Leibler divergence over the design
space of two Gaussian processes is approximated by Monte
Carlo technique at Ns samples x′

s ∈ χ . The information
gain is then evaluated for all the alternatives and all the
information sources of constraint gj . By denoting C

j
x,i as

the cost of querying information source i of constraint gj

at design x, we find the query (i
j

N+1, x
j

N+1) that maximizes
the information gain per unit cost, given by

(i
j

N+1, x
j

N+1) = argmax
i∈[1,...,Gj ],x∈Xg

IG
j
x,i

C
j
x,i

. (21)

3.4 Feasibility of a design point

The specifics of our constraint handling methodology are as
follows. The value of fused constraint gj at a design point x
is estimated to be distributed normally with mean μfused

j (x)

and standard deviation σ fused
j (x), according to the fused

Gaussian process representation of that constraint. In the
first iterations of the approach, since the constraints are not
learned, we aim to avoid over-restricting the search space
and to involve the infeasible samples in the search process
to explore the information they might carry. We achieve this
by considering the fused standard deviation of constraints at
each design point in addition to the fused mean value of the
constraints at that point. Therefore, the design point x must
satisfy

μfused
j (x) − 3σ fused

j (x) ≤ 0, j = 1, . . . , m. (22)

In this strategy, variances are large in the first iterations,
which helps the methodology to explore the design space,
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Fig. 3 A depiction of our
constraint handling strategy that
the feasible region shrinks and
gets closer to the true feasible
region after one query
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and as the process goes on, the fused Gaussian processes
of the constraints are updated, which results in decreases
in the value of their respective variances. This reduces the
possibility of an infeasible sample to be selected. Here,
a practitioner can control the level of acceptability in
terms of constraint violation by modifying the coefficient
of σ fused

j (x) in (22) as deemed appropriate. It should
be noted that in the final step for returning the optimal
solution, only the fused means of the constraints are
considered for determining the feasibility of the design
points, as will be discussed in the next subsection.
Figure 3 shows this strategy that the feasible region shrinks
and gets closer to the true feasible region after one
query.

3.5 Multi-information source constrained Bayesian
optimization approach

Our complete proposed multi-information source con-
strained Bayesian optimization approach is presented in
Fig. 4. In our proposed approach, the first step is construct-
ing a Gaussian process for each information source of the
objective function and all the constraints based on their
available data. These information sources are combined
together and the fused Gaussian processes of the objec-
tive function and constraints are constructed as discussed
in Section 3.1. The next design points and information
sources to query are selected based on our proposed two-
step look-ahead utility function for the objective function
and the information gain measurement for the constraints.
After querying the selected design points from the selected
information sources, the corresponding Gaussian processes
are updated. Therefore, the mean, variance, and correla-
tion coefficient values are also updated, resulting in new
fused Gaussian processes of the objective function and

constraints based on the Gaussian processes of the infor-
mation sources learned so far in the process and their
learned correlations. This process repeats until a termina-
tion criterion, such as exhaustion of the querying budget, is
met.

Finally, the feasible design point with maximum fused
mean of the objective function is selected as the optimum
solution of (1), as

x∗ = argmax
x∈χfeas

μfused(x),

χfeas := {x | μfused
j (x) ≤ 0, j = 1, . . . , m}. (23)

In order to find the best approximation to the optimum
solution, we discretize the design space. This discretization
must be sufficiently fine to ensure a good approximation of
the continuous design space solution. Then, the values of the
predicted mean of the objective function and the constraints
are computed at each point according to (8). Among all the
feasible points, the point that has the maximum function
value is selected as the optimum solution. We note here,
that alternatively, we could also optimize the fused objective
function subject to the fused constraint functions using
standard gradient-based techniques on the mean functions
of the processes.

4 Application and results

In this section, we present the key features of our multi-
information source constrained Bayesian optimization
approach on two demonstrations. The first case is an
analytical problem with one-dimensional input and output,
and the second demonstration is the minimization of the
drag coefficient of a NACA 0012 airfoil subject to a
constraint on the lift coefficient.
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Fig. 4 A depiction of our
proposed multi-information
source constrained Bayesian
optimization approach

4.1 One-dimensional problem

The first example is maximization of a one-dimensional
constrained function shown in Fig. 5 and defined as

x∗ = argmax
x∈[0 1.2]

− (1.4 − 3x) sin(18x)

s.t. x2 − 1.2 ≤ 0. (24)

The feasible optimal solution for this problem is
(x∗, f (x∗))
= (1.0954, 1.4388). We consider two information sources
of f1(x) and f2(x) for the objective function, with constant

Fig. 5 One-dimensional optimization problem of (24)

discrepancies of σ 2
f,1 = 0.04 and σ 2

f,2 = 0.2, and evaluation
costs of C1 = 25 and C2 = 20, given as

f1(x) = −(1.6 − 3x) sin(18x),

f2(x) = −(1.8 − 3x) sin(18x + 0.1). (25)

We note that in our methodology, two Gaussian processes
are constructed for these two information sources based
on their available data and σ 2

f,1 and σ 2
f,2 are added to the

uncertainty associated with the Gaussian processes to obtain
the total uncertainties.

Two information sources, denoted as g1,1(x) and g2,1(x),
are considered for the constraint. These sources have
constant discrepancies of σ 2

g1,1
= 5 × 10−6 and σ 2

g1,2
=

0.002, and evaluation costs of C1
1 = 10 and C1

2 = 5, given
as

g1,1(x) = (x − 0.001)2 − 1.2,

g2,1(x) = (x + 0.02)2 − 1.2. (26)

We note that the constant discrepancies used in this example
are not restrictions of the work. In the next application
problem, the discrepancies are permitted to vary over the
design space.

Figure 6 shows the Gaussian processes of the two
objective information sources, the fused objective function,
and the fused constraint function. We note that owing to
the constant discrepancies, we can refer specifically to the
information sources as low fidelity and high fidelity, where
high fidelity refers to the source with lower discrepancy.
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Fig. 6 The learned low-fidelity,
high-fidelity, and fused objective
functions and fused constraint
after applying our approach on
optimization problem of (24-26)

The fused models shown in the figure represent what
has been learned after applying our methodology with a
computational budget limited to 450 and 20 Latin hypercube
samples as alternatives. The red solid lines show the true
function f (x) and the true constraint g(x), and the black
solid lines show the learned mean functions of the Gaussian
processes. It is shown that after querying six samples
from the high-fidelity model and nine samples from the
low-fidelity model of objective function, the fused model
provides a reasonable estimate of the true objective function
and the feasible optimal solution.

In order to asses the performance of our approach,
we compare our methodology with a standard multi-
information source optimization method presented in ref.
Lam et al. (2015). We refer to this method as the
MF algorithm. This algorithm is the state of art in
constrained Bayesian optimization and has been used as
a benchmark for many Bayesian optimization techniques
(Wang 2017; Poloczek et al. 2017; Peherstorfer et al. 2016;
Chaudhuri et al. 2018; Kandasamy et al. 2017). In ref.
Lam et al. (2015), each information source has a separate
Gaussian process, and predictions are obtained by fusing
the information via the method presented in ref. Winkler
(1981b) without considering the correlation between the
information sources. In this algorithm, the acquisition
function selects the point to sample and the information

source to query separately. The next design to evaluate is
selected by applying the expected improvement function on
the multifidelity surrogate, and the next information source
of objective function to query is chosen based on a heuristic
that aims to balance information gain and cost of query.
It should be noted that there is no decision-making with
regards to the information sources used for constraints in
the MF algorithm. In the MF algorithm, it is assumed that
the constraint information source is identical to the objective
function information source and the query is based on that
of the objective.

Table 1 represents the expectation and variance of the
design points obtained by our proposed approach and the
MF algorithm, as well as the expectation and variance of
the objective function at these points over 100 independent
replications of the simulations for two different cost values
for information sources and budget of 1000 as the stopping
criterion. As can be seen, in the case ofC1 = 20, C2 = 20 in
which the cost of the first information source is lower, better
results are obtained in the fixed budget as more samples can
be queried from the information sources in comparison to
C1 = 25, C2 = 20. Figure 7 shows the average maximum
function values obtained by our approach and MF algorithm
for different budgets.

As can be seen, our approach improves on the work
of ref. Lam et al. (2015), as the expectations of the
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Table 1 Expectation and variance of the results obtained by our proposed approach and the MF Algorithm (Lam et al. 2015) over 100 replications
of the simulations of optimization problem in (24–26) for two different cost values for information sources and budget of 1000 as the stopping
criterion. The feasible optimal solution is (x∗, f (x∗)) = (1.0954, 1.4388)

C1 = 25, C2 = 20 C1 = 20, C2 = 20

E[x∗] var(x∗) E[f (x∗)] var(f (x∗)) E[x∗] var(x∗) E[f (x∗)] var(f (x∗))

Proposed approach 1.0819 0.0070 1.4139 0.0215 1.0886 0.0068 1.4279 0.0173

MF Algorithm (Lam et al. 2015) 1.0415 0.0389 1.2216 0.0471 1.0591 0.0308 1.3083 0.0406

obtained results are closer to the true optimal values and the
variances of the estimations are lower. This is due to the fact
that our methodology allows for the rigorous exploitation
of correlations between information sources and across
the design space. This results in reduced uncertainty by
querying one new design sample, even if it is queried from
an information source with lower fidelity. Thus, we obtain
more accurate estimates of the true objective function and
also constraint from each sample. Furthermore, allowing
for separate decision-making with regards to the constraints
adds flexibility to our approach that can also be exploited
for efficiency gains. With regards to the exploitation of
correlation, we note here that the value of the low-fidelity
information source at the true optimum is 1.2240 and the
value of the high-fidelity information source is 1.2862 at
the same location. The true objective function value at
that point is 1.4388. As can be seen from the table, the
estimated objective function value is greater than either
information source using our fusion-based approach built
with model reification. This is not the case for the MF
algorithm, which has no means for overcoming bias. Finally,
it should be mentioned that the higher performance of the
proposed method comes with higher computational cost.
Indeed, our proposed method constructs |Xfeas| × Nq × S

Fig. 7 The average maximum function value obtained by our
proposed approach and the MF Algorithm (Lam et al. 2015) over
100 independent replications of the simulations of the optimization
problem in (24–26) for different budgets as the stopping criterion

more Gaussian processes for each query in comparison to
the MF algorithm, while these computations are negligible
in comparison to the actual experiments’ costs. Notice that
the computation involved for each query due to the need for
multiple Gaussian processes by the proposed method can be
done in parallel.

4.2 NACA 0012 drag coefficient with lift coefficient
constraints

The second demonstration of our multi-information source
constrained Bayesian optimization approach is a two-
dimensional constrained aerodynamic design example. The
airfoil of interest is the NACA 0012, a common validation
airfoil (JJ Thibert et al. 1979; Rumsey 2014). In this
demonstration, we consider two information sources for the
objective and constraint. The sources are the computational
fluid dynamics programs XFOIL (Drela 1989) and SU2
(Palacios et al. 2013). Figure 8 shows an example output of
the two simulators that illustrates the difference in fidelity
levels. XFOIL is a solver for the design and analysis of
airfoils in the subsonic regime. It combines a panel method
with the Karman-Tsien compressibility correction for the
potential flow with a two-equation boundary layer model.
This causes XFOIL to overestimate lift and underestimate
drag (Barrett and Ning 2016). SU2 uses a finite volume
scheme and Reynolds-averaged Navier-Stokes (RANS)
method with the Spalart-Allmaras turbulence model, which
allows SU2 to be significantly more accurate than XFOIL
in the more turbulent flow regimes at higher values of Mach
number and angle of attack.

In this problem, we are particularly concerned with
finding the Mach number M and angle of attack α that
minimize the coefficient of dragCD of a NACA 0012 airfoil
subject to maintaining a minimum coefficient of lift CL

x∗ = argmax
x∈χ

− CD(x) (27)

s.t. 0.4 − CL(x) ≤ 0, (28)

where x∗ = (M∗, α∗). The design space is χ = IM × Iα

with IM = [0.15 0.75] and Iα = [−2.2 13.3]. To validate
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Fig. 8 Example outputs of NACA 0012 airfoil from XFOIL and SU2

our approach, wind tunnel data from NASA and AGARD
are used to construct true models using spline interpolation
to determine values between the given data points. The true
models of the objective and the constraint constructed from
the wind tunnel data, as well as a contour plot of objective
and constraint are shown in Fig. 9.

These data are also used to estimate the model
discrepancy at all points in the design space by taking the
difference between the true model and the simulator, XFOIL
or SU2. The differences at all available samples are used as
training data for a Gaussian process regression. We set the
evaluation costs of the objective information sources to be

Fig. 9 Optimization problem of (28)
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Fig. 10 Gaussian processes and
contour plots of XFOIL and
SU2 coefficient of drag obtained
by our proposed approach

Fig. 11 Gaussian processes and
contour plots of XFOIL and
SU2 coefficient of drag obtained
by MF Algorithm
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Table 2 Expectation and variance of the results obtained by our proposed approach and MF Algorithm (Lam et al. 2015) over 1000 replications
of the simulations of optimization problem in (28). True optimal values are x∗ = (0.6574, 3.0132) and CD

∗ = 0.0064

E[M∗] var(M∗) E[α∗] var(α∗) E[CD
∗] var(CD

∗)

Proposed approach 0.6169 0.0135 3.0240 0.0696 0.0071 0.0018

MF algorithm (Lam et al. 2015) 0.4258 0.0231 4.3744 2.3556 0.0088 0.0018

C1 = 100 and C2 = 70, and for information sources of
the constraint, we set the evaluation costs to be Cg11 = 50
and Cg21 = 20. The number of Latin hypercube samples as
alternatives is set to 100.

Figures 10 and 11 show the Gaussian processes and
contour plots of XFOIL and SU2 coefficient of drag
obtained by our proposed approach and the MF Algorithm
respectively. As can be seen, in our proposed approach
by querying 61 samples from SU2 and 56 samples from
XFOIL, the regions around the optimal solution of both
information sources are well explored, and the optimal
solutions of the learned surrogates of the information
sources are close to the optimal design points of the real
information sources. However, in the MF algorithm, 8
and 131 samples are queried from the SU2 and XFOIL
information sources respectively and the Gaussian process
of SU2 is not properly explored, therefore the optimal
solution is far from the true value.

Table 2 represents averaged results and their variances
obtained by our approach and the MF algorithm for a
computational budget limited to 100,000. The expected
results are averaged over 1000 replications of the simu-
lations. The true models used to validate the method and
estimate the model discrepancies are the full set of real-
world NACA 0012 wind tunnel data, which include 68
data points for objective (CD) and 64 data points for
constraint (CL) throughout the design space. The feasible
optimal design point and the corresponding coefficient of
drag for the true model are x∗ = (0.6574, 3.0132) and
CD

∗ = 0.0064 respectively. It is clear that our proposed
methodology outperforms the MF Algorithm by obtain-
ing the lower expected objective value, which is closer to
the optimal solution obtained from the true model. Fur-
thermore, our approach obtained expected design points
closer to the true feasible design points with lower vari-
ances. We emphasize here that our approach is developed
to best approximate the true optimum design and objective
and not to identify the optimal point on the highest fidelity
model. In this case, as in the previous demonstration, the
fusion of our information sources, with the incorporation
of model reification, enabled a more accurate estimate of
the true optimal point, which could not have been achieved
with either model in isolation, or with traditional fusion
techniques.

5 Conclusion

This paper has presented an approach to perform con-
strained optimization of expensive to evaluate functions
when different information sources with varying fidelities
and evaluation costs are available for the objective function
and constraints. This is achieved by estimating the correla-
tion between the information sources and fusing the infor-
mation obtained from each information source to construct
the fused Gaussian processes. Then, the cost of querying
and a two-step look-ahead utility function obtained from
the fusion process and the knowledge gradient policy, are
incorporated to identify the next design and objective infor-
mation source to query. The approach also considers the
trade off between cost and information gain as quantified
by the Kullback-Leibler divergence for identifying design
points and information sources for constraint handling. The
proposed strategy samples the design space by balanc-
ing exploration and exploitation tasks both between and
within the available information sources to efficiently move
sequentially toward the true, real-world optimum of a con-
strained objective function. We demonstrated our approach
on the constrained optimization of a one-dimensional exam-
ple test problem and an aerodynamic design problem. With
these demonstrations, it has been shown that the proposed
approach estimates well feasible optimal values of the
objective in an efficient decision-theoretic manner.
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