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Abstract
In this work, a new thickness parameterization which allows for internal ply-drops without intermediate voids is introduced
in the Discrete Material and Thickness Optimization (DMTO) method. With the original DMTO formulation, material had to
be removed from the top in order to prevent non-physical intermediate voids in the structure. The new thickness formulation
relies on a relation between density variables and ply-thicknesses rather than constitutive properties. This new formulation
allows internal ply-drops which is essential for composite structures as it is common practice to cover dropped plies as
to avoid delaminations. Furthermore, it is demonstrated how the new thickness formulation in some cases improves the
convergence characteristics. Finally, it is also shown how solid-shell elements can be utilized within the DMTO method for
structural optimization of tapered laminated composite structures.

Keywords Discrete Material and Thickness Optimization · Laminated composites · Manufacturing constraints

1 Introduction

Variable thickness and use of multiple materials is inevitable
for laminated composite structures such as wind turbine
blades. Optimization is often essential for design of such
structures since multiple conflicting structural criteria in
combination with several load cases make it non-trivial to
find a good material lay-up. The variable thickness is typi-
cally achieved through internal ply-drops. Material selection
is not only choosing the best fiber-resin system, possibly
in combination with a sandwich core material, but also
choosing the best fiber direction for each layer. Typically,
the fiber directions are limited to a small prescribed set,
for example 0◦, ±45◦, and 90◦, with fixed layer thick-
nesses. The integer number of plies and finite choices
of fiber angles/materials makes it a discrete optimization
problem. The optimization problem is further complicated
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by manufacturing constraints. Many manufacturing con-
straints are related to the stacking sequence or thickness
change, while others are seemingly obvious, e.g., that adja-
cent areas of the structure must be inter-connected by
continuous plies (often called continuity or blending). A
typically required manufacturing constraint for variable
thickness structures is regarding the allowable number of
ply-drops at a given position, and the distance between sub-
sequent ply-drops. Another common manufacturing con-
straint is regarding the maximum number of consecutive
plies with the same fiber orientation (often called conti-
guity). An overview of common manufacturing constraints
can be found in, e.g., Irisarri et al. (2014) and Peeters and
Abdalla (2017). A recent review of optimization approaches
for laminated composite structures can be found in Xu et al.
(2018).

The perhaps most simple way to parameterize an opti-
mization problem for laminated composite structures is to
divide the structure into a number of domains (sometimes
called patches), and for each layer in every domain, deter-
mine the best material/fiber angle. Evolutionary algorithms
(EA) are very popular for optimization of composite struc-
tures, as is evident in the recent review by Nikbakt et al.
(2018). An advantage of evolutionary algorithms is that they
can directly handle discrete variables without relaxation. In
a work by Irisarri et al. (2014), an evolutionary algorithm is
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used to find an optimal composite structure with ply-drops
while considering a large number of manufacturing con-
straints. In another recent example, Albanesi et al. (2018)
use a genetic algorithm (GA) for structural optimization of
a wind turbine blade where ply start/stop positions along
with material choice are the design variables. In general,
however, for a large number of design variables, genetic
algorithms become computationally demanding.

Another popular strategy are gradient-based “multi-step”
methods. Here, the discrete problem is relaxed to a continuous
one thereby allowing the use of gradient-based methods.
Typically, this is combined with one or more subsequent
steps (not necessarily gradient-based) with the purpose of
obtaining a manufacturable lay-up. The continuous design
variables are usually a combination of laminate thickness
and either lamination parameters (Bloomfield et al. 2009;
Liu et al. 2011), smeared properties (Zhou et al. 2010; Liu
et al. 2011), fiber angles for each ply (Irisarri et al. 2016;
Peeters and Abdalla 2016), or ply-group sizing (Sjølund and
Lund 2018). Subsequent steps depend much on the targeted
manufacturing method and will not be described here.

Gradient-based methods can also be used for solving
the discrete problem without subsequent steps. Two similar
approaches for simultaneous solution of the optimal thick-
ness and material can be seen in Sørensen and Lund (2013)
and Gao et al. (2013). The general idea is here to combine
discrete material optimization (DMO) to determine the opti-
mal material for each ply (see Stegmann and Lund (2005)),
with topology optimization to determine the optimal thick-
ness distribution. Implicit penalization is used to favor a
discrete design. The combined approach is called Discrete
Material and Thickness Optimization (DMTO) in Sørensen
et al. (2014) where it is also used to minimize the mass
of a wind turbine spar. Advances in the method include
bi-valued coding to reduce the number of material design
variables (see, e.g., Bruyneel (2011) and Gao et al. (2013)),
a thickness filter using only one through-the-thickness den-
sity design variable per geometry domain (see Sørensen and
Lund (2015)), and inclusion of failure criteria constraints
(see Lund (2018)). However, due to the topology inspired
approach to variable thickness by scaling the constitutive
matrix, intermediate voids arise if internal ply-drops are
present. So far, this has been solved by only allowing exter-
nal ply-drops, though it is well known that ply-drops are
always covered by outer plies to avoid delaminations.

This work has two objectives. The primary objective
is to introduce a new formulation in the DMTO method
regarding thickness changes. With the new formulation,
internal ply-drops do not create intermediate voids since the
density design variables are related to the layer thicknesses
instead of layer constitutive properties. This is similar to
the parameterization used in Peeters and Abdalla (2016).
Furthermore, it will be shown how the new parameterization

influences the sensitivities, in some cases providing better
results in fewer iterations. The second objective is to
display how solid-shell elements can be utilized in a DMTO
setting. Solid-shell elements require a continuous geometry
across ply-drops and a simple approach is demonstrated to
accomplish this. Benefits of solid-shell elements include
access to the full 3D stress state which can be important for
strength analysis of ply-drops, and the option of a layer-wise
mesh refinement.

The remainder of the article is organized as follows:
first the original DMTO method along with the proposed
new formulation is presented in Section 2. In Section 3,
the optimization approach is described. In Section 4, the
new formulation is benchmarked and new capabilities are
demonstrated. Finally, the conclusion is given in Section 5.

2Method

2.1 Discrete Material and Thickness Optimization
(DMTO)

In the original Discrete Material and Thickness Optimiza-
tion method, the parameterization involves the constitutive
properties on a layer basis. For each layer, there is a design
variable for both the choice of material and regarding if
there should be material or not. The choice of candidate
material is given by the material design variable vector x
such that

xplc =
{
1 if candidate c is selected in layer l of patchp

0 otherwise
(1)

while the choice regarding if there should be material or not
is given by the density design variable vector ρ such that:

ρdl =
{
1 if there is material in layer l of domain d

0 otherwise
(2)

Here, both domain d and patch p refer to groups of elements.
The reason for introducing both is to have individual
parameterizations for material and density. The constitutive
properties for layer l in element e that is located in geometry
domain d and material patch p can be written as

Eel = ρdl

nc∑
c=1

xplcEc (3)

nc∑
c=1

xplc = 1 ∀ (ρ, l) (4)

ρdl ∈ {0; 1} ∀ (d, l) (5)

xplc ∈ {0; 1} ∀ (p, l, c) (6)

where nc is the number of candidate materials. In order
to use efficient gradient-based optimization methods, the
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problem is relaxed, allowing ρdl and xplc to be intermediate
values. Hence, (5) and (6) become

ρdl ∈ [0; 1] ∀ (d, l) (7)

xplc ∈ [0; 1] ∀ (p, l, c) (8)

Since intermediate values of ρdl and xplc are non-physical,
an implicit penalization scheme can be used to favor 0-1
values. If (4) is re-written as

Eel = v (ρ)

nc∑
c=1

w (x)Ec (9)

then functions v and w can represent different penalization
schemes. Generalizations of two different material interpo-
lation schemes are given by Hvejsel and Lund (2011). The
SIMP scheme (solid isotropic material with penalization)
corresponds to:

v (ρ) = ρ
q
dl (10)

w (x) = x
p
plc (11)

where q and p are penalization powers for densities and
materials respectively. Similarly, the RAMP scheme (ratio-
nal approximation of material properties) can be written as

v (ρ) = ρdl

1 + q (1 − ρdl)
(12)

w (x) = xplc

1 + p
(
1 − xplc

) (13)

When standard shell finite elements are used, the surface
can either refer to the geometric mid-surface of the shell,
or it can be offset to bottom or top surface. A change in
thickness with the DMTO method is visualized in Fig. 1
when reference is made to the geometric mid-surface. Since
only the constitutive properties are affected by a change in
ρ the physical laminate thickness is unchanged. Hence even
though shell elements with a mid-plane reference is used,
the thickness change during optimization occurs in an offset
manner.

2.2 New formulation

In the new formulation, it is proposed to remove the relation
between ρ and the constitutive properties. Instead the layer
thicknesses are functions of densities ρdl such that a density
of one will result in the real ply thickness, a density of zero
will result in zero thickness, and intermediate density values
will result in intermediate pseudo thicknesses. It is assumed
that the candidate materials in layer l patch p have the same
ply thickness, tpl . In that case, a pseudo layer thickness

Fig. 1 Visualization of thickness change with the DMTO method,
when the geometry refers to the mid-surface. If the density of layer 4
in domain 2 is reduced to zero, the constitutive properties of that layer
is likewise reduced to zero. The physical thickness however remains
the same

can be calculated as t̃el = v (ρ) tpl . With this relation, the
formulation becomes:

Eel =
nc∑

c=1

w (x)Ec (14)

t̃el = v (ρ) tpl (15)
nc∑

c=1

xplc = 1 ∀ (ρ, l) (16)

ρel ∈ [0; 1] ∀ (e, l) (17)

xplc ∈ [0; 1] ∀ (p, l, c) (18)

A thickness change with the new method is visualized in
Fig. 2. Here, it can be seen that if mid-plane reference
shell elements are used, then a change in thickness will
relocate the layers with respect to the mid-plane such that
the resulting new laminate is centered.

Fig. 2 Visualization of a thickness change using the new formulation,
when the geometry refers to the mid-surface. If the density of layer 4
in domain 2 is reduced to zero, the thickness of that layer is reduced to
zero. If a mid-plane reference is used, then the layers are moved such
that the new thickness-center coincides with the mid-plane



1888 J. H. Sjølund et al.

2.3 Offset with dummy layer

Often composite structures are manufactured in a single-
sided mold which corresponds to an offset type shell
modelling. In this case, the original DMTO method is more
appropriate in the sense that the bottom surface is fixed
during optimization. In order to enable this behavior for the
new formulation, a dummy layer can be added in the top of
the laminate (layer nl + 1). This layer has zero or close to
zero stiffness similar to a layer with ρdl = 0 in the original
DMTO. The thickness of the dummy layer corresponds to
the full density thickness of the laminate minus the sum of
the current pseudo-thicknesses such that:

t̃e(nl+1) =
nl∑

l=1

(
tpl − t̃el

)
(19)

The dummy layer offset method is illustrated in Fig. 3.

2.4 Solid-shell approach

Another approach that can deal with offset modelling is
solid-shell elements. With solid-shell elements the top and
bottom surfaces are explicitly represented by nodes. Fur-
thermore, due to the explicitly defined top and bottom
surfaces, the laminate thickness is also explicitly given at
each node as the distance between the top and bottom sur-
face nodes. If the solid shell element has varying thickness
(described by the 3D volume description), then the layer
thicknesses given by the lay-up definition are scaled accord-
ing to the actual geometric thickness. This is also the usual
approach in commercial finite element packages (see, e.g.,
the SOLSH190 element in ANSYS Inc (2017)). With regard
to node positions, if two neighboring elements have differ-
ent lay-ups, then the coordinates of shared nodes are here
taken as the average thickness of the lay-ups. As an example
consider a ply-drop across two elements, such that element 1
has a lay-up of (0◦, 0◦, 0◦, 0◦) while element 2 has a lay-up
of (0◦, 0◦, 0◦). A visualization of the resulting thicknesses
can be seen in Fig. 4. When the average thickness is used
layers on one side of a shared element edge are stretched
and layers on the other side are compressed.

Fig. 3 Visualization of the dummy offset layer combined with the new
formulation

Fig. 4 Visualization of a thickness change using the new formulation
combined with solid-shell elements. In this approach intermediate
nodes are given the average thickness of neighboring elements. Due
to this the layers are stretched/compressed at the interface between
elements with different number of layers

2.5 Manufacturing constraints

Manufacturing constraints on thickness variation, maximum
consecutive layers and avoiding intermediate voids are
given in Sørensen and Lund (2013) but will be repeated
here for convenience. The constraint regarding avoiding
intermediate voids is particularly interesting as with the new
formulation it is not required for the same reasons as in the
original DMTO method.

2.5.1 Thickness constraints (avoiding intermediate voids)

With the original DMTO formulation, material must always
be removed from the top in order to prevent intermediate
voids. In theory, this can simply be formulated by a series
of constraints

ρd(l+1) ≤ ρdl ∀d, l = 1, 2, . . . , nl − 1 (20)

However, Sørensen and Lund (2013) identified that these
constraints are not sufficient, and so-called density bands
will form through-the-thickness where density variables
settle on intermediate values no-matter the penalization.
To circumvent this, the limits of the density variables are
instead controlled by a series of non-linear constraints.
Depending on the density in layer (l), the maximum
allowable density in the layer above (l + 1) is:

ρd(l+1) ≤
{

T
1−T

ρdl if ρdl < (1 − T )
1−T
T

ρdl + 2T −1
T

else
(21)

∀d, l = 1, 2, . . . , nl − 1, 0 < T ≤ 0.5

Hence, the maximum value of ρd(l+1) is a function of ρdl

and T , where T controls the slope of the linear functions
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and their intervals. This constraint is visualized in Fig. 5 for
different values of the T parameter. For a value of T = 0.5
this corresponds to the simple thickness constraint in (20).
The essence is that a difference in densities is enforced
through thickness. For example for T = 0.1 and a density
in the first layer of ρd1 = 0.9, the next layer is limited
to ρd2 ≤ 0.1. Note that this effect propagates through-
the-thickness, i.e., if the density in the second layer has
its maximum value of ρd2 = 0.1, then the third layer is
confined to ρd3 ≤ 0.0111 etc.

With the new formulation intermediate voids can not
appear, and therefore, the thickness constraints are in theory
not needed. However, it is still an efficient method to avoid
density bands, and will therefore still be used. The major
difference is that with the new formulation it is possible to
terminate the thickness constraint between, e.g., the second
last and the last layer, and thereby covering the ply-drops,
without introducing intermediate voids.

2.5.2 Thickness variation

The variation in thickness is the allowed change in thickness
from one domain to another. Physically, it corresponds to
the maximum number of plies that can be dropped at a given
position.

The thickness variation between two elements can be
expressed as the difference in the sum of densities. If S is the
maximum allowable thickness variation, then the thickness
variation constraint between element e and element e + 1
can be formulated as

−S ≤
nl∑

l=1

(
ρel − ρ(e+1)l

) ≤ S (22)
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Thickness constraint

Fig. 5 Plot of the thickness constraint, (21), for multiple values of the
T parameter. The maximum allowable density of layer l + 1 depends
on the density of layer l and the T parameter

2.5.3 Maximum consecutive layers

Another common manufacturing constraint limits the number
of consecutive layers of the same fiber angle. If CL denotes
the number of maximum consecutive layers, then this con-
straint can be written for candidate c patch p as

k+CL∑
l=k

xplc ≤ CL, ∀(p, c), k = 1, 2, . . . , nl − CL (23)

3 Optimization approach

3.1 Optimization problem

The optimization problem can be formulated as

min.
x,ρ

objective

s.t. g ≤ gmax∑nc

c=1 xplc = 1 ∀ (ρ, l)

Manufacturing constraints
ρel ∈ [0; 1] ∀ (e, l)

xplc ∈ [0; 1] ∀ (p, l, c)

where x is the material design variable vector and ρ is
the density design variable vector. The objective function
and structural constraint g are in this work taken to be
compliance and mass respectively (Example 1) or mass and
compliance (Example 2 and 3). Manufacturing constraints
refer to (21), (22), and (23).

3.2 Sequential linear programming approach

A sequential linear programming (SLP) approach is used to
solve the problem. In this approach, in each iteration, the
linearized problem is solved based on linear programming.
The SLP approach is very robust and has been demonstrated
to work well compared to other methods in Sørensen
and Lund (2013). Furthermore, the large number of linear
constraints resulting from the manufacturing constraints can
efficiently be taken into account using modern optimizers.
In this work the Sparse Nonlinear OPtimizer (SNOPT) by
Gill et al. (2005) has been used for all examples.

In this work, constant move limits of 20% are used in all
examples. To have a feasible problem at all times a merit
function approach is used (see Sørensen and Lund (2015)
for more details). Convergence is defined as a relative
change of the merit objective function of less than 10−3.
This can be written as

∥∥∥∥�k − �k−1

�k−1

∥∥∥∥ < 10−3 (24)
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where � denotes the merit function objective and k is
the iteration number. Pseudo code for the convergence
requirements can be found in Sørensen et al. (2014).

3.3 Continuation approach

Penalization is needed to enforce a 0–1 design. Gradually
increasing the penalization during the optimization is used
to obtain a strong local optimum. In this work, the penal-
ization factor is increased whenever a design converges
with current penalization. In all examples, the generalized
RAMP scheme is used with a penalization sequence of

p = {1, 4, 20} (25)

q = {0, 4, 20} (26)

where p is the multi-material penalization and q is the den-
sity penalization. For four candidate materials, the RAMP
powers 0, 4, and 20 correspond to equivalent SIMP powers
of 1, 2, and 3 respectively (see Hvejsel and Lund (2011)).

3.4 Non-discreteness measures

Even though penalization is used, completely discrete results
can not be expected. To quantify non-discrete results, mea-
sures of non-discreteness for both densities and candidate
materials are introduced. The density measure of non-
discreteness is inspired by the one used in Sigmund (2007).
The basic idea is that if design variables solely consist of
0 or 1, the non-discreteness measure is 0%. If instead all
design variables are 0.5 then the measure is 100%. Density
non-discreteness (index dnd) is given as

Mdnd = 4
∑

e,l Velρel(1 − ρel)∑
e,l Vel

100% (27)

A measure for candidate non-discreteness is given in
Sørensen et al. (2014). Here, the basic idea is similar: if all
xplc = 1

nc and all ρel = 1, then the measure is 100%. The
reason that candidate non-discreteness depends on densities,
is that zero density layers should not impact the measure.
The candidate non-discreteness (index cnd) is given as

Mcnd =
∑

e,l Velρ
2
el

∏nc

c=1

(
1−xplc

1− 1
nc

)2

∑
e,l Velρel

100% (28)

3.5 Finite element analysis

Finite element analysis is performed using an in-house
research code written in Fortran 95. The code is referred to
as the MUltidiciplinary Synthesis Tool (see MUST (2018)).

Results are obtained using both layered standard shell ele-
ments and layered solid-shell elements. The used standard
shell elements are degenerated 9-node shell elements (see,
e.g., Panda and Natarajan (1981)). The solid-shell elements
are 8-node elements with 3 degrees of freedom per node.
The solid-shell elements utilize enhanced assumed strain
(EAS) and assumed natural strain (ANS) to avoid locking
phenomena. Details on the solid-shell element formulation
is described by Johansen and Lund (2009).

3.6 Design sensitivity analysis

Design sensitivity analysis (DSA) is performed using
direct differentiation. The direct differentiation approach
is explained in, e.g., Haftka and Gürdal (1992). This is
combined with a semi-analytical approach where partial
derivatives of the element stiffness matrices are found using
central finite-differences. An exception is when design
variables are very close to either 0 or 1, then respectively
a forward or backward finite difference is used instead. In
general perturbations of z ·10−3 is used, where z is a generic
design variable.

The semi-analytical approach is in general very conve-
nient since the same implementation can be used for mul-
tiple elements, however there is a difference between shell
and solid-shell elements. With the new formulation, and for
standard shell elements, a perturbation of ρdl corresponds
to a perturbation of the thickness of layer l. For solid-shell
elements, a change in layer thickness also involves shape
optimization since node coordinates must also be changed.
This is also shown with examples in Sjølund and Lund
(2018).

In this work, the relation between layer thicknesses and
node coordinates for solid-shell elements is explicitly coded,
such that node coordinates are calculated based on current
densities ρdl whenever the element routine is called. Here,
solid-shell elements are only used in an bottom offset
manner, meaning that the bottom nodes are always fixed,
and a thickness change hence only moves the top nodes.
Recalling that the “node-thickness” (distance between
nodes belonging to bottom and top surface) is taken as the
average thickness of the lay-ups of neighboring elements as
shown in Fig. 4, then the coordinate Xj of a top node j can
be calculated as

Xj = Xi + n̄

n
adj
j∑

e=k

(
nl∑

l=1
t̃el

)

n
adj
j

(29)

where Xi is the coordinate of the fixed bottom node i,
n̄ is the unit vector pointing from Xi to Xj , and n

adj
j is

the number of adjacent elements to node j . Hence when
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perturbing a density design variable, the node coordinates
are also perturbed.

4 Numerical examples and results

The following three examples will demonstrate the new
thickness formulation. The original DMTO method is
compared to the new formulation with dummy offset,
“New (offset),” the new formulation without dummy offset,
“New (center),” and the new formulation using solid-shell
elements, “New (sol-sh).” Solid-shell models have one
element through-the-thickness.

The used material is a glass-fiber reinforced plastic
(GFRP) with material properties given in Table 1. These
material properties are used in all examples. Four candidate
materials corresponding to [45◦, − 45◦, 0◦, 90◦] are used.
Initial candidate design variables are equally distributed
such that for four materials the initial material weights for
each candidate will be [0.25, 0.25, 0.25, 0.25].

4.1 Example 1

In the first example, the compliance of a cantilever beam
is minimized while the mass is constrained to be less than
or equal to 3/5 of the full density mass. This benchmark
example was also studied in Sørensen and Lund (2013).
The cantilever beam consists of five elements, each with
five layers, and is shown in Fig. 6a. All elements are linked
together in material patches such that a material choice in
a given layer is the same across all elements. With regard
to the initial density distribution, the first three layers have
a density of 1, while the last two layers have a density
of 0 such that the starting point is feasible with regard
to the mass constraint. The bottom layer is constrained to
have full density at all times. Manufacturing constraints
include a maximum of one consecutive layer (i.e., no two
layers with the same fiber orientation next to each other),

Table 1 GFRP material properties used in all examples

Property Value Units

Young’s modulus E11 34 GPa

Young’s modulus E22 8.2 GPa

Young’s modulusE33 8.2 GPa

Shear modulus G12 4.5 GPa

Shear modulus G13 4.5 GPa

Shear modulus G23 4.0 GPa

Density � 1910 kg/m3

Poisson’s ratio ν12 0.29 –

Poisson’s ratio ν13 0.26 –

Poisson’s ratio ν23 0.26 –

and an allowed thickness variation of one. The thickness
constraint given by (21) is included with different values
of the T parameter. Results are listed in Table 2, and 3D
visualizations are shown in Fig. 6 with layer thicknesses
scaled by a factor of 20. Note that the target mass of 3/5 of
the full density mass is reached in all cases and hence left
out of the table. Candidate non-discreteness, Mcnd , reach
0% in all cases and is also left out.

4.1.1 DMTO and new (offset)

The original DMTO formulation and the new formulation
(with dummy offset) achieve the same optimum for T =
0.1, as can be seen from Table 2 and Fig. 6b, c. The
main difference is that the new formulation also finds this
optimum for T = 0.2 and T = 0.3 using less iterations
while DMTO results are increasingly non-discrete.

The reason that the original DMTO formulation yields
non-discrete results for intermediate T values can partly be
explained through the sensitivities as visualized in Fig. 7.
For a cantilever beam problem, a change in constitutive prop-
erties will have a larger influence on compliance in the
top/bottom layers than in the middle layer due to the area
moment of inertia. This is also shown in Fig. 7a. Hence, the
sensitivities favor adding material to the top and bottom lay-
ers, and removing material from the middle. However, at the
same time, the thickness constraints enforce that densities of
top layers must be less than center layers. These conflicting
requirements make the original DMTO method more prone
to non-discrete results in this particular example.

With the new formulation, a change in thickness yields
the same sensitivity for all layers, as long as each layer has
the same material. This is shown in Fig. 7b. This is not
initially conflicting with the thickness constraints which in
turn helps achieving a discrete optimum. The observation
on sensitivities can also explain why T = 0.4 in general
provides non-discrete results. For example in some cases,
in the first element at the constraint, the fourth layer has
a density of ρ14 = 0.6 and the fifth layer ρ15 = 0.4.
The relatively small difference in density, allowed due to
T = 0.4, makes it such that even though penalization is
applied, it does not make up for the fact that the fifth layer
is 0◦ while the fourth is either ±45◦.

4.1.2 New (center)

The result for the new formulation (centered) can be seen
in Fig. 6d. Since it is true mid-plane reference, the results
are not directly comparable with other results. However, for
this particular example, the results are very similar to offset
results. The found optimum is slightly different than the
other results in that both the second and the fourth layer have
a fiber angle of − 45◦.
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Fig. 6 Example 1 results for minimization of compliance of a cantilever beam. Results are visualized with layer thicknesses scaled by 20

4.1.3 Solid-shell

The solid-shell optimized design is visualized as the other
shell models in Fig. 6e, while the actual computational
model with a continuous upper surface is shown in Fig. 6f.
The optimum is identical to the one found in the original
DMTO and the new formulation (offset). Due to differences
between the used standard shell elements and solid-shell
elements, results can not be directly compared. However,

Table 2 Example 1 results for minimization of compliance of a
cantilever beam with mass constrained to be less or equal to 3/5 of the
full density mass

T = DMTO New New New

(offset) (center) (sol-sh)

Compliance 0.10 4.638e−1 4.638e−1 4.620e−1 4.614e−1

0.20 4.832e−1 4.638e−1 4.639e−1 4.614e−1

0.30 5.414e−1 4.638e−1 4.639e−1 4.614e−1

0.40 8.315e−1 5.485e−1 5.486e−1 6.380e−1

Iterations 0.10 27 17 17 29

0.20 25 17 17 31

0.30 30 22 22 29

0.40 25 28 26 28

Mdnd 0.10 0.00% 0.00% 0.00% 0.00%

0.20 6.32% 0.00% 0.00% 0.00%

0.30 15.87% 0.00% 0.00% 0.00%

0.40 36.39% 7.68% 7.68% 15.36%

T refers to the thickness constraint parameter in (21)

the compliances found are very similar to shell model results
for the fully converged solutions.

4.1.4 Comparison of models

Comparing the original DMTO formulation to the new
formulation with dummy offset, it is clear that the two
methods are equivalent modelling wise when comparing
the same fully discrete optimum. This can also be seen in
Table 2 where the same compliance is obtained for T = 0.1.
The main difference is in the sensitivities as demonstrated
in Fig. 7. The difference in sensitivities is reflected in the
different amount of iterations and density non-discreteness
at convergence, and in this particular example, the new
formulation with dummy offset is favorable.

The new formulation (centered) is the same new
formulation but without the dummy offset, meaning that
thickness changes during optimization is relative to the mid
plane. Hence, when compared to the offset shell models,
even the same optimum will not yield the same compliance.

Fig. 7 Comparison of compliance sensitivities with regard to density
design variables in 1st iteration where material weights are equal in all
layers
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However, as expected, the number of iterations and the
measure of non-discreteness are very similar to the new
formulation with dummy offset.

Results from the new formulation using solid-shell
elements are different both due to an entirely different
element formulation, but also due to the required continuous
geometry across ply-drops. The number of iterations and
measure of non-discreteness is also different from the shell
models. This difference can be expected since thickness
changes here induce skewed element shapes and also
involve moving nodes.

4.2 Example 2

In the second example, the mass of a corner-hinged 8 layered
plate is minimized while the compliance is constrained to
C ≤ 0.9 J corresponding to approximately 5 full density
quasi-isotropic layers. The plate consists of 48x48 elements
and is loaded with a nodal force of 40 N in the center.
Dimensions are given in Fig. 8a. Density variables are

grouped together in 2×2 element domains. Material patches
for each layer span all elements such that in a given layer
the same candidate must be chosen for all elements. The
initial density distribution is such that the first four layers
have full density and the last four layers zero density.
The bottom layer is constrained to have full density at all
times. Manufacturing constraints include a maximum of one
consecutive layer (i.e., no two layers with the same fiber
orientation next to each other), and an allowed thickness
variation of one. Again, the problem is solved for various
T values. Results are listed in Table 3, and in Fig. 8 the
best results are visualized with layer thicknesses scaled by
a factor of 20. Candidate non-discreteness is 0% in all cases
and is not listed in the table.

4.2.1 DMTO and new (offset)

The best results for respectively DMTO and New (offset)
are shown in Fig. 8b, c. For both the original DMTO and
the new formulation (offset), the full density bottom ply is

Fig. 8 Example 2 results for minimization of mass of a corner-hinged plate. Results are visualized with layer thicknesses scaled by 20
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Table 3 Example 2 results for minimization of mass of a corner-
hinged plate with a constrained compliance, C ≤ 0.9

T = DMTO New New New

(offset) (center) (sol-sh)

Mass 0.1 30.45 30.32 38.82 32.71

0.2 30.41 30.33 38.64 30.91

0.3 30.68 30.36 38.58 31.11

0.4 32.74 30.94 38.83 31.50

Compliance 0.1 0.900 0.901 0.899 0.901

0.2 0.900 0.900 0.900 0.900

0.3 0.900 0.900 0.900 0.900

0.4 0.900 0.901 0.895 0.900

Iterations 0.1 43 52 88 69

0.2 51 50 53 42

0.3 53 45 54 47

0.4 60 41 52 50

Mdnd 0.1 0.20% 0.09% 0.06% 0.52%

0.2 0.47% 0.14% 0.29% 1.22%

0.3 5.62% 0.43% 0.21% 3.01%

0.4 21.73% 6.71% 1.49% 4.96%

chosen to be 0◦. This ply directs load in the x-direction to
the edges, and the next 90◦ ply helps redirect the load to
the corners; i.e., it balances the 0◦ ply at the bottom. The
remaining layers are dominated by ±45◦ which in turn lead
load to opposing corners. A similar design is reached in the
new formulation (offset), although the ordering of the ±45◦
plies has changed, causing the design to rotate 90◦.

For the original DMTO, an increasing non-discreteness
can be seen for increasing values of the T parameter. This
is not as pronounced for the new formulation (offset). This
is similar to what is seen in example 1 and can again be
explained from the sensitivities. The number of iterations
used show different tendencies. In general, fewer iterations
are expected for higher T values since effectively more
layers can be changed at once. This is the tendency for the
new formulation (offset). However, if the T parameter is too
high convergence issues appear which in turn increase the
number of iterations. This is the case for the original DMTO
method.

4.2.2 New (center)

Results from the new formulation (center) are visibly differ-
ent from the offset results, as seen in Fig. 8d. Here the first
four layers of 0◦ and 90◦ plies create a nearly symmetri-
cal base. The upper four plies use ±45◦ which induce some
asymmetry. The main change compared to the other designs
is that much more material is placed along two of the edges.

When compared to offset results, the centered formulation
particularly impacts areas with one or few layers since these
layers will be close to the bending neutral axis and thereby
they provide relatively little bending stiffness. This means
that a more compliant design can be expected which in
turn is reflected on the mass required to obtain a certain
stiffness as seen in Table 3. With regard to density non-
discreteness and number of iterations, similar tendencies to
the new formulation (offset) can be seen, i.e. higher T val-
ues yield higher non-discreteness. One exception is seen for
T = 0.3 which has a lower non-discreteness measure than
for T = 0.2. Here, it can also be seen that the best found
optimum with respect to mass is not always the result with
the lowest non-discreteness.

4.2.3 Solid-shell

As in example 1 solid-shell results are visualized both in the
manner of the other shell results, see Fig. 8e, and also as
an actual solid-shell model with a continuous upper surface,
see Fig. 8f. The solid-shell results generally look similar to
DMTO/New formulation (offset) results. Non-discreteness
is better for low T values, though the lowest T value also
yields the highest number of iterations. In this case the best
results are obtained for T = 0.2.

4.2.4 Comparison of models

Similar results with density placed in a corner-to-corner
cross shape are obtained for the methods that are offset
during optimization: the original DMTO method, the new
formulation with dummy offset, and the new formulation
with solid-shell elements. Again, as in example 1, the
original DMTO formulation yields more non-discrete
results for higher values of the T parameter. This tendency
can also be seen for the new formulation in all cases, but is
much less pronounced.

Solid-shell convergence is again not directly comparable
to shell implementations due to being a different element
type, and also here results may be impacted by the induced
skewness from thickness changes.

The new formulation centered yields a very different opti-
mum, with density placed in an “H” shape. The different shape
is likely due to the modelling difference in which areas
with few layers only provide little bending stiffness as they
are located near the bending neutral axis. Again low non-
discreteness measures are obtained for all T parameters.

4.3 Example 3

The third example demonstrates the capability of the new
formulation to have a constant top layer and thereby
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covering ply-drops. This is demonstrated on a cantilever
beam where mass is minimized while the compliance is
constrained to C ≤ 5 · 105 J corresponding approximately
to 15 full density layers of 0◦ plies. The cantilever beam
consists of 20 elements with 20 layers and a nodal force of
8000 N is applied at the free end.

In laminated composite structures, it is common to cover
the inner and outer surfaces with biaxial ±45◦ plies. This
is both in order to improve the damage tolerance, and
to cover ply-drops with a number of continuous plies.
Covering ply-drops is needed to avoid delaminations. In this
example, both the top and bottom layers are fixed during
the optimization, meaning that ply-drops are covered. The
fixed layers are achieved by setting the design variable
move-limit to 0% for these particular layers. Furthermore,
instead of fixing multiple plies in the top and bottom, a
ply-thickness of 2 mm is used with equivalent constitutive
properties corresponding to a±45◦ laminate. The remaining
layers 2–19 are 1 mm thick, and can choose between 0◦,
+ 45◦, − 45◦, and 90◦ as in the other examples. In order to
make the thickness constraint (21) feasible, the top layer is
not included in this constraint, i.e., (21) is only defined for
l = 1, 2, . . . , nl −2. Material patches for each layer span all
elements, such that in a given layer the same candidate must
be chosen for all elements. The initial density distribution
is such that the first 10 layers have full density, the next
9 layers zero density while the last layer also has full
density. Manufacturing constraints include a maximum of
four consecutive layers, and an allowed thickness variation
of one. Again the problem is solved for various T values.
Results are listed in Table 4, and in Fig. 9, the best results are
visualized with layer thicknesses scaled by a factor of 20.
Candidate non-discreteness is 0% in all cases and left out
of the table. Original DMTO results are not included in this
example as a constant top layer is not possible for a tapered
laminate without having intermediate voids.

4.3.1 New (offset)

The best result from the new formulation with dummy offset
can be seen in Fig. 9b. All results are dominated by 0◦ plies
as can be expected. Plies of other fiber angles are added
due to the rule of a maximum of four consecutive plies and
generally ± 45◦ are preferred in these cases. These plies are
generally placed as far towards the middle as can be allowed
from the maximum consecutive layer constraint.

When studying the convergence behavior, high values of
the T parameter are clearly beneficial with respect to the
number of iterations. This makes sense since there are 20
layers and high T values allow density changes in many
layers at once, while low values, e.g., T = 0.1 effectively

Table 4 Example 3 results for minimization of mass of a cantilever
beam with constant top layer with compliance constrained C ≤ 500e3

T = New New New

(offset) (center) (sol-sh)

Mass 0.1 9.33 9.49 9.52

0.2 9.20 9.25 9.45

0.3 9.20 9.19 9.21

0.4 9.22 9.28 9.20

Compliance 0.1 499.98e3 499.92e3 499.86e3

0.2 499.98e3 499.97e3 494.90e3

0.3 499.87e3 499.64e3 500.08e3

0.4 499.70e3 499.86e3 499.93e3

Iterations 0.1 70 69 52

0.2 58 56 57

0.3 49 47 44

0.4 34 30 30

Mdnd 0.1 0.51% 1.25% 0.77%

0.2 0.77% 1.16% 1.05%

0.3 0.57% 0.91% 1.22%

0.4 2.16% 3.07% 1.62%

limits density change to one layer at a time. With regard
to density non-discreteness, apart from relative high non-
discreteness measures for T = 0.4, no clear tendency can be
seen from Table 4. It is found from inspection that often the
non-discrete layers are placed in the free-end of the beam
where the impact of non-discreteness is generally small.

4.3.2 New (center)

The best result obtained for the new formulation (center)
can be seen in Fig. 9c. The results are very similar to those
obtained in the offset case, and as previously noted, 0◦ plies
are favored with ± 45◦ being placed as far towards the
middle as possible.

4.3.3 New (solid-shell)

The best result obtained for the new formulation (solid-
shell) is visualized in the same manner as the shell models
in Fig. 9d, and as a solid-shell model with a continuous
upper surface in Fig. 9e. Solid-shell results are also very
similar to shell results. However, it can be noted that in
this case with 20 layers, the solid-shell representation with
stretching/compression of layers at a ply-drop boundary
looks more realistic than in previous examples. Another
observation is that the best result with regard to mass is also
the result with the highest non-discreteness measure.
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Fig. 9 Example 3 results for minimization of mass of a cantilever beam with constant top layer. Results are visualized with layer thicknesses
scaled by 20

4.3.4 Comparison of models

In this example, a continuous biax layer is enforced as the
top layer, and hence ply-drops are covered. With the original
DMTO method, this would cause intermediate voids, and
hence only the new formulation is used. Similar results are
obtained for New (offset), New (center), and New (sol-sh).
The results are similar both in terms of the obtained mass,
and the density/candidate choices. The density/candidate
distribution is intuitive in that 0◦ plies are favored, and most
material is placed towards the constrained end.

5 Conclusion

In this paper, theDiscreteMaterial and ThicknessOptimization
(DMTO) method has been extended with a new thickness
parameterization. The new thickness formulation relates
density design variables to layer thicknesses instead of
layer constitutive properties. This extension allows inter-
nal ply-drops without causing intermediate voids. This is
essential since ply-drops should always be covered to avoid
delaminations.

The new thickness formulation is compared to the orig-
inal DMTO method in two examples, and new capabilities
are demonstrated in a third example. TheDMTOmethod com-
bined with the new formulation is furthermore demonstrated
on solid-shell elements. In many cases, the new thickness
formulation shows better convergence properties with more
discrete results. Finally, the new formulation is also shown

to be more robust with regard to parameters controlling
through-the-thickness density variations.
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