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Abstract
The field of topology optimization has progressed substantially in recent years, with applications varying in terms of the type
of structures, boundary conditions, loadings, and materials. Nevertheless, topology optimization of stochastically excited
structures has received relatively little attention. Most current approaches replace the dynamic loads with either equivalent
static or harmonic loads. In this study, a direct approach to problem is pursued, where the excitation is modeled as a
stationary zero-mean filtered white noise. The excitation model is combined with the structural model to form an augmented
representation, and the stationary covariances of the structural responses of interest are obtained by solving a Lyapunov
equation. An objective function of the optimization scheme is then defined in terms of these stationary covariances. A fast
large-scale solver of the Lyapunov equation is implemented for sparse matrices, and an efficient adjoint method is proposed
to obtain the sensitivities of the objective function. The proposed topology optimization framework is illustrated for four
examples: (i) minimization of the displacement of a mass at the free end of a cantilever beam subjected to a stochastic
dynamic base excitation, (ii) minimization of tip displacement of a cantilever beam subjected to a stochastic dynamic tip
load, (iii) minimization of tip displacement and acceleration of a cantilever beam subjected to a stochastic dynamic tip load,
and (iv) minimization of a plate subjected to multiple stochastic dynamic loads. The results presented herein demonstrate the
efficacy of the proposed approach for efficient multi-objective topology optimization of stochastically excited structures, as
well as multiple input-multiple output systems.

Keywords Topology optimization · Stochastic dynamics · Lyapunov equation · Finite element ·
Multi-objective optimization

1 Introduction

Traditional structural design methods are based on an
iterative procedure that focuses on structural safety;
however, such designs are generally not optimal (Xu et
al. 2017a, b). In this regard, structural optimization is an
important design tool that can consider various performance
objectives. Within this field, topology optimization seeks

to obtain optimal material layout according to a objective
function subjected to given design constraints (Bendsøe
and Sigmund 2003). Extensive research has been done in
topology optimization to develop well-posed formulations
(Bendsøe and Kikuchi 1988; Kohn and Strang 1986;
Bendsøe and Sigmund 1999; Sigmund and Petersson 1998;
Sigmund 2007) and solve inherent numerical problems such
as mesh dependency, checkerboard patterning, islanding,
and local minima (Dı́az and Sigmund 1995; Sigmund and
Petersson 1998).

Topology optimization has been successfully applied
to solve the minimum compliance problem subjected to
deterministic static loading for general structures (Bendsøe
and Sigmund 2003; Talischi et al. 2012), as well as
domains representing buildings (Beghini et al. 2014). It
also has been applied extensively to dynamic problems,
such as eigenfrequency optimization for free vibration
(Olhoff 1976, 1989; Filipov et al. 2016), minimum dynamic
compliance for harmonic dynamic vibration (Ma et al. 1995;
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Filipov et al. 2016), and strain energy optimization for
transient vibration (Kang et al. 2006; Behrou and Guest
2017). The latter research usually employs time-domain
solutions, which is extremely time consuming, to obtain
the response of the structure and the sensitivities; some
researchers have recently proposed schemes to reduce the
computational time of this step using mode acceleration
model reduction methods (Zhao and Wang 2016), or
multiresolution approaches (Filipov et al. 2016).

Many of the most severe loads that structures with-
stand are stochastic in nature: earthquake, wind, snow, rain,
ocean waves, jet noise, turbulence in the boundary layer,
etc. (Soong and Grigoriu 1993; Li and Chen 2009). Nev-
ertheless, structural optimization of stochastically excited
structures has developed more slowly than its determinis-
tic counterpart; for example, some work has been done in
preliminary size optimization of aircraft for coupled aero-
dynamic structural response under stochastic gust loading
(Fidkowski et al. 2008). Most of the research has been done
in size optimization of buildings using Monte Carlo simula-
tions (Balling et al. 2009); however, numerous simulations
are required to obtain meaningful results, which makes
this approach time prohibitive. Researchers in earthquake
engineering have also considered specific ground motion
records (Allahdadian and Boroomand 2016); in this case,
each record is only one realization of the underlying ran-
dom process. Xu et al. (2017a, b) proposed a parametric size
optimization method for linear and nonlinear buildings sub-
jected to stationary and nonstationary stochastic excitation
by solving a small-scale Lyapunov equation problem.

Chun et al. (2016) proposed a reliability-based topology
optimization framework for a stationary Gaussian random
process excitation using a discrete representation of the
excitation and solving in the time-domain; this approach
provides reasonable results, but the time stepping algo-
rithm requires considerable computational effort. Recently,
researchers have proposed formulations to minimize the
covariance of the displacement of a fixed point (Zhang
et al. 2015; Hu et al. 2016; Zhu et al. 2017; Yang et al.
2017) or multiple points (Spencer et al. 2016; Gomez and
Spencer 2017). Others (e.g., Zhang et al. 2015, Zhu et al.
2017, Yang et al. 2017) used frequency-domain solutions
based on the first few frequencies and mode shapes of
the structure to obtain the covariance of the displacement.
The computational time increases considerably when more
modes are used, and the numerical errors in the sensitivities
of the mode shapes increase (Haftka and Adelman 1989).
Hu et al. (2016) used an explicit time-domain solution to
obtain the covariance of displacements, which provides rea-
sonable results, but involves two time-domain analyses. In
addition, all previous approaches focus on displacement
response and cannot easily be generalized to multi-objective
problems due to requiring additional modes to achieve

adequate accuracy, or multiple input-multiple output sys-
tems. Spencer et al. (2016) and Gomez and Spencer (2017)
used the Lyapunov equation to obtain the covariance of the
response; however, numerical difficulties in solving the Lya-
punov equation limited the size of the meshes that could be
employed.

The solution of the Lyapunov equation (i.e., AX+XAT+
Q = 0) is typically obtained using the Bartels-Steward
algorithm or the Hessenberg-Schur algorithm (Golub et al.
1979), both of which require the Schur factorization of the
matrix A. Variations of these algorithms are implemented
in typical software for scientific computing such as Matlab
and Python. These methods provide good results for small
dense matrices A,Q; however, two practical issues arise
for large-scale systems: (i) they require O(N3) floating-
point operations and (ii) O(N2) memory (Kressner 2008),
both of which impose a significant constraint on the size
of the problem using current computers. Several approaches
have been developed that exploit the low-rank nature of
the matrix Q using Krylov subspace methods (Saad 1990;
Jbilou and Riquet 2006; Kressner 2008) or the matrix sign
function decomposition with Newton’s iterative method
(Higham 2008; Balzer 1980). These algorithms reduce the
computational time and required memory; however, they
fail when the symmetric part of A, i.e., A + AT is not
negative definite (Benner et al. 2008), which is the standard
case for state space matrices for structural systems. The
Alternating Direction Implicit (ADI) iteration algorithm
was developed to solve linear systems in terms of optimal
shift parameters (Wachspress 2013) and has been adapted
to solve the Lyapunov and algebraic Riccati equations with
low-rank matrices Q with superlinear convergence (Penzl
1999; Li and White 2002; Benner et al. 2008). This method
is adopted herein to efficiently solve the Lyapunov equation
with large-scale sparse matrices.

This paper proposes a new multi-objective topology opti-
mization framework for stochastically excited structures.
The performance function is given in terms of the station-
ary response covariances, obtained by solving a large-scale
Lyapunov equation. The proposed performance function
is versatile and allows optimization of the structure’s dis-
placement, velocity, and/or acceleration, including multi-
objective functions; also, an efficient adjoint method is
developed to obtain the sensitivities of this performance
function, which accommodates the use of gradient-based
updating procedures. This paper is organized as follows:
Section 2 describes the problem formulation including the
state space representation of the structure and excitation,
the response under stochastic excitation, and topology opti-
mization formulation; Section 3 provides details for the
solution of the optimization problem, including large-scale
solution of Lyapunov equations, sensitivity analysis, and
enforcing symmetry constraints; Section 4 shows numerical
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examples of the optimization of a cantilever beam subjected
to a stochastic dynamic tip load and a cantilever beam sub-
jected to a stochastic dynamic base excitation; Section 5
presents the conclusions of this work.

2 Problem formulation

This section formulates the topology optimization problem
for structures subjected to stationary stochastic dynamic
loading. First, the structural system is converted from the
standard second-order differential equation into the state
space representation, and the excitation is modeled as a
filtered white noise. Subsequently, the covariance matrix of
the stationary stochastic responses is obtained. Finally, the
topology optimization framework is presented based on this
formulation.

2.1 State space representation

Consider a dynamic linear system with N degrees of
freedom (DOF) whose equation of motion is given by

Mü + Cu̇ + Ku = Gf(t) (1)

where M, C, and K represent the mass, damping, and
stiffness matrices, respectively; G is the load effect matrix;
f(t) is the input excitation vector; and u is the displacement
vector.

Defining the vector xs as

xs = [
uT u̇T

]T
(2)

the system can be represented in the state space form by

ẋs = Asxs + Bsf(t)
y = Csxs + Dsf(t)

(3)

where the state matrices As and Bs are

As =
[

0N×N IN×N

−M−1K −M−1C

]
, Bs =

[
0N×1

M−1G

]
(4)

with 0 is a matrix of zeros, and I is the identity matrix,
with dimensions given by the subscripts; y is the vector of
output responses of interest corresponding to the matrices
Cs and Ds.

2.2 Stochastic excitation

Many physical phenomena can be modeled in terms of
a stochastic process (Soong and Grigoriu 1993). In this
study, the excitation is assumed to be a zero-mean stationary
random process modeled as a filtered white-noise with the
following space state space representation

ẋf = Afxf + Bfw(t)

f = Cfxf
(5)

where the matrices Af, Bf, and Cf are based on the
characteristics of the excitation; xf is the state vector of the
excitation model with Nf states; and w(t) is a vectored white
noise process.

The white noise vector w(t) satisfies

E(w(t)) = 0, E(w(t1)w(t2)) = 2πS0δ(t1 − t2) (6)

where E(·) is the expected value operator, S0 is the
magnitude two-sided constant m×m power spectral density
matrix, and δ(·) is the Dirac delta function.

An augmented state vector xa can be defined as

xa = [
xT

s xT
f

]T
(7)

yielding an augmented system whose state space represen-
tation is given by

ẋa = Aaxa + Baw(t)

y = Caxa
(8)

where the matrices Aa, Ba, and Ca are given by

Aa =
[

As BsCf

0Nf×N Af

]
, Ba =

[
02N×1

Bf

]
,

Ca = [
Cs DsCf

] (9)

Note that the input of the augmented system is a vectored
white noise, and the output of the augmented system is the
outputs of interest for the structural system.

2.3 Structural response

The covariance matrix of the response of a linear time
invariant system subjected to a white noise excitation, such
as the one considered in this study, can be computed directly
from Soong and Grigoriu (1993)

�̇xa = Aa�xa + �xaA
T
a + 2πBaS0BT

a (10)

where

�xa = E((xa − μxa)(xa − μxa)
T) = E(xaxT

a ) (11)

Assuming that the input white noise has a zero mean and
that �xa(0) = 0, then the mean value of the response is also
zero, i.e., μxa = 0, then �xa = E(xaxT

a ). By considering
the stationary part of the response, the covariance matrix
becomes constant and its time derivative becomes zero,
which yields the Lyapunov equation

Aa�xa + �xaA
T
a + 2πBaS0BT

a = 0 (12)

The Lyapunov equation possesses a unique solution if the
matrix Aa is Hurwitz, which means that its eigenvalues have
strictly negative real parts. In the case considered herein, the
eigenvalues of Aa are equal to the eigenvalues of As and
Ag, due to the block structure of the former matrix (Strang
2003). The eigenvalues of As and Ag will have negative real
parts if the structure and the excitation are strictly stable.
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Also, the matrix 2πBaS0BT
a is symmetric positive semi-

definite, if Ba has linearly independent columns and 2πS0
is positive definite. Finally, because of the properties of the
covariance matrix, the solution of the Lyapunov equation is
guaranteed to be symmetric positive semi-definite.

The covariance of the structural output y can be
calculated via

�y = E(yyT) = CaE(xaxT
a )CT

a = Ca�xaC
T
a (13)

2.4 Topology optimization formulation

Design variables in continuous-domain topology optimiza-
tion are chosen as the relative density in each element
(Bendsøe and Sigmund 2003). Therefore for element n,
the relative density variable is denoted by zn, where n ∈
{1, 2, . . . , Nel}, and Nel is the total number of elements. The
optimization formulation is thus given by:

Find z = [z1, z2, . . . , zN ] such that:

min
z

J (z) = φ
(
�xa(z), z

)

s.t. g(z) = V (z) − Vmax ≤ 0
Aa�xa + �xaA

T
a + 2πBaS0BT

a = 0
zn ∈ [zmin, zmax] forn = 1, 2, . . . , Nel

(14)

where φ is a continuous differentiable positive scalar
function, �xa is the stationary covariance of the response,
V is the volume, Vmax is the volume constraint, and zmin

and zmax are the lower and upper bounds on the density
variables.

Note that the proposed performance function allows
consideration of many different problems. To illustrate this
point for different types of response, consider the following
particular case

J (z) = F(z) : �xa(z) (15)

where J (z) is the objective function, : represents the
double dot product between matrices or the sum of the
diagonal entries of their product, F is a symmetric positive
semidefinite matrix. Some examples are shown next, for
which the specific matrix F is described (see the Appendix
for the details of the derivations):

1) Covariance of the various DOFs defined by the output
equation y = Caxa,

J = Ca�xaC
T
a , F = CT

a Ca (16)

For example, Ca = Cu = [
IN×N 0N×N 0N×Nf

]

for displacements, Ca = CPu =[
0N×N IN×N 0N×Nf

]
for velocities, and

Cü = [ −M−1K −M−1C M−1GCf
]

for accelera-
tions. In each of these cases, all, or a selected number,
of the DOFs can be employed in the objective function.

2) Expected value of the static compliance, based on the
static case of potential energy minimization

J = E(uTKu), F = CT
uKCu (17)

3) Expected value of the kinetic energy

J = E(u̇TMPu), F = CT
u̇KCPu (18)

4) Linear combination of performance functions with
non-negative coefficient α. For example, engineering
designers may desire to perform multi-objective opti-
mization to minimize displacements and accelerations
(Xu et al. 2017a, b). In this case,

J = F1 : �xa + αF2 : �xa , F = F1 + αF2 (19)

where F1 = CT
uCu, F2 = CT

üCü.

As illustrated here, the performance function is com-
pletely defined by the covariance of the response �xa , which
is obtained through solution of the Lyapunov equation. Con-
sequently, the stochastic optimization problem has been
transformed into a deterministic counterpart.

A gradient-based optimization procedure is preferred,
such as the method of moving asymptotes (Svanberg 1987),
for which the gradient of the performance function and
constraints are required. Section 3.3 provides details on how
to obtain them.

3 Solutionmethod

This section describes the numerical details for the solution
of the topology optimization problem formulation for
stochastic excitations. These details include the solution
of the Lyapunov equation, the efficient evaluation of
sensitivities, symmetry constraints to reduce problem size,
and optimization details.

3.1 Material interpolation

The well-known continuous approach, based on interme-
diate element densities, is adopted to obtain the optimal
topology (Bendsøe and Sigmund 2003). For each element
n, a relative density variable zn is chosen, where n ∈
{1, 2, . . . , Nel}. Then, Young’s modulus and density for
each element are obtained by some interpolation rule; in
this work, SIMP interpolation is used (Bendsøe and Sig-
mund 1999). However, in dynamic problems, local spurious
modes may appear due to the artificially low ratios of stiff-
ness to mass using SIMP; to overcome this problem, a
modified SIMP is implemented where the elements with
low relative density are penalized with a larger exponent to
compute the mass (Tcherniak 2002; Du and Olhoff 2007).
Du and Olhoff (2007) recommend using the penalization
factor equal to p + 3 for elements with density below 0.1,
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and they propose corrections to ensure continuity and dif-
ferentiability of the interpolation rule. Section 4.1 presents
an example and further discussion of the influence of this
local modes penalization on optimal topologies.

In this study, the following relationships are used

E(z) = [ε + (1 − ε)zp]E0

ρ(z) =
{

zqρ0, ifz ≥ 0.1
c0z

p+3ρ0, ifz < 0.1
(20)

where E and ρ are Young’s modulus and density for the
element with variable z, E0 and ρ0 are Young’s modulus
and density for the solid material, p > 1 and q ≥ 1
are the penalization factors, ε is a small number (Talischi
et al. 2012), and c0 = 10p+3−q is a coefficient to
ensure continuity in density interpolation rule. Alternative
interpolation rules to address this issue can be considered
(Zhu et al. 2010, 2018).

3.2 Lyapunov equation solver

As seen in Section 2.3, the covariance of the response of the
system can be determined from the solution of the Lyapunov
equation (see (12)), which is rewritten next for simplicity

Aa�xa + �xaA
T
a + B̃aB̃T

a = 0 (21)

where Aa ∈ R
N ′×N ′

and B̃a = √
2π S̃ ∈ R

N ′×m with
m � N ′, and S̃ is the lower Cholesky factor of S0.
The third term of the LHS in this equation is a low-rank matrix,
and the state matrix has an indefinite symmetric part;
therefore, the Cholesky factor alternating direction implicit
(CF-ADI) iterative algorithm is the only suitable method for
the solution (Li and White 2002; Benner et al. 2008).

The CF-ADI algorithm solves for the complex matrix
Z ∈ C

N ′×mn

Z = [
V1 V2 . . . Vn

]
(22)

where the unknown matrix �xa is given by

�xa = ZZH (23)

and H denotes the Hermitian transpose operation.
The matrices Vi are obtained using the iterative

procedure showed in the following equations

V1 = √−2�(p1)(Aa + p1I)−1B̃a

Vk =
√

�(pk)

�(pk−1)
[Vk−1−(pk + p∗

k−1)(Aa + pkI)−1Vk−1]
(24)

where R(·) denotes the real part function, ∗ denotes the
complex conjugate, and pi ∈ C

− are complex shift
parameters with negative real part that satisfy

{p1, p2, . . . , pl} = argmin
{p1,...,pl}∈C−

max
t∈σ(Aa)

|rl(t)|
|rl(−t)| (25)

with rl(t) = ∏l
i=1(t − pi) and σ(Aa) denotes the

spectrum of Aa. Obtaining these optimal shift parameters
is a expensive task (Benner et al. 2008); therefore, in this
study, an algorithm to obtain a set of sub-optimal parameters
is used instead (Penzl 1999).

To assess the accuracy of the proposed solver with the
traditional Bartel-Stewards algorithm, which is a built-in
function in Matlab, the objective function for the same
problem is computed using both approaches. A uniform
rectangular domain of 6×12 discretized into 3200 elements
is considered; this smaller problem is chosen due to the
excessive computational time required for the traditional
solver in larger problems. The absolute difference between
the proposed approach and the standard Matlab solver for
the objective function is 3.11 × 10−9 and the relative
difference is 1.72 × 10−8; therefore, the proposed solver
achieves an accuracy similar to the traditional solver, and
in this example, it requires only 1/643 of the computational
time.

The CF-ADI algorithm requires four parameters: k+ is
the number of Ritz values using power iteration, k− is
the number of Ritz values using inverse iteration, l is the
number of parameters, and n is the number of iterations;
the accuracy and efficiency of the method depend on
these parameters. To obtain appropriate values for these
parameters, a numerical test was conducted for a rectangular
domain of 5 × 15 discretized into 7500 elements. To assess
the accuracy of the algorithm, the residual of the equation is
defined as

R = Aa�xa + �xaA
T
a + B̃aB̃T

a (26)

which should be a matrix of small numbers. Figure 1a
shows the logarithm of the Frobenius norm of the residuals,
varying the number of parameters and iterations. Figure 1b
shows the logarithm of the Frobenius norm of the residual
varying the number of Ritz values using power iteration
and Ritz values using inverse iteration. As these figures
show, the CF-ADI algorithm achieves good results for
a sufficiently large number of iterations and parameters;
moreover, using more Ritz values with inverse iteration
improves accuracy. For a problem of this size with the
largest number of iterations and parameters, a direct
implementation of this solver requires a computational time
of 4.9 s in a computer with processor Intel Xeon E3-
1285 v6 @4.10 GHz and 32 Gb of RAM. For comparison
using the same computer and the same structure, a time-
domain solution of a harmonic excitation of 30 Hz with
sampling frequency of 100 Hz and 1024 time steps using an
efficient implementation of the Newmark method requires
3.27 s. These timing results show that a complete stochastic
solution can be obtained for about the same cost as 1.5
time-history solutions of one harmonic excitation, which
demonstrate the efficacy of the proposed approach.
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Fig. 1 log ‖R‖F varying a the number of parameters l and the number of iterations n and b the number Ritz values using power iteration k+ and
the number Ritz values using inverse iteration k−

3.3 Sensitivity analysis

A gradient-based optimization procedure is preferred for
computational efficiency purposes; therefore, the gradient
of the performance function and constraints are required.
The constraints are linear, making the gradient straightfor-
ward to obtain. Because the performance function defined
in (14a) depends on the covariance matrix, which is implic-
itly defined by (21), a direct differentiation approach would
be expensive due to the large number of variables. There-
fore, an adjoint method is proposed, for which the following
Lagrangian function is defined with a symmetric positive
semi-definite Lagrange multiplier matrix �

L(z,�) = J (z) + � :
(
Aa�xa + �xaA

T
a + B̃aB̃T

a

)
(27)

The corresponding adjoint equation can be solved to
obtain �, thus eliminating the implicitly defined gradients
of �xa ,

AT
a � + �Aa + ∂φ

∂�xa

= 0 (28)

The previous result is consistent with a similar approach
implemented in the optimization of a control cost function
(Yan et al. 2016). Equation (28) is a Lyapunov equation,
which has a unique solution because AT

a is Hurwitz. Finally,
the sensitivity of the performance function, which is equal
to the sensitivity of the Lagrangian function, is given by the
following equation

∂J
∂zn

=
(

∂Aa
∂zn

�xa + �xa
∂AT

a
∂zn

+ ∂(B̃aB̃T
a )

∂zn

)
: �

+ ∂φ
∂zn

(29)

For the particular case shown in (15), the previous
equations reduce to

AT
a � + �Aa + F = 0 (30)

∂J
∂zn

=
(

∂Aa
∂zn

�xa + �xa
∂AT

a
∂zn

+ ∂(B̃aB̃T
a )

∂zn

)
: �

+ ∂F
∂zn

: �xa

(31)

Because F is symmetric positive semi-definite, the solution
of the Lyapunov equation is symmetric positive semi-
definite �, as assumed previously. Also, note that F can be
expressed as a low-rank matrix product; hence, the efficient
algorithm described in Section 3.2 can be applied.

The sensitivities of the performance function require the
derivatives of the matrices Aa, Ba, and F that were defined
explicitly in previous sections.

Adjoint sensitivities were successfully confirmed by
comparison to finite difference. To assess the efficiency of
the proposed method, several runs with different number of
elements were performed. Figure 2 shows the computational
time for different approaches, demonstrating that the
proposed approach (i.e., using the adjoint method with the
CF-ADI solver) requires considerably less time.

The detailed derivations of the results presented in this
section are provided in the Appendix.

3.4 Symmetry constraints

In many problems, the domain, boundary conditions, and
dynamic loadings are spatially symmetric, for example,
the building subjected to a base motion in Fig. 3,
and consequently, the structural response is constrained
to follow symmetric and anti-symmetric modes. In the
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Fig. 2 Computational time (FD, finite differences; DD, direct
differentiation; AM, adjoint method with native solver; A-ADI, adjoint
method with CF-ADI solver)

example shown in Fig. 3, the symmetry in the domain, the
boundary conditions, and the loading dictates that the lateral
displacement is symmetric, the vertical response is anti-
symmetric, and the rotation angle response is symmetric.
Therefore, using symmetry to reduce the computational
burden can be done without loss of generality. Note that
the proposed method does not require use of the symmetry
constraint.

The symmetry in the response can be enforced using a
constraint of the type

u = Tũ (32)

where u is the vector of all DOFs, T is a transformation
matrix, and ũ is the vector of master DOFs. Moreover, the
transformation matrix and vector of all DOFs can be divided

Fig. 3 Example of a symmetric domain with symmetric random
loading

in blocks, possibly permuted due to DOF numbering, as
follows

T =
[
I
S

]
, u =

[
ũ
uc

]
(33)

where I is the identity matrix, S is the constraint matrix, and
uc is the vector of constrained DOFs. The constraint matrix
S is a sparse matrix with exactly one non-zero entry per row
and whose non-zero entries are equal to 1 or −1, depending
respectively on whether the constraint is associated with
a symmetric or antisymmetric slave DOF. Therefore, the
transformation matrix can be written as blocks of identity
matrices, negative identity matrices, and zero matrices
of consistent dimensions, possibly permuted due to DOF
numbering. Similar relations are used for velocities and
accelerations.

The reduced system matrices can be obtained through the
following well-known relations

M̃ = TTMT, C̃ = TTCT
K̃ = TTKT, G̃ = TTG

(34)

The state space representation of this system and the
augmented can be obtained using the reduced system
matrices, and the Lyapunov equation can be solved to obtain
the covariance of the response �̃xa . From the numerical
point of view, the implementation can be done efficiently
by using the previous relations, because all the matrices
are highly sparse. Moreover, this transformation reduces the
size of the problem to a approximately half, which results in
a corresponding reduction in computation time for a given
mesh size.

The covariance matrix �xa of the initial augmented
system can be recovered from the covariance matrix �̃xa of
the reduced system as follows

�xa = E(xaxa
T) = TE(x̃ax̃T

a )TT = T�̃xaT
T (35)

Therefore, using the general form of the transformation
matrix yields

�xa =
[
I
S

]
�̃xa

[
I ST

] =⇒ �xa =
[

�̃xa �̃xaS
T

S�̃xa S�̃xaS
T

]

(36)

For the case when all the constrained DOFs have a
symmetric response, i.e., S = I, the cross-covariance
equals the auto-covariance, and the correlation coefficient
is equal to 1 for all master-constrained pairs. On the
contrary, for the case when all the constrained DOFs have
an anti-symmetric response, i.e., S = −I, the cross-
covariance equals the negative of the auto-covariance,
and the correlation coefficient is equal to -1 for all
master-constrained pairs. Typically, some combination of
symmetric and antisymmetric constraints is required.
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3.5 Optimization details

The solution of the proposed optimization problem is
summarized in Fig. 4. In the initialization step, the domain
is meshed, the element matrices using solid material
are computed, the matrices for the excitation model are
constructed, and the initial values for the design variables
are chosen. Additionally, to avoid mesh dependency and
numerical instabilities such as checkerboard patterns and
islanding, a filter is applied to the sensitivities (Sigmund and
Petersson 1998). A linear hat filter is implemented through
a filter matrix that is computed in the initialization step
(Talischi et al. 2012).

The remainder of the steps follow an iterative procedure.
In the analysis step, the system matrices are obtained
using the current values for the design variables, and
then, the covariance of the response is computed by
solving the Lyapunov equation. In the sensitivity step, the
adjoint Lyapunov equation is solved to obtain the Lagrange
multiplier and the performance function sensitivity; the
constraint sensitivity is computed directly. In the update step,
the new values for the design variables are obtained by using
the method of moving asymptotes (Svanberg 1987; 2002).
The iterative scheme is applied until the maximum change
in the design variables is below a specified threshold.

Fig. 4 Topology optimization flowchart for structures with stochastic
dynamic loads

4 Numerical examples

In this section, the proposed framework is illustrated
through four examples: (i) minimization of the displacement
of a mass at the free end of a cantilever beam subjected to a
stochastic dynamic base excitation, (ii) minimization of tip
displacement of a cantilever beam subjected to a stochastic
dynamic tip load, (iii) minimization of tip displacement and
acceleration of a cantilever beam subjected to a stochastic
dynamic tip load, and (iv) minimization of a plate subjected
to multiple stochastic dynamic loads.

4.1 Displacement minimization of a cantilever beam
with stochastic base excitation

This example minimizes the displacement of a point mass
placed at the free end of the based-excited cantilever beam
that was recently considered by Yang et al. (2017). The
following parameters are taken from their study. The design
domain for the cantilever beam is given by a 10 m × 20 m
rectangle, which is shown in Fig. 5. The solid linear elastic
material has the following properties: Young’s modulus
E0 = 10 kPa, Poisson’s ratio ν = 0.3, density ρ0 = 1 kg

m3 ,

tip mass m0 kg, and Ersatz parameter ε = 10−4. The
domain has a uniform thickness of 1 m, and it is assumed
to be in plane stress condition. The continuum domain is
discretized using 80 × 160 Q4 elements. The radius of
the filter is equal to 0.25. The volume of the structure is
constrained to be less or equal than 0.50 of the solid domain.
The damping matrix is obtained using Rayleigh damping
with 5% damping ratio for the first and fourth modes. The
stochastic base motion zg(t) is modeled using a second-
order Kanai-Tajimi spectrum with ωg = 8 rad/s, ζg = 0.64,
and S0 = 0.019. Note that due to the large damping ratio,
this excitation behaves similar to a band-limited white noise
with cutoff frequency around 2 Hz.

Topology optimization is performed to minimize the
variance of the vertical displacement of the point tip mass
E(u2

tip) = σ 2
tip. Figure 6a shows the optimal design for

this example with m0 = 20 kg (i.e., 20% of the allowable

Fig. 5 Rectangular domain geometry for cantilever plate with point
mass and dynamic stochastic base excitation
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Fig. 6 Optimal topology for base excitation with Kanai-Tajimi spectrum with tip mass a m0 = 20 kg, b m0 = 60 kg, and c m0 = 160 kg; d static
tip load

mass in the solid domain). Note that the optimal topology
shown in Fig. 6a differs from the result obtained by Yang
et al. (2017), primarily due to approximations employed in
their study to facilitate the numerical solution (e.g., using
first few modes approximation). An additional difference is
that Yang et al. (2017) used a projection filter instead of
the filter used in this study. In contrast, the solution in this
study readily includes the influence of all the modes. The
objective function is equal to 0.073 and the first frequency
is equal to 0.265 Hz.

Finally, additional studies are performed for the same
domain and excitation but varying the tip mass. Figure 6a–
c shows the optimal designs for different tip masses, and
Fig. 6d shows the optimal design of the domain subjected
to a constant static tip load. Figure 6 illustrates that, as
the tip mass increases, the optimal topology evolves toward
the optimal topology corresponding to a fixed-base beam
with a static tip force Moreover, for this example, if the
tip mass is larger than six times the allowable mass in the
solid domain, then the optimal topology is nearly identical
to the static solution. This phenomenon occurs for such
large masses, because the problem essentially reduces to a
single DOF system. For this example, the excitation appears
as a white noise to the structure as the frequencies become
smaller with increasing mass; because the displacement
covariance of a single DOF system subjected to a white
noise is inversely proportional to the natural frequency of
the structure raised to 1.5 power, minimization of the tip

covariance is equivalent to maximizing the stiffness, which
is the goal of static compliance minimization.

4.2 Displacement minimization of a cantilever beam
with stochastic dynamic tip load

This next example explores a cantilever beam subjected to
a stochastic dynamic load at the center of the free end of
the beam as shown in Fig. 7. The objective is to minimize
the displacement at the point of application of the force.
The design domain for the cantilever beam is given by the
6 m × 12 m rectangle, which is composed of a solid linear
elastic material having the following properties, which are
representative of structural steel: Young’s modulus E0 =

Fig. 7 Rectangular domain geometry for cantilever plate with dynamic
stochastic tip load
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Fig. 8 Optimal topology for static load

210 GPa, Poisson’s ratio ν = 0.3, density ρ0 = 7500 kg

m3 ,

and Ersatz parameter ε = 10−4. The domain has a uniform
thickness of 0.10 m, and due to its thickness, the continuum
domain is assumed to be in plane stress condition. The
continuum domain is discretized using 80 × 160 Q4
elements. The radius of the filter is equal to 0.20. The
volume of the structure is constrained to be less or equal
than 0.30 of the solid domain. The damping matrix is
obtained using Rayleigh damping with 2% damping ratio
for the first two modes.

To provide a reference of comparison, the optimal
topology is first obtained considering the applied tip force
f (t) to be a deterministic constant (i.e., a static force).
Minimization of the vertical tip displacement leads to the
topology shown in Fig. 8, which is termed the reference
design. The frequency response function (FRF) from the
input excitation to the tip displacement, Hutipf (ω), is
calculated as the discrete Fourier transform of the numerical
impulse response function; this FRF is normalized to have a
value of 1 at ω = 0 and shown in Fig. 9. The first four peaks
in this FRF, corresponding to the natural frequencies of the
static design, are equal to 30 Hz, 41 Hz, 55 Hz, and 75 Hz.

Next, the tip force f (t) is modeled as a band-limited
white noise (BLWN), by passing a scalar white noise (WN)

with power spectral density equal to S0 through a 8-pole,
low-pass elliptic filter. The filter has a cutoff frequency fc, a
peak-to-peak ripple of 0.1 dB, and stop-band attenuation of
100 dB. Subsequently, this filter is cast into the state space
representation given in (5).

Topology optimization is then performed to minimize the
variance of the vertical tip displacement E(u2

tip) = σ 2
tip for

the cantilever beam subjected to a dynamic stochastic tip
loading. The cutoff frequencies are chosen with respect to
the reference structure, instead of the initial uniform design,
to make a direct comparison with this optimal structure. As
discussed below, when the cutoff frequency is zero (i.e.,
the stochastic load is just a random variable), then the
static optimal design and optimal design for the stochastic
load are identical. Four cases are considered as follows: (i)
fc = 7 Hz, which is below the first natural frequency of
the reference design; (ii) fc = 35 Hz, which is between
the first and second natural frequencies of the reference
domain; (iii) fc = 60 Hz, which is between the second
and third natural frequencies of the reference design; and
(iv) fc = ∞ Hz, (i.e., the tip force f (t) is a white noise).
For case (iv), the augmented state space matrices Aa and Ba

in (12) are replaced those for the structural system As and
Bs. The magnitude of the FRF of the various elliptic filters
is superimposed on the normalized FRF of the reference
design in Fig. 8.

Figure 10a–d shows the optimal design for the four cases.
These figures show that the optimal topology depends on
the cutoff frequency. For case (i), the optimal topology
matches the reference design. An additional optimization
was performed using a cutoff frequency of 15 Hz; these
results were also visually indistinguishable from the static
design, and are thus not presented here.

To better understand why the optimal topology for a
small cutoff frequency matches the reference design in

Fig. 9 Normalized magnitude of
the frequency response function
(FRF) of the static design and
magnitude of FRFs of the elliptic
filters used in different designs
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Fig. 10 Optimal topologies for a BLWN with fc = 7 Hz, b BLWN with fc = 35 Hz, c BLWN with fc = 60 Hz, and d white noise

this example, consider the stationary variance of the tip
displacement, which is equal to the area under the curve of
the power spectral density (PSD) of the tip response Suu(ω),

σ 2
tip = 2

∫ ∞

0
Suu(ω)dω (37)

The PSD of the response depends on the PSD of the input
force and the FRF of the structure Huf (ω) as follows

Suu(ω) = ∣∣Huf (ω)
∣∣2

Sff (ω) (38)

Because f (t) is a BLWN, the PSD of the response can be
well-approximated as

σ 2
tip ≈ 2S0

∫ 2πfc

0

∣∣Huf (ω)
∣∣2

dω (39)

If the BLWN cutoff frequency fc is sufficiently below the
first natural frequency of the structure (i.e., the pseudo-static
region), then Huf (ω) is constant (see Fig. 11), then

σ 2
tip ≈ 4πfcS0

∣∣Huf (0)
∣∣2 (40)

Fig. 11 Comparison of the FRF
of the topologies obtained for
different cutoff frequencies
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which is proportional to the square of the tip displacement
due to a constant static load. Therefore, in this example, for
stochastic dynamic excitation with frequency content that is
well below the first natural frequency, the optimal topology
can be expected to coincide with the static topology
optimization case.

In contrast, for large cutoff frequencies, i.e., fc → ∞,
the excitation approaches a white noise, and consequently,
the optimal topology coincides with the optimal topology
for a pure white noise. In this particular example, the opti-
mization was performed using cutoff frequencies of 300 Hz
and 500 Hz; the results are visually indistinguishable from
the white noise design and thus are not presented here.

To understand the influence of the cutoff frequency fc in
the optimal topology, the FRF of the different designs are
obtained as described previously and their magnitudes are
shown in Fig. 11. Note that the first frequency of the static
design is represented by a large peak in the magnitude of
the FRF; therefore, for fc = 35 Hz, i.e., the cutoff is greater
than the first natural frequency, the resulting topology
considerably reduces the peak of the first frequency and
also produces a shift of the first frequency. However, in
this case, the second peak has a magnitude of the same
order of the first peak of the static design, but this larger
modal response does not increase the covariance because
this peak is located in the stop-band of the low-pass filter.
Similarly, for fc = 60 Hz, i.e., the cutoff is greater than the
third natural frequency, the resulting topology considerably
reduces the peak of the first and second frequencies and
also produces a shift of these frequencies. However, in this
case, the third peak has shifted outside of the bandwidth of
the excitation, so the larger magnitude does not increase the
covariance. For the white noise excitation, the covariance of
the response is the area under the magnitude of the FRF over
the entire frequency domain.

Finally, Fig. 12 shows a comparison of the covariance
of the tip displacement of the different designs using
different excitations; the excitation cutoff frequency is
shown on the x-axis, and the normalized covariance of
the response is shown on the y-axis. The covariances for
each cutoff frequency are normalized by the covariance
of the corresponding optimal design. The different bars
correspond to the designs described in the legend. As
expected, the minimum covariance for each design is
obtained by the case designed for the corresponding cutoff
frequency. For a small cutoff frequency, the static design and
the 7 Hz design perform considerably better than the other
designs. For a cutoff frequency between the first and second
modes of the static case, the case designed for this frequency
performs better than the other designs; meanwhile, the static
design yields a very large covariance, and the other dynamic
designs perform better. For a cutoff frequency between
the second and third modes of the static case, the case
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Fig. 12 Normalized covariance of the tip displacement of the different
designs using different excitations, where the covariance is normalized
by the minimum covariance among the designs

designed for this frequency performs better than the other
designs; meanwhile, the first dynamic design yield a very
large covariance. For a white noise, the case designed for
this excitation performs best, with the other designs having
poorer performance. In summary, the best performance is
achieved when the excitation can be appropriately modeled
in the topology optimization problem formulation.

4.3 Multi-objectiveminimization of a cantilever
beamwith stochastic dynamic tip load

Xu et al. (2017a) showed that interstory displacements and
accelerations are often competing performance objectives;
therefore; in this example, the covariance of the vertical
tip displacement and acceleration of a cantilever beam
subjected to a dynamic stochastic tip loading are minimized.
This task is done by means of a combined performance
function given by a weighted average of both responses

J = E(u2
tip) + αE(ü2

tip) (41)

where the parameter α determines the influence of
acceleration response in the performance function: small
values of α correspond to displacement optimization and
large values correspond to acceleration optimization. The
design domain is the same 6 × 12 rectangle of Section 4.2,
which is shown in Fig. 7. As in the previous example,
the tip load f (t) is modeled as a band-limited white noise
(BLWN).

Topology optimization is performed to minimize the
multi-objective function for the following excitation cutoff
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Fig. 13 Optimal topologies for BLWN excitation with fc = 35 Hz and multi-objective performance function (41) with a α = 10−8, b α = 10−7,
c α = 10−6, and d α = 10−5

frequencies: (i) fc = 35 Hz, which is between the first and
second natural frequencies of the reference domain, and (ii)
fc = 60 Hz, which is between the second and third natural

frequencies of the reference design. Also, different values
of the parameter α are considered for each of the two cutoff
frequencies.

Fig. 14 Optimal topologies for BLWN excitation with fc = 60 Hz and multi-objective performance function (41) with a α = 10−9, b α = 10−8,
c α = 10−7, and d α = 10−6
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The stationary variance of the tip displacement and
acceleration are given by the area under the curve of the
PSD of the corresponding response; therefore, the objective
function is given by

J = 2
∫ ∞

0

(∣∣Huf (ω)
∣∣2 + α

∣∣Hüf (ω)
∣∣2

)
Sff (ω)dω

= 2
∫ ∞

0
(1 + αω4)

∣∣Huf (ω)
∣∣2

Sff (ω)dω (42)

Because f (t) is a BLWN, the objective function can be
well-approximated as

J ≈ 2S0

∫ 2πfc

0
(1 + αω4)

∣∣Huf (ω)
∣∣2

dω (43)

For small cutoff frequencies fc, the acceleration influence
in the performance function is small due to the quartic

term in the integral. Therefore, for stochastic dynamic
excitation with small cutoff frequency, the optimal topology
can be expected to coincide with the displacement-only
optimization.

Figure 13a–d shows the optimal design for fc = 35 Hz
with increasing values of α. These figures show that for
this fixed cutoff frequency, the optimal topology depends
on the parameter α. As seen here, when the weighting
parameter is small, the optimal topology approximates the
displacement only optimization α = 0, which is shown in
Fig. 10b, and for larger values of α, the topology is modified
considerably, with more mass being allocated to the top part
of the structure.

Figure 14a–d shows the optimal design for fc = 60 Hz
with increasing values of α. These figures show that for
this fixed cutoff frequency, the optimal topology depends

Fig. 15 Comparison of the FRF
of the topologies for different
multi-objective performance
functions
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Fig. 16 Mode shapes of optimal topologies shown in Figs. 13a, d and 14a, d

on the parameter α. As also seen here, when the weighting
parameter is small, the optimal topology approximates the

displacement only optimization α = 0, which is shown in
Fig. 10c, and for larger values of α, the topology is modified
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considerably, with more mass being allocated in the top part
of the structure.

In both cases, the evolution of the optimal topologies
can be explained by the quartic term corresponding to the
acceleration response in the performance function in (43),
which causes the magnitude of the acceleration FRF to
increase faster than the displacement counterpart as the fre-
quency increases (i.e., the higher modes are more important
to the acceleration response, as compared to displacement
response). Figure 15a–b shows the magnitudes of the FRF
of the tip displacement to the excitation for all optimal
designs obtained for both cutoff frequencies and different
values of α in the performance function.

Note that as α increases, the magnitude of the FRF at
0 Hz increases, indicating that the static compliance of the
structure increases with α, and the first modal frequency of
the structure decreases with increasing α. For the case fc =
35 Hz, the static tip deflection of the optimal topology is
increased approximately 8.4 times when α is increased from
0 to 10−5, which indicates that the overall system is more
flexible to effectively reduce accelerations but increasing
displacements. For completeness, Fig. 16a–h shows the
first and second mode shapes for the optimal topologies in
Figs. 13a, d and 14a, d.

Finally, the Pareto optimal front is calculated to
illustrate the tradeoff in the response of displacements
and accelerations and plotted in Fig. 17a–b for cutoff
frequencies fc = 35 Hz and fc = 60 Hz, respectively.
This curve is a plot of the normalized standard deviation
of the tip displacement versus the normalized standard
deviation of the tip acceleration for different values of
α. Here, the standard deviations of the tip displacements
and accelerations are normalized by dividing by their

Fig. 18 Rectangular domain geometry for a plate with multiple
dynamic stochastic loads

corresponding minimum. The numbers shown next to each
point correspond to the values of α, and note that additional
values of α, whose topologies are not shown due to space
limitations, are included in these curves. As expected, for
small values of α, the displacement response is small but
the acceleration response is large, and as the parameter
α increases, the displacement response increases and the
acceleration response decreases. Points below this Pareto
optimal front correspond to infeasible designs and above
this curve correspond to non-optimal designs. Also, the
displacement response is more affected for the first cutoff
frequency than for the second cutoff frequency, and the
acceleration response is more affected for the second cutoff
frequency than in the first cutoff frequency. This difference
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Fig. 19 Optimal topologies for a static loads and b multiple BLWN excitations with correlation coefficient ρ = 0.5

can be explained by the fact that the acceleration response is
more dependent on higher frequencies. In summary, as the
weighting parameter increases, the acceleration response is
more important in the objective function, which modifies
substantially the optimal topology from the displacement-
only optimization; and as the cutoff frequency increases, the
acceleration response becomes more important.

4.4 Minimization of a plate withmultiple stochastic
dynamic loads

This example demonstrates the suitability of the proposed
methodology for multiple-input multiple-output systems.
The domain and loads are shown in Fig. 18, where f1 and
f2 are different stochastic processes applied on points 1
and 2, respectively. The design domain for the cantilever
beam is given by the 5 m × 5 m rectangle, which is
composed of a solid linear elastic material having the
following properties, which are representative of structural
steel: Young’s modulus E0 = 210 GPa, Poisson’s ratio ν =
0.3, density ρ0 = 7500 kg

m3 , and Ersatz parameter ε = 10−4.
The domain has a uniform thickness of 0.10 m, and due to its
thickness, the continuum domain is assumed to be in plane
stress condition. The continuum domain is discretized using
100 × 100 Q4 elements. The radius of the filter is equal to
0.20. The volume of the structure is constrained to be less
or equal than 0.30 of the solid domain. The damping matrix
is obtained using Rayleigh damping with 2% damping ratio
for the first two modes. The objective function is given by

J = E(u2
1) + E(u2

2) (44)

where u1 and u2 are the lateral and vertical displacements
of points 1 and 2.

To provide a reference of comparison, the optimal
topology is first obtained considering the applied forces to
be deterministic constants, i.e., f1(t) = f2(t) = P where
P is a deterministic constant. Minimization of the sum of
displacements leads to the topology shown in Fig. 19a,
which is termed the reference design.

The stochastic processes are modeled as correlated band-
limited white noises, so that the excitation matrices are
composed of independent scalar low-pass elliptic filters
arranged in diagonal blocks. The cutoff frequency of both
scalar filters is equal to 50 Hz. The magnitude two-sided
constant power spectral density matrix is given by

S0 =
[

1 ρ

ρ 1

]
(45)

where ρ is the correlation between the two loading
processes. Note that |ρ| < 1 to assure the positive
definiteness of the previous matrix. If ρ = 1, then both
processes are the same, and it is treated as a single-input
system. If ρ = −1, the system is treated as a single-input,
and the processes are inversely correlated, i.e., in Fig. 18,
one of the loading arrows is reversed.

Figure 19b shows the optimal design for multiple
stochastic dynamic loads with correlation coefficient ρ =
0.5. These figures demonstrate that for this fixed cutoff
frequency, the optimal topology varies considerably when
considering the forces to be stochastic.

5 Conclusions

This paper has proposed a framework for topology
optimization of stochastically excited structures. The input
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was modeled as a filtered white noise, and the performance
of the structure due to this excitation was given in terms
of the covariance of the stationary structural responses.
The objective function for the optimization was defined
as the trace of the product of a positive semidefinite
symmetric matrix and the covariance of the stationary
response. The covariances were obtained by solving a
large-scale Lyapunov equation using an algorithm which is
efficient both in terms of memory and computational time.
The objective function was shown to be general enough
to represent displacement, interstory drifts, velocities, and
accelerations at one or many points, making it suitable
for multi-objective optimization. A volume constraint was
imposed to limit the design space, and the design variables
were chosen as the relative densities in each element, which
were bounded to achieve physically meaningful solutions.
The material properties for intermediate densities were
obtained using the SIMP interpolation rule; a linear hat
filter was used to avoid numerical instabilities. An efficient
adjoint method to obtain the sensitivities of the performance
function was proposed, which requires the solution of an
adjoint Lyapunov equation, also solved using the efficient
Lyapunov equation solver. Iterations were carried out using
a gradient-based approach commonly employed in the
topology optimization field.

The proposed framework was illustrated by conducting
topology optimization of cantilever beams with different
excitations and performance functions. The first example
considers displacement optimization of a mass on the
end of a cantilever beam with stochastic dynamic base
motion. The topology obtained using the proposed approach
differs from the result found in a previous study, primarily
due to approximations employed in that study to achieve
numerical solutions of the topology optimization problem.
In the proposed approach, these approximations were
not required. Local mode penalization improves the
numerical behavior eliminating disconnected regions. Also,
as the tip mass increases, the optimal topology evolves
towards the solution obtained for a vertical static tip
load.

The second example minimized the tip displacement
for a cantilever beam subjected to a stochastic dynamic
point force. The force was modeled as a band-limited white
noise (BLWN) using an 8-pole elliptic filter with differ-
ent cutoff frequencies and as a pure white noise. First,
optimization was performed to minimize the covariance of
the tip displacement. For cutoff frequencies well below the
first natural frequency, the optimal topology coincides with
the static case. For large cutoff frequencies, the excitation
approaches a white noise, and consequently, the optimal
topology coincides with the optimal topology obtained for

a pure white noise excitation. In this example, for frequen-
cies above 300 Hz, the optimal topology for the BLWN and
the white noise was indistinguishable. The static design is
outperformed by the dynamic designs when the cutoff fre-
quency is larger than its first frequency. In general, the best
performance is achieved when the excitation can be appro-
priately modeled in the topology optimization problem
formulation.

Also, the proposed framework was employed to demon-
strate the tradeoffs between minimizing tip displacement
and acceleration. The cantilever beam subjected to a
dynamic stochastic tip force was again examined, where
the force was modeled as a band-limited white noise. For
a fixed cutoff frequency, the optimal topology depends on
the weighting parameter, α. For small values of α, the opti-
mal topology is close to the displacement-only optimization,
and for larger values of α, the topology is modified con-
siderably, with more mass being allocated in the top part
of the structure. The evolution of the optimal topologies
with increasing values of α is due to the magnitude of the
acceleration FRF that increases faster than the displace-
ment counterpart as the frequency increases. Moreover,
the static compliance increases and the first modal fre-
quency of the structure decreases with increasing α, both of
which indicate reductions in the acceleration are obtained
by making the overall system more flexible. In addition,
the Pareto optimal curve is introduced to explore the trade-
offs between reducing displacements and accelerations. For
small values of α, the displacement response is small but
the acceleration response is large, and as the parameter
α increases, the displacement response increases and the
acceleration response decreases. Also, as the cutoff fre-
quency increases, the acceleration response becomes more
important.

The results presented herein demonstrate the efficacy
of the proposed approach for multi-objective topology
optimization of stochastically excited structures. This
framework can also accommodate multi-objective problems
as well as multiple input-multiple output systems.

Appendix: Derivations

Performance functions

The details on how to obtain the matrix F for the per-
formance functions described in Section 2.4 are described
in this section. Initial notation is used for simplicity, the
indices take values from 1, 2, . . . , N unless noted other-
wise, and the subscript of the covariance of the response of
the augmented system is dropped for simplicity.
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1) Covariance of the various DOFs defined by the output
equation y = Caxa, therefore �y = Ca�xaC

T
a

J = Ca�xaC
T
a = CkiijCkj = CkiCkjij

= (CTC)ijij = (CT
a Ca) : �xa (46)

=⇒ F = (CT
a Ca) (47)

F is clearly symmetric positive semi-definite.
The following shows examples of performance

functions

J = E(u2
p) =⇒ Ca = (Cu)p,:

J = E((up − uq)2) =⇒ Ca = (Cu)p,: − (Cu)q,:
J = E(

∑
p u2

p) =⇒ Ca = ∑
p(Cu)p,:

J = E(u̇2
p) =⇒ Ca = (Cu̇)p,:

J = E((üabs
p )2) =⇒ Ca = (Cü)p,:

(48)

where Xp,: denotes the pth row of matrix X
2) expected static compliance

J = E(uTKu) = E(uiKijuj ) = KijE(uiuj )

= Kij (u)ij = K : �u

(49)

where �u = E(uuT) is the covariance of the dis-
placement, then �u = Cu�xaC

T
u , and consequently

J = Kij (CuCT
u )ij = Kij (Cu)ip()pq(Cu)jq

= (CT
u KCu)pq()pq = (CT

uKCu) : �xa

(50)

=⇒ F = CT
uKCu (51)

Because K is symmetric positive definite, F is clearly
symmetric positive semidefinite.

3) expected kinetic energy

J = E(u̇TMu̇) = E(u̇iMij u̇j ) = MijE(u̇i u̇j )

= Mij (u̇)ij = M : �u̇

(52)

where �u̇ = E(u̇u̇T) is the covariance of the velocity,
then �u̇ = Cu̇�xaC

T
u̇ , and consequently

J = Mij (Cu̇CT
u̇ )ij = Mij (Cu̇)ip()pq(Cu̇)jq

= (CT
u̇ MCu̇)pq()pq = (CT

u̇MCPu) : �xa

(53)

=⇒ F = CT
u̇MCPu (54)

Because M is symmetric positive semidefinite, F is
clearly symmetric positive semidefinite.

4) linear combination of previous performance functions
with non-negative coefficients, i.e., the performance
function is given by

J = αJ1 + βJ2 (55)

where J1 = F1 : �xa and J2 = F2 : �xa , and α and β

are non-negative real numbers. Then,

J = αF1 : �xa + βF2 : �xa = (αF1 + βF2) : �xa

(56)

=⇒ F = αF1 + βF2 (57)

Because in this case F is a linear combination of F in
the previous cases with non-negative coefficients, it is
clearly symmetric positive semidefinite.

Sensitivity analysis

The details on how to obtain the sensitivity of the perfor-
mance functions described in Section 3.3 are described in
this section. Initial notation is used and the subscript of
the covariance of the response of the augmented system
is dropped for simplicity, and the indices take values from
1, 2, . . . , N ′ unless noted otherwise. The sensitivity of the
performance function is given by

∂J

∂zn

= ∂φ

∂zn

+ ∂φ

∂ij

∂ij

∂zn

(58)

which requires the sensitivity of covariance matrix that is
implicitly defined by (21). Differentiation to this equation
yields the following equations

Aa
∂�

∂zn

+ ∂�

∂zn

AT
a + Qn = 0 where

Qn = ∂Aa

∂zn

� + �
∂AT

a

∂zn

+ ∂(B̃aB̃T
a )

∂zn

(59)

This means that the direct differentiation method requires
the solution of one Lyapunov equation for each element,
which makes the overall process a quartic order process.
Note also, that the Qn is not necessarily a low-rank
matrix product, and consequently, the more efficient method
described in Section 3.2 may not be applied.

An adjoint method is applied to make the process more
efficient, in terms of the Lagrangian function expressed in
(27), which is rewritten and reordered next in initial notation

L = J + �ij (Aa,ikkj + ikAa,jk + Qij )

= J + (Aa,ki�kj + �ikAa,kj )ij + �ijQij (60)

where Q = B̃aB̃T
a . Differentiating the previous equation

yields the following

∂L
∂zn

= ∂J

∂zn

+ ∂(Aa,ki�kj + �ikAa,kj )

∂zn

ij

+(Aa,ki�kj + �ikAa,kj )
∂ij

∂zn

+ �ij

∂Qij

∂zn

(61)
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Plugging (58) in the previous equation and reordering yields

∂L
∂zn

= ∂(Aa,ki�kj + �ikAa,kj )

∂zn

ij + �ij

∂Qij

∂zn

+
(

Aa,ki�kj +�ikAa,kj + ∂φ

∂ij

)
∂ij

∂zn

+ ∂φ

∂zn

(62)

To remove the dependence on the implicit derivative of the
covariance matrix, the first factor in the third term in the
RHS of the previous equation is defined as 0, that is

Aa,ki�kj + �ikAa,kj + ∂φ

∂ij

= 0 (63)

which written in abstract form yields (28). Therefore, the
gradient of the performance function is given by

∂J

∂zn

=
(

∂Aa,ik

∂zn

kj + ik

∂Aa,jk

∂zn

+ ∂Qij

∂zn

)
�ij + ∂φ

∂zn

(64)

and the previous equation written in abstract form gives
(29).

Then, the sensitivity of the performance function requires
the derivatives of the matrices Aa and Ba

∂Aa

∂zn

=
[

∂As
∂zn

∂Bs
∂zn

Cf

0Nf×2N 0Nf×Nf

]

,
∂Ba

∂zn

= 0 (65)

The derivative of state matrices is given by

∂As

∂zn

=
[

0N×N 0N×N

∂(−M−1K)
∂zn

∂(−M−1C)
∂zn

]

(66)

∂Bs

∂zn

=
[

0N×1
∂(M−1G)

∂zn

]

(67)

The matrices M and K are obtained using an assembly
process described by

M(z) =
Nel
A

n=1
ρ(zn)M0

n, K(z) =
Nel
A

n=1
E(zn)K0

n (68)

where M0
n and K0

n are the mass and stiffness matrices of
element n with solid material. The derivatives of them are
given by

∂M
∂zn

= ∂ρ

∂z
(zn)M0

n,
∂K
∂zn

= ∂E

∂z
(zn)K0

n (69)

The derivative of M−1 is

∂(M−1)

∂zn

= −M−1 ∂M
∂zn

M−1 (70)

which yields the following derivatives that appear in the
state matrices
∂(−M−1K)

∂zn
= M−1

(
∂M
∂zn

M−1K − ∂K
∂zn

)

∂(−M−1C)
∂zn

= M−1
(

∂M
∂zn

M−1C − ∂C
∂zn

)

∂(M−1G)
∂zn

= M−1
(
− ∂M

∂zn
M−1G + ∂G

∂zn

)
(71)

If Rayleigh damping is used, the damping matrix is equal to

C = α1M + α2K (72)

and consequently, the following derivative is given by

∂(−M−1C)

∂zn

= α2M−1
(

∂M
∂zn

M−1K − ∂K
∂zn

)
(73)
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