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Abstract
In the present work, a highly efficient moving morphable component (MMC)-based approach for multi-resolution topology
optimization is proposed. In this approach, high-resolution optimization results can be obtained with a smaller number of design
variables and a relatively low degree of freedoms (DOFs). This is achieved by taking the advantage that the topology optimi-
zation model and the finite element analysis model are totally decoupled in the MMC-based problem formulation. A coarse mesh
is used for structural response analysis and a design domain partitioning strategy is introduced to preserve the topological
complexity of the optimized structures. Numerical examples are then provided so as to demonstrate that with the use of the
proposed approach, computational efforts can be saved substantially for large-scale topology optimization problems.

Keywords Moving morphable component (MMC) . Multi-resolution topology optimization . Large-scale problems .

Computational efficiency . Topological complexity

1 Introduction

Structural topology optimization, which aims at distributing a
certain amount of available materials within a prescribed design
domain appropriately in order to achieve optimized structural
performances, has been applied in a wide range of physical
disciplines, such as acoustics, electromagnetics, and optics,
since the pioneering work of Bendsøe and Kikuchi (1988). So
far, classical topology optimization methods have already been
integrated into commercial softwares (e.g., Altair-OptiStruct
(HyperWorks 2013) and Abaqus (Simulia 2011)) for practical
use. However, since systems of (sometimes nonlinear) partial
differential equations must be solved iteratively to determine

the structural response and sensitivity of information, solving
topology optimization problems often involves large computa-
tional efforts. Therefore, for large-scale problems, topology op-
timization methods are generally not easy to implement, espe-
cially when high-resolution configurations containing members
of small length scales are sought for.

In traditional implicit topology optimization methods (e.g.,
the classical solid isotropic material with penalization (SIMP)
method and the classical level set method (LSM)), the finite
element analysis (FEA) model and the topology description
model are strongly coupled. This means that the density of the
FE mesh determines not only the accuracy of FEA, but also
the resolution of the obtained optimized solutions. As a result,
very fine FE meshes must be employed if high-resolution
optimized structures are needed! This, however, will inevita-
bly lead to large-scale and time-consuming computational
tasks especially for three-dimensional (3D) topology optimi-
zation problems. For example, if a cubic design domain is
discretized into 100 × 100 × 100 elements, one needs to solve
a FE model with 3 million degrees of freedoms (DOFs) as
along with a nonlinear optimization problem with 1 million
design variables for each iteration step. Furthermore, if one
intends to double the resolution for more tiny structural fea-
tures in the optimized design, the corresponding numbers of
the DOFs and design variables would increase to 24 million
and 8 million, respectively! Recently, with the use of a
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supercomputer with 8000 processors, Aage et al. (2017) found
the optimal reinforcement of a full aircraft wing with 1.1 bil-
lion voxels for FE discretization via SIMP method in several
days. This, however, is an almost impossible task for ordinary
computers.

To improve the practical applicability of topology optimiza-
tion method, attempts have been made to enhance the solution
efficiency of large-scale problems. One direct approach is to use
high performance computers and parallelize the solution pro-
cess. To be specific, early research works mainly focused on
how to obtain structural responses rapidly with the use of
parallelization techniques (Borrvall and Petersson 2011; Kim
et al. 2004; Vemaganti and Lawrence 2005; Evgrafov et al.
2007; Mahdavi et al. 2006; Aage et al. 2007). In addition, in
order to reduce the computational time associated with the so-
lution of large-scale nonlinear optimization problems bearing a
huge number of design variables, Aage and Lazarov (2013)
also parallelized the well-known MMA optimizer successfully.
Although these achievements greatly enhanced the solvability
of large-scale topology optimization problems, the correspond-
ing computational complexity is not reduced essentially. Apart
from resorting to high performance computing (HPC) tech-
niques, some researchers have also made attempts to enhance
the efficiency of FEA by employing some special solution
schemes or reducing the total number of DOFs in FEA models
directly. For example, Wang et al. (2007) proposed to recycle
parts of the search space in a Krylov subspace solver to reduce
the number of iterations for solving the equilibrium equations,
and a significant reduction in computational effort is observed
especially when the changes of design variables between two
consecutive optimization steps are small enough. Amir et al.
(2009a) developed a solution procedure in which exact FEA is
performed only at certain stages of iterations while approximate
reanalysis is used elsewhere. In Amir et al. (2009b), an alterna-
tive stopping criterion for a preconditioned conjugate gradient
(PCG) iterative solver was adopted so that fewer iterations are
required for obtaining a converged solution. Amir and Sigmund
(2010) also suggested an approximate approach to solve the
nested analysis equations in topology optimization problems,
and it was reported that the computational cost can be reduced
by one order of magnitude. It should be pointed out, however,
that the above techniques are in general only suitable for deal-
ing with some specific classes of problems and careful elabo-
rations are needed for more general applications.

Considering the reduction of computational intensing of
FE analysis, adaptive mesh refinement techniques (Kim
et al. 2003; Stainko 2005; Guest and Smith Genut 2010) and
model reduction method (Yoon 2010) have also been intro-
duced in the implicit SIMP-based solution framework for op-
timal topology design. More recently, Nguyen et al. (2009)
proposed a multi-resolution formulation for minimum compli-
ance design where a coarse FE mesh is adopted for structural
response analysis while a denser mesh is used for density field

discretization. A filter scheme was also employed to eliminate
numerical instabilities. Numerical examples provided in this
work showed that the treatment by Nguyen et al. (2009) can
greatly improve the computational efficiency of SIMP-based
topology optimization method by reducing the FEA cost.
Later on, the approach was further extended to incorporate
an adaptive mesh refinement scheme (Nguyen et al. 2012).
It should be noted that, in the original SIMP-based multi-res-
olution topology optimization approach (Nguyen et al. 2009),
quadrilateral finite elements are adopted for structural analy-
sis. Under this circumstance, in order to obtain meaningful
designs with well-connected material distribution, the filter
radius has to be comparable to the characteristic size of the
adopted coarse FE mesh (not the characteristic size of the
density mesh!). As a result, the optimized designs often suf-
fered from blurred boundaries and may not contain structural
details with small feature sizes, even though high-resolution
density meshes are employed. Nevertheless, recent works
(Nguyen et al. 2017; Groen et al. 2017) have shown that, such
drawback can be overcome by introducing higher-order finite
elements for structural analysis and advanced filter techniques
(Guest et al. 2004; Sigmund 2007; Xu et al. 2010 and Wang
et al. 2011). In those contributions, optimized designs with
fine structural features and crisp boundaries are obtained suc-
cessfully. However, using higher-order elements will inevita-
bly result in higher computational cost for FEA, and as point-
ed out by Groen et al. (2017), when higher-order elements are
used, the order of finite element interpolation also needs to be
compatible with the resolution ratio between the mesh for
density interpolation and the mesh for displacement interpo-
lation, in order to circumvent the issue of artificially stiff pat-
terns. Although the number of DOFs in FEA models can be
greatly reduced in SIMP-based multi-resolution topology op-
timization framework, the number of design variables is still
very large in the aforementioned approaches. This, as will be
shown later, may also result in long computational time (cor-
responding to the solution of large-scale nonlinear/non-
convex optimization problems) when large-scale multi-reso-
lution topology optimization problems are considered. In ad-
dition, due to the implicit nature of geometry description,
post-processing is always required to transfer the optimized
designs obtained by implicit topology optimization ap-
proaches to computer aided design/engineering (CAD/CAE)
systems. This issue to some extent restricts the application of
the aforementioned multi-resolution topology optimization
approach to large-scale problems because of the very compli-
cated post-processing works involved.

In order to resolve the aforementioned challenging issues for
solving large-scale multi-resolution optimization problems, the
moving morphable components (MMC)-based topology opti-
mization approach is extended to the multi-resolution frame-
work in the present paper. The MMC-based topology optimi-
zation approach was first initialized by Guo et al. (2014b),
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where a number of structural components with explicit geom-
etry descriptions are adopted as basic building blocks of opti-
mization (see in Fig. 1 for reference). Therefore, optimized
designs can be determined by optimizing the explicit geometry
parameters characterizing the sizes, shapes, and layouts of the
introduced components. Compared with traditional topology
optimization approaches, in the MMC method, topology opti-
mization actually can be achieved in an explicit and geometrical
way. It has been shown that, this new solution framework, can
not only reduce the number of design variables substantially,
but also possesses the merit of controlling the structural geom-
etry features such as minimum length scale (Zhang et al.
2016a), overhang angle (Guo et al. 2017), and the connectivity
of a structure (Deng and Chen 2016) in a straightforward and
explicit way. Actually, recent years witnessed a growing interest
on developing topology optimizationmethods based on explicit
geometry/topology descriptions (Guo et al. 2016, 2017; Zhang
et al. 2017a, 2018; Lei et al. 2018; Norato et al. 2015; Hoang
and Jang 2017; Hou et al. 2017; Takalloozadeh and Yoon 2017;
Sun et al. 2018).

As pointed in Guo et al. (2014b) and Liu et al. (2017), one
of the distinctive features of the MMC-based topology opti-
mization framework is that the corresponding FEAmodel and
the topology description model are fully decoupled. In previ-
ous implementation of theMMC-based approaches (Guo et al.
2014b, 2016; Zhang et al. 2016a), since the samemesh is used
for both the interpolation of displacement field and the

description of explicit structural geometry, this distinguished
description analysis-decoupling feature pertaining to the
MMCmethod has not been fully utilized. In the present work,
we aim for establishing a highly efficient multi-resolution
MMC-based solution framework for structural topology opti-
mization by adopting two sets of meshes with different reso-
lutions for FEA and topology description, respectively.
Actually, as will be shown in Section 5, compared with tradi-
tional methods, under the proposed MMC-based multi-reso-
lution framework, for some tested problems, the average com-
putational time of each optimization step can be reduced by
one order of magnitude. More importantly, high-resolution
designs can be obtained with a quite small number of design
variables.

The rest of the paper is organized as follows. In
Section 2, the formulation of topology optimization prob-
lems under the MMC-based solution framework is present-
ed. Then the strategy for obtaining high-resolution designs
efficiently using MMCs as basic building blocks is de-
scribed in Section 3. Afterwards, some techniques, that
are capable of improving the efficiency of numerical imple-
mentation of the proposed MMC-based approach and pre-
serving the complexity of structural topology, are intro-
duced in Section 4. In Section 5, several representative
examples are presented to illustrate the effectiveness of
the proposed approach. Finally, some concluding remarks
are provided in Section 6.

(a) The initial layout of the components. (b) Optimization process.

(c) The optimized layout of the components.

Fig. 1 a–c A schematic
illustration of the MMC-based
topology optimization method
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2 Problem formulation

In the MMC-based topology optimization approach, the ma-
terial distribution of a structure can be described by a so-called
topology description function (TDF) in the following form:

ϕs xð Þ > 0; if x∈Ωs;
ϕs xð Þ ¼ 0; if x∈∂Ωs;

ϕs xð Þ < 0; if x∈Dn Ωs⋃∂Ωsð Þ;

8<
: ð2:1Þ

where D represents a prescribed design domain and Ωs ⊂D de-
notes the region constituted by n components made of the solid
material. As shown in (Guo et al. 2014b), the TDF of the whole
structure can be constructed asϕs(x) =max(ϕ1(x),⋯,ϕn(x)) with
ϕi(x) denoting the TDF of the i-th component (see Fig. 1 for a
schematic illustration). In the present work, for the two-
dimensional (2D) case, as shown in Fig. 2,ϕi(x) is constructed as:

ϕi x; yð Þ ¼ 1−
x
0

ai

� �p

−
y
0

bi x
0ð Þ

� �p

; ð2:2Þ

with

x
0

y
0

� �
¼ cosθi sinθi

−sinθi cosθi

� �
x−x0i
y−y0i

� �
; ð2:3Þ

and p is a relatively large even integer (p= 6 in thiswork). In (2.2)
and (2.3), the symbols ai, bi(x

′), (x0i, y0i)
⊤ and θi denote the half-

length, the variable half width, the vector of center coordinates
and the inclined angle (measured from the horizontal axis anti-
clockwisely) of the i-th component (see in Fig. 2 for reference),
respectively. It should be noted that the variation of the width of
the component bi(x

′) can take different forms (Zhang et al.
2016b), and in this work it is chosen as

bi x
0

� 	
¼ t1i þ t2i

2
þ t2i −t1i

2ai
x
0
; ð2:4Þ

where t1i and t
2
i are parameters used to describe the thicknesses of

the component.

For the 3D case, we used the following TDF to characterize
the region occupied by the i-th component:

ϕi x; y; zð Þ ¼ 1−
x
0

L1i

� �p

−
y
0

hi x
0ð Þ

� �p

−
z
0

f i x
0 ; y0ð Þ

� �p

; ð2:5Þ

with

x
0

y
0

z
0

8<
:

9=
; ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5 x−x0i

y−y0iz−z0i

( )
; ð2:6Þ

and

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5

¼
cb � ct −cb � st sb

sa � sb � ct þ ca � st −sa � sb � st þ ca � ct −sa � cb
−ca � sb � ct þ sa � st ca � sb � st þ sa � ct ca � cb

2
4

3
5;

ð2:7Þ
respectively. In (2.7),

sa ¼ sinα; sb ¼ sinβ; st ¼ sinθ; ca ¼
ffiffiffiffiffiffiffiffiffi
1−s2a

p
; cb ¼

ffiffiffiffiffiffiffiffiffi
1−s2b

q
,

and ct ¼
ffiffiffiffiffiffiffiffiffi
1−s2t

p
with α, β, and θ denoting the rotation angles

of the component from a global coordinate systemOxyz to the
local coordinate system O′x′y′z′, respectively (see Fig. 3 for
reference). The vector of the coordinates of the central point
and the half-length of the component are represented by the

coordinate (x0i, y0i, z0i)
⊤ and L1i , respectively. Furthermore, the

functions hi(x
′) and fi(x

′, y′) in (2.5) are used to describe the
thickness profiles of the component in y and z directions,
respectively. In this work, hi(x

′) and fi(x
′, y′) are simply chosen

as (see Fig. 4 for reference)

hi x
0

� 	
¼ L2i ; f i x

0
; y

0
� 	

¼ L3i ð2:8Þ

Fig. 2 The geometry description
of a two-dimensional structural
component
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Other forms of hi(x
′) and fi(x

′, y′) can be found in (Zhang
et al., 2017b).

With the use of the above expressions, the region Ωs
i occu-

pied by the i-th component can be described as:

ϕi xð Þ > 0; if x∈Ωs
i ;

ϕi xð Þ ¼ 0; if x∈∂Ωs
i ;

ϕi xð Þ < 0; if x∈Dn Ωs
i⋃∂Ω

s
i

� �
:

8<
: ð2:9Þ

It is also obvious thatΩs ¼ ∪ni¼1Ω
s
i . At this position, it is also

worth noting that topology optimization can also be carried out
in the MMC-based solution framework without introducing
TDF. Actually, the TDF is only employed for the convenience
of performing FEA with fixed mesh. We refer the readers to
(Zhang et al. 2017a, 2018) for the implementation of theMMC-
based topology optimization approach without using TDFs.

Based on the above description, it is obvious that the layout
of a structure can be solely determined by a vector of design
variables, e.g.,D = ((D1)⊤,…, (Di)⊤,…(Dn)⊤)⊤. To be specific,

for the 2D case, we have Di ¼ x0i; y0i; ai; d
⊤
i ; θi

� �⊤
; which

contains the design variables associated with the i-th compo-
nent with di denoting the vector of geometry parameters relat-
ed to bi(x

′). In the 3D case, Di can also be constructed in a
similar way.

Based on the above descriptions, a typical topology opti-
mization problem under the MMC-based solution framework
can be formulated as follows:

Find D ¼ D1
� �⊤

;…; Di� �⊤
;…; Dnð Þ⊤

� 	⊤

Minimize I ¼ I Dð Þ
S:t:

gk Dð Þ≤0; k ¼ 1;…;m;
D ⊂ UD;

ð2:10Þ

where I(D) and gk, k = 1, …, m are the objective and con-
straint functions/functionals, respectively. In (2.10), UD is the
admissible set that design variable vector D belongs to.

(a) (b)

(c)

Fig. 3 a–c Coordinate
transformation associated with a
three-dimensional component

Fig. 4 The geometry description
of a three-dimensional structural
component
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In the present study, structures are designed to minimize the
structural compliance under the volume constraint of available
solid material. Under this circumstance, the corresponding
problem formulation can be specified as:

Find D ¼ D1
� �⊤

;…; Di� �⊤
;…; Dnð Þ⊤

� 	⊤
; u xð Þ∈H1 Ωsð Þ

Minimize C ¼
Z
D

H ϕs x;Dð Þð Þ f � udVþ
Z

Γt

t � udS

S:t: Z

D

Hq ϕs x;Dð Þð ÞE : ε uð Þ : ε vð ÞdV ¼
Z

D

H ϕs x;Dð Þð Þ f � vdV

þ
Z

Γt

t � vdS;∀v∈Uad;

Z

D

H ϕs x;Dð Þð ÞdV≤V ;

D ⊂ UD;

u ¼ u; on Γu;

ð2:11Þ

where D, f, t, u, ε = sym(∇u), and u represents the design
domain, the body force density, the prescribed surface traction
on Neumann boundary Γt, the displacement field, the linear
strain tensor, and the prescribed displacement on Dirichlet
boundary Γu, respectively. The symbol H =H(x) denotes the
Heaviside function withH = 1 if x > 0 andH = 0 otherwise. For
numerical implementation purpose,H(x) is often replaced by its
regularized versionHϵ(x). In the present work,Hϵ(x) is taken as

Hϵ xð Þ ¼
1; if x > ϵ;
3 1−αð Þ

4

x
ϵ
−

x3

3ϵ3

� �
þ 1þ α

2
; if−ϵ≤x≤ϵ;

α; otherwise;

8><
>:

ð2:12Þ
where ϵ and α are two small positive numbers used for con-
trolling the length of the transition zone and avoiding the sin-
gularity of the global stiffness matrix, respectively. In (2.11),
ϕs(x;D) is the TDF of the whole structure while q > 1 is a
penalization factor (in the present work, q = 2 is used). In
(2.11), E ¼ Es= 1þ νsð Þ Iþ νs= 1−2νsð Þ½ δ⊗δ� is the fourth
order elasticity tensor of the isotropic solid material with Es, νs,
I, and δ denoting Young’s modulus as well as Poisson’s ratio of
the solidmaterial, the symmetric part of the fourth order identity
tensor and the second order identity tensor, respectively. The

symbol Uad ¼ vf j v∈H1 Ωsð Þ;v¼0 on Sug represents the ad-
missible set of virtual displacement vector v and V is the upper
bound of the volume of the available solid material.

3 Solution strategies for multi-resolution
topology optimization under the MMC-based
framework

In this work, the decoupling approach proposed by Nguyen
et al. (2009) is adopted in theMMC-based solution framework

to construct a highly efficient multi-resolution topology opti-
mization approach. As described in (Nguyen et al. 2009), the
basic idea of the decoupling approach for multi-resolution
topology optimization is introducing two sets of meshes with
different resolutions to solve a topology optimization problem
(see Fig. 5 for reference). A coarse mesh is used for interpo-
lating the displacement field while a fine background mesh is
used for describing the structural geometry. This approach has
been proved to be very effective to reduce the computational
cost associated with FEA in the SIMP method. It should be
noted that, however, that when quadrilateral finite elements
are adopted for structural analysis (Nguyen et al. 2009), the
filter radius has to be comparable with the size of FE mesh to
avoid the checkboard pattern/artificially stiff pattern in opti-
mization results. As a result, the optimized structures always
do not contain structural details with small feature sizes al-
though high-resolution density meshes are employed.

However, if such analysis-element is applied under the
MMC-based solution framework, the situation would be to-
tally different. This is because in the MMC approach, the
structural geometry is described by a set of explicit geometri-
cal parameters. This means that, theoretically speaking, the
structural topology has an infinitely high resolution in the
MMC approach. In addition, the MMC method can intrinsi-
cally aggregate the material in components. This, to some
extent, can alleviate the artificially stiff patterns. Based on this
consideration, in the present work, we propose to investigate
the multi-resolution topology optimization problems using
MMC approach and coarse analysis-elements.

In the present work, following the idea adopted in tradi-
tional approaches, we also intend to use a fixed FE mesh and
an ersatz material model for FEA, although adaptive FE mesh
can also be applied to calculate structural responses since we
have the explicit boundary representation in the MMC ap-
proach. Under this circumstance, refined background mesh
are also needed to identify the small structural features. It is,
however, worth noting that, unlike the traditional implicit to-
pology optimization method, the refinement of the back-
ground mesh does not increase the number of design vari-
ables, and it only increases the computational effort associated
with numerical integrations when the element stiffness matrix
is calculated as shown below.

As the same in Nguyen et al. (2009), the stiffness matrix of
the i-th analysis-element can be calculated as (see Fig. 6 for a
schematic illustration):

K i ¼
Z
Ωi

B xð Þ⊤Di xð ÞB xð ÞdΩ≈ ∑
ng

j¼1
Ei; jB x0i; j

� 	⊤
D0B x0i; j

� 	
Ag; ð3:1Þ

where Ωi represents the region occupied by the i-th anal-
ys i s -e lement , x = (x , y ) i s the vector of spa t ia l
coordinates, B and Di are the strain-displacement matrix
and the constitutive matrix, respectively. In (3.1), ng
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represents the number of background elements in the con-
sidered analysis-element, D0 corresponds to the constitu-
tive matrix of the solid material with unit Young’s modu-
lus, and Ag is the area of a background element, respec-
tively. The symbol x0i; j denotes the coordinate vector of

the integration point (simply chosen as the central point of
the corresponding background element in the present
work) associated with the j-th background element in the
i-th analysis-element (denoted as element (i, j) in the fol-
lowing text). In addition, Ei, j is the smeared Young’s

modulus of element (i, j). Under the spirit of the ersatz
material model, Ei, j can be calculated through the corre-
sponding nodal values of the TDF as

Ei; j ϕ
sð Þ ¼

Es ∑4
e¼1 H ϕse

i; j

� 	� 	q� 	
4

; ð3:2Þ

where ϕse
i; j is the value of TDF of the whole structure at

the e-th node of element (i, j), Es is Young’s modulus of
the solid material.

Design domain 

(a)

Analysis-finite elements

for FEA

Ω

(b)

Background elements for  

geometry representation

Ω ,

(c)

Fig. 5 a–c A schematic
illustration of the basic idea of the
proposed MMC-based multi-
resolution topology optimization
approach.

(a) An analysis-element (b) Background elements (c) Integration points

Fig. 6 a–c A schematic
illustration of an analysis-
element, the corresponding
background elements, and
integration points.
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Once the element stiffness matrix of each analysis-element
is obtained, we can then assemble the global stiffness matrix
K, solve the displacement vector U, and obtain the structural

compliance as C ¼ U⊤KU¼∑NS
i¼1U

⊤
i K iU i with Ui denoting

the nodal displacement vector of the i-th analysis-element and
NS representing the total number of analysis-elements, respec-
tively. Furthermore, then the sensitivity of the structural mean
compliance with respect to a design variable d (in the context
of FEA) can be expressed as:

∂C
∂d

¼ − ∑
NS

i¼1
U⊤

i
∂K i

∂d
U i

¼ − ∑
NS

i¼1
U⊤

i
Es

4
∑
ng

j¼1
∑
4

e¼1
q H ϕse

i; j

� 	� 	q−1 ∂H ϕse
i; j

� 	
∂d

0
@

1
AB x0i; j

� 	⊤
D0B x0i; j

� 	
Ag

0
@

1
AU i

ð3:3Þ

For the volume constraint, we also have

∂V
∂d

¼ 1

4
∑
NG

j¼1
∑
4

e¼1

∂H ϕse
j

� 	
∂d

ð3:4Þ

The derivation of ∂H ϕse
j

� 	
=∂d in (3.3) and (3.4) is trivial

and will not be repeated here.

4 Numerical implementation aspects

In this section, wewill discuss some numerical techniques that
will be used to implement the proposed MMC-based multi-
resolution topology optimization approach in a computation-
ally efficient way. Actually, these techniques are not only ap-
plicable to the multi-resolution design case, but also capable
of enhancing the computational efficiency of the original
single-resolution-oriented MMC approach (Guo et al.
2014b; Zhang et al. 2016b). Moreover, a so-called design
domain partitioning strategy is developed to preserve the to-
pological complexity of the optimized designs obtained by the
proposed multi-resolution topology optimization approach.

4.1 Generating the TDF of the structure
and calculating sensitivities locally

As shown in Section 2, in the present work, the geometry of a
component is described by a p-th order hyperelliptic function. In
our previous numerical implementations (e.g., Zhang et al.
2016b), the TDF values associated with each component are cal-
culated at every node of background FE mesh with the use of
(2.2)–(2.4) (for the 2D case) or (2.5)–(2.8) (for the 3D case). If, for
example, a problem with 500 components and 1000 × 500 back-
ground elements is considered, the TDF nodal values must be
calculated (1000 + 1) × (500 + 1) × 500 times to generate the
TDF of the whole structure. This treatment will definitely

consume a large amount of computational time and computer
memory. Therefore, it is not suitable for solving large scale
problems.

Actually, the nodal TDF values of the background FE
mesh are used for the following three purposes: 1) de-
scribing the geometry of the components through (2.9),
2) calculating the Heaviside function used in the ersatz
material model using (2.12), and 3) carrying out the sen-
sitivity analysis as shown in (3.3)–(3.4). Actually, a com-
ponent only occupies a small portion of the design do-
main, so it is not necessary to calculate the nodal values
of TDF on the whole region. Furthermore, from (2.12), it
can also be observed that both the regularized Heaviside
function and its derivative with respect to the TDF only
vary in a narrow band ΩBDY = {x| x ∈D, − ϵ ≤ ϕs(x) ≤ ϵ}
around the structural boundary and keep constant in rest
of the design domain. These observations inspire us that
we can only generate and store the nodal values of the
TDF of each component around its boundary locally (see
Appendix for more details). Since the characteristic size
of an individual component is usually relatively small,
compared with that of the entire design domain, this strat-
egy can save the computational effort and computer mem-
ory used to generate the corresponding TDF significantly.

In previous numerical implementation (e.g., Zhang et al.
2016b), the formula ϕs = max(ϕ1, ϕ2,⋯, ϕn) is used to gener-
ate the TDF of whole structure. In the present work, the fol-
lowing well-known K-S function is used to approximate the
max operation (Kreisselmeier and Steinhauser 1979):

ϕs≈ln ∑
n

i¼1
exp lϕið Þ

� �
=l; ð4:1Þ

where l is a large positive number (e.g., l = 100). Actually,
(4.1) can also be carried out only around the boundary region
of each component (see more details in Appendix). Numerical
experiments indicate that this treatment can also enhance the
computational efficiency of generating the TDF of whole
structure significantly.

In addition, since the derivative of the regularized Heaviside
function with respect to the nodal values of TDF only has
nonzero value near the structural boundary, the sensitivities of
the objective and constraint functions also can be calculated
locally. It is worth noting that, although the sensitivity analysis
in the MMC approach is not as straightforward as that in the
SIMP approach, the time cost for sensitivity analysis associated
with the proposed new implementation of theMMCmethod is,
however, much less than (or at least comparable to) that of the
SIMP approach. This is due to the fact that, in the present
MMC-based approach, the number of design variables is sig-
nificantly reduced, and there is no chain rule operation resulting
from the non-local filter operator. This point will be verified by
the numerical examples provided in Section 5.
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4.2 Design domain partitioning strategy
for preserving structural complexity

In this subsection, we shall discuss how to control the topo-
logical complexity in the optimized designs. In the MMC
approach, as shown in Fig. 7a, the components can move,
morph, disappear, overlap, and intersect with each other to
generate an optimized structure. Since the sensitivities are
only nonzero in a narrow band near the structural boundary,
the sensitivities of the objective/constraint functions with re-
spect to the design variables associated with a hidden compo-
nent are zero. In other words, once a component is fully cov-
ered by other components, the design variables of this com-
ponent will remain unchanged until the components covering
it move away. This mechanism might be responsible for the
relatively simple topologies of the optimized designs obtained
by MMC approach in some cases, since many components
may be covered by other components in the final optimized
results (see Fig. 7a for reference).

Although a design with simple topology may be more fa-
vorable from manufacturing point of view (Guo et al. 2014a);
however, theoretical analysis indicated that optimal solutions
of topology optimization problems may possess very complex
structural topologies (e.g., the Michell truss (Sigmund et al.
2016; Dewhurst 2001)). As a result, it is very necessary to
equip the MMC approach with the capability of producing
optimized designs with complex structural topologies.

Actually, the aforementioned goal can be achieved by
resorting to the so-called design domain partitioning strategy.
The key point is to restrain the range of the motions of the
components. As shown in Fig. 7b, in the proposed design
domain partitioning strategy, the design domain D is divided

into several non-overlapped sub-regions Ωsub
i ; i ¼ 1;…; ns,

where a specific number of components are distributed in
these sub-regions initially. During the entire process of opti-
mization, it is required that the central point of a component
initially located in a specific sub-region is always confined in
that sub-region. This can be achieved easily by imposing some
upper/lower bounds on the coordinates of central points of
involved components in the MMC-based problem formula-
tion. This strategy actually can provide a flexible way to con-
trol the structural complexity locally and adaptively. For in-
stance, if it is intended to produce an optimized structure with
high structural complexity in a specific region Dα ⊂D, we can
divide Dα into a relatively large number of sub-regions Ωsub

jα ;

j ¼ 1;…; nsα (i.e., Dα ¼ ⋃n
s
α
j¼1Ω

sub
jα ) and put a relatively large

number of components in each Ωsub
jα . The effectiveness of this

design domain partitioning strategy will be verified numeri-
cally in the forthcoming section.

At this position, it is also interesting to note that the pro-
posed solution framework has some underlying relationship
with the classical SIMP approach. Specifically, in the pro-
posed method, the sub-regions can be selected as the finite

(b) MMC-based topology optimization with design domain partitioning.

(a) MMC-based topology optimization without design domain partitioning.

Fig. 7 a, b The basic idea of the design domain partitioning strategy
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elements used for interpolating the displacement field, and
only one component is distributed in each sub-region
(element) in a form shown in Fig. 8. Furthermore, we can only
take the heights of the components as design variables and
interpolate Young’s modulus of each element in terms of hi
as Ei = Es(hi/Hi)

pwith hi andHi denoting the heights of the i-th
component and the corresponding finite element (sub-region)
(hi ≤Hi), respectively. Under the above treatment, it can be
observed clearly that the proposed MMC-based multi-resolu-
tion topology optimization approach will degenerate to the
classical SIMP approach, by defining the value of hi/Hi as
the corresponding element density.

5 Numerical examples

In this section, three plane stress examples with unit thickness
and one 3D example are investigated to illustrate the effective-
ness of the proposedMMC-based method for multi-resolution
topology optimization. The computational time and the opti-
mized objective function values are compared with their coun-
terparts obtained by efficient implementations of the SIMP
method (i.e., 88-lines 2D code in (Andreassen et al. 2010);
169-lines 3D code in (Liu and Tovar 2014)). In the 2D exam-
ples, the MMA algorithm (Svanberg 1987) is chosen as the
optimizer for both theMMC and the SIMPmethods. In the 3D
example, the optimality criteria (Bendsøe 1995) and MMA
algorithms are used in the SIMP and the proposed MMC
method, respectively. The termination criteria is set as

ci−c5 ij jj j
c5 i

≤5� 10−4, Vi≤V and
Vi−V5

i



 



 


V5

i
≤5� 10−4, i = 5, 6,

7, …, where ci and Vi are the objective function value and

the volume of solid material in the i-th step, c5i and V5
i are

the average value of the objective function and the average
volume of solid material in the last five iterations, V is the
upper bound of the available volume of the solid material.
Without loss of generality, all involved quantities are assumed
to be dimensionless. Young’s modulus and Poisson’s ratio of
the isotropic solid material are chosen as Es = 1 and νs = 0.3,

respectively. In addition, all computations are carried out on a
Dell-T5810 workstation with an Intel(R) Xeon(R) E5-1630
3.70 GHz CPU, 128 GB RAM of memory, Windows10 OS,
and the program code is developed in MATLAB 2016b. The
values of parameters in (3.2) and (2.12) are taken as q = 2, ϵ =
2 ×min(Δx,Δy,Δz) and α = 10−3, respectively, unless other-
wise stated. Here, Δx, Δy, and Δz are the sizes of the back-
ground elements along three coordinate directions.

5.1 A cantilever beam example

In this example, the well-known short cantilever beam prob-
lem is examined. The design domain, external load, and
boundary conditions are all shown in Fig. 9. A 12 × 6 rectan-
gular design domain is discretized by 1280 × 640 uniform
quadrilateral background elements for geometry representa-
tion. A unit vertical load is imposed on the middle point of
right boundary of the design domain. The available volume of
the solid material is V ¼ 0:4VD with VD denoting the volume
of the design domain. Figure 10 shows the initial design com-
posed of 576 components.

Firstly, the effectiveness of the design domain partitioning
strategy described in the previous section is examined. To this
end, the design domain is divided into 1 × 1, 6 × 3, and 12 × 6
sub-regions, respectively. For all cases, 1280 × 640 uniform
quadrilateral plane stress elements are used for FEA. The cor-
responding optimized designs are shown in Fig. 11. It is ob-
vious that as the number of sub-regions is increased, the opti-
mized structural topology becomes more complicated, mean-
while the objective function value is slightly decreased. This
reflects that the design domain partitioning strategy is very
effective to control the topological complexity of the opti-
mized designs.

Next, the number of sub-regions is fixed as 12 × 6 and the
efficiency of the proposed multi-resolution algorithm is fur-
ther investigated. For different resolutions of analysis-element
meshes for FEA while keeping the same number of back-
ground elements, the optimized designs, iteration numbers,
and the average time costs for some key parts of the

Fig. 8 The degeneration of the
MMC-based approach to the
SIMP approach
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corresponding optimization process are shown in Table 1. In
this table, the parameters tTDF, tFEA, tsen, and tMMA represent
the average time costs in one optimization step for construct-
ing the TDFs of the components, assembling and solving the

FEA equations, sensitivity analysis, and MMA optimizer re-
spectively, and ttotal represents the average time costs of an
entire optimization step. The symbol niter represents the itera-
tion number at convergence. The quantities cobj and cpost rep-
resent the values of the object function obtained with the
analysis-element mesh and the background element mesh, re-
spectively. It is found that, as the number of the analysis-
elements is gradually reduced, the time cost of FEA decreases
rapidly, which shares the same advantage of the SIMP-based
multi-resolution topology optimization approaches (Nguyen
et al. 2009, 2017; Groen et al. 2017). To be specific, for this
example, the total number of degree of freedom is 1,642,242
when the background elements mesh (with a number of
1280 × 640 elements) is used for structural analysis, while this
number decreases to 26,082 when 160 × 80 analysis-element
mesh is used. Accordingly, as shown in Table 1, the average
time cost of FEA is decreased sharply from 15.18 s to 0.47 s
per optimization step.

In Table 1, the converged values of the objective function
as well as the relative errors of FEA results are provided. For
this example, when the resolution ratio nbe between the back-
ground element mesh and analysis-element mesh is less than
or equal to 8, the relative errors are less than 4%. It should be
noted that, for nbe ≤ 8, with the same analysis-elements, opti-
mized designs with more structural details can be obtained in
the proposed MMC-based multi-resolution approach, as com-
pared with the corresponding results in the SIMP approach
with filter treatment to eliminate artificially stiff patternFig. 10 The initial design of the cantilever beam example

Fig. 9 The cantilever beam example

(a) Compliance value 74.63. (b) Compliance value 73.60.

(c) Compliance value 73.59.

Fig. 11 a–c The optimized structures obtained with the design domain partitioning strategy
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(Nguyen et al. 2009). This verifies the intrinsic advantage of
material aggregation in the MMC-based method. However, as
seen in the last two cases in Table 1, when the resolution ratio
is very large (e.g., nbe ≥ 10), unacceptable FEA error may be
introduced, and optimized designs with small voids or even
isolated islands are obtained. This is due to the fact that, in the
adopted numerical integration scheme, even isolated islands
can contribute to the overall stiffness of the element, and this
would inevitably lead to the aforementioned artificially stiff
pattern when extremely coarse mesh is introduced for FEA.
As shown in Fig. 12, the integration scheme may identify that
the upper-left element (with six black pixels) has a larger
stiffness than the lower-right one (with five black pixels).
Only when the FE analysis mesh is refined, it can be realized
that the material distribution in the aforementioned upper-left

analysis element is disconnected. This is the intrinsic
mechanism leading to the existence of artificial stiff pattern.
Although the MMC approach inherently has the capability of
aggregating the material in the components, this artificially
stiff pattern cannot be eliminated completely when too coarse
FE analysis mesh and too many components are used to solve
the optimization problems. One possible way to resolve this
issue is to use more number of analysis elements or introduce
higher order interpolation schemes as in (Burman et al. 2018;
Nguyen et al. 2017; Groen et al. 2017). Another possible way
is to take the connectivity constraint into consideration explic-
itly, for example, by using the connected morphable compo-
nent approach proposed in Deng and Chen (2016).

Furthermore, it is also worth noting that although the cor-
responding geometry description model of the MMC method

Table 1 Optimization results of the cantilever beam example obtained by the proposed approach with different FE meshes

Performances

Optimized structure

Number of 

FE mesh

Relative

FEA error

1280×640 1.47 15.18 0.15 0.06 18.62 96 73.60 73.60 0.00%

640×320 1.19 6.54 0.12 0.05 9.69 121 73.61 73.99 0.51%

320×160 1.28 1.61 0.13 0.05 4.78 161 72.76 73.84 1.46%

256×128 1.25 1.25 0.13 0.05 4.29 154 72.16 73.70 2.09%

160×80 0.81 0.47 0.10 0.03 3.13 124 71.30 73.73 3.30%

128×64 0.89 0.36 0.11 0.03 3.02 188 71.18 79.85 10.86%

64×32 0.89 0.25 0.10 0.04 2.93 / 56.53 1010.09 94.40%
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is essentially independent of the background mesh resolution,
the “visible” feature sizes of the components will inevitably be
determined by the background integration mesh resolution as
long as pre-defined fixed integration mesh is adopted for FE
analysis. This is because the components with features sizes
smaller than the characteristic size of the integration element
may not be detected by numerical integration schemes.
Actually, this is one of the intrinsic deficiencies associated
with topology optimization approaches where fixed meshes
are adopted for FEA. Of course, the fundamental way to re-
solve this problem is to introduce adaptive mesh for FEA.
This research direction will be pursued in future works.

Finally, the optimization results obtained by the proposed
method are also compared with the optimized designs obtain-
ed by the 88-line implementation of the SIMP method
(Andreassen et al. 2010, with Emin = 10−9, penalty factor p =
3 and the radius of density filter r = 1.2, respectively, see the
first row of Table 2 for more details) to illustrate the distinctive
features of the proposed method. It can be observed that: 1)
The proposed MMC method only needs a little time cost for
updating the TDFs. 2) Most computational time in the SIMP
approach is paid for FEA and updating design variables. For

the same FE mesh, the computational time for FEA corre-
sponding to the proposed method and the SIMP method are
almost the same. If, however, the analysis-element technique
is adopted, structural responses with reasonable accuracy (a
relative error less than 5%) can be obtained with much less
computational time (about 1/30). Moreover, since the number
of design variables in the MMC method is only 3456 (as
compared to 819,200 in the SIMP approach), the computa-
tional efficiency for updating design variables by MMA opti-
mizer in the proposed approach can be improved bymore than
200 times compared to that of the SIMP approach (actually
0.05 s vs 14.70 s!). As a result, when the same FE mesh is
used, the average computational time for one optimization
step is about 28.91 s in the SIMP approach while the value
is about 18.62 s in the proposed approach, which can be fur-
ther decreased to 3.13 s in the proposed multi-resolution ap-
proach. This comparison clearly verifies the effectiveness of
our method for solving large scale topology optimization
problems. 3) Since no filter operation is applied to eliminate
numerical instabilities, the optimized designs obtained by the
proposed approach are pure black-and-white and share some
features of the classical Michell truss structures. It is also

Fig. 12 A schematic illustration
of the intrinsic mechanism
leading to the existence of
artificial stiff pattern.

Table 2 Optimization results of the cantilever beam example obtained with the SIMP approach

Performances

Optimized structure

Number of 

FE mesh

Filter 

methods

1280×640
Density 

filtering
13.67 0.19 14.70 28.91 251 80.29

1280×640

Density 

filtering 

using a 

projection

14.25 0.24 17.78 32.58 296 80.98
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worth noting that by adopting the advanced filter technique
(Wang et al. 2011) in companion with a continuation process
(filter radius is 2; threshold parameter is η = 0.5; the projection
parameter is initialized as β = 1 and doubled every 50 itera-
tions until a maximum of β = 64), as shown in the second row
of Table 2, an almost black-and-white design can be obtained
(of course, extra computational efforts must be paid) although
it does not share the features of Michell truss structures. The
advantage of the proposed approach can be further illustrated
by comparing the values of the objective functional. Actually,
by adopting the same interpolation strategy for Young’s mod-
ulus of non-solid elements in the SIMP approach, the value of
the objective functional for the optimized design obtained by
1280 × 640 FEmesh is 74.72, which is smaller than those (i.e.,
80.29 and 80.98, respectively) of the designs obtained by the
SIMP approach.

5.2 The MBB example

The setting of this example is described schematically in
Fig. 13. A vertical load f = 2 is imposed on the middle point
of the top side of the beam. For simplicity, only half of the
design domain is discretized by a 1280 × 640 uniform
background element mesh for geometry description. In this
example, the upper bound of the volume of available solid
material is set to be V ¼ 0:4VD.

The design domain is divided into 12 × 6 equal square sub-
regions to preserve structural complexity. The initial layout of
the components is the same as that in the previous cantilever

beam example (see Fig. 10 for reference). By interpolating the
displacement field with 640 × 320, 320 × 160, 258 × 128, and
160 × 80 analysis-elements, respectively, as shown in Table 3,
the computational time for FEA can be reduced by almost 25
times as compared with that in the case where the background
element mesh (i.e., 1280 × 640) is adopted for FEA. It is found
that when nbe = 8, the relative error of the value of objective
functional may reach to 10.21%. The corresponding value of
the objective functional recalculated by the background ele-
ment mesh (i.e., 97.86), however, is still very close to those
obtained under smaller resolution ratios (i.e., 96.98 for nbe =
5). From this point of view, the proposed multi-resolution
approach is still supposed to be effective for such case. The
first row of Table 4 provides the optimization result obtained
by the SIMP approach under a 1280 × 640 FE mesh with
Emin = 10−9, penalty factor p = 3, and the radius of density
filter r = 1.2, respectively. The second row of Table 4 shows
the result obtained by SIMPmethod by adopting the advanced
filter scheme (Wang et al., 2011) in companion with a similar
continuation process as example 5.1. By comparing the cor-
responding results in Table 3 and Table 4, similar conclusions
can be made as in the previous example.

5.3 A cantilever beam subject to a distributed load

In this example, a cantilever beam under a uniformly distrib-
uted load introduced in (Groen et al., 2017) is revisited. The
setting of the problem is described schematically in Fig. 14. A
vertical distributed load is imposed on the top surface of the

(a)

(b)

Fig. 13 a, b The MBB example
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design domain uniformly with density f = 1/l. The design do-
main is discretized by a 1200 × 600 uniform background ele-
ment for geometry representation and divided into 6 × 3 sub-
regions to preserve structural complexity. The initial design is
the same as that in the first cantilever beam example (see
Fig. 10 for reference). A detailed discussion about this exam-
ple can be found in (Groen et al., 2017) by adopting the SIMP-
based higher-order multi-resolution topology optimization
method.

Firstly, the maximum available solid material volume is set
as V ¼ 0:4VD (the same as that in (Groen et al., 2017)), and
1200 × 600 uniform quadrilateral plane stress elements are
used for FEA. The corresponding iteration histories are plot-
ted in Fig. 15a. It is found that the value of the objective
functional oscillates during the optimization process. This is
because although the structural topology has been already
obtained after about 150 iterations, some small voids emerge
and disappear alternately in the region around the top surface

Table 3 Optimization results of the MBB example obtained with the proposed approach under different FE meshes

Performance

Optimized structure

Number of 

FE mesh

Relative 

FEA error

1280×640 1.67 14.79 0.18 0.05 18.34 117 96.59 96.59 0.00%

640×320 1.77 6.56 0.19 0.06 10.22 144 94.78 96.70 1.99%

320×160 1.88 1.60 0.19 0.07 5.38 191 91.43 96.25 5.01%

256×128 1.56 1.06 0.16 0.05 4.52 224 90.32 96.98 6.87%

160×80 1.35 0.59 0.14 0.05 3.86 202 87.87 97.86 10.21%

Table 4 Optimization results of the MBB example obtained with the SIMP approach

Performance

Optimized structure

Number of 

FE mesh

Filter 

methods

1280×640
Density 

filtering
11.78 0.20 12.51 24.80 245 106.23

1280×640

Density 

filtering 

using a 

projection

13.90 0.24 12.54 26.99 198 105.19
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of the structure (see Fig. 15b, c, d for reference). To circum-
vent this undesired behavior, the top layer of the background
element mesh of the design domain is fixed as solid elements
in numerical implementation. The optimized structure obtain-
ed under this treatment and corresponding iteration histories
can be seen in Fig. 16. It is found that more stable convergence
history is achieved and the value of the objective functional of
the optimized structure is very close to that of the structure
shown in Fig. 8a of (Groen et al. 2017).

Next, with the numbers of the background elements
(1200 × 600) and the non-design domain (solid top layer)
fixed, the effectiveness of the proposed multi-resolution ap-
proach is tested by adopting a smaller available volume of

solid material V ¼ 0:3VD. The displacement field is
discretized by 600 × 300, 400 × 200, 300 × 150, 200 × 100,
and 120 × 60 analysis-elements, respectively, and the obtained
results are summarized in Table 5. It is found that, for this
example, if the optimized design obtained under a 1200 ×
600 is analyzed by a 300 × 150 coarse mesh, the relative error
of the value of the objective functional is 47.34%. This is not
surprising since in the context of FE modeling, a distributed
load will be modeled as a set of concentrated point loads
imposing at every FE node equivalently (in the sense of virtual
work principle). The higher the mesh resolution, the more
number of concentrated point loads. In compliance minimiza-
tion topology optimization problems, the material is prone to
be distributed in the region adjacent to the concentrated point
loads. Therefore, it can be expected that more and more “thin
bars” will appear as the FE mesh is refined especially when
pure black-and-white design is sought for. Under this circum-
stance, when a distributed load is considered, if one performs
FE analysis of an optimized structure obtained under a coarse
mesh using a refined mesh, the obtained value of structural
compliance will be relatively large since some concentrated
point loads are actually applied on weak material (see Fig. 17
for a schematic illustration)!

A straightforward way to resolve this problem arising from
mesh-dependent FE modeling is to introduce a non-
designable solid layer with a small thickness under the top

Fig. 14 A cantilever beam example under uniformly distributed load

(b) 151st step, compliance 14.37.

(c) 152nd step, compliance 17.63. (d) 153rd step,compliance 13.25.

(a) The iteration history.

Fig. 15 a–d The results of the cantilever beam example under uniformly distributed load obtained by the proposed approach (V ¼ 0:4VD and 1200 ×
600 FE mesh)
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(b) The iteration history.(a) The optimized structure with .

Fig. 16 a, bThe results of the cantilever beam example under uniformly distributed load obtained by the proposed approach (V ¼ 0:4VD, 1200 × 600
FE mesh, and one layer of fixed solid region)

Table 5 Optimization results of the example under distributed load obtained by the proposed approach and different FE meshes

Performances

Optimized structure

Number

of FE 

mesh

Relative FEA 

error

1200×600 0.86 12.71 0.08 0.04 15.15 131 17.63 17.63 0.00%

600 300 1.05 5.81 0.11 0.03 8.56 200 17.36 17.55 1.10%

400 200 1.37 2.49 0.12 0.06 5.63 187 17.14 18.27 6.20%

300 150 1.26 1.39 0.12 0.06 4.39 159 17.11 32.49 47.34%

200×100 1.33 0.67 0.13 0.07 3.85 182 16.69 26.09 36.03%

120 60 1.27 0.46 0.16 0.05 3.72 239 16.17 939.21 98.28%
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surface. This treatment can not only alleviate the problem of
mesh-dependent FE discretization of the distributed load, but
also make the FE analysis result insensitive to the mesh-
resolution according to Saint-Venant principle. As shown in
Fig. 18, when the thickness of this solid layer is six times
larger than the side length of the background elements (only
1/100 of the thickness of the design domain), the acceptable

resolution ratio nbe can reach the number of six. The corre-
sponding optimized structures for the cases where 300 × 150,
200 × 100, and 120 × 60 analysis-elements are used, respec-
tively, can also be found in Fig. 18.

Another way to resolve this issue is to use a non-uniform
mesh. The idea is to refine the FE mesh in region close to the
distributed load, as shown in Fig. 19, with the help of quadtree

(a) (b)

Fig. 17 a, b The original of the discrepancy between FEA results obtained under FE mesh with different resolutions (distributed load case)

(a) 300×150 analysis-elements ( iter = 114 and obj = 16.99, post = 18.09, relative FEA

error 6.08%).

(b) 200×10 analysis -elements ( iter = 185 and obj = 16.68, post = 17.83, relative FEA

error 6.45%).

(c) 120×60 analysis -elements ( obj = 16.31, post = 357.46, relative FEA error 95.44%).

Fig. 18 a–c The results of the
cantilever beam example under
uniformly distributed load
obtained by the proposed
approach (V ¼ 0:3VD, 1200 ×
600 background elements and six
layers of fixed solid region)
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technique. To verify the effectiveness of this treatment, we
analyzed the optimized design with respect to resolution ratio
nbe = 4 in Table 5. The backgroundmesh is used to discretize a
number of top layers, and it is transited to the coarse mesh
(nbe = 4) with the use of the quadtree mesh (see Fig. 19 for
reference, and Zhang et al. (2018) for more technical details).
The discretization of the distributed load under this non-
uniform mesh treatment is the same as in the case where pure
background mesh is used for FE analysis. The results listed in
Table 6 show that, the relative FEA errors can be decreased
sharply from 47.34 to 1.97%, when only three layers of back-
groundmeshes are used to discretize the region adjacent to the
distributed load. In addition, this treatment only introduces
additional DOFs locally, and the computational efficiency still
can be guaranteed. For example, when six layers of back-
ground meshes are introduced, the total number of DOFs is
only increased from 90,902 to 107,112, which is still one order
of magnitude smaller than that of the background mesh
(14,43,602).

5.4 A 3D box example

This example is a variation of the one presented in (Sigmund
et al. 2016). As illustrated in Fig. 20a, the design domain is a
12 × 10 × 12 box, which is subjected to a pair of torque. The
torque load is simulated by four concentrated point-forces as
described in Fig. 20 and the magnitudes of these point forces
are chosen as f = 2. The radii of the two red disks are 1.5 and
their thicknesses are 0.15, respectively. Two void parts (the
gray cylinder regions in Fig. 20a) are fixed as non-design
domains. For simplicity, only 1/8 of the design domain is
optimized. The maximum volume fraction of the available
solid material is 2%.

This problem is solved with the use of the proposed ap-
proach for three sets of background elements (i.e., 42 × 35 ×
42, 84 × 70 × 84, and 126 × 105 × 126, respectively). The
same initial design containing 720 components, as shown in
Fig. 20b, is adopted for all three tested cases. For the purpose
of comparison, this example is also solved by the SIMP meth-
od with the use of its efficient numerical implementation de-
scribed in Liu and Tovar (2014), where Emin = 10−9, penalty
factor p = 3 and the radius of density filter r = 1.5, respective-
ly. An optimality criterion (OC) method is used for updating
the design variables in the SIMP method. Note that OC meth-
od is adopted here for updating the design variables since it is
more efficient than the MMA method when large number of
design variables is involved. It should be pointed out that, for
the current hardware setting, the computer memory (128 G)
would be run out when 84 × 70 × 84 eight-node brick ele-
ments are used for FEA, which is implemented in a
MATLAB computing environment. Therefore, we only used
a 42 × 35 × 42 FE meshes in the SIMP approach and 42 ×
35 × 42 analysis-elements for the proposed approach,
respectively.

The entire structure obtained by the SIMP method is shown
in Fig. 21. The compliance of the 1/8 optimized structure is
120.49. Since the optimized solution obtained by the SIMP
contains a lot of gray elements whose densities are neither zero
nor one, we can only display the profile of the structure by using
different values of the density threshold ρth. Actually, in our
treatment, only the elements whose density values are greater
than ρth are plotted (i.e., ρ > ρth). Fig. 21a, b, c show the profiles
of the optimized structure for ρth = 0, ρth = 0.5, and ρth = 0.85,
respectively. It can be observed from these figures that the plot-
ted structural profiles are highly dependent on the value of ρth
when low-value admissible volume fraction (i.e., 2%) is

Analysis elements

Transition

elements

Background elements (two layers)

Fig. 19 Dealing with distributed load with quadtree technique

Table 6 Numerical results for different numbers of top layers discretized by background mesh

Layer number of background mesh 2 3 4 5 6 Full background mesh

Compliance 27.50 31.85 32.01 32.10 32.14 32.49

Relative error 15.36% 1.97% 1.48% 1.20% 1.08% /

An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization 2473



adopted. Besides, it is also not an easy task to transfer the
optimization result to CAD/CAE systems for subsequent treat-
ment (note that the structure may be disconnected when a large
ρth is adopted while a small ρth may lead to infeasible design).
Some post-processing techniques are necessary to extract the
structural profile from the gray image. However, it is also worth
noting that the percentage of gray elements can be greatly re-

duced by enlarging the admissible volume of solid material or
using advanced filter technique (Sigmund et al. 2016). For ex-
ample, when the maximum admissible volume is chosen as
0.1VD, for different values of ρth, the corresponding optimized
structures (obtained by the code of (Liu and Tovar 2014)) are
indeed very similar, as shown in Fig. 22. In addition, by
adopting the filter technique (Wang et al. 2011) in companion

(b) The initial design.

12

(a) The design domain.

Fig. 20 a, b The 3D box example

(b) th = 0.5.

(a) th = 0.

(c) th 0.85.=

Fig. 21 a–c The optimized
structure of the 3D box example
obtained with the SIMP method
(displayed with different values of
ρth) at niter=108
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(c) th = 0.85.(a) th = 0. (b) th = 0.5.

Fig. 22 a–c The optimized
structures of the 3D box example
by SIMP method (V ¼ 0:1VD

and 42 × 35 × 42 FE mesh) at
niter=35

(c) th = 0.85.(a) th = 0.001. (b) th = 0.5.

Fig. 23 a–c The optimized
structures of the 3D box example
by SIMP method via adopting
both density filter and threshold
projection techniques
(V ¼ 0:02VD and 42 × 35 × 42
FE mesh) at niter=128

(a) 42×35×42 background elements ( iter =136).

(b) 84×70×84 background elements ( iter =90).

(c) 126×105×126 background elements ( iter =98).

Fig. 24 a–c The optimized structures of the 3D box example obtained with 42 × 35 × 42 analysis-elements and different background elements by the
proposed method
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with a continuation process (filter radius is 2, threshold param-
eter is η = 0.5, and the projection steepness parameter β is grad-
ually increased from 0.5 to 64), as shown in Fig. 23, an almost
black-and-white solution can be obtained for V ¼ 0:02VD with
some extra computational effort.

The entire structures obtained by the proposed method under
three sets of background element meshes are shown in Fig. 24a,
b, c, respectively. It can be observed that the optimized design
obtained with a 42 × 35 × 42 background mesh is almost a
lattice-like structure, which is quite different from the ball-like
structure shown in Fig. 21a. This is due to the fact that the
minimum length scale in the optimized structures of MMC-
based approach is limited by the characteristic size of the back-
ground mesh. For components with characteristic sizes less than
the background mesh size, their contributions to structural stiff-
ness may not be detected by numerical integration procedure in
FEA. Therefore, when the available material volume fraction is
relatively small and the backgroundmesh is not fine enough, it is
extremely difficult to form a ball-like structure with very small
thickness since the material distribution in MMC-based solution
framework is purely black-and-white! Under this circumstance,
only a lattice-like structure shown in Fig. 24a is selected to trans-
mit the applied torque in a mechanically efficient way.
Interestingly, by using the same FEA strategy in SIMP method
to reanalyze the 1/8 structure of Fig. 24a, the compliance value is
126.62, which is very close to the result of SIMP approach. Of
course, this problem can be well-addressed by adopting the
adaptive mesh for FEA since we have explicit geometry descrip-
tion in the MMC-based approach. For the limitation of space,
however, this issue will not be addressed in the present work.
Furthermore, as shown in Fig. 24b, c, as the background element
mesh is refined, the corresponding optimized structure gradually
changes to a ball-like structure with more material distributing
around the areawhere the external forces are applied. In addition,
for the case where V ¼ 0:1VD, by using a 126 × 105 × 126
background element mesh for geometry description and 42 ×
35 × 42 analysis-elements for FEA, a closed sphere-like structure
can be obtained successfully (see Fig. 25). Furthermore, by tak-
ing the advantage of the explicit geometric description of the
components, the optimized results can be directly transferred to

CAD/CAE systems without any post-processing. The final opti-
mized design displayed in CAD system is shown in Fig. 26.

In order to more accurately investigate the performances of
the optimized designs with fine structural features obtained by
the proposed approach, we transferred the 1/8 structures of Fig.
24a, b, c to Abaqus directly (thanks again to the explicit nature of
geometry description in the MMC-based approach) and perform
the FEAwith a set of 126 × 105 × 126meshes. It is found that the
corresponding values of structural compliance are 297.97,
196.40 and 197.58 respectively, which reveals that better designs
do can be obtained by increasing the resolution of background
element mesh. It is also worth noting that a direct comparison of
the computational time between the proposed approach and the
SIMP approach is not made for this example, since different
optimizers are adopted for numerical optimization (i.e., OC
method for the SIMP approach and MMA method for the pro-
posed approach). However, since the numbers of design vari-
ables are only 720 × 9 = 6480 in the proposed approach and
about 62,000 in the SIMP-based approach, it can be expected
that, the computational time for updating design variables with
the MMC approach will be much less than that of the SIMP
approach if the same MMA optimizer is adopted. A representa-
tive iteration curve is plotted in Fig. 27.

(a) 1/8 optimized structure. (b) 1/2 optimized structure. (c) The full optimized structure.

Fig. 25 The optimized structures
of the 3D box example by the
proposed method (V ¼ 0:1VD,
126 × 105 × 126 background
elements and 42 × 35 × 42
analysis-elements) at niter=116

Fig. 26 The CAD model of the optimized structure obtained by the
proposed method (V ¼ 0:02VD, 126 × 105 × 126 background elements
and 42 × 35 × 42 analysis-elements)
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6 Concluding remarks

In the present work, a highly efficient MMC-based approach
for multi-resolution topology optimization is proposed. With
the use of this approach, both the numbers of the DOFs for
finite element analysis and design variables for design opti-
mization can be reduced substantially. For some tested prob-
lems, the corresponding computational time for solving
large-scale topology optimization problems can be substan-
tially reduced by about one order of magnitude. Compared
to other multi-resolution-based topology optimization
methods, the proposed MMC-based multi-resolution method
can generate optimized results with clearer boundaries and
higher-resolution structural features with the use of linear
finite elements more efficiently, and the optimized designs
can be directly transferred to CAD/CAE systems without
any post-processing. All these advantages can be attributed
to the explicit nature of geometry description in the MMC-
based solution framework. However, when low order analy-
sis elements are adopted, for very large resolution ratios,
artificially stiff pattern may still exist in the optimized re-
sults. As shown in (Groen et al. 2017), higher order ele-
ments or advanced integration method can be applied to
alleviate this issue to some extent. Another possible way to
circumvent this difficulty is to take the connectivity con-
straint into the problem formulation explicitly, for example,
by using the connected morphable component approach pro-
posed in (Deng and Chen 2016). Moreover, cautions should
also be made when the proposed method is applied to deal
with problems involving distributed loads. Either non-design
solid layer or non-uniform mesh can be adopted to eliminate
the mesh dependency phenomenon resulting from the FE
modeling of the distributed load.

As a preliminary attempt, only minimum compliance de-
sign problems are considered in the present study to demon-
strate the effectiveness of the proposed approach. It can be

expected that the proposed approach can also find applications
in other computationally intensive optimization problems
(e.g., structural optimization considering geometry/material
nonlinearity). Another interesting research direction is to inte-
grate the advantages of the present explicit MMC-based ap-
proach and the implicit SIMP-based approaches to develop
some hybrid approaches for solving topology optimization
problems where more complicated objective/constraint func-
tions/functionals are involved. This is highly possible since as
discussed at the end of Section 4, the proposed solution frame-
work is general enough to achieve this goal. Moreover, by
combing with the DOF elimination technique proposed in
(Zhang et al. 2017), it can be expected that the computational
effort can be further reduced especially for 3D problems.
Corresponding results will be reported elsewhere.
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Appendix

The process of generating TDF locally can be elaborated as
follows:

1) Generating a rectangle Ωext
i (pink region), with the use of

the parameters (oi, θi, li, ti), as shown in Fig. A1b. Here the
symbol oi = (xi0, yi0)

⊤ denotes the vector of the coordi-
nates of the central point of the i-th component, θi is the

corresponding inclined angle, while li ¼ 2ai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵð Þ6

p
and ti ¼ max 2t1i ; 2t

2
i

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵð Þ6

p
are the length and

width of Ωext
i , respectively. Note that Ωext

i ⊃Ω
0
i ¼

xjx∈D;ϕi xð Þ≥−ϵf g (yellow region in Fig. A1b);
2) From the vertexes (which can be found analytically) of

Ωext
i , generating another rectangle Ωrec

i (light blue region
in Fig. A1b);

3) Generating the TDF associated with Ωrec
i ;

4) Finding the TDF values in Ωrec
i such that −ϵ ≤ ϕi(x) ≤ ϵ,

and only storing these values by sparse matrix for subse-
quent treatment.

The above treatment guarantees that only local values of
ϕi(x) are evaluated in the corresponding manipulations, which
reduce the computational effort substantially.

Fig. 27 The iteration curves of one considered cases using the proposed
method (V ¼ 0:1VD, 126 × 105 × 126 background elements and 42 ×
35 × 42 analysis-elements)
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