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Abstract
This work explores the use of solid-shell elements in the the framework of isogeometric shape optimization of shells. The
main difference of these elements with respect to pure shell ones is their volumetric nature which can provide recognized
benefits to analyze, for example, structures with non-linear behaviors. From the design point of view, we show that this
geometric representation of the thickness is also of great interest since it offers new possibilities: continuous sizing variations
can be imposed by modifying the distance between the control points of the outer surfaces. In other words, shape and
sizing optimization can be performed in an identical manner. Firstly, we carry out a range of numerical experiments in
order to carefully compare the results with the commonly adopted technique based on the Kirchhoff-Love formulation.
These studies reveal that both solid-shell and Kirchhoff-Love strategies lead to very similar optimal shapes. Then, we apply
a bi-step strategy to integrate shape and sizing optimization. We highlight the potential of the proposed approach on a
stiffened cylinder where the cross section along the stiffener is optimized leading to a final design with smooth thickness
variations. Finally, we combine the benefits of both Kirchhoff-Love and solid-shell formulations by setting up a multi-model
optimization process to efficiently design a roof.

Keywords Shape optimization · Sizing optimization · Isogeometric analysis · Stiffened structures · Solid-shell ·
Kirchhoff-Love

1 Introduction

Shape optimization is one of the great applications of
isogeometric analysis (IGA) since the latter integrates a
computer-aided design (CAD) and analysis (Hughes et al.
2005; Cottrell et al. 2009). Structural optimization requires
a suitable mix of an accurate geometric description and
an efficient analysis model. The classical finite element
method (FEM) faces few difficulties originated from the

geometric approximation inherent to the finite element
mesh. Two approaches can be distinguished in the FEM
framework: the CAD-based (Imam 1982; Braibant and
Fleury 1984; Ramm et al. 1993; Lund 1994) and the
FE-based (Bletzinger et al. 2010; Le et al. 2011; Firl
et al. 2013; Bletzinger 2014) approach. The CAD-based
approach uses a CAD model to define the shape design
and the corresponding shape parameters. The main problem
is that the finite element mesh has to be generated at
every design update. The FE-based approach consists in
using the spatial location of the nodes as the design
variables. It leads to a high number of design variables
and irregular shapes with possible distortion meshes.
Expensive mesh regularization techniques are performed
to overcome the shape design representation (Firl et al.
2013; Bletzinger 2014). Beyond this, the IGA concept
fills the needs of embedding efficient geometric and
analysis models by discretizing the structure with its
intrinsic, computer-aided geometric definition. This study
relies on a non-uniform rational B-spline (NURBS)-based
framework (Cohen et al. 2001; Piegl and Tiller 1997; Farin
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2002). In fact, before the development of IGA, NURBS
have been used in shape optimization due to their ability
to describe smooth design, and because they offer an
attractive way to impose the design updates (Imam 1982;
Braibant and Fleury 1984; Ramm et al. 1993; Lund 1994).
Finally, since CAD uses the boundary representation (B-
rep), IGA is especially suitable for analyzing structures
whose geometry is easily derived from a surface, as is the
case for shells (Kiendl et al. 2009; Benson et al. 2010;
Echter et al. 2013; Dornisch et al. 2013; Bouclier et al. 2013,
2015a, b; Caseiro et al. 2014, 2015; Cardoso and Cesar
De Sa 2014). Therefore, isogeometric shape optimization of
shells is a promising field whose effectiveness has already
been highlighted in some recent works (Nagy et al. 2013;
Kiendl et al. 2014; Bandara and Cirak 2017).

Isogeometric shape optimization has been successfully
applied to a wide range of applications (see for example Wall
et al. 2008; Qian 2010; Nagy et al. 2010, 2011, 2013;
Nguyen et al. 2012; Kiendl et al. 2014; Taheri and Has-
sani 2014; Fußeder et al. 2015; Wang and Turteltaub 2015;
Ding et al. 2016; Bandara and Cirak 2017; Herrema et al.
2017; Wang et al. 2017b, c). A general procedure, which
has been improved over the years (Daxini and Prajapati
2017), is commonly adopted. It is based on a multilevel
design concept which consists in choosing different refine-
ment level of the same NURBS-based geometry to define
both optimization and analysis spaces (Nagy et al. 2010,
2011, 2013; Kiendl et al. 2014; Wang and Turteltaub 2015).
Shape updates are represented by altering the spatial loca-
tion of the control points, and in some cases the weights,
on the coarse level. The finer level defines the analysis
model and is set to ensure good quality of the solution.
The optimization and analysis refinement levels are inde-
pendently chosen which provides a problem-adapted choice
of the spaces. Gradient-based optimization algorithms are
generally called upon to solve the isogeometric optimization
problems cited therein. In fact, isogeometric shape opti-
mization can provide accurate sensitivities, especially when
geometric properties such as curvature are involved. Several
works tackle the issue of suitable IGA-based sensitivities
which has led to improve the optimization procedures by
reducing the discretization-dependency during the shapes’
updates (Wang et al. 2017a; Kiendl et al. 2014). From this
overview, it can be seen that main researches focus on mod-
eling and optimization aspects leading today to an accurate
general procedure of resolution. However, discussion from
the analysis point of view is somehow missing. We believe
that this is a crucial issue especially regarding the shape
optimization of shells.

In the framework of isogeometric shape optimization of
shells, it seems that Kirchhoff-Love NURBS elements have
been mainly considered (Nagy et al. 2013; Kiendl et al.
2014; Bandara and Cirak 2017), while little research works

adopt a Reissner-Mindlin NURBS shell formulation (Kang
and Youn 2016). However, the influence of the shell
formulations on the optimization results is not well-known,
and, unfortunately, the choice of one shell formulation
rather than another is usually dictated by numerical needs.
Thus, the Kirchhoff-Love NURBS element is attractive
due to its low computational cost, but it should be borne
in mind that it is restricted to very thin shells. In order
to provide a broader framework that is also suitable for
thicker shells, we propose to consider in this work solid-
shell NURBS-based element as well. Indeed, we believe that
the solid-shell element can bring interesting features in the
shell shape optimization framework from both the analysis
and the design points of view. First and foremost, it has been
demonstrated that such elements are particularly adapted
to compute shells with variable shell thicknesses and with
complex behaviors (geometric, material, and contact non-
linearities) Bouclier et al. 2013, 2015a, b; Caseiro et al.
2014, 2015; Cardoso and Cesar De Sa 2014).

Then, regarding more precisely the design aspect, it
appears that the geometric representation of the thickness
offers new possibilities. Indeed, the volume representation
of the structure enables to optimize the thickness profile
continuously by modifying the control point coordinates.
In this respect, Ding et al. (2016) highlight the benefits
of making use of a NURBS solid element to accurately
represent and analyze the thickness variations encountered
in tailor rolled blanks. Thickness optimization becomes
thus natural with the solid-shell approach and its inherent
continuous transition between the thin and the thick
case appears attractive in a large range of applications.
For example, automotive industry already uses rolling
processes to enable weight reduction and a better use of
materials (Kopp et al. 2005; Merklein et al. 2014; Hirt
and Senge 2014). Blended composite laminate structures
also present continuous thickness transition which has
a fundamental role to play in this context (Adams
et al. 2004). Regarding the optimization, the number of
design variables is reduced in comparison to more classic
methods using discrete sizing parameters at the element
level. Applying the thickness variations with the NURBS
geometry tends to regularize the problem and it acts as
a filter. Therefore, no additional filtering techniques are
required to avoid undesired phenomenon as, for example,
checkerboard pattern experienced with discrete thickness
approaches (Nha et al. 1998; Lam et al. 2000). The benefits
of solid shells must, however, be qualified: the automatic
generation of analysis-suitable volumetric NURBS models
is still a challenging task (Liu et al. 2014; Akhras et al.
2017). All the same, for slender structures, the task is
affordable since the geometry is derived from a surface.

Therefore, this study has two main objectives. Firstly,
we seek to extend the existing methodology to be able to
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consider solid-shell elements. Comparisons with Kirchhoff-
Love elements are performed in order to validate the
proposed solid-shell strategy. Then, we study the benefits
of the solid-shell formulation for the shape optimization
of variable thickness structures and its interest in carrying
out continuous sizing optimization of shells. Hence, this
paper is organized as follows. In Section 2, we review
the concept of isogeometric shape optimization, and we
give practical aspects on the design parametrization of
shells. In Section 3, we remind the basics of the solid-
shell and the Kirchhoff-Love NURBS formulations and
specify their treatment to be used for isogeometric shape
optimization. Section 4 provides optimization examples on
which comparisons between the optimal results obtained
with both shell formulations are made. In Section 5,
we apply the proposed solid-shell strategy for thickness
optimization of shells. We perform an integrated shape
and sizing optimization on a stiffened cylinder. Then, we
combine both benefits of Kirchhoff-Love and solid shells
into a multi-model approach. The global optimal shape is
obtained through a first optimization by using Kirchhoff-
Love shells. Then, the solid-shell formulation is used to
further improve the structures by optimizing the thickness
variation. Finally, Section 6 concludes on this work by
summarizing our most important points and motivating
future research in this direction.

2 Isogeometric shape optimization of shells

The framework of this study draws on research dealing with
isogeometric shape optimization (see for example Kiendl et
al. 2014; Fußeder et al. 2015; Nagy et al. 2013; Bandara
and Cirak 2017). This section reviews the principal insights
of the approach by highlighting main theoretical points
and also practical aspects. In particular, we discuss the
multilevel optimization process and the definition of design
variations in the context of isogeometric shape optimization
of shells.

2.1 NURBS and isogeometric analysis

NURBS are a generalization of B-splines and standard in
CAD and computer graphics for geometry modeling (see
Cohen et al. 2001; Piegl and Tiller 1997; Farin 2002). Only
the fundamentals are given in the following. For futher
details, the interested read is referred to the references cited
therein. A general expression for a NURBS geometry with
parameter ξ ∈ R

d (d being the dimension of the space) is
written as

S(ξ) =
n∑

I=1

RI (ξ)PI , (1)

where n is the number of control points and PI and RI are
the NURBS basis functions. The multivariate NURBS basis
functions RI are obtained as weighted B-splines NI by the
following rational definition:

RI (ξ) = NI (ξ)wI

W(ξ)
, with W(ξ) =

n∑

k=1

Nk(ξ)wk, (2)

where wI is the weight of the I th control point. The
multivariate B-spline functions NI are defined as the tensor
product of univariate B-spline functions. Finally, the 1D B-
spline basis functions are piecewise polynomials defined by
the polynomial degree p and a set of parametric coordinates
ξi collected into a knot vector �. These B-spline basis
functions are obtained recursively using the Cox-de Boor
recursion formula (see Cohen et al. 2001). The concept
behind IGA (Hughes et al. 2005; Cottrell et al. 2009)
consists in discretizing the displacement field using the
NURBS parametrization already introduced to describe the
geometry:

u(ξ) =
n∑

I=1

RI (ξ)UI , (3)

where UI is the displacement corresponding to the I th

control point. By substituting the NURBS approximations
in the weak formulation of a boundary value problem,
a linear system to be solved is obtained as in standard
FEM.

An interesting feature of NURBS is their high degree
of continuity. If m is the multiplicity of a given knot, the
functions are Cp−m continuous at that location. This is
attractive from both design and analysis points of view. In
particular, it allows to define smooth free-form shapes with
high continuity. Numerical errors in the analysis are reduced
because the geometry can be exactly preserved. The higher
continuity within a NURBS patch increases the accuracy
of the analysis in comparison to standard FEM where C0

regularity is encountered. Furthermore, NURBS present
efficient refinement procedures which allows to enhance
the design space without changing the geometry nor the
parametrization. In particular, k-refinement, in which order
and continuity of the basis functions are simultaneously
increased, can be performed. In practice and especially in
the structural optimization framework, it is efficient to use
the matrix representation of refinement methods of NURBS.
For more details on refinement strategies of NURBS and
their matrix representation, reference is made to Piegl and
Tiller (1997) and Lee and Park (2002).
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2.2 Optimization flowchart

Figure 1 describes the main steps of the optimization
process. It gets an initial CAD model as a main input.
CAD model has here to be understood as an analysis-
suitable NURBS geometry. As an output, the optimal shape
is given, and an interesting point to notice is that this shape
is a NURBS geometry too. Therefore, the result is directly
usable by designers and, thus, for production. There is no
need to re-design the final geometry in a CAD environment
as it would be the case with FE-based optimization.

The optimal NURBS geometry is obtained from an
iterative process with three main steps. Each iteration
consists in:

1. Updating the current shape in a hopefully better one
2. Running the analysis for this new geometry and then

inferring mechanical and/or geometrical properties of
interest

3. Computing new design variations to further improve the
structure

A more detailed description of each step of the process is
given in the following paragraphs.

2.3 Multilevel design

A major asset of isogeometric shape optimization is
the possibility to properly choose both optimization and
analysis spaces (Qian 2010; Nagy et al. 2010, 2011, 2013;

Nguyen et al. 2012; Kiendl et al. 2014; Fußeder et al.
2015; Wang and Turteltaub 2015; Herrema et al. 2017;
Wang et al. 2017b, c). A fine NURBS discretization is
introduced as the analysis model in order to ensure good
quality computations. Conversely, the optimization model
is defined to impose suitable shape variations. Both spaces
describe the exact same geometry and are initially obtained
through different refinement levels of the CAD model as
shown in Fig. 2.

It is clear that the finer the analysis model, the better
the results. The choice of the refinement level used for
the analysis model is principally dictated by the need
for realistic computational cost. When it comes to the
optimization model, the situation is quite different. In
this case, the choice of the refinement level has an
impact on the complexity of the optimal shape reached. A
coarse optimization model may provide a simpler optimal
shape than a fine optimization model. Therefore, few
questions can be asked in order to accurately define
the refinement levels for the analysis and optimization
models:

• How different from the initial geometry the optimal
shape is allowed to be?

• Depending on the intended level of shape variation
complexity, how fine should the analysis model be to
ensure reliable results?

These points are illustrated and discussed in more detail in
Section 4 of this paper.

Fig. 1 Isogeometric shape optimization flowchart: overview of the main steps of the process
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Fig. 2 Multilevel design
approach: optimization and
analysis spaces describe the
exact same geometry and are
initially obtained through
different refinement levels of the
CAD model (above, NURBS
elements; below, control points)

2.4 Design variables

The isogeometric framework provides a proper and accurate
way to vary the geometry. It has long been established that
shape control of NURBS is very comfortable and leads to
smooth optimal design (Imam 1982; Braibant and Fleury
1984; Ramm et al. 1993). Indeed, a straightforward and
natural way of modifying the shape of the structure is
to move the control points. NURBS also offer an other
interesting way to apply shape variation by modifying the
control point weights, but this point is not investigated here.
As pointed out by Kiendl et al. (2014), for the optimization
of free-form shapes, it is generally sufficient to use only the
control point coordinates. Nevertheless, note that taking the
weights as design variables may improve the optimal shape
by adding proper shape adjustments if the optimization is
performed on a very coarse NURBS model (Wall et al.
2008; Nagy et al. 2010, 2013; Qian 2010).

Although attractive, taking the control point coordinates
as design variables requires attention. Problems are similar

to those encountered with FE-based optimization where the
FE nodal points are directly used as design variables. In
fact, attention must be paid to mesh distortion in order to
avoid local non-injectivities due to fold-overs. If the control
points are allowed to independently move in every spatial
direction then the optimization process constantly needs
to check the mesh quality and often requires cumbersome
mesh regularization techniques (Bletzinger et al. 2010; Choi
and Cho 2015; Le et al. 2011; Nguyen et al. 2012; Firl
et al. 2013). In the context of isogeometric optimization,
links between design variables and move directions are
usually set up to avoid these challenges (Lee and Hinton
2000; Wall et al. 2008; Kiendl et al. 2014; Taheri and
Hassani 2014; Wang et al. 2017b, c). Figure 3 shows this
idea in the case of a hemisphere. By letting only each
design control point moving in the radial direction, we avoid
mesh regularity problems. Moreover, control points located
on patch boundaries are often (but not always) coupled
with their neighbors to ensure a G1 geometric continuity
between patches (Kiendl et al. 2009). This prevents the

Fig. 3 Illustration of the design variations of the hemisphere. Middle control points move in radial directions (top) and boundary control points
are coupled with their neighbors to ensure G1-continuity between patches (bottom)
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emergence of kinks during the optimization and it finally
leads to smoother optimal shapes. Linking design variables
may also be relevant to preserve initial shape properties as
reflectional, rotational, and translational symmetries. It also
guarantees a reduction in the number of design variables
which leads to lower computational cost and again smoother
optimal shapes.

2.5 Shape gradient and normalization

A typical shape optimization problem can be formulated as
the minimization of a given objective function carried out
over a set of admissible domains. In this work, we limit
ourselves to the case of minimizing the compliance. Other
objective functions could have been considered as the mass,
the displacement of a given material point, the maximal
stress, the critical buckling load, and so on. The design space
is limited by lower bound sl and upper bound su which
surround the ns design variables collected in vector s =
(s1, s2, . . . , sns ). This unconstrained optimization problem
can be defined mathematically as

min
s∈�

f (s) where: � = {
s ∈ R

ns | sl ≤ s ≤ su
}

f (s) = 1
2 F · U = 1

2 U · K · U. (4)

F denotes the force vector, K the stiffness matrix, and
U the displacement vector which satisfies the equilibrium
equations. Moreover, note that constraints, as for example
a maximal mass, can be added to this optimization prob-
lem. An illustration regarding a constrained optimization
problem is provided in Section 5.1.

In order to use a gradient-based optimization algorithm,
the derivatives of the compliance with respect to the design
variables need to be computed. A simple chain rule leads
to the following result (see, e.g., Nagy et al. 2010, 2013;
Kiendl et al. 2014 for more details):

df

ds
= U · dF

ds
− 1

2
U · dK

ds
· U. (5)

The derivatives of the force vector and stiffness matrix
with respect to the design variables are approximated by
first-order finite differences

dF
ds

≈ F(s + �s) − F(s)
�s

,
dK

ds
≈ K(s + �s) − K(s)

�s
. (6)

Combining (6) with (5) gives semi-analytical sensitivities
which are easy to compute and offer practical advan-
tages (Lund 1994; Kiendl et al. 2014). In fact, the com-
putation of semi-analytical sensitivities does not require
more development than those necessary to build the stiff-
ness matrix and the force vector. In addition, whatever the
shell formulation, computation of the sensitivities is identi-
cal. Note that analytical sensitivities may also be available,

depending on the shell formulation, but require more numer-
ical development (Cho and Ha 2009; Qian 2010; Nagy et al.
2013; Taheri and Hassani 2014; Ha 2015).

In practice, the derivatives of the compliance with respect
to the design variables are not directly used as the search
direction. Indeed, it has been shown (Kiendl et al. 2014;
Wang et al. 2017a) that normalization approaches help to
reduce discretization-dependency. As a result, we use here
the diagonally lumped mapping matrix normalization, also
called sensitivity weighting, which leads to the following
search directions:

di = − 1

Mii

df

dsi
, with Mii =

∑

k∈�i

(∫

D

Rk dD

)
. (7)

Geometric factor Mii can be interpreted as the fraction
of surface or volume linked to the ith design variable.
It integrates in the physical space D all NURBS basis
functions related to the ith design variable (�i lists the
indexes of the control points governed by the ith design
variable). Finally, this normalized semi-analytical gradient
can be used in gradient-based optimization algorithms as,
for example, those provided in the SciPy package (Jones
et al. 2001). In this work, the SLSQP method is used (Kraft
1988).

3 Isogeometric shell analysis

In this work, two isogeometric shell formulations are
envisaged to perform the optimization. On the one hand, we
extend the shell shape optimization framework in order to
be able to use solid-shell elements for the modeling. On the
other hand, we consider the already established optimization
process based on the Kirchhoff-Love elements in order
to compare its results with those provided by the solid-
shell element-based procedure. The two shell formulations,
along with their treatment to be used for isogeometric shape
optimization, are introduced in this section.

3.1 NURBS-based solid-shell element

3.1.1 Basics

The solid-shell NURBS element used in this work is the
classical one introduced by Bouclier et al. (2013). It is based
on a 3D continuum mechanics-type formulation. The idea
is to take a 3D solid continuum element and, in order to
limit the computational costs, discretize the shell using a
single layer of elements through the thickness. This element
is used in its raw form and no particular treatment (strain-
projection, reduced integration, etc.) is put in place here.
To alleviate locking, the basic strategy of increasing the
polynomial degree of the analysis model is performed.



Isogeometric sizing and shape optimization of thin structures... 773

Despite the simplicity of the formulation, this element
has shown similar behaviors to those of Kirchhoff-Love
or of Reissner-Mindlin NURBS shell elements through
several shell benchmarks (Bouclier et al. 2013; Benson
et al. 2010; Kiendl et al. 2009; Belytschko et al. 1985).
Other efficient NURBS-based solid-shell elements have
been developed to overcome locking phenomena (Bouclier
et al. 2013; Caseiro et al. 2014) and to analyze structures
with geometric (Bouclier et al. 2015b; Cardoso and Cesar
De Sa 2014) and material (Bouclier et al. 2015a; Caseiro
et al. 2015) non-linearities.

Since based on classical 3D continuum elements, the
standard solid-shell formulation is well-known. We only
remind the basics in order to underline differences with the
Kirchhoff-Love NURBS shell formulation. No particular
kinematic assumptions are made on the displacement
field u. Therefore, strain and stress fields have six
components using Voigt notation. In the context of small
perturbations, the components of the infinitesimal strain
tensor ε are

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
∀ i, j = {1, . . . , 3}2, (8)

where ui denotes the ith component of the displacement
at point M located at (x1, x2, x3) in the Cartesian frame.
In IGA, the displacement field is approximated using the
NURBS functions which enables to build the geometry
of the structure. This implies an approximation εh of the
strains as follows:

εh =
∑

A

BAUA with BA =

⎡

⎢⎢⎢⎢⎢⎢⎣

RA,1 0 0
0 RA,2 0
0 0 RA,3

0 RA,3 RA,2

RA,3 0 RA,1

RA,2 RA,1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(9)

where UA is the vector of the control variables at control
point A and RA,i denotes the derivative of the NURBS
function at control point A with respect to coordinate xi .

Introducing the approximation fields into the classical weak
formulation leads to the following linear system to be
solved:

K · U = F where Kab =
∫

D

[Ba · C · Bb] dV,

Fa =
∫

D

Raf dV +
∫

�F

Ra F dγ,

(10)

and with C the Hooke tensor, f as body force in D, and F

as surface load over the Neumann boundary �F .
It has been shown that for solid-shell element, it is

unnecessary to increase the degree of approximation of the
functions through the thickness beyond 2. When speaking
of solid-shell elements of degree p, the reader should
understand that degree of p is used in the main directions
(commonly referred to as ξ and η) and that degree 2 is
selected through the thickness of the shell. Finally, this
basic solid-shell NURBS element is nothing other than
the classical IGA solid element. Consequently, being able
to perform shape optimization of shell with this element
offers another attractive interest: with the simplest IGA
code in hand, one can run optimization without any further
development.

3.1.2 Imposing shape variations

With solid-shell elements, the structure is described by
its volume and not by its mid-surface. Thus, the standard
strategy depicted in Section 2.4 needs to be further
improved: the shape control has to deal with volume. A
solid-shell is characterized by two outer skins. A natural
idea is to define one of the outer skins as the master surface
and the other as the slave surface. This is carried out in this
work in two steps. A first set of design variables updates the
master surface as it is commonly done with shell structure
and as already discussed. Then, a second set of design
variables moves the slave surface starting from the master
surface. This idea is illustrated in Fig. 4 which shows the
shape parametrization of a tube.

(a) (b)

Fig. 4 Definition of the design variables in the context of solid-shell isogeometric elements. a A first set of design variables updates the master
surface and b the slave surface follows the shape variation through a second set of variables
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Each control point from the master surface has its
equivalent on the slave surface. If a variable var1 moves
the master point from initial position P0

m to Pm in direction
n1 and a second variable var2 further updates the neighbor
slave point form P0

s to Ps in direction n2, then the design
update follows

Pm = P0
m + var1 n1, [step1]

Ps = P0
s + var1 n1 + var2 n2. [step2] (11)

By setting additional bounds to var2, we avoid undesirable
shapes as for example overlapping of the outer skins.
Generally, in shape optimization of shells, the thickness is
kept constant. For this purpose, we apply a simple approach
where the second set of design variables is not included
in the optimization. In other words, same shape variations
are applied on both outer skins. If the optimization model
has a higher degree through the thickness than 1, then the
intermediate control points are interpolated between both
outer skins. Finally, the use of solid-shell NURBS element
offers the possibility to optimize through the thickness. The
thickness optimization issue seems to be promising (Ding
et al. 2016), and it is investigated in the present work (see
Section 5).

3.2 Kirchhoff-Love NURBS shell formulation

3.2.1 Basics

At the beginning of NURBS-based shell formulations, a
structural model approach was firstly developed (see, e.g.,
the initial works of Kiendl et al. 2009 on the Kirchhoff-Love
8 theory and Benson et al. 2010 on the Reissner-Mindlin
theory, and then, more recently, Echter et al. 2013 and
Dornisch et al. 2013). The structural model approach is
based on a discretization of the mean surface alone. It leads
to fewer degrees of freedom per element in comparison
with solid-shell element. This is particularly true with the
Kirchhoff-Love formulation where no rotational degrees
of freedom are needed. In return, Kirchhoff-Love shells
require C1 continuity but thanks to NURBS surfaces, this
condition is easily satisfied. IGA based on NURBS surfaces
offers Cp−1 continuity throughout the element. Finally,
one should keep in mind that Kirchhof-Love shells neglect
transverse shear deformations, and thus they are accurate for
analyzing thin structures only.

In the Kirchhoff-Love NURBS shell formulation, the
structure is defined by its mid-surface D̄ and its thickness t .
In the IGA concept, the mid-surface is described by a
NURBS function S providing at each material point x ∈ D

a straightforward parametrization in terms of a system of
curvilinear coordinates as

x(ξ, η, ζ ) = S(ξ, η) + ζa3(ξ, η), − t

2
≤ ζ ≤ t

2
. (12)

The unit normal a3 and the standard covariant vectors of the
mid-surface aα are given by

a1 = ∂S
∂ξ

= S,ξ , a2 = ∂S
∂η

= S,η , a3 = a1 × a2

|a1 × a2| .

(13)

The displacement at each material point on the whole
structure is directly linked to the displacement on the mid-
surface ū. This is the result of the well-known Kirchhoff
kinematic assumptions: straight lines normal to the mid-
surface are characterized by rigid-body displacements and
remain normal to the mid-surface after deformation. It
follows that the linearized strain tensor of the shell is found
to be of the form

εαβ = eαβ + ζκαβ, (14)

where membrane strains e and bending strains κ are given
by

eαβ = 1

2

(
ū,α · aβ + ū,β · aα

)
, (15)

καβ = −ū,αβ · a3 (16)

+ 1

|a1 × a2|
[
ū,ξ · (

aα,β × a2
) + ū,η · (

a1 × aα,β

)]

+ a3 · aα,β

|a1 × a2|
[
ū,ξ · (a2 × a3) + ū,η · (a3 × a1)

]
.

Greek indices take the values 1 and 2. In fact, the
kinematic assumptions vanish the transverse shear strains
εα3 = 0. As for the mid-surface, the displacement
field is approximated using the NURBS basis functions.
Introducing the approximation ūh into (15) and (16) gives
the membrane and bending strains as follows:

e(ūh) =
n∑

i=1

Bm
i Ūi , and κ(ūh) =

n∑

i=1

B
f
i Ūi ,

(17)

where the matrices Bm
i and B

f
i can be found in Appendix

A.1. The equilibrium configurations of the shell follow from
the principle of minimum potential energy which, once
expressed in weak form, leads to the linear system

K̄ · Ū = F̄ where:

K̄ab =
∫

D̄

t Bm
a · H · Bm

b + t3

12 B
f
a · H · Bf

b dA,

F̄a =
∫

D̄

Ra p dA +
∫

�t

Ra t dγ, (18)

and with p as distributed loads per unit area of D̄, t as
axial forces per unit length of border �t , and H the material
tensor describing the linear elastic behavior of the shell. Its
expression is given in Appendix A.2.
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3.2.2 Multi-patch analysis

By comparing the basic solid-shell NURBS element with
the Kirchhoff-Love NURBS shell element, it is clear that
the first is simpler. In addition to this practical aspect,
Kirchhoff-Love element faces some difficulties when it
comes to enforce the G1-continuity between patches, fix the
angle between surface folds, enforce symmetry conditions,
and prescribe rotational Dirichlet boundary conditions.
Computational formulations to overcome these difficulties
are usually either expensive or difficult to implement and
this issue is still of interest (Apostolatos et al. 2015; Guo
et al. 2017; Duong et al. 2017; Coox et al. 2017). In
this paper, the bending-strip approach (Kiendl et al. 2010;
Goyal and Simeon 2017) is used to handle multi-patch
discretization and thus, in particular, to perform the coupling
between stiffeners and panels when a stiffened structure
is investigated. The idea is to introduce additional patches
of fictitious material, namely the bending strips, where the
patches are joined with C0 continuity. The material has zero
membrane stiffness and non-zero bending stiffness only
in the direction transverse to the strip. In practice, adding
the bending strips consists in adding terms to the global
stiffness matrix introduced in (18). The stiffness matrix
of a bending strip is the same as the one of a classical
Kirchhoff-Love NURBS patch, except the material tensors:

bnd-strip
ab

D̄
t m

a
m
b

t3
12

f
a

bnd-strip f
b dA

The membrane material tensor is null and the bending
material tensor Hbnd-strip is given by

Hbnd-strip = PT · Ĥbnd-strip ·P, Ĥbnd-strip =
⎡

⎣
E 0 0
0 0 0
0 0 0

⎤

⎦ (19)

and with E as the directional bending stiffness. Matrix
Ĥbnd-strip describes the stress-strain relationship in the local
coordinate system defined by

e1 = a1

|a1| , e2 = a2 − (a2 · e1) e1

|a2 − (a2 · e1) e1| , e3 = a3.

(20)

Finally, matrix P maps the components of the strain tensor
with respect to the contravariant basis vectors to those with
respect to local orthonormal basis ei .

4 Investigation on preliminary optimization
examples

4.1 Description of the numerical examples

In order to investigate the use of isogeometric solid-shell
elements for shape optimization of shell structures, two
optimization examples depicted in Fig. 5 are first studied.
The motivation is to ensure compatibility of solid-shell
NURBS elements with isogeometric shape optimization.
The effectiveness of the isogeometric Kirchhoff-Love shell
formulation for shape optimization of thin structures no
longer needs to be proven. Therefore, there is a great
interest in comparing the optimum results obtained by solid-
shell elements to those obtained by the Kirchhoff-Love
formulation.

Both the pinched cylinder and the pinched hemisphere
are known from the shell obstacle course (Belytschko et al.
1985). These optimization problems are non-convex and are
numerically challenging. In fact, the pinched hemisphere
and the pinched cylinder are commonly studied to test
high-efficient shell elements. The hemisphere is challenging
in terms of locking: it exhibits almost no membrane
strains. The pinched cylinder is even more severe. The

(a) (b)

Fig. 5 Numerical examples to investigate the use of isogeometric solid-shell elements for shape optimization of shell structures. a Pinched
cylinder. b Pinched hemisphere
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loading and the displacement boundary conditions lead to
a highly localized strain state. The local loading associated
with the curved geometry makes the problem challenging
numerically in terms of both locking and representation
of complex membrane states. Optimizing this set of
problems automatically requires accurate analysis results.
Approximation error of sensitivity analysis can lead to
different local minimum and unfortunately lead to poor
optimal geometry (Kiendl et al. 2014).

4.2 Pinched cylinder

We first deal with the test case of the pinched cylinder
(see Fig. 5a). The optimization model is chosen relatively
coarse in order to keep the shape simple. Because of the
complexity of the strain state generated by the local loading,
a fine optimization model would lead to a too complex final
shape. Due to the symmetry of the problem, one eighth of
the cylinder is considered; hence, only one NURBS patch is
needed. In the framework of the results presented in Fig. 6,
the optimization model is built with uniform knot vectors
which discretize the patch in three and four elements in the
circumferential and the axial direction respectively. Degree
2 is chosen in both directions. With such an optimization
model in hand, six design variables update the geometry
as depicted in Fig. 6a. Variables named xi move some
control points in the x-direction, whereas variables denoted
ri move some control points in the radial direction. At the
patch boundaries, groups of two or four control points are
set in order to preserve a smooth G1-continuous shape as
explained in Fig. 3. All variables are constrained by bounds
of [0, 60]. Analysis is performed with cubic elements.
Refinement level of 4 and 3 are set in the circumferential
and the axial direction respectively, leading to an analysis
model of 1536 elements.

Table 1 Optimal values of the design variables for the shape
optimization of the pinched cylinder

x1 x2 x3 r1 r2 r3

Kirchhoff-Love 60.0 22.65 7.52 0.0 1.74 0.23

Solid-shell 60.0 23.31 7.58 0.0 1.72 0.51

Relative gap [%] 0.0 1.10 0.10 0.0 0.02 0.47

We run the shape optimization with Kirchhoff-Love
NURBS shell elements and with Solid-shell NURBS
elements. Final shapes are identical as shown in Fig. 6.
The difference between both results is not visible when
looking at the design modifications. To further compare the
results, the distance between the mid-surfaces is presented.
The maximum gap between the optimal surface obtained by
Kirchhoff-Love elements and the final mid-surface obtained
by Solid-shell elements is about 0.5 which is, by comparison
with the range of allowed design variation, very small. The
maximum gap normalized by 60 is lower than 1%. Table 1
gives the optimal values of the design variables for both
shell formulations. Results are similar and the relative gap
(defined as |sKL − sSolid|/60) for each variable does not
exceed 1%.

The small difference in final design when using either
Kirchhoff-Love elements or Solid-shell elements may be a
result of the difference in converged solutions. It has been
shown that the converged solution using NURBS solid-shell
elements for the pinched cylinder problem is a little softer
than the reference solution (Bouclier et al. 2013; Hughes
et al. 2005). This little difference in solution may influence
the shape updates and finally lead to a slightly different
optimal design. Beyond that, the shape optimization of the
pinched cylinder reveals very similar behavior for both
shell formulations. During the optimization process, the

(a) (b) (c)

Fig. 6 Shape optimization of the pinched cylinder. a Six design variables update the optimization model. b Final shapes obtained by both shell
formulations. c Comparison of the final shapes depicted as the distance between their mid-surface
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(a) (b) (c)

Fig. 7 Shape optimization of the pinched hemisphere. a Twenty-five design variables update the optimization model. b Final shapes obtained by
both shell formulations. c Comparison of the final shapes depicted as the distance between their mid-surface

shape updates are similar and it has been observed that the
convergence is reached after the same amount of iterations.

4.3 Pinched hemisphere

The second example of the pinched hemisphere helps us to
further investigate the use of solid-shell NURBS elements
for shape optimization of shells. Note that the same test
case has been conducted by Kiendl et al. (2014) in the
context of isogeometric shape optimization. The symmetry
of the problem allows to consider only one quarter of
the structure. Hence, only one NURBS patch is needed.
The optimization model is built with uniform knot vectors
which discretize the geometry in 5 quadratic elements per
parametric direction. Twenty-five design variables depicted
in Fig. 7a are defined in order to prescribe the shape
modifications in radial direction. Once again, the boundary
control points are coupled in order to preserve a smooth G1-
continuous shape. All variables are constrained by bounds

of [−1, 1]. Further k-refinement is applied to perform
the analysis, leading to an analysis model with 400 cubic
elements. Tests showed that this refinement level was
adequate to converge to the good-looking optimal design.

Once again, we run the optimization with the solid-
shell NURBS elements and compare the results with those
provided by Kirchhoff-Love NURBS elements. Figure 7b
presents the optimal design obtained by both formulations.
Despite the complexity of this optimization problem, the
final shapes are very similar: no visible difference can be
observed. Similar hollows and bumps are located on both
optimal designs. To compare more in detail the results,
the distance between the two mid-surfaces is computed
(see Fig. 7c). The maximum gap in shape is about
6.34 × 10−3 which is very small in comparison with the
allowed range of design modification. Normalized by 2,
the maximum relative distance between the optimal mid-
surfaces is lower than 0.5%. Final values of the cost function
also demonstrate the similarity between the optimal design

Fig. 8 History of compliance
and shape during the
optimization of the pinched
hemisphere when using
Kirchhoff-Love NURBS shell
elements and NURBS-based
solid-shell elements
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obtained with the solid-shell NURBS elements and the one
obtained with the Kirchhoff-Love NURBS elements. The
final compliance is 1.34 × 10−3 for the solid-shell case
and 1.30 × 10−3 for the Kirchhoff-Love case. However, the
final shape obtained by Kirchhoff-Love NURBS elements
is not better. Note that in order to correctly compare the
final shapes, the compliance has to be evaluated on the
same analysis model (Kiendl et al. 2014). Strain energy
is evaluated for the optimized shapes in a post-processing
step using a fine mesh with quartic Kirchhoff-Love NURBS
elements. This post-processing procedure reveals that both
shapes give a final compliance of 1.34×10−3 which is 1.5%
of the initial value 9.24 × 10−2.

Beyond the similarity in the final shape, the whole
optimization histories look alike. Figure 8 shows the
convergence of the objective function in both cases either
with solid-shell NURBS elements or with Kirchhoff-Love
NURBS elements. Optimization processes converge at the
same speed and stop after an equivalent number of iterations
within a given tolerance on function value. Some of the
intermediary shapes are also shown in Fig. 8. Shape updates
are very similar and the different hollows and bumps appear
at the same iteration during the optimization.

5 Application to shape optimization
of structures with variable thickness

The volume representation of the structure offers the pos-
sibility to optimize the thickness profile continuously.
This interesting feature is investigated through two exam-
ples. First, simultaneous shape and thickness optimiza-
tion is performed on a stiffened cylinder. Secondly, we
present a multi-model approach to combine benefits of both
Kirchhoff-Love and solid-shell formulations.

Fig. 9 The stiffened cylinder. Two stiffeners are added to the initial
pinched cylinder test case. The left side depicts a global 3D view of
the problem. The right side shows a top view of one quarter of the
stiffener and its cross section for several angles (notes: thickness is
magnified by a factor of 4 for better visualization; this detailed view
of the stiffener will be useful to depict the optimal designs in Fig. 11)

(a) Height modification:

(b) Thickness modification:

Fig. 10 Shape and sizing optimization with solid-shell NURBS-based
elements. The cross section of the stiffener can be geometrically
parametrized and thus optimized. Here, for each section of control
points, two variables var1 (a) and var2 (b) impose local design
modifications in the height and in the thickness directions respectively

5.1 Stiffened cylinder: shape and sizing optimization

The test case of the stiffened cylinder on which both sizing
and shape optimization will be performed is derived from
the already discussed pinched cylinder problem (see Figs. 5
and 6). Two stiffeners are added to the cylinder as depicted
on Fig. 9. The stiffeners are located at heights 150 and
450. Initially, these stiffeners have a constant rectangular
cross section of height 30 and thickness 3. The other
geometric and material parameters are detailed in Fig. 5.
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Fig. 11 Optimization results of
the stiffened cylinder. a Final
shape when only the stiffener
height is modified. b Final shape
when both height and thickness
are optimized. From left to right
are depicted a general 3D view
of the final shapes, a top view
and several cross sections of the
final stiffeners, and the
displacement fields for these
two optimized designs
(annotations on Fig. 9 can be
helpful to understand the
detailed views of the stiffener)

(a) Shape only

(b) Shape and sizing optimization

The optimization problem consists in modifying the cross
section along the stiffeners in order to improve the global
stiffness of the structure. A volume constrain is set in order
to keep the final volume lower or equal to the initial one V0.
Due to the symmetry of the problem, only an eighth of the
structure is considered.

The optimization procedure is done here in two steps.
Height and thickness of the stiffener are optimized one-
by-one. Since the thickness is much less sensitive than the
height, combining both quantities in a single optimization
problem may lead to mostly modify the height of the
stiffener. From here on, the shape step denotes the change in
height and the sizing step denotes the change in thickness.
A first set of design variables h updates the height of
the stiffener as depicted on Fig. 10a. A second set of
design variables t modifies the thickness as shown in
Fig. 10b. Obviously, the design parametrization is not
unique. Depending on how complex the final shape is
allowed to be, a simpler or finer parametrization can be
chosen. However, this example shows that using solid-
shell NURBS-based elements offers an interesting way to
optimize through the thickness. Smooth and continuous
thickness variations can be imposed.

In this work, the optimization problems behind the shape
step and the sizing step are different. The shape step consists
in minimizing the compliance C with a maximal volume
constrain. An additional bound is set in order to limit the
height of the stiffener h in the range [25, 100]. The sizing
step minimizes the volume V under the constrain that the

final compliance is lower or equal to the one obtained from
the shape step C∗. The design space for the thickness t

is limited to [0.5, 3.0]. The global optimization process is
made of sequences of a shape step followed by a sizing step.
The fixed point process iterates until the global convergence
is reached; that is, convergence on the design variables, the
compliance, and the volume. The kth sequence takes the
following form:

Minimize C

such that 25 h 100
V V0

hk, t k hk 1, t k

C*

1. Shape Step

(21)

Minimize V

such that 0.5 t 3.0
C C*

hk 1, t k 1hk 1, t k

C*

2. Sizing Step

(22)
Both optimization problems are complementary. The shape
step will use all the available material in order to minimize
the compliance. The sizing step rearranges the material
distribution through the thickness in order to save material.
Then, this saving material can be further used in the shape
step in order to continue minimizing the compliance. This
sequential optimization strategy is sensitive to the initial
starting point and may lead to local optimum. The height
and the thickness design variables are decoupled. Thus, to
ensure a good quality result, we performed a multi-start



780 T. Hirschler et al.

algorithm. On top of that, we notice that multidisciplinary
optimization strategies could be of interest to properly solve
this problem and we refer the interested reader to Balesdent
et al. (2012) and Martins and Lambe (2013) for futher
details regarding this point.

The results of this study are given in Fig. 11. More
precisely, Fig. 11a presents the optimal design when only
the height of the stiffener is modified and Fig. 11b depicts
the final design when both shape and sizing optimizations
are performed. Optimizing through the thickness leads to
a better design in the sense of the compliance. It helps to
make a better use of the material volume. By reducing the
thickness in some locations, the height of the stiffener can
be increased in others. The initial compliance C0 in the
case of a straight stiffener is about 1.73e-06. When only
shape optimization is employed, the final compliance C1 is
about 1.68e-06. The final compliance C2 when both shape
and sizing optimizations are performed is about 1.64e-06.
The compliance gain can be defined as Gi = 1 − Ci/C0.
Therefore, the compliance gain G2 when adding the sizing
optimization is almost twice the compliance gain G1 when
only the height of the stiffener is taken into the optimization
process. Figure 12 depicts the optimization history. It takes
three global iterations to converge. The main design changes
are imposed during the first stage (i.e., the first succession
of a shape and a sizing step) and the second shape step.
For this optimization case, these steps may be enough to get
an optimal geometry. Finally, this example shows that the

Fig. 12 Optimization history of the bi-step approach applied to the
stiffened cylinder problem. Three global iterations with successive
shape and sizing steps are preformed until convergence. Red zones
denote the shape steps where the compliance is minimized and blue
zones denote the sizing step where the volume is minimized

solid-shell NURBS element offers an interesting way to deal
with sizing optimization. It extends all the advantages of the
NURBS parametrization to sizing optimization problem.

5.2 Multi-model optimization

In this last example, we present a multi-model optimization.
The idea is to combine the potential of both Kirchhoff-
Love and Solid-Shell formulations. In a first stage, the
Kirchhoff-Love formulation is used to perform a shape
optimization in which the shell structure is varied in the
out-of-plane direction. Then, the optimal surface is used to
generate a volume model of the structure. In the second
stage, thickness optimization is done on the volume model
by using the developed solid-shell approach. We notice
that this multi-model optimization appears consistent since
it corresponds to the design process of structures. The
first stage is the prototyping in which the influence of

(a)

(b)

(c)

Fig. 13 Optimal shape of a square plate subjected to an uniform snow
load. a 3D view, b top view, and c side view of the final structure. Red
points represent the control points
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many parameters is studied. It requires a model with low
computational cost in order to perform many simulations.
Once the global shape of the structure is obtained, a high-
fidelity volume model is created. Instead of directly using
this model to generate the CAD drawings, one can perform
a last optimization to apply final adjustments. Thanks to the
isogeometric approach, the final geometry can directly be
transferred to the manufacturing step since no conversion in
a CAD format is required.

We show the reliability of the procedure on the following
example. Starting from a roof made of a square plate, the
objective is to optimize the shape and the thickness of the
structure by minimizing the compliance under a maximal
volume constraint. This example is based on the work
of Kegl and Brank (2006) and similar studies can be found
for example in Bletzinger et al. (2005) and Ikeya et al.
(2016). The mechanical parameters of the study are the
following: Young’s modulus E = 210e9, Poisson’s ratio
ν = 0.30, length L = 10, thickness h = 0.10, uniform snow
load P = 500. The four corners of the plate are fixed. For
the first step, the optimization model is defined by a single
quadratic Nurbs patch which discretize the whole structure
in 4-by-4 NURBS elements. The surface is parametrized
with 32 design variables; the four control points located at
the corners are kept fixed. A refinement level of 3 is applied
in both parametric directions, resulting in an analysis model
with 1024 quadratic elements. The volume is constrained
to be lower than 110% of the initial volume. Figure 13
shows the final shape. The SLSQP optimizer converges after

approximately 40 iterations. The compliance is drastically
reduced with a factor of 1.44e-03. The final shape has four
symmetric planes defined by the origin and the normal
vectors X, Y , X+Y , and X-Y . This is expected since the
problem presents these symmetries. Therefore, some design
variables have identical optimal values. The fact that we
obtain the symmetries without setting groups of design
variables is a meaningful indication to validate the result.
Moreover, our result is similar to the one of Kegl and Brank
(2006) when the control points are only modified in Z-
direction (case B in section 5.2 of the cited paper). The
optimal positions of the control points are given on the top
view and on the side view of the structure on Fig. 13. This
global shape could have been obtained using the solid-shell
model as in the previous examples of this paper.

Once the global shape of the structure is obtained,
one can build a volume model. Here, we create it by
offsetting the previous surface in Z-direction with a
distance of h = 0.10. This time, only one quarter of
the structure is considered. In order to enrich the design
model, knot insertion is performed. The in-plane parametric
directions are defined by the same knot vector U =
{0 0 0 1

6
2
6

1
2

3
4 1 1 1}. Degree one is chosen in

the thickness direction for building the optimization model.
Thus, the optimization model counts 25 elements. The
design variables modify the distance between the upper and
lower surfaces. A total of 36 variables are defined. They
parametrize the distance between neighboring control points
of both upper and lower surfaces. The design variables

Fig. 14 Variable thickness roof. Evolution of the compliance, the volume, and the thickness distribution during the optimization
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are bounded so that the distance between the neighboring
control points varies in range tmin = 0.025 and tmax = 0.20.
Since the loading is applied on the upper surface, we keep
this surface unchanged. Only the lower control points are
moving. The control points located on the symmetric planes
are coupled in order to preserve the geometric continuity.
Figure 15a gives an idea of the initial configuration of the
optimization model. A refinement level of two is performed
to build the analysis model: it discretizes the structure with
20-by-20 quadratic elements. Figure 15a shows the initial
displacement field computed with this discretization.

The optimization problem is similar as for the first
step. The compliance is minimized under the constraint
of keeping the volume lower than the one if the initial
configuration. The optimization history is presented in
Fig. 14. The final ratio of the compliance is below 0.55.
Therefore, the thickness optimization drastically improves
the behavior of the structure. This gain in stiffness can be
observed on the displacement field. Figure 15 depicts the
optimal geometry and the displacement field in Z-direction.
The overall displacement is reduced in comparison with
the initial geometry. Some shape updates are also given
in Fig. 14 where the colormap represents the thickness
of the structure. It can be observed that the thickness
distribution of the final geometry is quite complex. In case
of discrete thicknesses, being able to accurately represent
such a distribution may require a high number of elements.
Thus, the number of design variables would be higher.

Finally, the optimal design (see Fig. 15) has regions with
thin thickness and regions with thick thickness. At the
corners, the thickness is equal to 0.20 which is, regarding
the slenderness of the structures, relatively important. Using
Kirchhoff-Love elements would not be relevant to analyze
such a structure.

6 Conclusion

In the context of isogeometric shape optimization of
shells, very little work tackles the influence of the chosen
shell formulation. We carry out a range of numerical
experiments to compare the results of the proposed solid-
shell approach with the commonly adopted technique
based on the Kirchhoff-Love formulation. Similar results
have been observed for the two shell formulations in
terms of final optimized design and in terms of global
behavior during the optimization process (convergence
speed, intermediary shapes). As a result, this first study
accounts for the performance of the developed solid-shell
approach for standard shape optimization.

Unlike pure shell elements, we emphasize that the
solid-shell element used in this work is based on a 3D
solid continuum element. With any simple IGA code
in hand, one can perform shape optimization of shells
without almost any additional developments by imposing
identical shape updates on both inner and outer surfaces.

Fig. 15 Volume models of the
roof. a Initial geometry and
initial Z-displacement field. b
Optimal geometry and its
corresponding Z-displacement
field

a)

b)
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This approach leads to identical optimization results as
surface shell formulations. In addition, since solid-shell
elements are based on a 3D solid continuum element,
analytical sensitivities should reasonably be computed even
for sophisticated structural response (Cho and Ha 2009;
Qian 2010; Ha 2015; Radau et al. 2017), even though this
point has not been addressed in the present paper.

The major interest of solid-shell elements concerns
the geometric representation of the thickness. This is the
most important point according to us since it offers new
possibilities from the design point of view. Continuous and
smooth thickness variations are imposed by modifying the
control point coordinates of one outer surface. Thanks to
NURBS functions, very few design variables are required
to describe quite complex geometries. The direct link
with the CAD format provided by the NURBS functions
is also highly attractive in this context. The volume
representation of the structure makes the optimal shape
directly available for CAD drawings, and thus the transfer
to the manufacturing step is simplified.

Appendix

On the Kirchhoff-Love NURBS shell formulation

A.1Membrane and bending strain matrices

The membrane and bending matrices introduced in (17) are
respectively given by

Bm
i =

⎡

⎢⎣

Ri,ξ aT
1

Ri,η aT
2

Ri,η aT
1 + Ri,ξ aT

2

⎤

⎥⎦ (23)

and

B
f
i =

⎡

⎢⎣
Bi

1 · e1 Bi
1 · e2 Bi

1 · e3

Bi
2 · e1 Bi

2 · e2 Bi
2 · e3

2Bi
3 · e1 2Bi

3 · e2 2Bi
3 · e3

⎤

⎥⎦ . (24)

In (23) and (24), (e1, e2, e3) are the basis vectors of the global
Cartesian coordinates system, and the quantities B i

1, B i
2, and B i

3 are
given by

Bi
1 = −Ri,ξξa3 + 1√

a

[
Ri,ξa1,ξ × a2 + Ri,ηa1 × a1,ξ

+a3 · a1,ξ

(
Ri,ξa2 × a3 + Ri,ηa3 × a1

)]
,

Bi
2 = −Ri,ηηa3 + 1√

a

[
Ri,ξa2,η × a2 + Ri,ηa1 × a2,η

+a3 · a2,η

(
Ri,ξa2 × a3 + Ri,ηa3 × a1

)]
,

Bi
3 = −Ri,ξηa3 + 1√

a

[
Ri,ξa1,η × a2 + Ri,ηa1 × a1,η

+a3 · a1,η

(
Ri,ξa2 × a3 + Ri,ηa3 × a1

)]
, (25)

with
√

a = |a1 × a2|.

A.2Material tensor

The material tensor within the Voigt formalism is in the form

H = E

1 − ν2

⎡

⎣
a11a11 h12 a11a12

∗ a22a22 a22a12

∗ ∗ h33

⎤

⎦

where: h12 = νa11a22 + (1 − ν)a12a12

h33 = 1
2

[
(1 − ν)a11a22 + (1 + ν)a12a12

]
(26)

with E as the Young’s modulus, ν as the Poisson’s ratio, and aαβ =
aα · aβ as the contravariant metric. The corresponding contravariant
base vectors aα are defined trough the relation aα · aβ = δαβ where
δαβ is the Kronecker delta.
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B, Simeon B (eds) (2015) Domain decomposition methods and
kirchhoff-love shell multipatch coupling in isogeometric analysis.
Springer International Publishing, Cham
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