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Abstract
Efficient analytical sensitivity computations are essential elements of gradient-based optimization schemes; unfortunately,
they can be difficult to implement. This implementation issue is often resolved by adopting the semi-analytical method
which exhibits the efficiency of the analytical methods and the ease of implementation of the finite difference method.
However, care must be taken as semi-analytical sensitivities may exhibit errors due to truncation and round-off. Additional
errors are introduced if the convergence tolerance of the primal analysis is not sufficiently small. This paper gives a general
overview and some new developments of the analytical and semi-analytical sensitivity analyses for nonlinear steady-state,
transient, and dynamic problems. We discuss the restrictive assumptions, accuracy, and consistency of these methods. Both
adjoint and direct differentiation methods are studied. Numerical examples are provided.
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1 Introduction

Both, analyses and design sensitivity analyses, are crucial
in gradient-based optimization wherein analyses are per-
formed to predict the performance of proposed designs,
while design sensitivity analyses are performed to quantify
the performance changes with respect to design changes.
Since the optimization is iterative and because it relies on
the accurate values of the gradients, efficient and accu-
rate sensitivity analyses are essential. The finite difference
sensitivity method requires one re-analysis to compute the
sensitivities of the performance functions with respect to
each design variable, so this method is extremely inefficient
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especially when the primal analysis is time-consuming.
On the other hand, analytical direct differentiation and
adjoint sensitivity analyses are very efficient. Unfortunately,
this efficiency requires the analytical evaluation of vari-
ous derivatives which may be difficult to compute since
they require detailed knowledge of the analysis program.
Indeed, analytical sensitivities require the differentiation
of specific element formulations and material models with
respect to a variety of design variables (Cheng and Olhoff
1993; Kiendl et al. 2014). To alleviate these implementa-
tion issues, the semi-analytical method approximates these
derivatives with finite differences; as such little knowledge
of the analysis program is required. However, care must
be exercised as the accuracy of the semi-analytical method
depends on the finite difference perturbation size. For a thor-
ough review of sensitivity analyses and the semi-analytical
method see Haftka and Adelman (1989), Tortorelli and
Michaleris (1994), Gunzburger (2003), van Keulen et al.
(2005), Haftka and Gürdal (2012).

Much work has been focused on the semi-analytical
method for linear static structural problems (Gallagher and
Zienkiewicz 1973; Botkin 1982; Camarda and Adelman
1984; Esping 1984; Cheng and Liu 1987; Barthelemy et al.
1988; Pedersen et al. 1989; Barthelemy and Haftka 1990;
Haftka and Adelman 1989; Fenyes and Lust 1991; Olhoff
and Rasmussen 1991; Bestle and Seybold 1992), especially
its application to shape sensitivity analysis.

Our response functions are integrals over the domain.
In shape sensitivity analysis, the design variables include
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geometric parameters that define this domain. Thus,
analytical shape sensitivity analyses require the use of the
material derivative from continuum mechanics and such
computations can be onerous. For this reason, the semi-
analytical method of shape sensitivity analyses may be
preferable for its ease of implementation; moreover, it is
fully reliable for most problems in which the structural
displacement field entails small rigid-body rotations relative
to deformations of the finite elements (Olhoff et al. 1993).
However, large errors attributed to rigid body rotations of
the finite elements have been found in shape sensitivities
computed with the semi-analytical method (Barthelemy
et al. 1988; Cheng et al. 1989; Pedersen et al. 1989; Fenyes
and Lust 1991; Olhoff and Rasmussen 1991; Cheng and
Olhoff 1993).

Different approaches have been suggested to improve
the accuracy of the semi-analytical method. For example,
improved accuracy is obtained by using the second-order
central differences scheme, instead of first-order accurate
forward differences (Barthelemy et al. 1988; Cheng et al.
1989; Haftka and Adelman 1989; Pedersen et al. 1989;
Fenyes and Lust 1991). This method requires an additional
computational cost and unfortunately does not completely
eliminate the errors caused by large rigid body motions in
shape sensitivity analysis. To circumvent this, the natural
approach retains consistency conditions for rigid body
modes and their derivatives (Mlejnek 1992). Alternatively,
the analytical derivatives of the element rigid body modes
are incorporated in the refined semi-analytical design
sensitivities approach to alleviate inaccuracies (Van Keulen
and De Boer 1998). Utilizing specific characteristics of the
element stiffness matrices to compute correction factors, the
so-called exact semi-analytical eliminates truncation error
(Olhoff et al. 1993). A proposed improved semi-analytical
method obtains better accuracy by using the von Neumann
series (Oral 1996).

Kiendl et al. (2014) use the isogeometric finite element
in which non-rational uniform B-splines (NURBS) are
used to parameterize both the finite element response and
the domain geometry. A multilevel approach allows for a
more coarse, i.e., smooth, design parameterization versus
the finite element response. The semi-analytical method is
combined with a sensitivity weighting scheme to compute
the design updates for their optimization example problems.

Semi-analytical methods have been applied for nonlinear
static structures. Haftka (1993) and Mróz and Haftka (1994)
use it to compute sensitivities of limit loads and show
that the semi-analytical method is equivalent to the overall
finite difference method when a single Newton iteration
is used. A more thorough formulation of the refined
semi-analytical method was presented for linear, linearized
buckling, geometrically nonlinear and limit point analyses
in de Boer and van Keulen (2000). The exact semi-analytical

method has also been extended to geometric nonlinearities
in Wang et al. (2015). Curiously, this formulation uses the
secant stiffness matrix and incorporates correction terms to
eliminate truncation errors.

The refined semi-analytical approach was also extended
to obtain second-order derivatives (de Boer et al. 2002). The
higher-order semi-analytical derivatives studied by Bernard
et al. (1993) use cubic polynomials to develop surrogate
models of the mass and stiffness matrices so that higher-
order derivatives can be easily computed.

Sensitivity analysis for transient problems have been
extensively studied (Adelman and Haftka 1986; Haug
1987; Haftka and Gürdal 2012). These studies included
nonlinearities (Ray et al. 1978; Michaleris et al. 1994;
Kreissl et al. 2011; Deng et al. 2011), and shape sensitivities
(Meric 1988; Tortorelli et al. 1991). The semi-analytical
method has been applied for linear transient structural
problems using a reduced order modal model (Camarda and
Adelman 1984; Greene and Haftka 1991; Hooijkamp and
van Keulen 2018). As such, these methods are restricted to
linear systems.

The semi-analytical method has been applied to transient
heat conduction problems (Gu and Grandhi 1998), including
nonlinear behaviour (Gu et al. 2002), and nonlinear coupled
with structural dynamics (Chen et al. 2003). It is unclear
how their use of the Precise Time Integration scheme
(Zhong andWilliams 1994) which is limited to time varying
linear systems affects the accuracy of their nonlinear
analyses and subsequent sensitivity analysis.

Semi-analytical sensitivity analysis via direct differen-
tiation has been applied to dynamic systems with large
rotations (Brüls and Eberhard 2008), and to flexible multi-
body systems (Tromme et al. 2015). In the latter, to ease
the computation, the pseudo load is approximated using the
perturbation of the residual. This approximation is easy to
implement, since simulation codes usually have a function
to compute the residual (Tromme et al. 2015). The goal of
this paper is to study this formulation and extend it to the
adjoint method.

In the following, we study the semi-analytical method
to facilitate the sensitivity analyses for transient nonlin-
ear systems. The transient problems are treated as gen-
eral as possible. To do this, we use both an implicit-
explicit time integration algorithm and the popular New-
mark time stepping method. Additionally, we use a gen-
eral formulation, so the methods can be applied to any
type of transient problems (e.g., thermal, structural, multi-
body, etc.). We systematically develop direct and adjoint
sensitivity analysis approaches. Furthermore, for transient
and dynamic problems, we study the adjoint differentiate-
then-discretize and the adjoint discretize-then-differentiate
approaches. The adjoint semi-analytical sensitivity analysis
approaches require restrictive assumptions. In particular, we
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show that the adjoint differentiate-then-discretize method
exhibits consistency error and requires some terms to be
constant in order to reuse the tangent stiffness matrix from
the primal analysis. We also show that the semi-analytical
adjoint differentiate-then-discretize method, for nonlinear
transient and nonlinear dynamic systems is limited to sys-
tems with symmetric stiffness and damping matrices. For-
tunately, we show that by using an implicit time integration,
the discretize-then-differentiate adjoint method can accom-
modate asymmetric stiffness matrices.

The major contributions of this paper are (1) an overview
of analytical sensitivity analysis for nonlinear transient
problems, (2) the development of novel efficient semi-
analytical formulations, (3) the identification of restrictions
for semi-analytical adjoint methods, and (4) a discussion of
the consistency and accuracy of the methods.

This paper gives a general overview of the finite
difference method (Section 2.2) and the analytical and
semi-analytical sensitivity analyses for nonlinear steady
state (Section 2), transient (Section 3) and dynamic
(Section 4) systems. Numerical examples are provided in
Sections 3.6, and 4.6 wherein the accuracy of the methods
are discussed. To quantify the accuracy, we introduce the
relative percentage error between the sensitivities obtained
by finite differences δFf and the analytical sensitivities δF

as

ef =
∣
∣
∣
∣

δFf − δF

δF

∣
∣
∣
∣
100% . (1)

Similarly, we compute the relative error of the semi-
analytical sensitivities δFs with respect to the analytical
sensitivities δF as

es =
∣
∣
∣
∣

δFs − δF

δF

∣
∣
∣
∣
100% . (2)

2 Steady-state nonlinear problems

After finite element discretization, the steady-state nonlin-
ear problem is expressed in terms of the residual function R
via the equation

R(U) = 0 , (3)

where U is the response vector, e.g., displacement. This
nonlinear problem is solved using the iterative Newton-
Raphson method. If the residual of the current iterate Uj is
not a solution, R(Uj ) �= 0, then the next iterate Uj+1 =
Uj + �Uj is computed by equating the first order Taylor
series expansion of R about Uj+1 to zero, i.e.,

R(Uj+1) = R(Uj + �Uj ) ≈ R(Uj ) + K�Uj = 0 , (4)

where K = ∂R/∂U is the tangent matrix. The incremental
response update �Uj is obtained by solving the linear
equation

K(Uj )�Uj = −Rj (Uj ) , (5)

whereafter the next iterate

Uj+1 = Uj + �Uj , (6)

is computed. The steps of evaluating the residual R and
updating the response U are repeated until the solution
converges to a within user specified tolerance, i.e., until
|R(U)| ≤ εR .

2.1 Sensitivity analysis of steady-state nonlinear
systems

For the sensitivity analysis we treat the residual R and the
response U as functions of the nd vector of design variables
d = [d1, d2, .., dnd

]�, i.e., we now have express (3) as

R(U(d),d) = 0 . (7)

After completing the primal analysis of (3), we can
evaluate any number of response functions F . For our
purposes, the response function depends on the response
U(d) to the problem in (7) whereby we express

F(d) = G(U(d),d) . (8)

Using the chain rule, the derivative of the response
functional of (8) with respect to each di is

DF

Ddi

= DG

Ddi

= ∂G

∂U
∂U
∂di

+ ∂G

∂di

, (9)

where ∂U/∂di is implicitly defined through (7).

2.2 Finite differencemethod

The forward finite difference method approximates the
derivatives of a response functionF using a truncated Taylor
series expansion

DF(d)

Ddi

≈ F(d + ε ei ) − F(d)

ε
, (10)

where ei = [0, 0, .., 1, ..., 0, 0]� is the unit vector of
component i, and ε the perturbation. The approximation
DF(d)/Ddi ε ≈ F(d + ε ei ) − F(d) exhibits truncation
error o(ε), where o is a function defined such that o(ε) tends
to zero faster than ε, i.e., limε→0 o(ε)/ε = 0. To reduce
the truncation error o(ε) it is desirable to choose a small ε,
however, numerical round-off error will erode the accuracy
of the approximation if ε is too small.

Since the response function depends on the response
U(d), the approximation of (10) is expressed by

DF(d)

Ddi

≈ G(U(d + ε ei ),d + ε ei ) − G(U(d),d)

ε
. (11)
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As seen above, the response U(d + ε ei ) must be calculated
for each design variable di ; this is easily obtained by
modifying the finite element model, but computationally
inefficient because it requires nd additional simulations to
compute the U(d + ε ei ). Note that second-order accurate
approximations which are accurate to o(ε2) can be obtained
by central differences, but this requires two re-analyses
for U(d ± ε ei ) which is even more costly. As seen
here, the finite difference method is easy to implement,
computationally inefficient, and subjected to truncation and
round-off errors.

2.3 Direct differentiation for steady-state nonlinear
systems

In the direct differentiation approach, the implicit derivative
∂U/∂di , i.e., pseudo response, is obtained by differentiating
(7) respect to di , which after some rearranging defines the
so-called pseudo problem

K
∂U
∂di

= − ∂R
∂di

, (12)

where −∂R/∂di is the pseudo load. Notice that the tangent
operator K from the primal analysis appears in the pseudo
problem; moreover, it is already factored, assuming the
use of direct solvers in the primal analysis. Thus, the
evaluation of the implicit derivative ∂U/∂di only requires
the formation of the pseudo load vector −∂R/∂di and
a back substitution. Once the implicit derivative ∂U/∂di

is obtained, (9) is evaluated to obtain the sensitivities
for any number of functions F . As seen here, the direct
method is computationally efficient because it solves one
pseudo problem using the previously factored tangent
matrix for each design variable regardless of the number of
response functions. In addition, the computed sensitivities
are numerically exact.

In the semi-analytical formulation, the derivatives
∂R/∂di and DG/Ddi of (12) and (9) are approximated to
within o(ε) via finite differences

(13)

DG(U(d),d)

Ddi

≈ 1

ε

(

G

(

U(d) + ε
∂U(d)

∂di

, d + ε ei

)

− G(U(d),d)

)

. (14)

In (13), we assume the residual R(U(d),d) = 0; however,
we solve the primal analysis until the solution converges
to a user defined tolerance, i.e., |R(U(d),d)| ≤ εR . This

tolerance imposes a new source of error in addition to the
truncation and round-off errors.

Since the function G is known, the derivatives ∂G/∂di

and ∂G/∂U in the sensitivity DF/Ddi can be computed
exactly as in (9) or approximated as in (14). We assume the
former.

The approximations in (13) and (14) are easy to
implement because they only require the generation
of the d + ε ei followed by the evaluations of the
perturbed residual R(U(d),d + ε ei ) and response function
G (U(d) + ε ∂U/∂di, d + ε ei ) which are readily computed
by the subroutines that are used to compute R(U(d),d) and
G(U(d),d). Thusly, the semi-analytical method shares the
simplicity of the finite difference method and the efficiency
of the analytical methods. It is noted, however, that tolerance
εR , truncation and round-off errors may pollute the results.
In most cases, a design perturbation will not affect all of
the element internal force vectors. As such, we only need
to evaluate the elemental residual R(U(d),d + ε ei ) of
the affected elements. An extreme case of this occurs in
topology optimization where each volume fraction design
variable only affects a single element. Less extreme cases
occur in shape optimization where each dimensional change
may only affect a subset of the element boundary elements.

2.4 Adjoint method for steady-state nonlinear
systems

In the adjoint method, the derivative ∂U/∂di is annihilated.
This formulation uses the identity

DF

Ddi

= ∂G

∂U
∂U
∂di

+ ∂G

∂di

+ ��
(

K
∂U
∂di

+ ∂R
∂di

)

, (15)

which follows from (9) and (12). In the above, � is the
arbitrary adjoint vector. Rearranging (15) yields

DF

Ddi

=
(

∂G

∂U
+ ��K

)
∂U
∂di

+ ∂G

∂di

+ �� ∂R
∂di

, (16)

from which we identify the adjoint problem that we solve
for the heretofore arbitrary �, i.e.,

K�� = −∂G

∂U

�
. (17)

In this way, the term containing ∂U/∂di is annihilated from
(16) reducing the sensitivity to

DF

Ddi

= ∂G

∂di

+ �� ∂R
∂di

. (18)

The adjoint method requires the solution of one adjoint
problem (cf. (17)) for each response function F regardless
of the number of design variables. And like the direct
method, the adjoint problem utilizes the tangent matrix from
the primal analysis, so it is also computationally efficient
and numerically exact. Furthermore, the tangent stiffness

2390



Semi-analytical sensitivity analysis for nonlinear transient problems

matrix may be already factored, if a direct solver is used in
the primal analysis.

In the semi-analytical formulation, the derivative ∂R/∂di

is approximated via finite differences (cf. (13)) and use
(18) to obtain the sensitivities. As previously mentioned,
the derivative ∂G/∂U is obtained analytically using our
knowledge of the function G.

3 Transient nonlinear problems

A first-order transient problem is expressed in residual form
as

R(U(t,d), U̇(t,d), d) = 0 , (19a)

U(0) = U0 , (19b)

where we note the design dependencies as in (7), t ∈ [0, tf ]
denotes time and tf the terminal analysis time. The response
function for this system is expressed as

F(d) =
∫ tf

0
G(U(t,d), U̇(t,d), d) dt . (20)

Our goal is to compute the sensitivity in an efficient,
accurate and easy manner, i.e., we want to compute

DF

Ddi

=
∫ tf

0

(
∂G

∂U
∂U
∂di

+ ∂G

∂U̇

∂U̇
∂di

+ ∂G

∂di

)

dt . (21)

For the sensitivity analysis, we can implement the direct
method whereby we differentiate (19a) and (19b) to define
the pseudo problem

∂R

∂U̇

∂U̇
∂di

+ ∂R
∂U

∂U
∂di

= − ∂R
∂di

, (22a)

∂U(0)

∂di

= ∂U0

∂di

, (22b)

which we solve for ∂U/∂di and ∂U̇/∂di and then we
evaluate (21). Alternatively, we can implement the adjoint
approach, whereby we utilize (22a) to write (21) as

DF

Ddi

=
∫ tf

0

(
∂G

∂U
∂U
∂di

+ ∂G

∂U̇

∂U̇
∂di

+ ∂G

∂di

)

dt

+
∫ tf

0
λ�

(
∂R
∂U

∂U
∂di

+ ∂R

∂U̇

∂U̇
∂di

+ ∂R
∂di

)

dt , (23)

where again λ is the arbitrary adjoint vector. Integrating by
parts and rearranging (23) yields

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ λ� ∂R
∂di

)

dt −
(

∂G

∂U̇
+ λ� ∂R

∂U̇

)
∂U
∂di

∣
∣
∣
∣
t=0

+
∫ tf

0

∂U
∂di

� (

∂G

∂U

�
− d

dt

(
∂G�

∂U̇

)

+ ∂R�

∂U
λ

− d

dt

(

∂R�

∂U̇
λ

))

dt + ∂U
∂di

� (

∂G

∂U̇

�
+ ∂R

∂U̇

�
λ

)∣
∣
∣
∣
∣
t=tf

. (24)

Next, a time mapping is introduced, i.e., we define � such
that

�(tf − t) = λ(t) , (25)

and hence

−�̇(tf − t) = λ̇(t) , (26)

substituting the above into (24) renders

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ �� ∂R
∂di

)

dt −
(

∂G

∂U̇
+ �� ∂R

∂U̇

)
∂U
∂di

∣
∣
∣
∣
t=0

+
∫ tf

0

∂U
∂di

� (

∂G

∂U

�
− d

dt

(
∂G�

∂U̇

)

+ ∂R�

∂U
� − d

dt

(

∂R�

∂U̇

)

�

+ ∂R�

∂U̇
�̇

)

dt + ∂U
∂di

� (

∂G

∂U̇

�
+ ∂R

∂U̇

�
�

)∣
∣
∣
∣
∣
t=tf

. (27)

where all quantities are evaluated at time t except � which
is evaluated at tf −t . We can annihilate the terms containing
the implicitly defined derivative ∂U/∂di by requiring � to
solve

∂R�

∂U̇
�̇ +

(

∂R
∂U

�
− d

dt

(

∂R�

∂U̇

))

�

= −∂G

∂U

�
+ d

dt

(
∂G�

∂U̇

)

, (28a)

∂R

∂U̇

�∣
∣
∣
∣
∣
t=tf

�(0) = −∂G

∂U̇

�∣
∣
∣
∣
∣
t=tf

. (28b)

Using this �, DF/Ddi reduces to the known quantity

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ �� ∂R
∂di

)

dt

−
(

∂G

∂U̇
+ �� ∂R

∂U̇

)
∂U
∂di

∣
∣
∣
∣
t=0

. (29)

where again all quantities are evaluated at time t except �

which is evaluated at tf − t .
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3.1 Discretization

To solve the above, we discretize in time using an
explicit/implicit parameter 0 ≤ α ≤ 1 so that

Un = Un−1 +
(

αU̇
n + (1 − α)U̇

n−1
)

�t , (30)

where Un = U(tn) and U̇
n = U̇(tn).1 We then solve (19a) at

the discrete times tn. Finally, the integrals in (20) and (21)
are evaluated as

F =
N

∑

n=0

μn Gn(Un, U̇
n
, d) , (31)

DF

Ddi

=
N

∑

n=0

μn

(

∂Gn

∂U
∂U
∂di

n

+ ∂Gn

∂U
∂U̇

n

∂di

+ ∂Gn

∂di

)

, (32)

where, e.g., Gn = G(Un, U̇
n
, d) and the coefficient μn

depends on the summation scheme, e.g., for trapezoidal
2μ0 = μ1 = μ2 = ... = μN−1 = 2μN = �t .

3.2 Primal analysis

The initial condition U0 is given, but U̇
0
is needed in (30)

to obtain U1. To these ends, we use (19a), i.e., we use the
Newton-Raphson method to solve

R0(U0, U̇
0
, d) = 0 , (33)

for U̇
0
. The procedure is akin to that which we use to

evaluate U in Section 2. Here K0 = ∂R0/∂U̇ is the tangent

matrix. Having U0 and U̇
0
, we compute the first term in

(31), i.e., F = μ0 G0(U0, U̇
0
, d).

Now we commence our analysis. At each time step tn, we
insert Un of (30), in (19a) and solve the resulting equation
for U̇

n
. Again, we use Newton’s method for this solution, cf.

Section 2, where we introduce the tangent stiffness matrix
Kn = ∂Rn/∂U̇ + α�t ∂Rn/∂U. After convergence, Un is
updated as per (30) and F is updated as per (31), i.e.,

F ← F + μn Gn(Un, U̇
n
, d) , (34)

where the symbol ← represents the update assignment.

1For α = 0, 1/2, or 1, we recover the forward Euler, Crank-Nicolson,
and backward Euler strategies respectively.

The time is then incremental and the process repeats
itself until the terminal time tf . A flow chart describing
these computations is provided in Fig. 1 wherein multiple
functions F are evaluated for n = 1, 2, ..., N .

Fig. 1 Primal analysis flowchart
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3.3 Direct differentiation

For the direct differentiation, we discretize ∂U/∂di like U,
i.e.,

∂Un

∂di

= ∂Un−1

∂di

+
(

α
∂U̇

n

∂di

+ (1 − α)
∂U̇

n−1

∂di

)

�t . (35)

Note that the initial condition ∂U0/∂di is known, but

∂U̇
0
/∂di is not. So before commencing, we must obtain

∂U̇
0
/∂di like we did U̇

0
. To these ends, we differentiate (33)

to obtain the linear equation

K0 ∂U̇
0

∂di

= −
(

∂R0

∂U
∂U0

∂di

+ ∂R0

∂di

)

, (36)

which we solve for ∂U̇
0
/∂di . Having ∂U0/∂di and

∂U̇
0
/∂di , we update DF/Ddi as per (32), i.e.,

DF

Ddi

= μ0

(

∂G0

∂U
∂U0

∂di

+ ∂G0

∂U
∂U̇

0

∂di

+ ∂G0

∂di

)

. (37)

Now we march in time evaluating ∂Un/∂di and ∂U̇
n
/∂di

as we did to compute Un and U̇
n
. Equation (22a) and (35)

render the linear equation

Kn(Un, U̇
n
, d)

∂U̇
n

∂di

= −
(

∂Rn

∂U

(

∂Un−1

∂di

+ (1 − α)�t
∂U̇

n−1

∂di

)

+ ∂Rn

∂di

)

, (38)

which we solve for ∂U̇
n
/∂di . Next, we update ∂Un/∂di as

per (35) and DF/Ddi as per (32)

DF

Ddi

← DF

Ddi

+ μn

(

∂Gn

∂U
∂Un

∂di

+ ∂Gn

∂U
∂U̇

n

∂di

+ ∂Gn

∂di

)

.

(39)

We continue marching in this manner for all tn. In so far
as our sensitivity analysis algorithm is concerned, we insert
nodes A and B from Fig. 2 into the primal analysis flowchart
of Fig. 1.

For the semi-analytical method we use the approxima-
tions

∂R0

∂U
∂U0

∂di

+ ∂R0

∂di

≈ 1

ε
R0

(

U0 + ε
∂U0

∂di

, U̇
0
, d + ε ei

)

,

(40)

Fig. 2 Direct differentiation nodes

∂Rn

∂U

(

∂Un−1

∂di

+ (1 − α)�t
∂U̇

n−1

∂di

)

+ ∂Rn

∂di

≈

1

ε
Rn

(

Un + ε

(

∂Un−1

∂di

+ (1 − α)�t
∂U̇

n−1

∂di

)

,

U̇
n
, d + ε ei

)

, (41)

∂Gn

∂U
∂Un

∂di

+ ∂Gn

∂U̇

∂U̇
n

∂di

+ ∂Gn

∂di

≈ 1

ε

(

Gn

(

Un + ε
∂Un

∂di

, U̇
n + ε

∂U̇
n

∂di

, d + ε ei

)

− Gn(Un, U̇
n
, d)

)

, (42)

in (36), (37), (38), and (39). Again, we assume the user can
code ∂Gn/∂U, ∂Gn/∂U̇ and ∂Gn/∂d, so we do not use (42).
As mentioned before, semi-analytical sensitivities carry the
error due to εR , truncation, and round-off.
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3.4 Adjoint method using
differentiate-then-discretize

In the differentiate-then-discretize approach, one obtains the
adjoint problem (cf. (28a) and (28b)) and the sensitivity (cf.
(29)) at the continuous time level. Now we use numerical
time integration to compute

DF

Ddi

=
N

∑

n=0

μN−n

(

∂GN−n

∂di

+ �n� ∂RN−n

∂di

)

−
(

∂G0

∂U
+ �N� ∂R0

∂U̇

)

∂U0

∂di

. (43)

Before we evaluate the above, we must solve the adjoint
problem of (28a) and (28b). To do this, we discretize the
adjoint variable � like U, i.e.,

�n = �n−1 +
(

α �̇
n + (1 − α) �̇

n−1
)

�t , (44)

To reuse Kn like the direct method, we restrict our adjoint
discussion to those R such that

d

dt

(
∂R

∂U̇

)

= 0 . (45)

Notably ∂R/∂U̇ is typically interpreted as a mass matrix, so
the mass matrix must be constant which is fairly common.

Referring to (28b), we initially solve the adjoint problem

∂RN

∂U̇

�
�0 = −∂GN

∂U̇

�
, (46)

for �0 and then solve (28a) with �0 to evaluate �̇
0
, i.e.,

∂RN

∂U̇

�
�̇0 = −∂RN

∂U

�
�0 − ∂GN

∂U

�

+
(

∂2GN

∂U̇∂U
U̇

N
)�

+
(

∂2GN

∂U̇
2
U̇

N
)�

. (47)

Note that (46) and (47) do not use the tangent stiffness
matrix from the primal problem. Next, we compute

DF

Ddi

= μN

(

∂GN

∂di

+ �0� ∂RN

∂di

)

, (48)

cf. (29), (31), and (32). Time marching now commences for
the remaining time steps, i.e., for n = 1, 2, ..., N − 1 we

evaluate �̇
0
by solving

KN−n�
�̇

n = −∂GN−n

∂U

�

+
(

∂2GN−n

∂U̇∂U
U̇

N−n
)�

+
(

∂2GN−n

∂U̇
2

Ü
N−n

)�

−∂RN−n

∂U

� (

�n−1 + (1 − α)�t �̇
n−1

)

, (49)

where KN−n is the tangent stiffness matrix of the primal
problem. Then, we compute �n as per (44) and update

DF

Ddi

← DF

Ddi

+ μN−n

(

∂GN−n

∂di

+ �n� ∂RN−n

∂di

)

. (50)

Finally, we solve

(

∂R0

∂U̇
+ α�t

∂R0

∂U

)�
�̇

N = −∂G0

∂U

�

+
(

∂2G0

∂U̇∂U
U̇
0
)�

+
(

∂2G0

∂U̇
2
Ü
0
)�

−∂R0

∂U

� (

�N−1 + (1 − α)�t �̇
N−1

)

, (51)

for �̇
N
, we evaluate �N with (44) and update

DF

Ddi

← DF

Ddi

+ μ0
∂G0

∂di

− ∂G0

∂U̇

∂U0

∂di

+ �N�
(

μ0
∂R0

∂di

− ∂R0

∂U
∂U0

∂di

)

, (52)

As in (47) and (51) does not use the tangent stiffness matrix
from the primal analysis.

The second derivatives Ü
n

in (47), (49), and (51)
can be computed using the known first derivatives

. . . U̇
n−1

, U̇
n
, U̇

n+1
, . . . and�t , and a second order forward

difference for Ü
0
, backward differences for U̇

N
, and central

differences for any other Ü
n
(cf. Figure 3). The adjoint

sensitivity analysis is executed after the primal analysis is
concluded. Thus, we describe this algorithm by inserting
node C of Fig. 3 into the flowchart of Fig. 1.

In the semi-analytical, we consider a further restriction
that ∂R/∂U is symmetric, so the term in the adjoint load of
(47) can be approximated as

∂RN

∂U

�
�0 ≈ 1

ε
RN

(

UN + ε�0, U̇N, d
)

, (53)
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Fig. 3 Adjoint differentiate-then-discretize node

and the term in the adjoint load of (49) can be approximated
as

∂RN−n

∂U

� (

�n−1 + (1 − α)�t �̇
n−1

)

≈
1

ε
RN−n

(

UN−n + ε
(

�n−1 + (1 − α)�t �̇
n−1

)

,

U̇N−n, d
)

. (54)

In regard to DF/Ddi of (52), we use the approximation

μ0
∂R0

∂di

− ∂R0

∂U
∂U0

∂di

≈ 1

ε
R

(

U0, U̇0 − ε
∂U0

∂di

, d + μ0ε ei

)

. (55)

Finally, the derivative ∂Rn/∂di in (48) and (50) is
approximated as

∂Rn

∂di

≈ 1

ε
R

(

Un, U̇n, d + ε ei

)

. (56)

Of course, the semi-analytical approximations exhibit the
previously discussed errors.

Again, we assume the user can code ∂G/∂U, etc.,
as these would be time consuming to compute by finite
differences.

3.5 Adjoint method using
discretize-then-differentiate

In this second option of the adjoint method, we use (22a)
and (35) to equivalently write (32) as

DF

Ddi

=
N

∑

n=0

μn

(

∂Gn

∂U
∂Un

∂di

+ ∂Gn

∂U
∂U̇

n

∂di

+ ∂Gn

∂di

)

+
N

∑

n=0

�n�
(

∂RN−n

∂U̇

∂U̇
N−n

∂di

+ ∂RN−n

∂U
∂UN−n

∂di

+ ∂R
∂di

N−n
)

+
N−1
∑

n=0

�n�
(

∂UN−n

∂di

− ∂UN−n−1

∂di

−
(

α
∂U̇

N−n

∂di

+ (1 − α)
∂U̇

N−n−1

∂di

)

�t

)

,

(57)
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where �n and �n are arbitrary adjoint vectors.
Rearrangement subsequently yields

DF

Ddi

=
N

∑

n=0

(

μN−n

∂GN−n

∂di

+ �n� ∂R
∂di

N−n
)

+
(

μ0
∂G0

∂U
+ �N � ∂R0

∂U
− �N−1�

)

∂U0

∂di

+
(

μ0
∂G0

∂U̇
+ �N � ∂R0

∂U
− (1 − α)�t �N−1�

)

∂U̇
0

∂di

+
N−1
∑

n=1

(

μN−n

∂GN−n

∂U
+ �n� ∂R

∂U

N−n

− �n−1� + �n�
)

∂UN−n

∂di

+
N−1
∑

n=1

(

μN−n

∂GN−n

∂U̇
+ �n� ∂R

∂U̇

N−n

− (1 − α)�t �n−1� − α�t �n�
)

∂U̇
N−n

∂di

+
(

μN

∂GN

∂U
+ �0� ∂R

∂U

N

+ �0�
)

∂UN

∂di

+
(

μN

∂GN

∂U̇
+ �0� ∂R

∂U̇

N

− α�t �0�
)

∂U̇
N

∂di

. (58)

To annihilate the implicitly defined derivatives ∂UN/∂di

and ∂U̇
N

/∂di , we first solve the adjoint problem

KN�
�0 = −μNα �t

∂GN

∂U

�
− μN

∂GN

∂U̇

�
, (59)

for �0 and evaluate �0 from either of the following
expressions

�0 = −μN

∂GN

∂U

�
− ∂R

∂U

N�
�0 (60)

= 1

α�t

(

μN

∂GN

∂U̇

�
+ ∂R

∂U̇

N�
�0

)

. (61)

Note that for an explicit method, i.e., α = 0, we must use
(60) to evaluate �0. We next evaluate

DF

Ddi

= μN

∂GN

∂di

+ �0� ∂R
∂di

N

. (62)

To annihilate ∂Un/∂di and ∂U̇
n
/∂di , we march in time

computing �n from

KN−n�
�n = −μN−n α �t

∂GN−n

∂U

�

−μN−n

∂GN−n

∂U̇

�
+ �t �n−1 , (63)

and updating �n from either of the following equations

�n = �n−1 − μN−n

∂GN−n

∂U

�
− ∂R

∂U

N−n�
�n (64)

= −1 − α

α
�n−1

+ 1

α�t

(

μN−n

∂GN−n

∂U̇

�
+ ∂R

∂U̇

N−n�
�n

)

. (65)

Again (65) is restricted to the α �= 0 case. Due to the
different � updates, we define option 1 if we choose to use
(60) and (64), and option 2 if we use (61) and (65). After
each of these tn computations, we update

DF

Ddi

← DF

Ddi

+ μN−n

∂GN−n

∂di

+ �n� ∂R
∂di

N−n

. (66)

Finally, to annihilate ∂U̇
0
/∂di , we solve the linear

problem

K0�
�N = −μ0

∂G0

∂U
+ (1 − α)�t �N−1 , (67)

for �N and update

DF

Ddi

← DF

Ddi

+ μ0
∂G0

∂di

+ μ0
∂G0

∂U
∂U0

∂di

− �N−1� ∂U0

∂di

+�N�
(

∂R0

∂di

+ ∂R0

∂U
∂U0

∂di

)

. (68)

All of the computations in (59)–(67) are performed after the
primal analysis is terminated, thus we insert node C from
Fig. 4 into the flowchart of Fig. 1.

The sensitivities using the differentiate-then-discretize
and discretize-then-differentiate adjoint approaches are
different because the discretization and differentiation steps
do not commute. As seen shortly, the latter approach yields
more accurate results. However, for large number of time
steps, the time discretization error shrinks and the methods
converge.

For the semi-analytical, if we use option 1, we again
require ∂Rn/∂U to be symmetric and we approximate the
adjoint load terms of (60) and (64) as

∂R
∂U

N−n�
�n ≈ 1

ε
R

(

UN−n + ε�n, U̇N−n, d
)

, (69)

Fortunately, we have option 2 to approximate�n if ∂Rn/∂U
is asymmetric and we cannot use (69). We consider
the restriction for which ∂R/∂U̇ is symmetric, which is
common, and α �= 0. In this case, the adjoint load terms of
(61) and (65) are approximated as

∂R

∂U̇

N−n�
�n ≈ 1

ε
R

(

UN−n, U̇N−n + ε�n, d
)

, (70)
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Fig. 4 Adjoint discretize-then-differentiate node

and in DF/Ddi of (68) we approximate the sum

∂R0

∂di

+ ∂R0

∂U
∂U
∂di

0

≈ 1

ε
R

(

U0 + ε
∂U
∂di

0

, U̇0, d + ε ei

)

.

(71)

The derivatives ∂Rn/∂di of (62), (66), and (68) are
approximated via finite differences using (56). Again,
these semi-analytical approximations are susceptible to the
previously discussed errors.

3.6 Transient example

Consider the transient heat conduction problem of a straight
one-dimensional fin with constant cross-sectional area
(Kramer and Stockman 1963) expressed in non-dimensional
form as

θ̇ − d

dx

[

k(θ)
dθ

dx

]

+ M2θp+1 = 0, in 0 < x < 1 ,

dθ

dx
= 0, at x = 0, t > 0 ,

θ = 1, at x = 1, t > 0 ,

θ = 1, at t = 0 , (72)

where x, t , and θ are the non-dimensional position, time,
and temperature respectively. k(θ) = 1 + ξθ is the non-
dimensional thermal conductivity, ξ and M = 1 are fin
parameters, and the exponent p = 1/3 models the removal
of heat by turbulent natural convection along the fin. The
bar is discretized by 5 equal length linear finite elements and
the time domain [0, 1] is discretized intoN equal time steps.
The Newton-Raphson tolerance is εR = |R| < 10−14. The
various sensitivity methods are illustrated for the following
response function

F =
∫ 2

0

∫ 1

0

(

ζθ2(x, t) + (1 − ζ )θ̇2(x, t)
)

dx dt (73)

where the integral is approximated by using the trapezoidal
rule in time and the element wise 2-point Gaussian
quadrature in space. We use ζ = 0.5 and compute the
sensitivities with respect to the parameter d = M . The
perturbation ε = 10−6 is used in the finite difference and
semi-analytical approaches, unless otherwise stated.

3.6.1 Symmetric ∂R/∂U and ∂R/∂U̇

We first consider the linear thermal conductivity case, i.e.,
ξ = 0, for which ∂R/∂U and ∂R/∂U̇ are symmetric. The
computations performed with the various methods yield
similar results, cf. Table 1. For N = 100 and α = 0, the
explicit integration scheme is not stable. Also, for α = 0,
we cannot use the semi-analytical adjoint discretize-then-
differentiate option 2, cf. (61) and (65).

To examine the consistency of the methods, we show
the error ef , cf. (1), for different perturbation sizes ε for
the N = 1000 and α = 0.5 case, cf. Figure 5. As
the perturbation ε decreases, the sensitivities obtained by
finite differences converge to those obtained analytically.
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Table 1 Sensitivities for the
symmetric problem Method N = 100 N = 1000

α = 0

Direct − −0.018588335152

Semi-a. direct − −0.018588317345

Adj. diff.-then-disc. − −0.018449255359

Semi-a. adj. diff.-then-disc. − −0.018449264996

Adj. disc.-then-diff. opt. 1 − −0.018588335152

Semi-a. adj. disc.-then-diff. opt. 1 − −0.018588346428

Adj. disc.-then-diff. opt. 2 − −
Semi-a. adj. disc.-then-diff. opt. 2 − −
Finite differences − −0.018588118600

α = 0.5

Direct −0.017592906261 −0.018015117466

Semi-a. direct −0.017592887840 −0.018015099351

Adj. diff.-then-disc. −0.017654283299 −0.018015355049

Semi-a. adj. diff.-then-disc. −0.017654292528 −0.018015364471

Adj. disc.-then-diff. opt. 1 −0.017592906261 −0.018015117466

Semi-a. adj. disc.-then-diff. opt. 1 −0.017592915281 −0.018015131326

Adj. disc.-then-diff. opt. 2 −0.017592906261 −0.018015117466

Semi-a. adj. disc.-then-diff. opt. 2 −0.017592914483 −0.018015125166

Finite differences −0.017592690027 −0.018014899961

α = 1

Direct −0.011964307217 −0.017441917048

Semi-a. direct −0.011964285704 −0.017441898622

Adj. diff.-then-disc. −0.013595022204 −0.017585996028

Semi-a. adj. diff.-then-disc. −0.013595029346 −0.017586005227

Adj. disc.-then-diff. opt. 1 −0.011964307217 −0.017441917048

Semi-a. adj. disc.-then-diff. opt. 1 −0.011964319986 −0.017441927075

Adj. disc.-then-diff. opt. 2 −0.011964307217 −0.017441917048

Semi-a. adj. disc.-then-diff. opt. 2 −0.011964305753 −0.017441924379

Finite differences −0.011964084834 −0.017441698807

However, the finite difference sensitivities erode for small
perturbations due to round-off error.

We also show the error ef for different time discretiza-
tions N for the ε = 10−6 and α = 0.5 case, cf. Figure 6.
The errors of the sensitivities obtained by the different meth-
ods show no dependency on N , with the exception of the
adjoint differentiate-then-discretize scheme. As expected,
this sensitivity has a consistency error that decreases as the
number of time steps increases (Gunzburger 2003; Jensen
et al. 2014).

To examine the accuracy of the semi-analytical sen-
sitivities, we compare them to their respective analytical
sensitivities via the error es of (2) for different perturbation
sizes ε and the N = 1000 and α = 0.5 case, cf. Figure 7.
As expected, the error is smaller as the perturbation size
decreases until round-off error pollutes the computations.

In Fig. 8, we show the error es for different time dis-
cretization N using the ε = 10−6 and α = 0.5 case.

Fig. 5 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the symmetric
problem for α = 0.5 and N = 1000
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Fig. 6 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the symmetric
problem for α = 0.5 and ε = 10−6

The errors of the semi-analytical sensitivities show no
dependency on N because the semi-analytical approxima-
tions are independent of the time discretization, i.e., the
error is solely due to the perturbation size ε.

3.6.2 Asymmetric ∂R/∂U

We consider the nonlinear thermal conductivity case where
ξ = 0.5 for which only ∂R/∂U̇ is symmetric and ∂R/∂U is
not. The computations performed with the various methods
yield similar results, cf. Table 2, with the exception of
the semi-analytical adjoint differentiate-then-discretize and
semi-analytical adjoint discretize-then-differentiate option 1
schemes, which exhibit errors of approximately 0.1% with
respect to their analytical counter parts. We attribute this
error to the asymmetric ∂R/∂U. Again for N = 100, the
explicit α = 0 scheme is not stable.

Fig. 7 Relative percentage error of the semi-analytical sensitivities of
the symmetric problem for α = 0.5 and N = 1000

Fig. 8 Relative percentage error of the semi-analytical sensitivities of
the symmetric problem for α = 0.5 and ε = 10−6

To examine the consistency of the methods, we show
the error ef for different perturbation sizes and time
steps in Figs. 9 and 10. Again as shown in the previous
example, the adjoint method differentiate-then-discretize
has a consistency error that decreases as the number of time
steps increases.

Now we examine the accuracy of the semi-analytical sen-
sitivities, computing the error es for different perturbation
sizes ε with N = 1000 and α = 0.5, cf. Figure 11. Since
∂R/∂U is not symmetric, (54) and (69) do not hold, result-
ing in appreciable error in both the semi-analytical adjoint
differentiate-then-discretize and the semi-analytical adjoint
discretize-then-differentiate option 1 schemes. The other
semi-analytical methods do not exhibit this error. Again
as the perturbation size decreases, the error lessens until
round-off error pollutes the computations.

In Fig. 12, we show the error es for different time
discretization N using the ε = 10−6 and α = 0.5 case.
The error for the semi-analytical adjoint differentiate-then-
discretize and the semi-analytical adjoint discretize-then-
differentiate option 1 schemes is evident.

4 Nonlinear dynamic problems

A nonlinear dynamic problem can be expressed through a
residual as

R(U(t,d), U̇(t,d), Ü(t,d), d) = 0 , (74a)

U̇(0) = U̇
0
, (74b)

U(0) = U0 , (74c)

where we note the design dependencies as in (7). The
response function for this system is again expressed by (20)
and its sensitivity computed by (21).
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Table 2 Sensitivities for the
asymmetric problem Method N = 100 N = 1000

α = 0

Direct − −0.036458929390

Semi-a. direct − −0.036458918886

Adj. diff.-then-disc. − −0.036366841077

Semi-a. adj. diff.-then-disc. − −0.036712508113

Adj. disc.-then-diff. opt. 1 − −0.036458929390

Semi-a. adj. disc.-then-diff. opt. 1 − −0.036805361657

Adj. disc.-then-diff. opt. 2 − −
Semi-a. adj. disc.-then-diff. opt. 2 − −
Finite differences − −0.036458757458

α = 0.5

Direct −0.035207467583 −0.035893035577

Semi-a. direct −0.035207456378 −0.035893024774

Adj. diff.-then-disc. −0.035306636741 −0.035893239979

Semi-a. adj. diff.-then-disc. −0.035646027889 −0.036238627524

Adj. disc.-then-diff. opt. 1 −0.035207467583 −0.035893035577

Semi-a. adj. disc.-then-diff. opt. 1 −0.035548997747 −0.036238714626

Adj. disc.-then-diff. opt. 2 −0.035207467583 −0.035893035577

Semi-a. adj. disc.-then-diff. opt. 2 −0.035207482293 −0.035893051987

Finite differences −0.035207295634 −0.035892861794

α = 1

Direct −0.029694346673 −0.035327122553

Semi-a. direct −0.029694332634 −0.035327111453

Adj. diff.-then-disc. −0.030954122631 −0.035426388647

Semi-a. adj. diff.-then-disc. −0.031289705532 −0.035771465710

Adj. disc.-then-diff. opt. 1 −0.029694346673 −0.035327122553

Semi-a. adj. disc.-then-diff. opt. 1 −0.030028066780 −0.035672041022

Adj. disc.-then-diff. opt. 2 −0.029694346673 −0.035327122553

Semi-a. adj. disc.-then-diff. opt. 2 −0.029694357644 −0.035327141665

Finite differences −0.029694167625 −0.035326948922

Fig. 9 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the asymmetric
problem for α = 0.5 and N = 1000

Fig. 10 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the asymmetric
problem for α = 0.5 and ε = 10−6
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Fig. 11 Relative percentage error of the semi-analytical sensitivities of
the asymmetric problem for α = 0.5 and N = 1000

For the sensitivity analysis, we implement the direct
method by differentiating (74a), (74b), and (74c)

∂R

∂Ü

∂Ü
∂di

+ ∂R

∂U̇

∂U̇
∂di

+ ∂R
∂U

∂U
∂di

= − ∂R
∂di

, (75a)

∂U̇(0)

∂di

= ∂U̇
0

∂di

, (75b)

∂U(0)

∂di

= ∂U0

∂di

, (75c)

and solve the resulting pseudo problem for ∂Ü/∂di , ∂U̇/∂di ,
and ∂U/∂di whereupon we evaluate (21).

Fig. 12 Relative percentage error of the semi-analytical sensitivities of
the asymmetric problem for α = 0.5 and ε = 10−6

Alternatively, we can implement the adjoint method
whereby we insert (75a) into (21) to obtain the equivalent
sensitivity

DF

Ddi

=
∫ tf

0

(
∂G

∂U
∂U
∂di

+ ∂G

∂U̇

∂U̇
∂di

+ ∂G

∂di

)

dt

+
∫ tf

0
λ�

(
∂R

∂Ü

∂Ü
∂di

+ ∂R

∂U̇

∂U̇
∂di

+ ∂R
∂U

∂U
∂di

+ ∂R
∂di

)

dt .

(76)

Where again λ is the arbitrary adjoint vector. Integrating by
parts and rearranging (76) yields

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ λ� ∂R
∂di

)

dt

− ∂U0

∂di

� (

∂G

∂U̇

�
+ ∂R

∂U̇

�
λ − d

dt

(

∂R

∂Ü

�
λ

))∣
∣
∣
∣
∣
t=0

− ∂U̇
0

∂di

� (

∂R

∂Ü

�
λ

)
∣
∣
∣
∣
∣
∣
t=0

+
∫ tf

0

∂U
∂di

� (

∂G

∂U

�
− d

dt

(
∂G�

∂U̇

)

+ ∂R�

∂U
λ − d

dt

(

∂R�

∂U̇
λ

)

+ d2

dt2

(

∂R�

∂Ü
λ

))

dt

+ ∂U
∂di

� (

∂G

∂U̇

�
+ ∂R

∂U̇

�
λ − d

dt

(

∂R

∂Ü

�
λ

))∣
∣
∣
∣
∣
t=tf

+ ∂U̇
∂di

� (

∂R

∂Ü

�
λ

)∣
∣
∣
∣
∣
t=tf

.

(77)

Next, we introduce the time mapping of (25) and substitute
it into the above (77) to obtain

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ �� ∂R
∂di

)

dt

− ∂U0

∂di

� (

∂G

∂U̇

�
+

(

∂R

∂U̇

�
− d

dt

(

∂R

∂Ü

�))

� + ∂R

∂Ü

�
�̇

)∣
∣
∣
∣
∣
t=0

− ∂U̇
0

∂di

� (

∂R

∂Ü

�
�

)
∣
∣
∣
∣
∣
∣
t=0

+
∫ tf

0

∂U
∂di

� (

∂G

∂U

�
− d

dt

(
∂G�

∂U̇

)

+
(

∂R
∂U

�
− d

dt

(

∂R�

∂U̇

)

+ d2

dt2

(

∂R

∂Ü

�))

�

+
(

∂R

U̇

�
− 2

d

dt

(

∂R

∂Ü

�))

�̇ + ∂R

∂Ü

�
�̈

)

dt

+ ∂U
∂di

� (

∂G

∂U̇

�
+

(

∂R

∂U̇

�
− d

dt

(

∂R

∂Ü

�))

� + ∂R

∂Ü

�
�̇

)∣
∣
∣
∣
∣
t=tf

+ ∂U̇
∂di

� (

∂R

∂Ü

�
�

)∣
∣
∣
∣
∣
t=tf

. (78)

where all quantities are evaluated at time t except for
� which is evaluated at tf − t . We annihilate the terms
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containing the implicitly defined derivative ∂U/∂di by
requiring � to solve

∂R

∂Ü

�
�̈ +

(

∂R

∂U̇

�
− 2

d

dt

(

∂R

∂Ü

�))

�̇

+
(

∂R
∂U

�
− d

dt

(

∂R�

∂U̇

)

+ d2

dt2

(

∂R

∂Ü

�))

�

= −∂G

∂U

�
+ d

dt

(
∂G�

∂U̇

)

, (79a)

∂R

∂Ü

�∣
∣
∣
∣
∣
t=tf

�̇(0) = −∂G

∂U̇

�∣
∣
∣
∣
∣
t=tf

, (79b)

�(0) = 0 . (79c)

Using this �, the sensitivity reduces to

DF

Ddi

=
∫ tf

0

(
∂G

∂di

+ �� ∂R
∂di

)

dt

−∂U0

∂di

� (

∂G

∂U̇

�
+

(

∂R

∂U̇

�
− d

dt

(

∂R

∂Ü

�))

�

+ ∂R

∂Ü

�
�̇

)∣
∣
∣
∣
∣
t=0

− ∂U̇
0

∂di

� (

∂R

∂Ü

�
�

)
∣
∣
∣
∣
∣
∣
t=0

. (80)

where again all quantities are evaluated at time t except for
� which is evaluated at tf − t .

4.1 Discretization

To solve the above, we discretize in time using the Newmark
method so that

U̇
n = U̇

n−1 + (1 − γ )�tÜ
n−1 + γ�tÜ

n
, (81)

Un = Un−1 + �tU̇
n−1

+
(
1

2
− β

)

�t2Ü
n−1 + β�t2Ü

n
, (82)

where Un = U(tn), U̇
n = U̇(tn) and Ü

n = Ü(tn). To
simplify the ensuing developments, we define coefficients
a = (1 − γ )�t , b = γ�t , c = �t , d = (1/2 − β)�t2,
and e = β�t2.

4.2 Primal analysis

In the primal analysis, we are given the initial condition U0

and U̇
0
, so first we use (74a) and solve

R0(U0, U̇
0
, Ü

0
, d) = 0 , (83)

for Ü
0
by Newton-Raphson. The updates �Ü

0
for Ü

0
are

obtained by solving

K0(U0, U̇
0
, Ü

0
, d)�Ü

0 = −R0(U0, U̇
0
, Ü

0
, d) , (84)

where K0 = ∂R0/∂Ü is the tangent matrix. We continue
updating until convergence.

HavingU0, U̇
0
and Ü

0
, we compute the first term in (31),

i.e., F = μ0 G0(U0, U̇
0
, d).

Now we commence our analysis. At each time step tn, we
replace U̇

n
and Un with the right-hand side (RHS) of (81)

and (82), solve (74a) for Ü
n
and then evaluate U̇

n
and Un

from (81) and (82). Newton’s method is also used for these
solves, whereupon we calculate the update �Ü

n
from the

linear equation

Kn(Un, U̇
n
, Ü

n
, d)�Ü

n = −Rn(Un, U̇
n
, Ü

n
, d) , (85)

where Kn = ∂Rn/∂Ü + b ∂Rn/∂U̇ + e ∂Rn/∂U is the
tangent stiffness matrix. After convergence, we update F

as per (34). A flowchart of these computations appears in
Fig. 13.

4.3 Direct differentiation

For the direct differentiation sensitivity analysis, we
discretize ∂U/∂di like U, i.e.,

∂U̇
n

∂di

= ∂U̇
n−1

∂di

+ a
∂Ü

n−1

∂di

+ b
∂Ü

n

∂di

, (86)

∂Un

∂di

= ∂Un−1

∂di

+ c
∂U̇

n−1

∂di

+ d
∂Ü

n−1

∂di

+ e
∂Ü

n

∂di

. (87)

Note that the initial condition ∂U0/∂di and ∂U̇
0
/∂di are

known, but ∂Ü
0
/∂di is not. So before commencing, we

must obtain ∂Ü
0
/∂di like we did Ü

0
. To these ends, we

differentiate (83) to obtain the linear equation

K0 ∂Ü
0

∂di

= −
(

∂R0

∂U
∂U0

∂di

+ ∂R0

∂U
∂U̇

0

∂di

+ ∂R0

∂di

)

, (88)

which we solve for ∂Ü
0
/∂di . Having ∂U̇

0
/∂di and ∂U0/∂di

we update DF/Ddi as per (37). Now we march in time
evaluating ∂Un/∂di , ∂U̇

n
/∂di and ∂Ü

n
/∂di as we did to

compute Un, U̇
n
, and Ü

n
. From (75a), (86), and (87) we

formulate the linear equation

Kn ∂Ü
n

∂di

= −∂Rn

∂U

(

∂Un−1

∂di

+ c
∂U̇

n−1

∂di

+ d
∂Ü

n−1

∂di

)

−∂Rn

∂U̇

(

∂U̇
n−1

∂di

+ a
∂Ü

n−1

∂di

)

− ∂Rn

∂di

. (89)

We solve the above (89) for ∂Ü
n
/∂di and update ∂U̇

n
/∂di

and ∂Un/∂di via (86) and (87) and DF/Ddi via (39). We
continue marching in this manner for all tn. In so far as our
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Fig. 13 Primal analysis flowchart for dynamic problem

sensitivity analysis algorithm is concerned, we insert nodes
A and B from Fig. 14 into the primal analysis flowchart of
Fig. 13.

Fig. 14 Direct differentiation nodes for dynamic problem

For semi-analytical, we have the approximations

∂R0

∂U
∂U0

∂di

+ ∂R0

∂U
∂U̇

0

∂di

+ ∂R0

∂di

≈

1

ε
R0

(

U0+ε
∂U0

∂di

, U̇
0+ε

∂U̇
0

∂di

, Ü
0
, d+ε ei

)

, (90)

∂Rn

∂U

(

∂Un−1

∂di

+ c
∂U̇

n−1

∂di

+ d
∂Ü

n−1

∂di

)

+∂Rn

∂U̇

(

∂U̇
n−1

∂di

+ a
∂Ü

n−1

∂di

)

+ ∂Rn

∂di

≈ 1

ε
Rn

(

Un + ε

(

∂Un−1

∂di

+ c
∂U̇

n−1

∂di

+ d
∂Ü

n−1

∂di

)

,

U̇
n + ε

(

∂U̇
n−1

∂di

+ a
∂Ü

n−1

∂di

)

, Ü
n
, d + ε ei

)

,

(91)

which we use in (88) and (89). Again, we assume the user
can code ∂Gn/∂U, ∂Gn/∂U̇ and ∂Gn/∂di .

2403



F. Fernandez and D. A. Tortorelli

4.4 Adjoint method using
differentiate-then-discretize

In the adjoint differentiate-then-discretize approach, we
discretize the adjoint problem and sensitivity of (79a) and
(80). (80) is evaluated as

DF

Ddi

=
N

∑

n=0

μN−n

(

∂GN−n

∂di

+ �n� ∂RN−n

∂di

)

−∂U0

∂U̇

� (

∂G0

∂U̇

�
+

(

∂R0

∂U̇

�
− d

dt

(

∂R0

∂Ü

�))

�N

+ ∂R0

∂Ü

�
�̇

N

)

− ∂U̇
0

∂di

� (

∂R0

∂Ü

�
�N

)

.

(92)

To obtain�n, we solve (79a), (79b), and (79c) like we did
forU, i.e., we introduce the Newmark time stepping scheme

�̇
n = �̇

n−1 + a �̈
n−1 + b �̈

n
, (93)

�n = �n−1 + c �̇
n−1 + d �̈

n−1 + e �̈
n
. (94)

To reuse Kn like the direct method, we restrict R such
that

d

dt

(
∂R

∂U̇

)

= 0 , (95)

d

dt

(
∂R

∂Ü

)

= 0 . (96)

This means, ∂R/∂U̇ and ∂R/∂U̇ which are typically
interpreted as damping and mass matrices respectively, are
constant.

Noting that �0 = 0 from (79c), we start the algorithm by
solving (79b), i.e.,

∂RN

∂Ü

�
�̇

0 = −∂GN

∂U̇

�
, (97)

for �̇
0
. Next, we obtain �̈

0
from (79a), i.e.,

∂RN

∂Ü

�
�̈

0 = −∂RN

∂U̇

�
�̇

0 − ∂GN

∂U

�

+
(

∂2GN

∂U̇∂U
U̇

N
)�

+
(

∂2GN

∂U̇
2
Ü

N
)�

. (98)

Notice that (97) and (98) do not use the tangent stiffness
matrix of the primal analysis. Next we initialize DF/Ddi

from (48).

The time marching now commences for the remaining in
time steps tn, i.e., for n = 1, 2, ..., N − 1 we solve

KN−n�
�̈

n = −∂GN−n

U

�
+

(
∂2GN−n

∂U̇∂U
U̇

N−n
)�

+
(

∂2GN−n

∂U2
Ü

N−n
)�

−∂RN−n

∂U

� (

�n−1 + c �̇
n−1 + d �̈

n−1
)

−∂RN−n

∂U̇

� (

�̇
n−1 + a �̈

n−1
)

,

(99)

for �̈
n
. Then, we update �n and �̇

n
with (93) and (94) and

DF/Ddi with (50).
Finally, we solve

(

∂R0

∂Ü
+ b

∂R0

∂U̇
+ e

∂R0

∂U

)�
�̈

N = −∂G0

∂U

�

+
(

∂2G0

∂U̇∂U
U̇
0
)�

+
(

∂2G0

∂U̇
2
Ü
0
)�

−∂R0

∂U

� (

�N−1 + c �̇
N−1 + d �̈

N−1
)

−∂R0

∂U̇

� (

�̇
N−1 + a �̈

N−1
)

,

(100)

for �̈
N
, then obtain �̇

N
and �N from (93) and (94), and

update

DF

Ddi

← DF

Ddi

+ μ0
∂G0

∂di

+ μ0 �N� ∂R0

∂d
− ∂G0

∂U̇

∂U0

∂di

−�N�
(

∂R0

∂U̇

∂U0

∂di

+ ∂R0

∂Ü

∂U̇
0

∂di

)

−�̇
N� ∂R0

∂U̇

∂U0

∂di

.

(101)

Again, we note that (100) does not use the tangent stiffness
matrix from primal problem. This algorithm is described by
inserting node C from Fig. 15 into the flowchart of Fig. 13.

For the semi-analytical, we consider the further restric-
tion that ∂R/∂U and ∂R/∂U̇ are symmetric. In this way, the
term in the adjoint load of (98) can be approximated as

∂RN

∂U̇

�
�̇

0 ≈ 1

ε
R

(

UN, U̇
N + ε�̇

0
, Ü

N
, d

)

, (102)
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Fig. 15 Adjoint differentiate-then-discretize node for dynamic
problem

and the terms in the adjoint load of (99) and (100) can be
approximated as

∂RN−n

∂U

� (

�n−1 + c �̇
n−1 + d �̈

n−1
)

+∂RN−n

∂U̇

� (

�̇
n−1 + a �̈

n−1
)

≈ 1

ε
R

(

UN−n + ε
(

�n−1 + c �̇
n−1 + d �̈

n−1
)

,

U̇
N−n + ε

(

�̇
n−1 + a �̈

n−1
)

, Ü
N−n

, d
)

. (103)

Regarding DF/Ddi of (48), (50), and (101), we can use the
approximations

∂R0

∂U̇

∂U0

∂di

+ ∂R0

∂Ü

∂U̇
0

∂di

≈

1

ε
R

(

U0, U̇
0 + ε

∂U0

∂di

, Ü
0 + ε

∂U̇
0

∂di

, d

)

, (104)

∂R0

∂Ü

∂U0

∂di

≈ 1
ε
R

(

U0, U̇
0
, Ü

0 + ε ∂U0

∂di
, d

)

, (105)

∂Rn

∂di

≈ 1
ε
R

(

Un, U̇n, Ü
n
, d + ε ei

)

. (106)

4.5 Adjoint method using
discretize-then-differentiate

In this adjoint discretize-then-differentiate method, we first
discretize the primal analysis and response function in time
and then we differentiate for the sensitivity analysis. Thus,
we incorporate (75a), (86), and (87) into (32) to obtain the
equivalent sensitivity

δF =
N

∑

n=0

μn

(

∂Gn

∂U
∂Un

∂di

+ ∂Gn

∂U̇

∂U̇
n

∂di

+ ∂Gn

∂di

)

+
N

∑

n=0

�n�
(

∂RN−n

∂Ü

∂Ü
N−n

∂di

+ ∂RN−n

∂U̇

∂U̇
N−n

∂di

+ ∂RN−n

∂U
∂UN−n

∂di

+ ∂RN−n

∂di

)

+
N−1
∑

n=0

�n�
(

∂U̇
N−n

∂di

− ∂U̇
N−n−1

∂di

− a
∂Ü

N−n

∂di

− ∂Ü
N−n

∂di

)

+
N−1
∑

n=0

�n�
(

∂UN−n

∂di

− ∂UN−n−1

∂di

− c
∂U̇

N−n−1

∂di

− d
∂Ü

N−n−1

∂di

− ∂Ü
N−n

∂di

)

, (107)
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where �n, �n, and �n are arbitrary adjoint vectors.
Rearranging the above yields

DF

Ddi

=
N

∑

n=0

(

μN−n

∂GN−n

∂di

+ �n� ∂RN−n

∂di

)

+
(

μ0
∂G0

∂U
+ �N � ∂R0

∂U
− �N−1�

)

∂U0

∂di

+
(

μ0
∂G0

∂U̇
+ �N � ∂R0

∂U̇
− �N−1� − c �N−1�

)

∂U̇
0

∂di

+
(

�N � ∂R0

∂Ü
− a �N−1� − d �N−1�

)

∂Ü
0

∂di

+
N−1
∑

n=1

(

μN−n

∂GN−n

U
+ �n� ∂RN−n

∂U

+ �n� − �n−1�) ∂UN−n

∂di

+
N−1
∑

n=1

(

μN−n

∂GN−n

∂U̇
n ∂di + �n� ∂RN−n

∂U̇

+ �n� − �n−1� − c �n−1�) ∂U̇
N−n

∂di

+
N−1
∑

n=1

(

�n� ∂RN−n

∂Ü
− b �n� − a �n−1�

− e �n� − d �n−1�) ∂Ü
N−n

∂di

+
(

μN

∂GN

∂U
+ �0� ∂RN

∂U
+ �0�

)

∂UN

∂di

+
(

μN

∂GN

∂U̇
+ �0� ∂RN

∂U̇
n ∂di + �0�

)

∂U̇
N

∂di

+
(

�0� ∂RN

∂Ü
−b �0�−e �0�

)

∂Ü
N

∂di

.

(108)

To annihilate ∂Ü
N

/∂di , ∂U̇
N

/∂di and ∂UN/∂di , we first
solve the adjoint problem

KN�
�0 = −b μN

∂GN

∂U̇

�
− e μN

∂GN

∂U

�
, (109)

for �0, then we evaluate �0 from

�0 = −μN

∂GN

∂U̇

�
− ∂RN

∂U̇

�
�0 . (110)

and �0 from either of the following options

�0 = −μN

∂GN

∂U

�
− ∂RN

∂U

�
�0 , (111)

= 1

e

(

∂RN

∂Ü

�
�0 − b �0

)

, (112)

where (112) holds for β �= 0. We next initialize the
sensitivity from (62).

To annihilate ∂Ü
N−n

/∂di , ∂U̇
N−n

/∂di and ∂UN−n/∂di ,
we march in time tn for n = 1, 2, ..., N − 1 by solving

KN−n�
�n = −b μN

∂GN

∂U̇

�
− e μN

∂GN

∂U

�

+�t �n−1 +
(

γ + 1

2

)

�t2�n−1 , (113)

for �n, updating �n from

�n = �n−1 + c �n−1 − μN−n

∂GN−n

∂U̇
n

�
− ∂RN−n

∂U̇

�
�n ,

(114)

computing �n by either option

�n = �n−1 − μN−n

∂GN−n

∂U

�
− ∂RN−n

∂U

�
�n , (115)

= 1

e

(

−d �n−1 + ∂RN−n

∂Ü

�
�n − b �n − a �n−1

)

(116)

and updating DF/Ddi from (66).

Finally, to annihilate ∂Ü
0
/∂di , we solve

K0�
�N = a �N−1 + d �N−1 , (117)

for �N and we update

DF

Ddi

← DF

Ddi

+ μ0
∂G0

∂di

+ �N� ∂R0

∂di

+
(

μ0
∂G0

∂U
− �N−1�

)
∂U0

∂di

+
(

μ0
∂G0

∂U̇
− �N−1� − c �N−1�

)
∂U̇

0

∂di

+�N�
(

∂R0

∂U
∂U0

∂di

+ ∂R0

∂U̇

∂U̇
0

∂di

)

. (118)

This algorithm is obtained by inserting node C from Fig. 16
into the primal analysis flowchart of Fig. 13.

For semi-analytical implementation, we require ∂Rn/∂U̇
to be symmetric. The adjoint load terms of (110) and (114)
are thusly approximated as

∂RN−n

∂U̇

�
�n ≈ 1

ε
R

(

UN−n, U̇
N−n + ε�n, Ü

N−n
, d

)

.

(119)

2406



Semi-analytical sensitivity analysis for nonlinear transient problems

Fig. 16 Adjoint discretize-then-differentiate node for dynamic
problem

The first �n option, is restricted to symmetric ∂R/∂U.
Whereby (111) and (115) are approximated as

∂RN−n

∂U

�
�n ≈ 1

ε
R

(

UN−n + ε�n, U̇
N−n

, Ü,d
)

. (120)

For the second �n option, considers the more common
restriction for which ∂R/∂Ü is symmetric and β �= 0,
whence the terms in (112) and (116) are approximated as

∂RN−n

∂Ü

�
�n ≈ 1

ε
R

(

UN−n, U̇
N−n

, Ü + ε�n, d
)

. (121)

Finally, to compute DF/Ddi in (118), we use the following
approximation

∂R0

∂U
∂U0

∂di

+ ∂R0

∂U
∂U̇

0

∂di

≈ 1

ε
R

(

U0 + ε
∂U0

∂di

, U̇
0 + ε

∂U̇
0

∂di

, Ü
0
, d

)

. (122)

The derivative ∂Rn/∂di of (62), (66), and (118) is
approximated from (106).

4.6 Dynamic example

Consider a two identical masses m1 = m2 = 1 that
are free to slide over a frictionless horizontal surface. The
masses are connected by identical nonlinear springs and
identical linear dampers as seen in Fig. 17. The internal
force generated by the springs is fe = x + kd x3 where x

is the relative displacement of the connected nodes of the
spring and the parameter kd = 1 is our design variable. The
dampers generate the force fc = kc ẋ, where kc = 0.1.
There is no external force acting in the two mass-spring-
damper system but it is subjected to the initial conditions
x1(0) = 0, x2(0) = 1, ẋ1(0) = 0 and ẋ2(0) = 0. The time
domain is t = [0, 10], the Newton-Raphson tolerance is
εR < 10−15 and the Newmark-beta parameters are γ = 1/2
and β = 1/4.

To illustrate the various sensitivity analyses, the response
function is

F =
∫ 10

0

(

x2
1 + x2

2 + ẋ2
1 + ẋ2

2

)

dt , (123)

Fig. 17 Two mass-spring-damper system
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Table 3 Sensitivities for the
two mass-spring-damper
problem with ε = 10−6.

Method N = 100 N = 1000

Direct 0.107639247785 0.105776635574

Semi-a. direct 0.107638856238 0.105776248858

Adj. diff.-then-disc. 0.102804889175 0.105727453140

Semi-a. adj. diff.-then-disc. 0.102805080190 0.105727675445

Adj. disc.-then-diff. opt. 1 0.107639247785 0.105776635574

Semi-a. adj. disc.-then-diff. opt. 1 0.107639248264 0.105776639065

Adj. disc.-then-diff. opt. 2 0.107639247785 0.105776635578

Semi-a. adj. disc.-then-diff. opt. 2 0.107639274468 0.105776920805

Finite differences 0.107639219982 0.105776611026

Fig. 18 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the mass-
spring-damper problem N = 1000

Fig. 19 Relative percentage error of the sensitivities obtained by the
analytical methods with respect to finite differences for the mass-
spring-damper problem ε = 10−6

Fig. 20 Relative percentage error of the semi-analytical sensitivities
for the mass-spring-damper problem for N = 1000

Fig. 21 Relative percentage error of the semi-analytical sensitivities
for the mass-spring-damper problem for ε = 10−6
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Table 4 Restrictions for semi-analytical adjoint methods for transient
problems

Method Symmetry Additional

restrictions

Semi-a. adj. diff.-then-disc. ∂Rn/∂U d
dt

(
∂R
∂U̇

)

= 0

Semi-a. adj. disc.-then-diff. opt. 1 ∂Rn/∂U

Semi-a. adj. disc.-then-diff. opt. 2 ∂Rn/∂U̇ α �= 0

where the numerical integration is done by the trapezoidal
rule. Table 3 shows the computed sensitivities values for the
different methods using the perturbation size ε = 10−6. The
response function converges as the number of time steps
increases, thus the values of the sensitivities corresponding
to N = 100 differ from those corresponding to N =
1000. For N = 100, the sensitivities obtained by the
adjoint method differentiate-then-discretize, do not coincide
with the others due to the consistency error (Gunzburger
2003; Jensen et al. 2014). However, this consistency error
practically vanishes for N = 1000.

To examine the consistency of the methods, we show
ef for the N = 1000 case and different perturbation
sizes, cf. Figure 18. As expected the finite differences
show truncation and round off error for large and small
perturbations respectively, and the adjoint differentiate-
then-discretize method shows a consistency error. Figure 19
illustrates the error ef for ε = 10−6 and different time steps,
where it is seen that the consistency error of the adjoint
differentiate-then-discretize method reduces as the number
of time steps increases.

To examine the accuracy of the semi-analytical sensitiv-
ities, we compute the error es for the N = 1000 case, cf.
Fig. 20. Again, as expected, the semi-analytical sensitivities
exhibit truncation and round off error for small and large
perturbation sizes respectively.

Figure 21 shows that the error es for ε = 10−6 is fairly
independent of the time step size.

Table 5 Restrictions for semi-analytical adjoint methods for dynamic
problems

Method Symmetry Additional

restrictions

Semi-a. adj. diff.-then-disc. ∂Rn/∂U̇, d
dt

(
∂R
∂U̇

)

= 0,

∂Rn/∂U d
dt

(
∂R
∂Ü

)

= 0

Semi-a. adj. disc.-then-diff. opt. 1 ∂Rn/∂U̇,

∂Rn/∂U

Semi-a. adj. disc.-then-diff. opt. 2 ∂Rn/∂U̇, β �= 0

∂Rn/∂Ü

5 Conclusions

Implementation of analytical sensitivity analyses requires
detailed knowledge of the analysis program and can be
error-prone and time-consuming to implement. Fortunately,
these drawbacks may be reduced by adopting the semi-
analytical method, where terms in the pseudo or adjoint
loads and also in the sensitivities are approximated by finite
differences. In this way, we are able to compute these
complicated terms using subroutines that are used for the
solution of the primal problem and maintain the efficiency
of the analytical methods. That said, the accuracy of the
semi-analytical sensitivities is susceptible to truncation,
round-off errors, and additional errors if the convergence
tolerance of the primal analysis is not sufficiently small.

In transient and dynamic problems, the semi-analytical
sensitivity analysis approach affects both restrictive
assumptions and accuracy. In particular, expressions for
the adjoint differentiate-then-discretize and discretize-then-
differentiate approaches differ because the differentiation
and discretization steps do not commute. The differentiate-
then-discretize approach requires some terms to be constant,
e.g., mass matrix, in order to reuse the tangent stiffness
matrix from the primal analysis; however, the first and last
tangent stiffness matrices are not reused. This is not the case
for the direct and the adjoint discretize-then-differentiate
methods where the tangent stiffness matrix is reused for
all time steps. Furthermore, the adjoint differentiate-then-
discretize approach yields consistency error, albeit they
reduce with the time step size.

In most cases, the semi-analytical adjoint approaches
for the nonlinear transient and nonlinear dynamic systems
require symmetry of ∂Rn/∂U, ∂Rn/∂U̇, and/or ∂Rn/∂Ü.
This may be problematic, as ∂Rn/∂U is usually asymmetric
in nonlinear problems. Fortunately, if we do not use
an explicit method, the semi-analytical discretize-then-
differentiate adjoint method can accommodate asymmetric
∂Rn/∂U. A summary of these restrictions is presented in
Tables 4 and 5. Example problems are provided to show the
efficiency and errors associated with the various methods
for nonlinear transient and nonlinear dynamic problems.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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