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Abstract
Multiple meta-models used together in the search process at least can offer an insurance against the poorly fittedmeta-models and
can improve robustness of the predictions, compared with the single meta-model based methods. In this work, a hybrid meta-
model-based design space exploration (HMDSE) method is proposed. In the proposed method, a part of the current expensive
points which are evaluated by the expensive problems to be solved are used firstly to construct a so-called important region. And
then, three representative meta-models, kriging, radial basis functions (RBF), and quadratic function (QF), are used in the search
of the obtained important region. To avoid the local minima, the remaining region will be searched simultaneously. In addition,
the whole design space will also be searched to further demonstrate the global optimum. Through test by six benchmark math
functions with design variables ranging from 10 to 24, the proposed HMDSE method shows great accuracy, efficiency, and
robustness compared with the efficient global optimization (EGO). Then, it is applied in a practical vehicle lightweight design
problem with 30 design variables, achieving desired results.
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1 Introduction

In the past few decades, meta-model and meta-model-based
search methods have attracted many researchers’ attention.
With meta-models, a majority of the designs can be evaluated
without the expensive problems. Meta-model, also known as
surrogate model or approximation model, is commonly-used
in place of the expensive problems, usually the computer anal-
ysis and simulations. In the past, many representative meta-
model fitting techniques have been developed. Kriging
(Cressie 1988; Krige 1953; Sacks et al. 1989a, b), quadratic
function (QF) (Myers and Montgomery 2002), and radial ba-
sis functions (RBF) (Dyn et al. 1986; Fang and Horstemeyer

2006; Hardy 1971) are the commonly selected models. Of the
three meta-models, kriging is more accurate in fitting low-
order nonlinear and large-scale problems; QF is less accurate
than kriging but easy to use and recommended in fitting low-
order nonlinear problems; RBF can interpolate sample points
and ease to construct and is recommended in fitting high non-
linear problems (Fang et al. 2005; Jin et al. 2001; Wang and
Shan 2007). Besides the three meta-models mentioned above,
multivariate adaptive regression splines (MARS) (Friedman
1991) and support vector regression (SVR) (Clarke et al.
2005) are also the alternatives in fitting the given problems.
However, MARS may provide poor performance when small
or scarce sample sets are used (Jin et al. 2001). SVR outper-
forms kriging, MARS, QF, and RBF in accuracy with a large
number of test problems (Jin et al. 2001), but the fundamental
reasons that SVR performs best is not clear (Wang and Shan
2007).

Meta-model-based iterative algorithms have also been in-
tensively studied for the optimal results. Jones et al. employed
kriging in the search process and developed the efficient glob-
al optimization (EGO), which adds a single point per cycle for
the improvement of the present best sample with the expected
improvement criterion (Jones et al. 1998). Wang et al. used
RBF and QF in the different search stages and developed the
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mode-pursuing sampling (MPS) method (Sharif et al. 2008;
Wang et al. 2004). To get an accurate meta-model, dynamic
meta-model methods haven been studied. Zhao et al. used
genetic algorithm to obtain an optimal mean structure of
kriging and developed the dynamic kriging method (Zhao
et al. 2011). Volpi et al. extended standard RBF using stochas-
tic kernel functions and developed the dynamic radial basis
function (DRBF) (Volpi et al. 2015). To improve the search
accuracy and efficiency, the space reduction strategies have
also been intensively studied. Wang et al. used a given thresh-
old to reduce the design space and developed the adaptive
response surface method (ARSM) (Wang 2003; Wang et al.
2001). Shin et al. employed the interval method to reduce the
design space (Shin and Grandhi 2001). Fadel et al. employed
the move-limit strategies to reduce the design space (Fadel
and Cimtalay 1993; Fadel et al. 1990; Wujek and Renaud
1998a, b). Celis et al. employed trust region strategy to change
the design space (Byrd et al. 1987; Celis et al. 1985;
Rodriguez et al. 1998). However, once the space is deleted,
the global optimum may also be removed with the deleted
space. The used single meta-model may provide poor accura-
cy due to the opaque nature of the practical problems.

In recent years, the researchers tried to use multiple
meta-models together in the search process. An ensemble
of meta-models is a relatively easy way to implement this
idea. Acar et al. built an ensemble of meta-models with
the optimized weight factors (Acar and Rais-Rohani
2009). Lee et al. proposed an ensemble of meta-models
with varied weights according to the prediction points of
interest (Lee and Choi 2014). Gu et al. determined the
weight factors of the used meta-models using a heuristic
method (Gu et al. 2015). Jie et al. adaptively selected the
weight factors of hybrid model in the optimization pro-
cess (Jie et al. 2015). Shi et al. decided the weights for
the used radial basis functions through solving a quadrat-
ic programming subproblem (Shi et al. 2016). Ferreira
et al. used least squares approach to create ensemble of
meta-models and extended the strategy to efficient global
optimization (Ferreira and Serpa 2016, 2018). Ye et al.
used an ensemble of meta-models with optimized weight
factors in the reduced design space by the fuzzy cluster-
ing technique (Ye and Pan 2017). Yin et al. divided the
design space into multiple subdomains and constructed
an ensemble of meta-models with a set of optimized
weight factors for each subdomain (Yin et al. 2018).
Some researchers tried to use multiple meta-models to-
gether in the optimization process without given explicit
factors to the used meta-models. Gu et al. used kriging,
QF, and RBF together and developed a so-called hybrid
and adaptive meta-modeling (HAM) method (Gu et al.
2012, 2009). Cai et al. employed QF in the search of
the important region and kriging in the whole design
space (Cai et al. 2018). Viana et al. used multiple meta-

models in EGO cycle and proposed the multiple surro-
gate efficient global optimization (MSEGO) algorithm
(Viana et al. 2013). However, their performance still
needs to be improved for the complex expensive prob-
lems in engineering.

In this work, a hybrid meta-model-based design space
exploration (HMDSE) method is proposed. In this meth-
od, an important region is firstly constructed using a
varied number of the current expensive points, which
are evaluated by the expensive problems to be solved.
Different from the conventional space reduction
methods, the search process will be carried out both in
the important region and the remaining region. To fur-
ther demonstrate the global optimum, the whole design
space will also be searched simultaneously by the meta-
models. Through intensive test, the newly proposed
HMDSE method shows excellent accuracy, efficiency,
and robustness.

2 Hybrid meta-model-based design space
exploration (HMDSE) method

Multiple meta-models used together in the search process can
offer an insurance in solving a given problem and at least can
improve robustness of the evaluations (Goel et al. 2007; Viana
et al. 2010). In the proposed HMDSE method, an important
region will be constructed and kriging, RBF, and QF will be
used together both in the important region and the remaining
region. In addition, the whole design space will be searched
again for the global optimum. The procedures of the proposed
HMDSE method are shown in Fig. 1.

2.1 Procedures of the HMDSE method

2.1.1 Step 1: Sample initial points

In the proposed HMDSE method, the widely used Latin hy-
percube design (LHD) is employed to generate points. The
math form of LHD is shown in (1).

Si; j ¼ 1

n
Fi; j−Pi; j
� � ð1Þ

where n is the number of variables, Fi,j is the randomly per-
muted integers from 1 to n, and Pi, j is a random number in
[0,1]. The detailed description of LHD can be found in the
literature (Fang et al. 2006; Mckay et al. 1979). In this step, 14
initial points are generated and the number will not increase
with the number of the design variable increasing; they are
x1I ; x

2
I ;⋯; x14I . More initial points can also be defined by the

users. The initial points will be evaluated using the original
expensive problems and also called expensive points.
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2.1.2 Step 2: Identify the important region

The important region is a relative smaller region inside the
design space which may contain the global optimum and will
be gradually reduced. In the proposed HMDSE method, the
important region is constructed using a part of the expensive
points with lowest function values. The number of the

expensive points to construct the important region is defined
as follows (Cai et al. 2018):

ne ¼ int wi
*me

� �
; i ¼ 1; 2; 3::::10

10; i > 10

�
wi ¼ 1:0−0:1* i−1ð Þ� �

; i ¼ 1; 2; 3::::10
ð2Þ

Fig. 1 Procedures of the HMDSE method
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where me is the number of all the expensive points and i is the
number of iterations. According to (2), the number of the
points to construct the important region increases from 14 to
a maximum value 40 and decreases to 10, if 13 new points are
selected in each iteration (Table 1).

The gradually varied number of points to construct the
important region can make the constructed region gradually
reduced in the first several iterations and then rapidly reduced
to the global optimum (see Fig. 2).

That can be seen from Fig. 2, the important region contains
the global minimum in the whole search process. And the
search process in the remaining region and the whole design
space can demonstrate the global optimum, even if the global
optimum is outside the important region. And that also can be
seen the important region is gradually reduced in the first five
iterations and then rapidly reduced.

2.1.3 Step 3: Fit the meta-models

In this step, three representative meta-models will be fitted;
they are kriging, QF, and RBF.

Kriging Kriging is a widely used meta-model, and its math
form is shown below:

ŷ xð Þ ¼ f xð Þ þ Z xð Þ ð3Þ
where f(x) can be defined as an approximation function and a
constant term is taken in this work; Z(x) is a random process
with zero mean value and its non-zero covariance is
Cov[Z(xi), Z(xj)]. So the kriging used in this work can be
expressed below:

ŷ xð Þ ¼ β þ Z xð Þ ð4Þ

Cov Z xi
� �

; Z x j
� �� � ¼ σ2R xi; x j

� � ð5Þ

where σ2 is the variance and R is the correlation. In this work,
a Gaussian correlation function is employed (Simpson et al.
2001).

R xi; x j
� � ¼ exp ∑

k¼1

ns

θk xik−x
j
k

�� ��2� 	
ð6Þ

where θk is the correlation parameters to fit the model. The
starting value of θ is defined as 10 with the bounds ranging
from 0.1 to 20 (Lophaven et al. 2002). xik and x

j
k represent the

kth components of the points xi and xj. A detailed description
of kriging can be found in the literature (Simpson et al. 2001).

RBF The expression of RBF is shown in (7)

ŷ ¼ ϕ xð Þ ¼ ∑
n

i¼1
βi‖x−xi‖ ð7Þ

where ‖ • ‖ represents the Euclidean norm, βi is the coeffi-
cients, and xi is the input.

QF The general form of QF is shown in (8).

ŷ xð Þ ¼ βo þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i
∑
j
βijxix j ð8Þ

where the coefficients β are evaluated by least squares
method.

2.1.4 Step 4: Generate three set of large number of points

In this step, three sets of large number of N points will be
generated in the three regions; N is 10,000 or more for each

set (Wang et al. 2004). The points are P1
IR;P

2
IR; :::;P

N
IR gener-

ated in the important region, P1
RR;P

2
RR; :::;P

N
RR generated in the

remain region, and P1
WDS ;P

2
WDS ; :::;P

N
WDS generated in the

whole design space. These points will be evaluated by the
meta-models and also called cheap points.

2.1.5 Step 5: Evaluate the points

In this step, the three sets of the points will be evaluated by the
three meta-models and nine sets of function values will be
obtained.

& For the points generated in the important region, the func-

tion values are f̂ P1
IR

� �
; f̂ P2

IR

� �
; :::; f̂ PN

IR

� �
evaluated by

kriging, ĝ P1
IR

� �
; ĝ P2

IR

� �
; :::; ĝ PN

IR

� �
evaluated by RBF,

and ĥ P1
IR

� �
; ĥ P2

IR

� �
; :::; ĥ PN

IR

� �
evaluated by QF.

& For the points generated in the remaining region, the func-

tion values are f̂ P1
RR

� �
; f̂ P2

RR

� �
; :::; f̂ PN

RR

� �
evaluated by

Table 1 The values of ne

Iteration me (num. of all the
expensive points)

wi (the weight
for ne)

ne (num. of expensive
points for important
region)

1 14 1.0 14

2 27 0.9 24

3 40 0.8 32

4 53 0.7 37

5 66 0.6 40

6 79 0.5 40

7 92 0.4 37

8 105 0.3 32

9 118 0.2 24

10 131 0.1 13

11 144 N/A 10

⋮ ⋮ N/A 10
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kriging, ĝ P1
RR

� �
; ĝ P2

RR

� �
; :::; ĝ PN

RR

� �
evaluated by RBF,

and ĥ P1
RR

� �
; ĥ P2

RR

� �
; :::; ĥ PN

RR

� �
evaluated by QF.

& For the points generated in the whole design space, the

function values are f̂ P1
WDS

� �
; f̂ P2

WDS

� �
; :::; f̂ PN

WDS

� �
evaluated by kriging, ĝ P1

WDS

� �
; ĝ P2

WDS

� �
; :::; ĝ PN

WDS

� �
evaluated by RBF, and ĥ P1

WDS

� �
; ĥ P2

WDS

� �
; :::; ĥ PN

WDS

� �
evaluated by QF.

2.1.6 Step 6: Select the n points with lowest function values

In each region, three sets of n points will be obtained. n is 100
in this work and also can be defined by the user.

& In the important region: PKL−1
IR ;PKL−2

IR ; :::;PKL−n
IR according

to the values evaluated by kriging, PRL−1
IR ;PRL−2

IR ; :::;PRL−n
IR

according to the values evaluated by RBF, and PQL−1
IR ;

PQL−2
IR ; :::;PQL−n

IR according to the values evaluated by QF

& In the remaining region: PKL−1
RR ;PKL−2

RR ; :::;PKL−n
RR ,

PRL−1
RR ;PRL−2

RR ; :::;PRL−n
RR , and PQL−1

RR ;PQL−2
RR ; :::;PQL−n

RR are
obtained

& In the whole design space: PKL−1
WDS ;P

KL−2
WDS ; :::;P

KL−n
WDS , P

RL−1
WDS ;

PRL−2
WDS ; :::;P

RL−n
WDS and PQL−1

WDS ;P
QL−2
WDS ; :::;P

QL−n
WDS are obtained

2.1.7 Step 7: Group the points

& In the important region: the points,

PKL−1
IR ;PKL−2

IR ; :::;PKL−n
IR , PRL−1

IR ;PRL−2
IR ; :::;PRL−n

IR and PQL−1
IR

;PQL−2
IR ; :::;PQL−n

IR are all obtained from P1
IR;P

2
IR; :::;P

N
IR.

So the selected points may appear in all the three small
sets, in any two of the small sets or only in one of the small
sets. And seven subsets of points can be obtained. If the set

contains the points,PKL−1
IR ;PKL−2

IR ; :::;PKL−n
IR , is named A,

the set contains the points, PRL−1
IR ;PRL−2

IR ; :::;PRL−n
IR , is

named B and the set contains the points,

PQL−1
IR ;PQL−2

IR ; :::;PQL−n
IR , is named C. The seven subsets

can be obtained using (9)(Gu et al. 2012).

S1 ¼ A∩B∩C;
S2 ¼ A∩B−S1; S3 ¼ A∩C−S1; S4 ¼ B∩C−S1;
S5 ¼ A−S1−S2−S3; S6 ¼ B−S1−S2−S4; S7 ¼ C−S1−S3−S4;

ð9Þ

The points generated in the other two regions will also be
grouped using (9).

2.1.8 Step 8: Select new points

& In the important region. If an average of one new point is
selected, about seven new points will be obtained. The
number of new points selected in each subset is defined
using (10) (Gu et al. 2012):

ki ¼ int wi*Mð Þ; ; i ¼ 1; 2:::; 7

wi ¼ mi � li
3*n

; i ¼ 1; 2:::; 7

∑
7

i¼1
wi ¼ 1

ð10Þ

where M is the total number of the newly selected points and
M = 7 in the important region. n is the number of points in

Fig. 2 An illustration of the
important region
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each set obtained in step 6 and n = 100 in this work. mi is the
number of points in S1 to S7. li is the factor. The points in S1 are
contained in sets A, B, and C, the points in S2 to S4 are
contained in any two of the sets of A, B, and C, and the points
in S5 to S7 are contained in any one of the set A, B and C. So
l1 = 3, l2–4 = 2 and l5–7 = 1. And ki points with lowest function
values in S1 to S7 will then be selected.

An illustration of steps 4 to 8 in the important region is
shown in Fig. 3.

The new points in the other two regions are also selected
using (9), and about M = 3 is used to save the computation
time. More new points can also be selected by the users.

So about 13 new points will be selected in each iteration in
the proposed HMDSE method. The 13 points are the expen-
sive points and will then be evaluated by the original expen-
sive problems.

2.1.9 Step 9: Check convergence

The number of the points to construct the important region
becomes fixed since the 11th iteration and the stop criteria will
start to work at the 10th iteration. To avoid the premature of
the proposed algorithm, the program will stop when the im-
provement of the mean value of the five lowest function
values can be ignored; see (11).

jFiþ1−Fij≤ε

Fi ¼
∑
5

j¼1
f j

5

; i ¼ 10; 11; 12; ::::: ð11Þ

where fj is the jth lowest function value and ε is a small value
defined by the user. The users also can define other criteria
based on needs.

3 Efficient global optimization algorithm
for comparison

Efficient global optimization (EGO) algorithm starts with a
kriging model and iteratively adds points to update the model
based on the present best sample yPBS. Based on the definition
in the literature (Jones et al. 1998; Viana et al. 2013), the
improvement at a point x is shown in (12).

I xð Þ ¼ max yPBS−Y xð Þ; 0ð Þ ð12Þ
Where I(x) is a random variable because Y(x) is a random
Gaussian process. The expected improvement EI(x) of I(x)
can be expressed in (13) (Jones et al. 1998; Viana et al. 2013):

EI xð Þ ¼ yPBS−y xð Þð ÞΦ yPBS−ŷ xð Þ
s xð Þ

 !

þ s xð Þϕ yPBS−ŷ xð Þ
s xð Þ

 !
ð13Þ

where Φ(⋅) and ϕ(⋅) represent the distribution function and the
standard normal density function, respectively. yPBS denotes
the present best sample, ŷ xð Þ is the evaluation by kriging, and
s(x) is the standard deviation of the prediction.

4 Tests of the approach

4.1 Math function

In this section, six benchmark math functions with the vari-
ables ranging from 10 to 24 are used to test the performance of
the proposed method. For each function, 100 continuous runs
will be carried out and the mean value of the obtained

Cheap points

Candidates selected according to

the values by kriging

Candidates selected according to

the values by RBF

Candidates selected according to

the values by QF

New expensive points

Seven new points

Fig. 3 An illustration of new
points’ selection in the important
region
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minimum (min), number of iterations (nit), and number of
function evaluation (nfe) will be presented. The results by
the EGO are also given for the comparison. The EGO method
got a value of 63.4 in solving the Powell function, and the
unrepresentative results are removed in statistics. The results
are shown in Table 2.

1. Paviani function with n = 10 (PaF) (Adorio 2005)

f xð Þ ¼ ∑
n

i¼1
ln2 xi−2:0ð Þ þ ln2 10−xið Þ� �

− ∏
n

i¼1
xi


 �0:2

; xi∈ 2:1; 9:9½ �

ð14Þ

2. Dixon & Price Function (DP) with N = 10(Lee 2007)

f xð Þ ¼ x1−1ð Þ2 þ ∑
10

i¼2
i 2x2i −xi−1
� �2

; xi∈ −5; 5½ � ð15Þ

3. Trid Function (TF) with N = 10 (TF) (Hedar 2005)

f xð Þ ¼ ∑
n

i¼1
xi−1ð Þ2− ∑

n

i¼1
xixi−1; xi∈ −100; 100½ � ð16Þ

4. F16 function with N = 16 (Wang et al. 2004)

f xð Þ ¼ ∑
16

i¼1
∑
16

j¼1
aij x2i þ xi þ 1
� �

x2j þ x j þ 1
� 

; xi; x j∈ −5; 5½ �

ð17Þ

where

aij
� � ¼

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666666666666664

3
777777777777777777777777775

5. Sum Squares function (SSF) with N = 20 (Adorio 2005)

f xð Þ ¼ ∑
n

i¼1
ix2i ; xi∈ −10; 10½ � ð18Þ

6. Powell function with n = 24 (PoF) (Adorio 2005)

f xð Þ ¼ ∑
n
4

i¼1

h
x4i−3 þ 10x4i−2ð Þ2 þ 5 x4i−1−x4ið Þ2 þ x4i−2−2x4i−1ð Þ4

þ 10 x4i−3−x4ið Þ4
i
; xi∈ −4; 5½ �

ð19Þ

That can be seen from Table 2, the HMDSE method out-
performs the EGO in search accuracy in solving DP and SSF.
And the two methods presented close accuracy in solving the

Table 2 Results in solving the math functions (mean values)

Func. Analytical minimum HMDSE EGO

min nit nfe min nit nfe

PaF − 45.8 − 45.3 12.6 180 − 45.3 98.0 296

DP 0 7.0 17.6 251 15.0 100 300

TF − 210.0 − 207.6 20.9 301 − 210.0 100 300

F16 25.9 31.2 19.8 286 30.7 99.8 360

SSF 0 1.1 21.0 274 7.8 100 400

PoF 0 4.0 18.8 277 3.0 99.9 440

Table 3 Standard deviation of the results

Func. HMDSE EGO

min nit nfe min nit nfe

PaF 0.3 0.5 9 0.7 7.3 15

DP 5.5 2.7 33 8.5 0 0

TF 5.3 0.7 11 0.0 0 0

F16 3.0 2.4 34 2.1 2.1 4

SSF 1.4 0.7 8 4.7 0 0

PoF 1.3 1.2 16 0.7 0.8 2

Hybrid meta-model-based design space exploration method for expensive problems 913



other four functions. As to the search efficiency, the HMDSE
method can save about 80% of the computation time for all the
functions when the number of iterations is considered, com-
pared with EGO.

That can be seen from Table 3, EGO outperforms
HMDSE in solving TF and HMSED provides better ro-
bustness in solving DP and SSF. The small values of the
standard deviation show the high robustness of the
HMDSE method.

We can see from Table 4 that the proposed HMDSE meth-
od can provide accurate results in solving PaF, TF, SSF, and
PoF, which about 90% of the obtained minima are very close
to their analytical minimum.

4.2 Vehicle lightweight design

People usually place heavy good on the rear frame of the
vehicle. In vehicle development, the stiffness of the rear frame
should meet the requirements. According to the company
standard, the maximum displacement by 2KN goods
representing 200-kg goods should be less than 2.00 mm. So
a design optimization should be carried out to obtain a light
structure with acceptable stiffness. The weight of the initial
design is 73.7 kg, and the maximum displacement by the load
is 2.05 mm. The material of the parts is steel. The elastic
modulus is 210 Gpa and the density is 7.85e−6 kg/m3. The
finite element model is shown in Fig.4. For the sheet metal

Table 4 Distribution of the
obtained minima by HMDSE
method

Func. Analytical minimum No. of times minimum was obtained

PaF − 45.8 0(> − 44.5) 86(> − 45 & < − 44.5) 14(< − 45)
DP 0 6(> 15) 8(> 10 & < 15) 86(< 10)

TF − 210.0 4(> − 200) 9(> − 205 & < − 200) 87(< − 205)
F16 25.9 1(> 40) 7(> 35 & < 40) 92(< 35)

SSF 0 7(> 3) 2(> 2 & < 3) 91(< 2)

PoF 0 7(> 6) 75(> 3 & < 6) 18(< 3)

Fig. 4 An illustration of the finite
element model of the rear frame

Fig. 5 The mesh of local view
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parts, shell elements are used. Figure 5 shows the detailed
mesh of the local parts. The stiffness is evaluated by the
MSC.Nastran software with linear static analysis.

In design optimization, 30 bigger parts are selected for the
design optimization and their thicknesses are defined as the
design variables (the thicknesses of the symmetrical parts are

defined as one variable), and the optimization model is shown
below:

min mass kgð Þ
s:t: dis < 2:00mm
0:6mm≤ ti≤2:5mm; i ¼ 1; 2;⋯; 30

ð20Þ

Fig. 6 A few design variables

Table 5 Results of the lightweight design

Initial design t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 mass dis nit nfe

0.8 1.0 1.0 1.0 1.0 1.5 1.5 1.0 1.2 0.8 73.7 2.05
t11 t12 t13 t14 t15 t16 t17 t18 t19 t20
1.5 1.2 1.2 1.5 1.0 1.5 2.0 2.0 2.0 2.4

t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

HMDSE t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 63.1 1.96 22 296
0.92 0.80 1.11 0.99 1.14 1.14 1.21 1.17 1.70 0.70

t11 t12 t13 t14 t15 t16 t17 t18 t19 t20
0.78 1.54 1.10 1.31 1.61 1.65 0.88 1.09 1.14 1.15

t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
1.34 1.04 1.12 1.26 1.08 1.56 1.27 0.83 1.03 1.50

a) Initial design        b)  Optimal design 

Fig. 7 Deformations under the
load
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where mass is the objective representing the weight of the
structure. dis is the constraint. ti is the design variable
representing the thickness of the part. Some design variables
are presented in Fig. 6. The optimization results are shown in
Table 5, and the plots of the deformation under the load are
shown in Fig. 7.

The optimal design is obtained in the 22nd iteration with
296 function evaluations. The weight of the structure is re-
duced by 10.6 kg and the maximum displacement by the load
is 1.96 mm, which can meet the requirements.

4.3 Pressure vessel problem

This problem was firstly introduced in the Ref. (Wilde 1978).
The model is shown in Fig. 8. The design variables are radius
(R) and length (L) of the cylindrical shell, shell thickness (T),
and spherical head thickness (Th). The optimization is to re-
duce the cost, and the optimization model is shown in (19). A
detail description can be found in the literature (Wang et al.
2004).

min F ¼ 0:6224TsRLþ 1:7781ThR2 þ 3:1661T2
s Lþ 19:84T2

sR

s:t: g1 ¼ Ts−0:0193R≥0

g2 ¼ Th−0:00954R≥0

g3 ¼ πR2Lþ 4

3
πR3−1:296E6≥0

R∈ 25; 150½ �; Ts∈ 1:0; 1:375½ �; L∈ 25; 240½ �; Th∈ 0:0625; 1:0½ �
ð21Þ

For this problem, 100 continuous runs have also been car-
ried out and the results are shown in Table 6, where the ab-
breviations have the same meaning as those in Table 2.

The obtained mean value is very close to the analytical
minimum and a number of 16.1 iterations demonstrate its
efficiency.

5 Conclusion

In this work, a hybrid meta-model-based method is proposed.
In this method, the important region constructed using a part
of the expensive points, the remaining region, and the whole
design space will be searched simultaneously. Through test by
six benchmark math functions, the proposed method shows
excellent accuracy, efficiency, and robustness. The two engi-
neering problems demonstrate its performance. In addition,
the proposed HMDSE method is easy to use and few param-
eters need to be tuned for most problems. Overall, it has a
great potential to be used in engineering.
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