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Abstract
In this paper, a new systematic approach is suggested for better exploration of given uncertain buckling loads in the problem of
optimal designs of hybrid symmetric laminated composites. Laminated composites are made up of 16-layered carbon-epoxy,
glass-epoxy, and hybrid carbon-glass plies with discrete ply angles as design variables. In the analysis, the ply angles and the type
of constituents in the laminates are varied, and one source of uncertainty, namely, uncertainty in buckling load is incorporated. In
order to form nested optimization, a new improved rank-based version of Quantum-inspired Evolutionary Algorithm (QEA) is
proposed and different versions of QEA and Genetic Algorithm (GA) are utilized. Using anti-optimization approach, the worst
case biaxial compressive loading is obtained by Golden Section Search (GSS) method and the buckling load capacity is
maximized. Numerical results of the optimal configurations are obtained under several bi-axial loading cases, panel aspect ratios,
and materials. The results are investigated from different perspectives and sensitivity analyses are performed.

Keywords Hybrid laminated composite . Quantum-inspired evolutionary algorithm (QEA) . Load uncertainty .

Anti-optimization . Robust design optimization (RDO)

1 Introduction

In recent decades, laminated composites received consider-
able attention from many scientists as potentially promising
alternatives to traditional structures, owing to their remarkable
characteristics such as high stiffness, specific strength, and
light weight. The design of laminated composites deals with
different parameters, like dimension, fiber orientation, number
of plies, stacking sequence, and the type of constituents in
hybrid laminates; and optimal selection of these parameters
to achieve the desired mechanical performance.

In the past few decades, significant research has been con-
ducted to examine the design problem of composite structures.
Fukunaga et al. (1995) presented an approach for optimal
configurations of symmetrically laminated plates to maximize
buckling loads. In this paper, the Automated Design Synthesis
(ADS) method had been used as the optimizer and four
lamination parameters were considered as the design
variables. Based on the flexural lamination parameter
technique, Liu et al. (2004) investigated a continuous variable
optimization approach for maximization of the buckling loads
of unstiffened composite panels. The results obtained from a
combinatorial design of the stacking sequence via a Genetic
Algorithm had been compared in relation with the solutions of
the flexural lamination parameter method. In another study,
Liu et al. (2015) have addressed a lamination parameter-based
approach seeking the weight and mechanical performance op-
timization of blended composite panels. Comprehensive re-
views on the classification and comparison of optimization
methods for the problem of lay-up selection of the laminated
composite structures have been presented in Ghiasi et al.
(2010, 2009). Among the various classifications described in
these reviews, four of them are outlined as follows: (1) an
approach proposed by Venkataraman and Haftka (1999), in
which the procedure was categorized into two single laminate
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and stiffened plate design; (2) Abrate (1994), in which the
problems were classified according to their objective func-
tions; (3) Fang and Springer (1993), that used four categories
for the designing approach, i.e., analytical approaches, enu-
meration procedures, heuristic methods, and nonlinear pro-
gramming; and (4) Setoodeh et al. (2006) that considered
two approaches for the design of composite structures, namely
constant stiffness with the aim of obtaining optimum stacking
sequence for material distribution and variable stiffness over
the domain of the structure.

The term “hybrid” encompasses all laminated composites
with more than one type of constituent as the matrix and
reinforcement phases. Development of hybrid laminated com-
posites led to improvements in terms of principal features, for
example, improvements in performance, flexibility, weight,
and cost (Reis et al. 2007). Several studies can be found on
the optimal design of hybrid laminated composites in the lit-
erature. Huang and Haftka (2005) optimized the fiber orienta-
tions near a hole in a single layer of a multilayered composite
laminate for increased strength using gradient-based and ge-
netic algorithms. Lee et al. (2013) incorporated variable criti-
cal load cases (bending, shear and torsion) within the design
optimization problem of hybrid (fiber–metal) composite struc-
tures (HCS). Kalantari et al. (2017) investigated the design
problem of carbon-glass/epoxy hybrid composite laminates
in the presence of three different uncertainty sources, includ-
ing uncertainties in lamina thickness, fiber orientation, and
matrix voids. In their work, the conflicting objectives were
considered as material cost and density, where minimum
flexural strength was chosen as a constraint. Adali et al.
(2003) compared the optimal stacking configuration of con-
stant thickness symmetric hybrid laminates for both robust
and deterministic buckling load cases. They observed that
the stacking sequence designed for a deterministic load case
differs considerably from that of a robust laminate designed
by taking the load uncertainties into account. Recently, Akmar
et al. (2017)discussed the probabilistic optimization of hybrid
laminated composites from two different points of view.
Firstly, in the fine scale, weave pattern was considered as the
design variable of single-ply Representative Volume Element
(RVE), in the presence of four uncertain microscopic param-
eters, namely, yarn spacing, yarn width, yarn height, and mis-
alignment in yarn angle. In the second problem, Ant Colony
Optimization (ACO) was utilized in the problem of stacking
sequence design of hybrid laminated composites. Al2O3/Al
was considered as the inner laminate plies while (SiC/Al)
was used for the outer plies.

The present study is a continuation of the previous work
(Kaveh et al. 2018), in which the Biogeography-Based
Optimization (BBO) algorithm has been utilized to determine
the optimal stacking sequence of hybrid laminates under de-
terministic conditions. The objective of the present paper is
finding the optimum designs of hybrid symmetrically

laminated composites to maximize the biaxial buckling load
when they are subjected to a domain of bounded uncertain
loading. As suggested in Elishakoff et al. (1994), a two-level
design approach using anti-optimization is conducted to deal
with the uncertain loads. Thus the critical buckling load factor
λcb is maximized under the worst condition of loading.

In the past, the stacking sequence optimization problem
was solved by classical gradient-based methods. The deficien-
cies of the methods in dealing with non-convex spaces and
discrete variables led to their limited success (Soremekun et al.
2001). During the recent decades, different metaheuristic al-
gorithms have been established as the most promising and
effective tools for dealing with optimal design problems
(Çarbaş and Saka 2012; Saka and Erdal 2009; Tejani et al.
2016; Kaveh 2017a,b). These iterative algorithms are com-
monly inspired by natural phenomena including biology,
ethology, or even physical processes (Hussain et al. 2018).
Evolutionary algorithms (EAs) are the most well-known
metaheuristics that mimic the evolutionary process in nature
to improve the initial solutions over consecutive generations.
For example, the Genetic Algorithm (GA) (Goldberg and
Holland 1988) that is inspired by the “natural selection theo-
ry” of Darwin, utilizes the selection and mutation as the search
operators, or Quantum-inspired Evolutionary Algorithm
(QEA) (Han and Kim 2002) which follows concepts from
quantum computing such as Q-bits, superposition, quantum
gates, and quantum measurement. Their outstanding features
including simplicity of implementation, being gradient-free,
compatibility with discrete variables, and finding near global
optimal solutions have made them popular tools for optimiza-
tion. It should be noted that one of the challenges in the imple-
mentation of evolutionary algorithms is the difficulty in deter-
mination of algorithm-specific parameters, such as crossover
and mutation rates of GA. Finding the ideal parameters is a
time-consuming task, and the inappropriate parameter setting
may damage the performance of the algorithms. For instance,
de Almeida (2016) demonstrated that the harmony memory
size (HMS), harmony memory consideration rate (HMCR),
and pitch adjusting rate (PAR) have an apparent effect on the
reliability of the Harmony Search Algorithm (HSA) for opti-
mizing the laminated composites. From this point of view, the
parameter-less algorithms like QEA are at an advantage, which
needs only the general parameters. Moreover, QEA is a binary-
coded algorithm which makes it suitable for studying the stack-
ing sequence problem with discrete variables. So here, an im-
proved version of Quantum-Inspired Evolutionary Algorithm
(QEA) is proposed and along with two other versions, are ap-
plied for solving the optimal design problem of hybrid laminat-
ed composites, for the first time in literature. Furthermore, two
versions of a Genetic Algorithm (GA) are implemented for
comparison. The Golden-Section Search (GSS) method is
employed as the anti-optimizer for comparison of the results
with those of Adali et al. (2003).
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The rest of the paper is elucidated through the following
sections. In Section 2, a description of the optimization and
anti-optimization procedures are presented. In Section 3, the
theoretical framework of the problem is provided. Section 4
defines the objective function of the problem, the numerical
results, and investigations. Finally, Section 5 contains some
concluding remarks.

2 Optimization and anti-optimization
methods

Since the laminated composites experience varying loads,
they must be designed in such a way to withstand and meet
the design requirements. Here, the aim of the optimal robust
design is maximizing the capacity of laminated composites
when they are encountered with the worst case of aforemen-
tioned uncertain condition (Adali et al. 2003). Therefore, here
the stacking sequence is optimized by a metaheuristic algo-
rithm and the worst loading condition is found by an anti-
optimizer. In the following, the utilized algorithms are
reviewed.

2.1 Quantum-inspired evolutionary algorithm (QEA)

Quantum-inspired evolutionary algorithm (QEA) is a well-
known quantum computing-inspired optimization algorithm,
proposed by Han and Kim (2002). The basic information and
concepts about quantum computing, steps of QEA, and its
different versions are given in following.

2.1.1 The basics of quantum computing

The common classical computers require the data to be
encoded into bits, where they always represent one of two
definite states “0” or “1”. While quantum computers use Q-
bits as unit of quantum information, which can be in the “0”
state, “1”state, or in superposition of these states (Hey 1999).
Thus, the state of a Q-bit is represented as follows:

jΨi ¼ αj0i þ βj1i ð1Þ
where α and β are complex numbers, and ∣. stands for state
of the system. The values of |α|2 and |β|2 represent the prob-
ability of “0” and “1” states, respectively. It is clear that ac-
cording to the probability axioms, the following equation
holds:

α2 þ β2 ¼ 1 ð2Þ

In QEA, the information unit is Q-bit which is shown in the
following equation:

q ¼ α
β

� �
ð3Þ

In order to transfer more quantum information, the Q-bits
join together and create an individual. A string of m Q-bit
contains the information of 2m states, which shows the efficien-
cy of this representation. A two-Q-bit individual is defined as:

q ¼ α1

β1

α2

β2

� �
ð4Þ

This individual represents the state of the system as:

jΨi ¼ α1j j2: α2j j2j00i þ α1j j2: β2j j2j01i
þ β1j j2: α2j j2j10i þ β1j j2: β2j j2j11i ð5Þ

(5) means that, for instance, the probability of | 10 state is
|β1|

2. |α2|
2.

2.1.2 Steps of the QEA

QEA as an evolutionary algorithm having population of indi-
viduals. The population of n individuals at generation t is
defined as:

Q tð Þ ¼ q1
t; q2

t;…; qn
tf g ð6Þ

where qti is the ith individual in the tth generation. The steps
of QEA are provided in the subsequent sections.

InitializationAt the first step, with the assumption that the prob-
abilities of all the solutions are equal, Q(t) is initialized. Hence,

both α2 and β2 are equal to 1
�
2 resulting in

ffiffi
2

p
=2 for α and β.

Observation Since QEA is working on a classical computer,
so the quantum states do not collapse into a single state. The
binary solutions (P(t)) are made by observing the states ofQ(t)
and using a probabilistic approach. For this purpose, a uniform
random parameter within (0, 1) is generated for each Q-bit. If
the random number is less than α2, the corresponding binary
bit is 0, otherwise it is 1.

EvaluationConsidering the binary solutions which are created
for each individual, they are evaluated using the objective
function. The obtained values are associated to the corre-
sponding solutions.

Saving The solutions, which have higher quality, can help the
algorithm by searching their neighborhood and increase the
convergence rate of the algorithm (Kaveh and Dadras 2017).
In this regard, the best solutions among B(t − 1) and P(t) are
selected and stored into B(t).



Migration Two main models of migration are suggested, local
migration and global migration. In local migration, the btj,
which is the better one of two neighboring solutions is copied
in B(t), while in global migration b is copied to all solutions in
B(t).

Updating In iterative optimization algorithms, the new solu-
tions are usually generated according to the previous ones. In
QEA, the Q-gate is defined as the updating operator. The Q-
bits can be represented as the components of a point on unit
circle as illustrated in Fig. 1. A suitable tool for updating the
points on the circle to new position is rotation around the
center by a definite degree, as given in (7). Hence, the rotation
gate is utilized as the basic Q-gate:

U Δθið Þ ¼ cos Δθið Þ −sin Δθið Þ
sin Δθið Þ cos Δθið Þ

� �
ð7Þ

where Δθ is the rotation angle of eachQ-bit, which are defined
according to Table 1. (In Fig. 1 the θs are replaced by the
radian and; if q is not located in the first/third quadrant, neg-
ative values will be used for θs).

Termination Different criteria can be considered as the termi-
nation condition. Here, when the number of generations
reaches a predefined maximum number, the algorithm breaks
and reports the best solution found so far.

To clarify the structure of QEA, it is schematically demon-
strated in Fig. 2 and the pseudo code of the QEA follows.

The pseudo code of QEA

Fig. 1 Quantum rotation gate (Q-gate).
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2.1.3 QEA-Hϵ gate

This version of QEA follows the procedure mentioned above,
excluding the updating step. In QEA-Hϵ gate, an extended
version of Rotation gate is utilized which is called Hϵ. This
gate is defined as follows:

[α′, β′]T =Hε(α, β, Δθ), where for α
0 0
i β

0 0
i

h i
¼ R α;β;Δθð Þ:

if αi
00�� ��2≤ε and βi

00
��� ���2≥1−ε→ α

0
i β

0
i

h iT
¼ ffiffiffi

ϵ
p ffiffiffiffiffiffiffiffi

1−ϵ
ph iT

if αi
00�� ��2≥1−ε and βi

0 0
��� ���2≥ε→ α

0
i β

0
i

h iT
¼

ffiffiffiffiffiffiffiffi
1−ϵ

p ffiffiffi
ϵ

ph iT
otherwise α

0
i β

0
i

h iT
¼ α

0 0
i β

0 0
i

h iT
where 0 < ε ≪ 1, here ε is assumed as 0.0075; R stands for
rotation gate which was defind in (7). This gate is depicted
in Fig. 3.

2.1.4 QEA-iRotation gate

In the basic version of QEA, a constant value (0.01π) is uti-
lized as the step size. In this paper, a rank-based dynamic
mechanism is proposed. As given in Table 1, the new version
utilizes the rank of individuals to update Q-bits. The
parameter d is calculated as follows:

di ¼ dminþ dmax−dmin
nPop−1

ri−1ð Þ ð8Þ

where ri and nPop stand for the rank of ith particle and the
number of populations, respectively. dmax and dmin are respec-
tively assumed as 0.05π and 0.001π. According to this equa-
tion, around the better populations are exploited slightly, while
the updating of inferior individuals is performed by larger steps.
This improved QEA is called as “QEA-iRotation gate”.

2.2 The genetic algorithm

GA is one of the most commonly used evolutionary optimiza-
tion algorithm which is inspired by theory of Darwin from
biological evolutions and survival of the fittest. The GA devel-
oped by Holland (1992), involves a selection mechanism, such
as Roulette wheel selection or Tournament selection
(Sivanandam and Deepa 2007) and genetic operators such as
crossover and mutation (Kaveh and Ilchi Ghazaan 2015). The
main goal of the Genetic Algorithm is to produce a new popu-
lation (child or offspring), that has been improved with refer-
ence to the previous population (parents), through the use of
genetic operators and selection mechanisms. The Genetic
Algorithm can be categorized into twomajor binary (or integer)

Fig. 2 Overall configuration for
the QEA algorithm

Table 1 Δθi look-up table for maximization

Rotation gate Improved rotation gate
xi bi f(x) ≥ f(b) Δθi Δθi

0 0 False 0 0

0 0 True 0 0

0 1 False 0.01π d

0 1 True 0 0

1 0 False −0.01π −d
1 0 True 0 0

1 1 False 0 0

1 1 True 0 0

Robust design optimization of laminated plates under uncertain bounded buckling loads 881



GA and real (or continuous) GA types. In this paper, the dis-
crete stacking sequence problem is studied, therefore the binary
version is employed and in the following sections, steps of the
Binary Genetic Algorithm (Arora 2017) are outlined.

2.2.1 Initialization

In the first step, primary population (chromosomes) is ran-
domly generated. Each chromosome comprises of a set of
genes (variables) and each gene can contain one or more ge-
nomes with digits of 0 or 1. The components of population in
GA method are illustrated in Fig. 4. In this paper, four states
(ply angles) are considered for each design variable, due to
binary encoding, thus the variables contain two genomes.

2.2.2 Evaluation

The fitness values of the chromosomes are determined using
the objective function, which is defined in the next sections.

2.2.3 Selection

Different selection methods have been proposed to determine
the parents for the next generation. Here, Roulette wheel
selection and Tournament selection techniques are
employed. In Roulette wheel, the chromosomes are selected
with a probability proportional to their fitness value, while in
Tournament selection, a few groups are made randomly, and
their best chromosomes are selected. For more details, the

Fig. 3 Hϵ gate for a condition iii
and b conditions i and ii

882 A Kaveh et al.

Fig. 4 Components of population in the GA method



reader may refer to Goldberg and Deb (1991) and Sivanandam
and Deepa (2008).

2.2.4 Crossover

Each pair selected in the previous step, reproduces two chil-
dren. Here, three most well-known crossover operators, in-
cluding one point, two point, and uniform random crossover
are utilized to reproduce the children. It should be mentioned
that 80% of the GA’s population is generated by crossover.

2.2.5 Mutation

This step mimics the biological mutation and tries to maintain
genetic diversity. Up to this stage, a few numbers of individ-
uals are randomly selected and some of their genes are re-
placed by a random value. Here, 20% of the population is
mutated and only one gene of each chromosome is exposed
to mutation. These values are determined based on a trial and
error process to get the best performance.

2.2.6 Elitism

In order to survive, the best chromosomes are evaluated and
nPop number of the best elite chromosomes are considered as
the next generation.

2.2.7 Termination

The procedure mentioned in the previous steps continues in
succession until the employed stopping criterion is met. Here,
the number of objective function evaluations (NFE) are limit-
ed to a predefined number.

The flowchart of the GA is illustrated in Fig. 5.

2.3 Anti-optimization problem

Elishakoff et al. (1994) conducted one of the earliest works on
the robust design of structures under bounded uncertainty in
loads. Lombardi and Haftka (1998) applied the anti-
optimization technique to the problem of structural optimiza-
tion in the presence of uncertainty in loading conditions. Anti-
optimization is about exploring an uncertain domain for the
worst case. The GSS algorithm is a simple and real-coded
optimization algorithm. As explained in the following, it is
very fast and suitable for single-variable problems (Arora
2017), so the worst case values of the continuous uncertain
domains can be easily obtained in the searching interval with
this algorithm. It is used to find the extremum by reducing the
width of the search intervals, consecutively.

2.3.1 Golden section search (GSS)

This scheme is one of the numerical optimization techniques
in the class of variable interval-reducing methods (Arora
2017). Unlike equal-interval search method, in the variable
interval-reducing methods, the uncertain increment reduces
systematically according to the associated technique. In the
GSS method, the increment is varied in each step. The incre-
ment of the previous step (δ) is multiplied by a constant value
known as the Golden Ratio (φ) which is defined in (9).

φ ¼ 1þ
ffiffiffi
5

p� �
=2 ð9Þ

Once the new uncertainty interval is less than a certain
amount, the termination condition is satisfied. The steps of
this method for a minimization one-dimensional (single-
variable) problem are provided in the following:

Fig. 5 Flowchart of a general GA
algorithm
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Step 1: For an interval of [a, b], evaluate the objective func-
tion for

c ¼ aþ b−a
φ

ð10Þ

and

d ¼ d−
b−a
φ

ð11Þ

Step 2: If f(c) > f(d), move the interval to [c, b], otherwise,
move the interval to [a, c].

Step 3: If the stopping criteria is satisfied, stop, and report
the solution, otherwise, come back to step 1 for a
new round of minimization.

3 Theoretical framework and problem
formulation

3.1 Theoretical framework

Based on the classical laminated plate theory (CLPT), the
governing equation of buckling for a symmetric N layer lam-
inate can be expressed as (Reddy 2004):

D11
∂4w
∂x4

þ 4D16
∂4w
∂x3∂y

þ 2 D12 þ 2D66ð Þ ∂4w
∂x2∂y2

þ 4D26
∂4w
∂x∂y3

þ D22
∂4w
∂y4

þ λ Nx
∂2w
∂x2

þ Ny
∂2w
∂y2

	 


¼ 0 ð12Þ

In (12), w is the deflection in the z direction, and h is the
total thickness of the laminate. In addition, Dij stands for the
bending stiffness coefficients, and can be expressed by (13)

Dij ¼ ∫
h
2

−h
2
Qij z

2
� �

dz ¼ ∑
N

k¼1
∫zkþ1

zk Q
kð Þ
ij z2
� �

dz

¼ 1

3
∑
N

K¼1
Q

kð Þ
ij z3kþ1−z

3
k

� � ð13Þ

whereQ
kð Þ
ij represents the transformed reduced stiffness of this

layer, which is expressed by:

Q
kð Þ
ij ¼ T½ �−1 Q½ � T½ �−1

� �T
: ð14Þ

The coefficients of the reduced stiffness matrix ([Q]) can be
stated as the following equation:

Q½ � ¼
Q11 Q12 0
Q12 Q22 0
0 0 Q66

2
4

3
5;¼ E1

1−υ12υ21
;Q12

¼ υ12E2

1−υ12υ21
¼ υ21E1

1−υ12υ21
;Q22 ¼

E2

1−υ12υ21
;Q66

¼ G12: ð15Þ

In the above equation, E1, E2, and G12are longitudinal
Young’s modulus, transverse Young’s modulus, and shear
modulus, respectively and υ12 and υ21 are Poisson’s ratios.
Further, the transformation matrix [T] can be calculated by:

T½ � ¼
C2 S2 2CS
S2 C2 −2CS
−CS CS C2−S2

2
4

3
5;C ¼ Cos θð Þ; S ¼ Sin θð Þ:ð16Þ

For simply supported edges, the boundary conditions are
stated as:

w ¼ 0;Mx ¼ 0 atx ¼ 0; a ð17Þ
w ¼ 0;My ¼ 0 aty ¼ 0; b ð18Þ

Considering the governing equation expressed in (12) and
the boundary conditions in (17) and (18), the following value
of the critical buckling load multiplier λcb of biaxial compres-
sion case is obtained (Haftka and Gürdal 2012; Reddy 2004):

λb m; nð Þ ¼ π2 m4D11 þ 2 D12 þ D66ð Þ rmnð Þ2 þ rnð Þ4D22

amð Þ2Nx þ ranð Þ2Ny

" #

ð19Þ
where length and width of the plate are denoted by a and b,
respectively. r = a/b is the aspect ratio, and bending stiffness
matrix coefficients are indicated byDij. Different mode shapes
can be obtained by inserting different values of m and n asso-
ciated with the transverse displacement patterns. Here, the
smallest of λb(1, 1), λb(1, 2), λb(2, 1), and λb(2, 2) is taken
as the critical buckling load. The results given by Nemeth
(1986) indicate that when the following constraints are satis-
fied, D16 and D26 terms are insignificant

δ ¼ D16

D11
3D22

� �−1
4

≤0:2; ð20Þ

γ ¼ D26

D11D22
3

� �−1
4

≤0:2 ð21Þ
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In computations, the satisfaction of the above constraints is
ensured. Therefore the mentioned terms do not arise in (19).

4 Problem definition and numerical results

Studying the performance of laminated composite under
buckling loads, as one of the most frequent causes of failure
in laminated composites, is fairly crucial. In the presence of
unavoidable uncertainty in buckling loads, mitigating the in-
fluences of such uncertainty is the only existing choice.

In Fig. 6, the schematic illustration of the geometry of this
simply supported composite plate, subjected to an in-plane
compressive load, is demonstrated. In order to compare and
verify the validity of the results, the problem conditions are in
accordance with those of Adali et al. (2003). It is assumed that
the plate is symmetric, balanced, and comprised of 16 layers,
made of hybrid carbon-glass, carbon-epoxy, and glass-epoxy
plies. Due to the symmetry of the plates, the number of design
variables is reduced from 16 to 8. Material properties of car-
bon–glass/epoxy laminates are given in Table 2. The optimi-
zation problem can be defined as the maximization of the
critical buckling load factor λcb as the objective function,
which can be formulated as follows (Adali et al. 2003):

Maximize : λcb θð Þ

¼ π2 m4D11 þ 2 D12 þ D66ð Þ rmnð Þ2 þ rnð Þ4D22

amð Þ2Nx þ ranð Þ2Ny

" #

ð22Þ
where θ is the vector of design variables, containing the fiber
ply angle of laminates. Besides, λcb can be found using com-
binations of m and n that yield the lowest buckling load. In
binary implementation for discrete ply angles, stacks with θ =
0°, + 45°, − 45°, and 90° are converted to binary numbers 00,
01, 10, and 11, respectively. It should be noted that, the

achieved optimal sequences are in the standard order of out-
ermost lamina to innermost one (see Fig. 6b).

In many conditions, precise probabilistic data on uncertain-
ty in buckling loads of laminated composites are not available
a priori; however, these can be bounded to a defined set. These
bounded domains that are denoted byUp; (p = 1, 2,…,∞), can
be defined by:

Up ¼ Nx;Ny
� �jNx≥0;Ny≥0;Np

x þ Np
y ≤1

n o
ð23Þ

Based on the value of exponent p, distinct shapes for un-
certain domains are obtained. As illustrated in Fig. 7, p = 1 and
p = 2 stand for triangular and circular domains, respectively.
For a given p, the minimum value of buckling load factor is
determined by solving the following anti-optimization
problem:

λ θK ;N*� � ¼ min
NϵUp

λ θK ;Nð Þ ð24Þ

In the level of anti-optimization, N = (Nx,Ny) ∈Up are con-
sidered as the design variables corresponding to the lowest
buckling capacity (worst case).

The results are presented for both triangular domain U1,
and circular domain U2. As illustrated in Fig. 6, in the case
of hybrid carbon–glass/epoxy laminate, glass–epoxy layers
are considered as the inner plies of the plate, and carbon–
epoxy layers are the outer plies. Moreover, an equal number
of plies are assumed for both of them. It is assumed that the
plate has the original width of b = 1 m (a = br), and total

Fig. 6 Schematic configuration
of a multilayered sandwich panel:
aGeometry of the laminated plate
and applied loads, b sequence of
plies

Table 2 Material properties of carbon–glass/epoxy laminates

E1 E2 G12 υ12

Carbon–epoxy (T300/280) 181 10.3 7.17 0.28

Glass–epoxy (Scotch-ply 1002) 38.6 8.27 4.14 0.26
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thickness of H = 0.1 m. It should be noted that, Nx and Ny are
in kN/m.

Considering different materials and loading domains, six
cases are examined, where each set includes ten experiments
for different panel aspect ratios. The introduced optimization
algorithms are independently run 30 times for each of the
problems, and the number of objective function evaluations
(NFE) is limited to 5000 as the stopping criteria (Kaveh et al.
2018). The optimal buckling loads obtained for the examples
along with the results of Adali et al. (2003) are presented in
Tables 3, 4 and 5. For the sake of brevity, the optimal orien-
tations are provided in Tables 6–11 of the online Appendix.
The results are investigated from different aspects in the fol-
lowing sections.

4.1 A comparison of the effect of different materials

For comparison, the bar chart of the values of optimal buck-
ling factors is illustrated in Figs. 8 and 9. As it can be seen, in
both types of the loading domains (U1 and U2), the carbon-
epoxy plate has maximum robust buckling load capacity

among the examined materials and glass-epoxy plate has the
minimum buckling load. The ratios of buckling capacity of
plates constructed with different materials are shown in Fig.
10. As it can be seen in Fig. 10, the capacity ratio of carbon/
glass to carbon-epoxy is almost constant and equal to 90%,
while this ratio for carbon/glass to glass-epoxy varies from
361 to 431%. The effect of aspect ratios is investigated in
the next section.

4.2 An investigation on the effect of aspect ratio

As provided in Tables 3, 4 and 5 and illustrated in Figs. 8 and
9, by increasing the aspect ratio, the buckling capacity of
plates decrease. Moreover, it is observed that the more the
aspect ratios increase, the capacity reduction rates decrease.
For instance, by increasing the aspect ratio from 0.2 to 0.4, the
carbon-epoxy plate has a capacity reduction of 74%, while by
changing the aspect ratio from 1.8 to 0.4, this ratio is fallen by
only 1%. According to Fig. 10, the capacity ratio of carbon/
glass to glass/epoxy, rises in side aspect ratios and it is sensi-
tive to the type of loading domain.

Fig. 7 Domains of uncertainty: a
triangular, b circular

Table 3 Buckling loads obtained
for the glass-epoxy plate exposed
to uncertain loads

U1 U2

r Examined algorithms and Adali et al. (2003) Examined algorithms and Adali et al. (2003)

0.2 822.8 822.2

0.4 219.6 216.9

0.6 109.2 102.7

0.8 81.1 68.3

1 78.2 55.3

1.2 55.6 45.7

1.4 43.3 38.6

1.6 40.0 37.2

1.8 38.2 36.5

2 37.0 35.9
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Table 4 Buckling loads obtained
for the carbon-epoxy plate
exposed to uncertain loads

U1 U2

r Examined algorithms Adali et al. (2003) Examined algorithms Adali et al. (2003)

0.2 3767.0 3446.7 3764.0 3393.0

0.4 964.3 895.8 931.6 878.1

0.6 446.8 431.9 428.7 406.4

0.8 325.5 325.5 274.2 274.2

1 316.1 316.1 223.5 223.5

1.2 223.9 223.9 183.9 183.9

1.4 172.5 172.5 153.6 153.6

1.6 161.9 157.9 147.7 146.9

1.8 159.1 151.6 146.2 144.8

2 157.2 149.0 144.6 142.9

Table 5 Buckling loads obtained
for the carbon-glass/epoxy plate
exposed to uncertain loads

U1 U2

r Examined algorithms Adali et al. (2003) Examined algorithms Adali et al. (2003)

0.2 3399.0 3115.8 3399.0 3092.1

0.4 871.2 818.3 844.7 796.0

0.6 404.6 385.8 383.4 367.7

0.8 295.0 295.0 248.6 248.6

1 286.4 286.4 202.5 202.5

1.2 202.8 202.8 166.6 166.6

1.4 156.3 156.3 139.3 139.3

1.6 146.7 140.4 134.1 133.2

1.8 144.0 137.0 132.6 130.9

2 142.1 135.3 131.8 129.0

Fig. 8 Optimal values of the
buckling factors for the case of U1

loading domain
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4.3 An investigation on the effect of loading domain

Ratios of the buckling capacity subjected to circular domain
(U2) to those of subjected to triangular domain (U1), are plot-
ted in Fig. 11. This figure shows a V-shape behavior. In case
that a

b ¼ 0:2, the capacities of all materials for both loading
domains are almost equal, while in other cases, the capacities
corresponding to U1 are higher than those of U2.

When a
b ¼ 0:8; 1; 1:2; and 1:4, the ratios for different

materials are almost equal. The minimum ratio is 70.7%
which corresponds to a

b ¼ 1 (square plate), and by moving

away from this particular aspect ratio, the capacity ratios are
increased.

4.4 A comparison among performance of the different
optimization algorithms

Examining the primary statistical results showed that there is
no meaningful difference between the utilized algorithms, and
all the meta-heuristics strongly have found the global optima
(see Tables 3, 4 and 5; 6–11). In order to find the algorithms
which converged to the solution faster than the rest, their

Fig. 9 Optimal values of
buckling factors for the case of U2

loading domain

Fig. 10 The ratios of buckling
capacity of the plates for both
loading domains
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status were studied, when they have passed half of the path
(2500 NFE). The average percent of independent runs which
converged to the global optima are given in Table 6, and the
best results are written in bold font. As indicated in Table 6,
the optimum result can be found by all of the algorithms in
this NFE, when a

b ¼ 0:8; 1; 1:2; and 1:4. This event may im-
ply that the global optima in the mentioned aspect ratios are

more accessible than others. This point can be confirmed by
the results of Adali et al. (2003), in which, the Golden
Section Search method has obtained the same buckling capac-
ity of the present paper, while in other ratios it is trapped to
local optima. It can be also seen from Table 6, that the pro-
posed improved QEA algorithm obtained the best perfor-
mance for lower aspect ratios (ab ¼ 0:2; 0:4; and 0:6 ), while

Fig. 11 The ratios of the results of
U2 loading domain to U1

Table 6 The average percent of convergence to global optima in half of the optimization procedure for different cases

Material Loading domain Aspect ratios GA-Roulette wheel GA-
Tournament

QEA-Rotation gate QEA-Hϵ gate QEA-iRotation gate

Glass-epoxy U1 0.2, 0.4, 0.6 100 88.89 97.78 97.78 100

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 98.89 90 96.67 97.78 97.78

U2 0.2, 0.4, 0.6 100 88.89 97.78 97.78 100

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 98.89 90 96.67 97.78 100

Carbon-epoxy U1 0.2, 0.4, 0.6 88.89 64.44 85.56 83.33 90

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 94.44 60 97.78 95.56 82.22

U2 0.2, 0.4, 0.6 70 60 83.33 84.44 86.67

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 94.44 55.56 94.44 96.67 96.67

Carbon/glass U1 0.2, 0.4, 0.6 68.89 64.44 68.89 71.11 94.44

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 95.56 83.33 85.56 81.11 71.11

U2 0.2, 0.4, 0.6 97.78 82.22 100 98.89 100

0.8, 1, 1.2, 1.4 100 100 100 100 100

1.6, 1.8, 2 92.22 64.44 97.78 95.56 93.33
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in higher aspect ratios (ab ¼ 1:6; 1:8; and 2 ) the situation is
different. According to Table 6, the improved QEA obtained
the best result in 13 cases, which are equal to or higher than
those of other compared algorithms. The GA-Roulette wheel
also has suitable performance, but it must be noted that a
further parameter setting task was performed to tune its inter-
nal parameters while QEA do not have any internal parameter
and it can be implemented as a black-box optimizer, so this is
another strength feature of this method.

5 Conclusions

The optimal robust arrangements for the stacking sequence of
multilayered composites, under different loading conditions,
were derived. For the first time, various versions of the QEA
were employed for optimization of composite laminates.
Moreover, a rank-based dynamical version of QEA was pro-
posed. In order to verify and demonstrate the performance of
the proposed algorithm, Roulette wheel, and Tournament se-
lection, as two highly practical mechanisms were implement-
ed in the well-known Genetic algorithm. The studied panels
were made of 16-layered carbon-glass, glass-epoxy, and hy-
brid laminates with carbon-glass and glass-epoxy plies. Two
distinct domains of loading conditions were considered as the
sources of uncertainty. An anti-optimization process was em-
bedded to find the worst case loading for robust design. The
numerical results were examined from different perspectives,
including the effect of the utilized materials, plate aspect ra-
tios, and performance of the algorithms. As it can be seen from
Figs. 8 and 9, carbon-epoxy plates, especially at lower aspect
ratios, have the highest buckling capacity. It was observed in
Fig. 11, that circular loading domain resulted in lower buck-
ling loads, especially when the plate is square. According to
Table 6, the optimal solutions of near square plates were more
accessible than those of other aspect ratios. As provided in
Tables 4 and 5, the utilized metaheuristics obtained higher or
equal results in comparison with those of Adali et al. (2003).
As discussed in Section 4.4, the proposed QEA generally
converged faster than other algorithms. In contrary with the
GA, the QEA do not have any internal parameter and it can be
implemented as a black-box optimizer. Further investigations
and sensitivity analyses were provided in Section 4.
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