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Abstract
This article presents a continuous adjoint-enabled, gradient-based optimization tool for multi-point, multi-objective industrial
optimization problems and its application to the shape optimization of a concept car. Apart from the adjoint to the incom-
pressible Reynolds-averaged Navier–Stokes equations, the adjoint to the Spalart–Allmaras turbulence model equation is also
solved, in order to support the optimization with accurate gradients. Part of the mathematical development related to the sen-
sitivity derivative terms resulting from the differentiation of the Reynolds-averaged Navier–Stokes (RANS) variant of the
Spalart–Allmaras model when using an adjoint formulation consisting of field integrals is presented for the first time in the
literature. In the industrial application, two operating points are considered, corresponding to two flowvelocity angleswith res-
pect to the car symmetry plane, with a different objective (drag and yawmoment coefficients) for each of them.With the afore-
said targets, thePareto front of optimal solutions is computed anddiscussed.Eachpoint on this front is computedbyminimizing
a single objective function, resulting from the linear combination of the objective functions defined on the different operating
points, using appropriate weights. Finally, some of the Pareto front members are re-evaluated using delayed detached eddy
simulation (DDEs). The overall optimization tool is developed in the open-source CFD toolbox OpenFOAM.
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1 Introduction

The use of computational methods for design and opti-
mization is a topic of great interest in various engineering
fields, such as aeronautics (Schmidt et al. 2013; Keanway
and Martins 2016), thermal and hydraulic turbomachinery
(Wang et al. 2010; Mueller et al. 2012), and the automotive
industry (Othmer 2014). In computational fluid dynam-
ics (CFD)-based optimization for large scale real-world
applications, gradient-based methods are coupled with the
adjoint approach (Jameson 1988; Giles and Pierce 1997) for
computing the sensitivity derivatives, i.e., the gradient(s) of
the objective function(s) with respect to (w.r.t.) the design
variables. Adjoint methods may compute all gradient com-
ponents at a computational cost which is independent of
their number and more or less equal to that of the numerical
solution of the primal (flow) problem.

A review of possible usages of adjoint methods for
automotive applications can be found in Othmer (2014).
Internal aerodynamics are an ideal field of application due
to the absence of aesthetic constraints, with adjoint-based
topology optimization being extensively utilized for the

Structural and Multidisciplinary Optimization (2019) 59:675–694

Received: 30 April 2018 / Revised: 30 August 2018 / Accepted: 3 September 2018 / Published online: 2 October 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-2091-3&domain=pdf
mailto: vaggelisp@gmail.com
mailto: vasouti@mail.ntua.gr
mailto: kgianna@central.ntua.gr
mailto: Konstantinos.Gkagkas@toyota-europe.com
mailto: shinnosuke_shimokawa@mail.toyota.co.jp
mailto: eiji_itakura@mail.toyota.co.jp


E. M. Papoutsis-Kiachagias et al.

preliminary design of exhaust systems (Hinterberger and
Olesen 2010, 2011), engine intake ports (de Villiers and
Othmer 2012), and heating, ventilation, and air conditioning
(HVAC) ducts (Papoutsis-Kiachagias and Giannakoglou
2016). Intake ports and in-cylinder flows have received a lot
of attention, by applying shape optimization (Verma et al.
2018; Kubota et al. 2016) or a combination of topology and
shape optimization (Tokuda et al. 2013), usually targeting
a reduction in total pressure losses and an increase in
tumble moment. The combination of sequential topology
and shape optimization has also been reported for the
design of exhaust manifolds (Hopf et al. 2017), improving
mass flow rates and flow efficiency. In addition, the shape
of HVAC systems has been optimized based on adjoint
methods for defrosting and demisting, without Germanou
et al. (2016) and with Najian Asl et al. (2017) packaging
constraints, with the latter publication combining a node-
by-node shape update and a multi-constraint projection
algorithm to deal with packaging limitations. Adjoint-
based optimization of multi-disciplinary problems has
also been conducted (Gkaragkounis et al. 2018), by
developing the adjoint to conjugate heat transfer problems
and applying it to minimize the maximum temperature
of internally cooled cylinder heads. Regarding shape
modifications, the adjoint method is employed to compute
the so-called sensitivity maps (Papoutsis-Kiachagias and
Giannakoglou 2016; Blacha et al. 2016), i.e., the derivatives
of the objective function w.r.t. the normal displacement
of boundary wall nodes. Sensitivity maps can be a very
useful tool for designers, since they offer insight into the
car areas with great optimization potential and mark the
direction of favorable surface displacement. Even though
shape optimization in external aerodynamics suffers from
the difficulty of mathematically formulating and taking
aesthetic constraints into consideration, a number of adjoint-
based shape optimization applications has been presented
during the last few years. Most of them aim at minimizing
the drag force exerted on the car surface, by using a
number of parameterization techniques such as the direct
displacement of the boundary wall nodes (Hojjat et al.
2014), RBF-based morphing (Papoutsis-Kiachagias et al.
2015b), and free form deformation techniques (Han et al.
2016; Papoutsis-Kiachagias et al. 2015a), with the latter
article targeting the reduction of the noise perceived by the
driver through a surrogate aeroacoustic objective function.
Most of the abovementioned applications of the adjoint
method to problems of the automotive industry rely on
the continuous adjoint variant. Recently, He et al. (2018)
developed a discrete adjoint to the OpenFOAM CFD
toolbox and used it, among others, to optimize a simplified
version of the DrivAer model under geometric constraints.
A comparison of continuous and discrete adjoint solvers is
beyond the scope of this article.

The purpose of this article is twofold. The first
goal is to present the continuous adjoint formulation
for aerodynamic shape optimization, with a part of the
mathematical development regarding the computation of
sensitivity derivatives (SDs) being analytically developed
for the first time in the literature. In specific, the paper
presents the continuous adjoint method for the automated
aerodynamic shape optimization of complex geometries,
implemented in the open-source CFD toolbox OpenFOAM.
Within each optimization cycle, this software performs the
solution of the flow and adjoint equations, the computation
of SDs, the update of the design variables parameterizing
the geometry and the CFD grid adaptation to the new
boundaries. Regarding the computation of adjoint-based
SDs, formulations using exclusively boundary or field
and boundary integrals are utilized (the so-called E-SI
and FI adjoint formulations (Kavvadias et al. 2015)),
depending on the number of design variables. The adjoint
development corresponding to the SD terms resulting from
the differentiation of the Reynolds-averaged Navier–Stokes
(RANS) variant of the Spalart–Allmaras turbulence model
partial differential equation (PDE) using the FI approach
is presented for the first time in the literature. The impact
of these terms is, then, evaluated through a comparison
with finite differences (FDs) in the Ahmed body geometry
(Ahmed et al. 1984), a typical benchmark case of the
automotive industry. The second goal of this article is to
apply this method and software to the optimization of the
“FP01” concept car designed by the Toyota aerodynamics
department. The concept car represents a study of a
visionary vehicle in line with the Toyota self-imposed
challenge of reducing vehicle CO2 emissions by 90%
in comparison with the 2010 levels, by 2050 (TMC
2017). In order to achieve such high fuel efficiency, ultra-
lightweight structure combined with low aerodynamic drag
is primary design targets. However, beyond fuel efficiency,
aerodynamics can affect the driver experience of vehicle
handling, especially in the case of ultra-low vehicle weight.
The aerodynamic forces and moments on the vehicle affect
the grip that the tires have on the road, as well as the stability
of the vehicle to changes in the road or wind conditions.
In many cases, attempts at streamlining passenger cars for
minimizing drag have led to unwanted increases in side-
wind sensitivity. This trade-off was observed as early as
1933 by Kamm (1933) out of which arose the well-known
truncated rear-end design (“Kamm-back”) which helped to
offset much of the side-wind susceptibility introduced from
streamlining. In view of this trade-off between drag and
side-wind sensitivity, a two-operating-point design problem
is defined and solved. The two operating points correspond
to two flow directions (0◦ and 30◦ side-wind); each case
is associated with its own objective function. The two
functions to be minimized are the drag coefficient at 0◦ and
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the yaw moment coefficient at 30◦ side-wind. The Pareto
front of non-dominated solutions is computed and (some
of) the optimal solutions are thoroughly examined using,
among others, delayed detached eddy simulation (DDEs)
analysis tools to investigate whether geometries optimized
using RANS will indeed be better than the baseline if
evaluated with higher fidelity models.

2 Flow and adjoint equations

2.1 Flow equations

The governing (primal) equations are the steady-state
RANS equations for incompressible flows. These are
written as,

Rp = −∂vj

∂xj

=0 (1)

Rv
i = vj

∂vi

∂xj

− ∂τij

∂xj

+ ∂p

∂xi

=0, i = 1, 2, 3 (2)

where vi are the velocity components, p is the static
pressure divided by the constant density, ν and νt are
the constant bulk and turbulent viscosity, respectively,

and τij = (ν + νt )
(

∂vi

∂xj
+ ∂vj

∂xi

)
are the stress tensor

components. According to the Spalart–Allmaras turbulence
model (Spalart and Allmaras 1992), the latter is given by
νt = ν̃fv1 and computed after solving the PDE

Rν̃ = vj

∂ν̃

∂xj

− ∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

−ν̃P (̃ν) + ν̃D(̃ν) = 0 (3)

for the turbulence variable ν̃. In the above equation, the
production and destruction terms are given by P (̃ν) =
cb1Ỹ and D(̃ν) = cw1fw(Ỹ ) ν̃

Δ2 , respectively, with Ỹ =
fv3Y + ν̃

Δ2κ2
fv2 , Y = ‖S‖ = ‖eijk

∂vk

∂xj
‖ is the vorticity

magnitude, and Δ is the distance from the wall. To
account for the distance variation w.r.t. the design variables
during the adjoint formulation (Papoutsis-Kiachagias and
Giannakoglou 2016), the Hamilton–Jacobi PDE is used

RΔ = ∂(cjΔ)

∂xj

− Δ
∂2Δ

∂x2
j

− 1 = 0 (4)

where cj = ∂Δ/∂xj act as the “convecting velocity”
components. All turbulence model functions and constants
can be found in Spalart and Allmaras (1992). In industrial
cases, the use of the law-of-the-wall (wall functions) is
a common practice in order to avoid extremely stretched
grids close to the solid walls and keep the computational
cost affordable. Working with a cell-centered finite volume

discretization scheme, Spalding’s law is used to compute the
friction velocity based on the velocity magnitude at the first
cell center off the wall (Frink 1996).

2.2 Continuous adjoint formulation

Starting point for the formulation of the adjoint problem is
the augmented function L which is defined by adding the
field integrals of the products of the flow (or primal) PDEs
and the adjoint variable fields, to the objective function
J , i.e.,

L = J+
∫

Ω

uiR
v
i dΩ+

∫

Ω

qRpdΩ+
∫

Ω

ν̃aR
ν̃dΩ+

∫

Ω

ΔaR
ΔdΩ

(5)

where Ω is the computational domain, ui are the adjoint
velocity components, q is the adjoint pressure, ν̃a is the
adjoint turbulence variable, and Δa is the adjoint distance.
Given that, upon convergence, the residuals of the primal
equations are zero, L ≡ J .

A couple of different mathematical formulations can
be followed when differentiating (5), as outlined in
Kavvadias et al. (2015). The first makes use of the Leibniz
rule for differentiating integrals with variable boundaries
and formulates the adjoint equations by eliminating
terms multiplying the partial derivatives ∂(.)/∂bn of flow
variables, w.r.t. the design variables bn, n ∈ [1, N ],
with N denoting the number of design variables. This
approach leads to continuous adjoint formulations with
SD expressions including surface integrals only; such
a mathematical development yields two different SD
expressions, depending on how grid sensitivities (i.e.,
δxk/δbn, where xk are the nodal coordinates) are treated.
The second approach formulates the adjoint equations
by eliminating the multipliers of the total (or material)
derivatives of flow quantities w.r.t. bn (δ(.)/δbn) and leads to
SD expressions containing both field and surface integrals.
In this work, both approaches will be used, for reasons
explained in Section 6. However, since the workhorse of
the optimization runs to be presented in Section 6 is the
approach which results in both surface and field integrals,
the presented mathematical development is based on the
latter. Thus, the differentiation of (5) gives

δL

δbn

= δJ

δbn

+
∫

Ω

(
ui

δRv
i

δbn

+ q
δRp

δbn

+ ν̃a

δRν̃

δbn

+ Δa

δRΔ

δbn

)
dΩ

+
∫

Ω

(
uiR

v
i + qRp + ν̃aR

ν̃ + ΔaR
Δ
) δ(dΩ)

δbn

(6)

The last field integral on the RHS of (6) is omitted, since
the residuals of the primal equations are 0 over Ω . In order
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to formulate the adjoint equations, the total derivatives of
the primal equations have to be developed. Since the shape
and discretization of Ω depends on bn, the total and spatial
derivative symbols do not permute but are related through
(Papadimitriou and Giannakoglou 2007),

δ

δbn

(
∂(.)

∂xj

)
= ∂

∂xj

(
δ(.)

δbn

)

︸ ︷︷ ︸
TF

−∂(.)

∂xk

∂

∂xj

(
δxk

δbn

)

︸ ︷︷ ︸
TSD

(7)

A detailed application of (7) to the incompressible
Navier–Stokes equations for laminar flows is presented in
Kavvadias et al. (2015) and is omitted here in the interest of
space. Further development of the TF terms gives rise to the
adjoint PDEs and boundary conditions (Section 2.2.2) while
the TSD terms give rise to the field-integral SD expression
(Section 2.3). The TSD terms resulting from the application
of (7) to (3) and (4) is also discussed in Section 2.3.

2.2.1 Objective functions

The two objectives to be used in the applications of
Section 6 are the drag and yaw moment coefficients, given
by

JCD
=

∫
SW

(
−τij + pδ

j
i

)
nj r

F
i dS

1
2Aref U2

ref

(8)

JCM
=

∫
SW

rM
i eilm(xl − xc

l )
(
−τmj + pδ

j
m

)
njdS

1
2 lref Aref U2

ref

(9)

where rF and rM are the drag and yaw moment direction
vectors, δ

j
i is the Kronecker delta, eilm is the Levi-Civita

symbol, xc is the center of rotation w.r.t. which the moment
is computed, and Aref , lref , and Uref are the frontal
area, reference length, and far-field velocity magnitude,
respectively. Quantities in the denominators of (8) and (9)
remain fixed during the optimization loop. SW is the solid
wall (car surface) on which the objective functions are
defined.

In general, an objective function defined along the
boundaries S of Ω can be expressed as

J =
∫

S

jSdS =
∫

S

jS,inidS (10)

where jS is the boundary integrand. Differentiating J w.r.t.
bn gives

δJ

δbn

=
∫

S

δjS,i

δbn

nidS +
∫

S

jS,i

δ(nidS)

δbn

(11)

Since jS,i = jS,i(vk, p, τkj ), using the chain rule to develop
δjS,i/δbn yields

δJ

δbn

=
∫

S

∂jS,i

∂vk

ni

δvk

δbn

dS +
∫

S

∂jS,i

∂p
ni

δp

δbn

dS

+
∫

S

∂jS,i

∂τkj

ni

δτkj

δbn

dS +
∫

S

jS,i

δ(nidS)

δbn

(12)

Computing the variations of the flow quantities w.r.t. bn

appearing in (12) would lead to a method with a cost scaling
with N . To avoid such a high cost, the adjoint approach is
developed.

2.2.2 Field adjoint equations

After developing (6) using (7) and the Gauss divergence
theorem for the TF terms, the adjoint PDEs result by setting
the multipliers of the derivatives of the flow variables w.r.t.
bn to 0, in the field integrals of the developed form of (6).
These read

Rq = −∂uj

∂xj

= 0 (13)

Ru
i = uj

∂vj

∂xi

− ∂(vjui)

∂xj

− ∂τa
ij

∂xj

+ ∂q

∂xi

+ ν̃a

∂ν̃

∂xi

− ∂

∂xl

(
ν̃a ν̃

CY

Y
emjk

∂vk

∂xj

emli

)
= 0, i = 1, 2, 3 (14)

Rν̃a = −∂(vj ν̃a)

∂xj

− ∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃a

∂xj

]
+ 1

σ

∂ν̃a

∂xj

∂ν̃

∂xj

+2
cb2

σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ν̃a ν̃Cν̃ + ∂νt

∂ν̃

∂ui

∂xj

(
∂vi

∂xj

+ ∂vj

∂xi

)

+ (−P + D) ν̃a = 0 (15)

RΔa = −2
∂

∂xj

(
Δa

∂Δ

∂xj

)
+ ν̃ν̃aCΔ = 0 (16)

where τa
ij = (ν + νt )

(
∂ui

∂xj
+ ∂uj

∂xi

)
are the adjoint stress

tensor components. The C̃ν , CY , and CΔ expressions can be
found in Zymaris et al. (2009).

The adjoint boundary conditions are formulated after
zeroing the multipliers of the derivatives of the flow
variables w.r.t. bn in the surface integrals emerging
after applying the Gauss divergence theorem to the TF

terms of (7). The detailed formulation of the adjoint
boundary conditions is presented in Papoutsis-Kiachagias
and Giannakoglou (2016), including the adjoint law of the
wall for cases utilizing wall functions; this development is
omitted here in the interest of space.

2.3 Sensitivity derivatives

After formulating the adjoint PDEs and their boundary
conditions, the remaining terms originating from terms
TSD (7), along with the last term on the RHS of (12)
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and additional terms emerging during the derivation of the
adjoint boundary conditions, give rise to the SD expression,
namely

δL

δbn

=
∫

SW

jSW ,i

δ(nidS)

δbn

+
∫

Ω

(
AL

jk + AT
jk

) ∂

∂xj

(
δxk

δbn

)
dΩ

−
∫

SW

(
−uknk + ∂jSW ,k

∂τlz

nknlnz

)
τij

δ(ninj )

δbn

dS

−
∫

SW

∂jSW ,k

∂τlz

nkt
I
l t Iz τij

δ
(
t Ii t Ij

)

δbn

dS

−
∫

SW

∂jSW ,k

∂τlz

nkt
II
l t II

z τij

δ
(
t II
i t II

j

)

δbn

dS

−
∫

SW

[
∂jSW ,k

∂τlz

nk

(
t II
l t Iz + t Il t II

z

)]
τij

δ
(
t II
i t Ij

)

δbn

dS (17)

where jSW ,i is the part of jS,i defined along SW , and tI, tII

are the two tangential unit vectors along SW , forming a local
Frenet system with n. The second term on the RHS of (17)
is a field integral containing grid sensitivities (δxk/δbn).
Their evaluation over the entire domain and for all design
variables is the reason why SD with both field and surface
integrals are usually expensive to evaluate in the presence
of many design variables. However, in the applications
presented in this work (Section 6), a volumetric B-Splines
tool is used to parameterize both the boundary and (part
of) the interior of the CFD grid (Section 3). Due to the
closed form relation between the grid node positions and
the design variables, grid sensitivities can be computed
analytically and in a relatively cheap way, making the
previously described approach a viable shape optimization
method, even in large-scale applications.

Term AL
jk (17) emerges after applying (7) to (1) and (2)

and collecting the TSD terms. It reads (Kavvadias et al.
2015),

AL
jk = −uivj

∂vi

∂xk

−uj

∂p

∂xk

−τa
ij

∂vi

∂xk

+ui

∂τij

∂xk

+q
∂vj

∂xk

(18)

TermAT
jk ((17)) emerges after following the same procedure

used to obtain AL
jk , this time applied to (3) and (4) and reads

AT
jk = −ν̃avj

∂ν̃

∂xk

+ ν̃a

∂

∂xk

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]

−
(

ν + ν̃

σ

)
∂ν̃a

∂xj

∂ν̃

∂xk

+ 2ν̃a

cb2

σ

∂ν̃

∂xj

∂ν̃

∂xk

−ν̃a ν̃CY

Sq

‖S‖eqji

∂vi

∂xk

− 2Δa

∂Δ

∂xj

∂Δ

∂xk

(19)

Though AT
jk was included in applications of the same

software in previous publications (e.g., Kavadias et al.
2015), its form and derivation have not been presented in

the past.1 To fill this gap in the literature, the derivation of
AT

jk is given in Appendix A and its impact on the final SD
values in investigated in Section 5.

3 Parameterization and grid displacement
using volumetric B-Splines

In this article, parameterization and grid displacement is
based on volumetric B-Splines. Let X

ijk
m , m ∈ [1, 3], i ∈

[0, I ], j ∈ [0, J ], k ∈ [0, K] be the Cartesian coordinates
of the ijkth control point of the 3D structured control grid,
Fig. 6. Additionally, (I + 1), (J + 1), and (K + 1) are
the number of control points per control grid direction. The
Cartesian coordinates x = [x1, x2, x3]T = [x, y, z]T of a
CFD grid node residing within the boundaries of the control
grid are given by

xm(ξ, η, ζ ) = Ui,pξ (ξ)Vj,pη (η)Wk,pζ (ζ )X
ijk
m (20)

Here, ξ, η, ζ are the nodal parametric coordinates, U(ξ),
V (η), and W(ζ) are the B-Splines basis functions, and
pξ , pη, and pζ are their respective degrees, which may be
different per control grid direction. Details about B-Splines
basis definitions and properties can be found in Piegl
and Tiller (1997). Computing the Cartesian coordinates of
any parameterized CFD grid node is straightforward, at
a negligible computational cost, as long as its parametric
coordinates are known.

Given the control point position, the knot vectors and
the basis function degrees, the parametric coordinates w =
[w1, w2, w3]T = [ξ, η, ζ ]T of a CFD grid node with
Cartesian coordinates r = [xr , yr , zr ]T result by solving the
system of equations
⎡
⎣

x(ξ, η, ζ ) − xr = 0
y(ξ, η, ζ ) − yr = 0
z(ξ, η, ζ ) − zr = 0

⎤
⎦ (21)

where xm(ξ, η, ζ ) are given by (20), based on the known
X values. The 3 × 3 system of (21) can be solved
independently for each parameterized grid node using the
Newton–Raphson method, after computing and inverting
the Jacobian ∂xm/∂wj , m, j ∈ [1, 3]. The Jacobian matrix
has a closed form expression resulting by differentiating
(20) w.r.t. the components of w. Since the evaluation of the
parametric coordinates of each point is independent from
any other, these computations may run in parallel.

The aforementioned process takes place once, in the
beginning of the optimization loop. Then, after moving the
control points X, the Cartesian coordinates of each (internal
or boundary) CFD grid node residing within the control

1In Kavvadias et al. (2015), the main scope was to present a new
adjoint formulation based exclusively on surface integrals rather than
to elaborate on the development of the FI approach for turbulent flows.
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grid can be computed through (20) at a very low cost. The
same holds for the computation of δxm/δbn which results
by analytically differentiating (20) w.r.t. the design variables
(i.e., certain elements of X, see Section 6). This makes the
evaluation of SD w.r.t. the B-Splines control points, using
(17) which includes both surface and field integrals, much
cheaper compared to other PDE-based grid displacement
methods.

4Multi-point, multi-objective optimization
algorithm and software

The overall framework for performing shape optimiza-
tion using a gradient-based method assisted by continuous
adjoint is implemented in-house, based on the open-source
CFD toolbox OpenFOAM, under the title adjointOptimiza-
tion. The basic modules used within each optimization cycle
are the following:

1. Solution of the primal equations. The incompressible
RANS equations for steady turbulent flows are solved,
using native OpenFOAM solvers (e.g., simpleFoam) for
the operating point under consideration.

2. Computation of the objective function(s). Once the flow
equations have been solved, the objective function(s)
value(s) quantifying the performance of a shape are
computed.

3. Solution of the adjoint equations. As described in
Section 2, the developed code solves the adjoint to the
turbulence model PDE(s), avoiding thus the commonly
made “frozen turbulence assumption.” For the high-Re
variants, adjoint wall functions are also implemented
(Papoutsis-Kiachagias and Giannakoglou 2016).

4. Gradient computation. Once the flow and adjoint fields
have been computed, the computation of the gradient
of the objective function(s) is conducted. All SD
formulations discussed in Section 2.2 are available
in adjointOptimization and used depending on the
problem under consideration.

5. Update of the design variables using the previously
computed SD. A variety of gradient-based algorithms,
including steepest-descent, conjugate gradient, Sym-
metric Rank 1 (SR1, Nocedal and Wright 1999), and
BFGS for unconstrained optimization and Augmented
Lagrange Multipliers (ALM, Nocedal and Wright
1999), constrained projection, and SQP for constrained
optimization problems, are included. The continuous
adjoint method is also used to compute the gradient of
the constraint functions, when necessary.

6. Geometry displacement and grid morphing. The
aerodynamic shape is updated based on the com-
puted design variable values. Before starting a new

optimization cycle, the CFD grid has to be adapted
to the new geometry. To avoid re-meshing, which in
real-world applications has a high computational cost,
methods to adapt the initial grid to a new geometry
have been developed and implemented within adjoin-
tOptimization. In this article, the volumetric B-Splines
tool presented in Section 3 is used to update both the
geometry and the internal CFD grid nodes.

The previously described optimization tool can support
multi-objective and/or multi-point optimization problems.
When a multi-objective problem is considered, a weighted
objective function

Jt =
M∑
i=1

wiJi

is minimized, with M standing for the number of objectives
and wi being their corresponding weights. When objectives
are defined at different operating points, one flow and
adjoint solution must be conducted for each operating point.
The SDs driving the optimization loop are then computed as

δJt

δbn

=
M∑
i=1

wi

δJi

δbn

, n ∈ [1, N ]

5 Validation

In this section, the adjoint approach presented in Section 2.2
is validated in a variant of a benchmark case of the
automotive industry. In specific, a 2D variant of the Ahmed
body (Ahmed et al. 1984) with a slant angle of 35◦ is
studied. To ease mesh generation, sharp edges at the two
ends of the slant have been rounded, using a radius of 0.05m
and 0.02m for the top and bottom ends, respectively. Though
flow physics are much simpler in 2D flows, this case is used
as a means to validate the adjoint solver, at a reasonable cost
and in a problem that is similar to the automotive application
studied in Section 6. The mesh consists of ∼ 2 × 105 cells,
the Reynolds number is 4.35×106 based on the body length,
and the average non-dimensional distance of the first cell
centers off the wall is y+ ∼ 20. The same primal and
adjoint models used in the optimization runs of Section 6.1
are utilized herein, as well. A 7 × 5 control box is placed at
the beginning of the slant, with only the 3×3 central control
points being free to move, resulting to 18 design variables
(x and y control point coordinate positions), Fig. 1. Drag
sensitivities w.r.t. these design variables are computed using
the continuous adjoint formulation described in Section 2
and compared with FD, which is considered to be the
reference method, Fig. 2. In addition, a third curve is
presented which highlights the significance of the SD terms
resulting from the differentiation of the turbulence model
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Fig. 1 2D Ahmed body: Volumetric B-Splines control point IDs along
with the velocity magnitude. Blow-up view close to the top of the slant.
Control points colored in red are allowed to vary while blue ones are
kept fixed in order to preserve continuity between the parameterized
and non-parameterized parts of the grid. The control box is placed
close to the area in which flow separation begins

PDE (and the Hamilton–Jacobi equation), i.e., term AT
jk in

(17). It can be noticed that this term plays a significant
role in the computation of accurate SD since its omission
leads to wrong SD magnitudes and, especially, wrong SD
signs for about one third of the design variables. The max.
error of the adjoint-based SD, as a percentage of the FD
values, appears in the derivative w.r.t. the y coordinate of
control point 11, where the adjoint SD is by approximately
one order of magnitude higher than its FD counterpart.
However, since the FD at that point is almost 0, this is not
considered critical. Excluding that point, the mean error of
the adjoint-based SD is 5.6%.

6 Applications

6.1 RANS-based optimization

The previously described algorithm is used to optimize a
Toyota aerodynamics concept car, Fig. 3, which represents a
study of a visionary ultra-lightweight and efficient vehicle.
Due to this very low weight, wind gusts can have a more
significant impact to the driving experience. It is, therefore,
desirable to optimize the shape for reducing the sensitivity
to side-winds, while maintaining a very low drag coefficient
in longitudinal wind. Thus, the shape optimization is carried
out for minimizing the drag coefficient in the absence of
side-winds (C0◦

D ) and the yaw moment coefficient in the
presence of a 30◦ side-wind (C30◦

M ), coming from the port
side. In both cases, the vehicle speed is equal to 33.3 m/s

and the wheels have an angular velocity which, at the
contact with the ground, gives a peripheral velocity with
a magnitude equal to that of the vehicle speed. Since the
wheels are closed (no mesh cells exist inside them), the use
of a multiple reference frame to account for the Coriolis
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Fig. 2 2D Ahmed body. Drag SD w.r.t. the x (top) and y (bottom)
coordinates of the control points presented in Fig. 1, computed with
the complete adjoint formulation (“adj.”), the variant that disregards
term AT

jk in (17) (“adj. no AT
jk”) and finite differences (“FD”). It

can be seen that the proposed adjoint approach matches the outcome
of FD while the approach that disregards the SD terms emerging
from the differentiation of the Spalart–Allmaras model deviates from
them, yielding the wrong sensitivity sign for some design variables (x
coordinates of control points 9, 10, 16, 18, and 23). It should be noted
that results of both adjoint approaches presented in this figure include
the differentiation of the Spalart–Allmaras model (i.e., (15) is solved
in both cases)

and centripetal forces is not required. A two-point, two-
objective optimization is carried out, with the following
objective

Jt = wDC0◦
D + wMC30◦

M (22)

A polyhedral mesh with about 1.6M cells (∼ 7M points)
is used, with an average y+ ∼ 32 at the first cell centers
off the walls. The steady-state RANS equations coupled
with the Spalart–Allmaras turbulence model with wall
functions are solved in order to compute the flow field. The
adjoint system includes the adjoint to the Spalart–Allmaras
turbulence model as well as adjoint wall functions; steepest
descent is used to update the design variables.
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Fig. 3 The TOYOTA aerodynamics concept car

Before running the optimization loop, the SDs of the two
objectives w.r.t. the normal displacement of the boundary
wall nodes (a.k.a. the sensitivity maps) were computed,
Figs. 4 and 5. Areas with high (absolute)-valued SDs should

Fig. 4 C0◦
D sensitivity map, i.e., the derivatives of C0◦

D w.r.t. the normal
displacement of the wall nodes, computed for a longitudinal flow.
Areas with a positive sign (“red areas”) indicate that an outward
displacement reduces drag whereas those with a negative sign (“blue
areas”) have the opposite effect

Fig. 5 C30◦
M sensitivity map for a 30◦ side-wind. Color notation as in

Fig. 4

receive the designer’s attention while areas with low-valued
SDs are aerodynamically insignificant, at least for the
current shape. Even though the aerodynamic significance
of certain car areas might change as the optimization
evolves, i.e., high-valued sensitivities might diminish in
some areas or be enhanced in others, sensitivity maps
can be used as a guide for placing the morphing boxes,
to be used in the automated optimization loop. Since the
number of car surface nodes is high (∼ 2 × 105), the E-
SI formulation based only on surface integrals was used to
compute the sensitivity maps. On the contrary, the number
of design variables is relatively small (due to the use of
the parameterization tool described in Section 3) and the
FI formulation was used to compute the SD driving the
optimization loop.

Guided by the sensitivity maps, two morphing boxes with
10×9×9 control points each were used to parameterize the
spoiler and diffuser, Fig. 6. Based on the morphing boxes
position and the desired level of continuity between the
parameterized and non-parameterized parts of the geometry,
a number of control points were kept fixed while the rest
are allowed to vary during the optimization, Fig. 6. In
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Fig. 6 Two simultaneously acting morphing boxes at the spoiler and
the diffuser areas. Control points colored in red are allowed to move,
in accordance with the uniformity and symmetry constraints defined
in Section 6. Blue control points are kept fixed. The boundaries of
the control boxes were placed according to the maximum allowed
displacement suggested by the designer. Since this study pertains to
a concept car in the early stages of its development, these were set
relatively large

order to ensure the smoothness of the optimized geometries
and enhance manufacturability, each iso i, j, k planes of
the structured grid of control points was moved in a
uniform way in the corresponding x, y, and z directions.
Furthermore, control points were moved in a symmetric way
along the y direction (the one perpendicular to the symmetry
plane of the car), in order to ensure the car symmetry,
even when optimizing under non-symmetric flow conditions
(30◦). Considering the above,N = 29 design variables were
eventually used to parameterize the car shape.

By using different weight values in (22), different points
on the front of non-dominated solutions can be computed.
In this study, eight different sets of (wD, wM) were used
and the resulting Pareto front is shown in Fig. 7 (filled,
red squares). In the same figure, the convergence histo-
ries of all the optimization runs starting from the baseline
geometry (BLC; filled blue circle) are also presented, in the
objective space. Steepest descent was used to update the
design variables and a total of about 60 optimization cycles,
each comprising two primal and two adjoint solutions, were
needed to obtain the eight Pareto points illustrated in Fig. 7,
at a cost of about 240 equivalent flow solutions. When initial-
ized with the flow and adjoint solutions of the previous
geometry, each optimization cycle required about 1.4 h on
40 Intel Xeon E5-2680v2 @2.8-GHz cores, leading to an
overall wall-clock time of about 84 h, or 3.5 days. Though
successive optimizations, in which each Pareto point results
as a continuation from the previous one, or the use of
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Fig. 7 Front of non-dominated solutions (filled, red squares) and
convergence history of the optimization runs carried out using different
sets of (wD, wM). All values have been normalized w.r.t. the BLC
geometry

Pareto tracking techniques (Schmidt and Schulz 2008)
could reduce the overall CPU cost, it is beyond the scope of
the article to pursue such approaches. One may notice that,
according to the RANS-based optimization, four members
of the front of non-dominated solutions outperform the BLC
geometry w.r.t. both objectives. The different car geometries
resulting from the two-point optimization are presented in
Fig. 8, in comparison to the BLC geometry. To get a clearer
view on the local geometry deformation, the cumulative nor-
mal displacement maps for three Pareto front members are
presented in Fig. 9.

Some insight into the mechanisms leading to the decrease
in the objective functions can be obtained from Figs. 10, 11,
12, and 13. The two extremes of the Pareto front (P1 and
P8) along with P4 (which had both C0◦

D and C30◦
M improved

w.r.t. the BLC) are examined.
Regarding C0◦

D , useful conclusions can be drawn by
examining Fig. 10 which depicts the near wall velocity
magnitude and the corresponding surface line integral
convolution (LIC) on the aforementioned geometries, for a
longitudinal flow. The vortex emanating from the diffuser
area of the BLC, Fig. 10a, has practically been suppressed
in the P1, Fig. 10d, and P4, Fig. 10g, geometries, leading
to a higher back pressure and, hence, lower drag (Fig. 12a,
d). Figure 12c, f indicates that prolonging the diffuser
and changing its angle has also a positive contribution on
the diffuser drag itself, through a local velocity decrease,
Fig. 10f, i, and a resulting pressure increase. In addition,
lowering the spoiler height in the P1 geometry seems to have
a mixed effect on the sides and the upper surface of the car:
pressure is decreased just before the geometry change due
to a local flow acceleration, leading to a local drag increase,
whereas a higher pressure is observed on the lowered spoiler
itself, having a positive contribution on the decrease of drag,
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Fig. 8 Optimized geometries
(port side) compared to the BLC
(starboard side). The objective
function weights corresponding
to each optimized geometry can
be found in Fig. 7

Fig. 12a, b. Furthermore, the lowered spoiler in P1 creates
a tear-like shape, increasing the pressure on the upper rear
side, contributing thus to the drag decrease, Fig. 12a. On the
other hand, the increased spoiler height of the P8 geometry
leads to a lower back pressure and, consequently, higher
drag, Fig. 12g.

Regarding C30◦
M , insight can be gained by examining

Fig. 11 which depicts the near wall velocity magnitude and
the corresponding surface LIC, computed on the same four
geometries at 30◦ side-wind, coming from the port side.
The main mechanism affecting yaw moment is related to

changes in the velocity (and, consequently, the pressure)
field on the port and starboard sides of the car, close to the
spoiler. For the P4 and P8 geometries, the increase in the
spoiler height and the slight widening of the car tail have
led to a flow deceleration on the port side, Fig. 11h, k,
and an acceleration on the starboard side, Fig. 11i, l. These
lead to a higher pressure on the port side and a lower one
on the starboard side, counter-balancing the yaw moment
generated by the side-wind. The local effect on the C30◦

M

integrand can be observed in Fig. 13e, f for the P4 geometry
and Fig. 13h, i for the P8 one. On the contrary, an opposite

Fig. 9 Cumulative displacement
of the wall nodes, projected on
the normal unit vector of the
corresponding nodes on the
BLC geometry, plotted over the
P1 (top), P4 (mid), and P8
(bottom) geometries. Positive
signs (“blue areas”) indicate an
inward displacement while
negative ones (“red areas”) a
geometry inflation
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Fig. 10 Near-wall velocity
magnitude and surface LIC for
the BLC (a–c), P1 (d–f), P4
(g–i), and P8 (j–l) geometries,
computed in the absence of
side-wind

displacement (reduced spoiler height and narrowed car tail)
has a deteriorating effect on the P1 geometry, Fig. 13b, c.

6.2 DDEs-based re-evaluation

The applications presented in Section 6.1 used a steady-
state RANS-based turbulence model for evaluating the
geometries computed throughout the optimization loop.
The latter was chosen since using a higher fidelity model
(e.g., DES-based) would lead to a significantly higher
CPU cost. However, using RANS-based models for car
external aerodynamics can lead to erroneously computed
aerodynamic coefficients (Ashton et al. 2016). In addition,
the question of whether a geometry that has been optimized
using a RANS model is indeed better than the baseline,
when both are evaluated using a higher fidelity model,
arises. To this end, the BLC, P1, P4, and P8 geometries
were re-evaluated using unsteady simulations based on the
DDEs variant of the Spalart–Allmaras model (Spalart et al.

2006). Computational meshes of about 30 million cells were
generated a new, with an average y+ ∼ 19 and the flow
equations were integrated over a time window of 4 s, with
a time-step of Δt = 10−4 seconds. To avoid an excessively
long transient phase, all flow problems examined were
initialized after solving the steady-state RANS equations
on the same meshes for 500 iterations. The flow fields and
aerodynamic coefficients were averaged for the last 3 s
of the simulation. Each of the DDEs simulations required
about 50 h on 200 Intel Xeon E5-2680v2 @2.8 GHz cores.
Taking into consideration that obtaining the front of Fig. 7
took about 84 h on 40 cores of the same architecture
(Section 6.1), the cost of obtaining the aforementioned
front is less than double of the cost of a single DDEs
analysis, using 1/5 of the cores. Hence, computing the
Pareto front based on DDEs would become quite expensive,
taking also into consideration that the cost of solving
the unsteady adjoint equations backwards in time would
be significantly higher than that of the flow equations.
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Fig. 11 Near-wall velocity
magnitude and surface LIC for
the BLC (a–c), P1 (d–f), P4
(g–i), and P8 (j–l) geometries,
computed for a 30◦ side-wind,
coming from the port side

Indicatively, Kapellos and Hartmann (2018) mention that,
for an IDDES simulation around a model car, an adjoint
solution takes 4.8 times longer than a primal one, including
also the necessary re-computations of primal flow fields when
using the checkpointing technique of Wang et al. (2009).

The evolution of the instantaneous and mean C0◦
D and

C30◦
M coefficients through time is presented in Fig. 14

whereas Fig. 15 depicts the outcome of the DDEs re-
evaluations overlaid to the Pareto front computed using
RANS. A number of interesting conclusions can be drawn
from this figure. Regarding the BLC, C0◦

D does not change
considerably when evaluated using the two models (∼ 1%
difference); on the other hand, the difference inC30◦

M is more
significant (∼ 7%). The cause of the latter is discussed later
in this section.

Regarding the optimized geometries, when evaluated
with DDEs, the P4 and P8 cars have a lower C30◦

M than the
BLC, reconfirming the trend computed by RANS. However,
the DDEs-based improvement is lower than the RANS-based
one (11.8% instead of 12.6% and 16.4% instead of 24%
C30◦

M reduction, for the P4 and P8 geometries, respectively).
In addition, the two models also agree on the trend of

C30◦
M for the P1 geometry, with DDEs computing a higher

deterioration when compared to the BLC (5% instead of
1% predicted by RANS). Based on the above, even though
quantitative differences exist between the two models, a
qualitative agreement is observed regarding the C30◦

M trend
when comparing the three Pareto points to the BLC.

Regarding C0◦
D , the two models agree that the P1

geometry is better than the BLC, with the improvement
being smaller when computed with DDEs (5.8% instead of
8% C0◦

D reduction). The DDEs and RANS models agree
also on the trend of C0◦

D for the P8 geometry, with DDEs
computing a significantly smaller deterioration w.r.t. the
BLC (6.4% instead of 17% computed by RANS). Finally,
out of the aerodynamic coefficients being re-evaluated with
DDEs, the C0◦

D of the P4 geometry is the only one for which
the two models provide a different trend. The DDEs model
computes a 1.2% increase w.r.t. the BLC and RANS gives
a 4% reduction. Nevertheless, the P4 geometry still lays
in the DDEs-evaluated front of non-dominated solutions,
providing a potentially useful design to the decision maker.

It is interesting to compare the car areas that contribute
to the objective changes, as indicated by the DDEs and
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Fig. 12 Difference of the local
C0◦

D value between the optimized
and initial geometries, plotted on
the P1 (top), P4 (mid), and P8
(bottom) car shapes. Blue areas
indicate a decrease in the local
drag contribution to the resultant
force (i.e., are beneficial) while
red areas indicate an increase

RANS models. The difference of the C0◦
D integrand between

the P1 and BLC geometries (ΔC0◦
D ) according to the DDEs

and RANS models is presented in Fig. 16, top and bottom,
respectively. It can be observed that for the spoiler (Fig. 16b,
e) and diffuser (Fig. 16c, f) areas, the ΔC0◦

D maps agree
qualitatively; even a quantitative agreement can be observed

for the largest part, apart from the end part of the diffuser.
This similarity can also be observed by comparing the near-
wall velocity fields for the top and bottom areas, computed
with RANS (Fig. 10, top two rows) and DDEs (Fig. 17).
On the contrary, the ΔC0◦

D maps differ for the rear side
of the car (Fig. 16a, d), where flow recirculation plays a

Fig. 13 Difference of the local
C30◦

M value between the
optimized and initial geometries,
plotted on the P1 (top), P4 (mid)
and P8 (bottom) car shapes.
Color map as in Fig. 12
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Fig. 14 Evolution of the instantaneous (top) and mean (bottom) C0◦
D (left) and C30◦

M (right) values for the last 3 s of the DDEs runs. Both
coefficients have been normalized with the mean value corresponding to the BLC geometry at the last time step

significant role. In specific, it can be seen that the vortex
emanating from the diffuser area of the BLC is much
stronger when computed with RANS, Fig. 10a, instead of
DDEs, Fig. 17a. Hence, according to DDEs, the change in
the diffuser geometry does not provide a reduction on the
local C0◦

D values at the lower part of the back side of the
car, Fig. 16a. Nevertheless, it is interesting to note that, even

based on DDEs, ΔC0◦
D is negative for a large part of the

rear side of the P1 geometry, Fig. 16a, with the reduction,
however, being smaller than that computed based on RANS.
The differences between the DDEs and RANSmodels in the
wake region can also be observed in Fig. 18, by comparing
the velocity magnitudes on the symmetry plane of the BLC
and P1 geometries. Similar to the P1 geometry, DDEs and
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Fig. 15 BLC and Pareto front members evaluated a using RANS and DDEs and normalized based on the RANS values of the BLC and b using
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Fig. 16 Difference of the local
C0◦

D value between the P1 and
BLC geometries, plotted on the
former, evaluated using DDEs
(top)- and RANS
(bottom)-based turbulence
models. In order to use the same
scale and due to the large
difference of the local face areas
between the meshes used for the
DDEs and RANS computations,
results are normalized using the
local face area of the respective
BLC meshes. Color meaning as
in Fig. 12

RANS agree on the ΔC0◦
D trends computed on the spoiler

and diffuser areas of the P4 geometry also (comparison of
Fig. 19a, f with Fig. 19e, f, respectively). On the other hand,
as in the P1 case, due to the absence of the abovementioned
vortex (according to DDEs), the new diffuser fails to lead
to significant gains in the local C0◦

D values of the lower-
rear side. This, in combination with the counter-productive
spoiler, formed to reduce C30◦

M , leads to positive ΔC0◦
D for

almost the entire rear side of the P4 geometry (Fig. 19a), in
contrast to what was computed by RANS (Fig. 19d). This is
the main reason for the contradicting C0◦

D trends computed
by the two models.

Figure 20 illustrates the difference of the C30◦
M integrand

between the P8 and BLC geometries (ΔC30◦
M ), as computed

based on DDEs and RANS. Both models give a similar trend
for both the port (Fig. 20b, e) and starboard (Fig. 20c, f)
sides, with the improvement being lower when evaluated
with DDEs. The quantitative difference can be attributed to
the quite different flow fields computed by DDEs (Fig. 21)
and RANS (Fig. 11, top and bottom lines). In specific,
according to DDEs, the flow detaches at the top-back side of
the BLC (Fig. 20a); however, it is attached when evaluated
using RANS on the same geometry (Fig. 11a); this leads
to important differences of the flow field at the starboard

Fig. 17 Near-wall mean
velocity magnitude and surface
LIC based on DDEs, for the
BLC (a–c) and P1 (d–f)
geometries, computed in the
absence of side-wind

689



E. M. Papoutsis-Kiachagias et al.

Fig. 18 RANS (left), time-averaged DDEs (mid), and instantaneous DDEs at t = 4s (right) velocity magnitude fields, plotted on the symmetry
plane of the BLC (top) and P1 (bottom) geometries

side as well (Figs. 21c and 11c). A significant difference
between the near-wall velocity field of the two models can
also be seen for the top (Figs. 21f and 11j) and starboard
side (Fig. 21c, f) of the P8 geometry as well. However,
when comparing the BLC and P8 geometries, the trend
of the change in the near-wall velocity field is similar,
with both models computing a flow acceleration on the

starboard side (comparison of Fig. 21c, f as well as Fig. 11c,
l, respectively), leading to a similar trend for ΔC30◦

M , as
already discussed. Similar ΔC30◦

M trends between the two
models are also computed for the P4 geometry, Fig. 22, with
good qualitative and quantitative agreement for both the port
and starboard sides.

Fig. 19 Difference of the local
C0◦

D value between the P4 and
BLC geometries, plotted on the
former, evaluated using DDEs
(top)- and RANS (bottom)-
based turbulence models. The
normalization discussed in
Fig. 16 is applied here as well.
Color meaning as in Fig. 12
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Fig. 20 Difference of the local
C30◦

M value between the P8 and
BLC geometries, plotted on the
former, evaluated using DDEs
(top)- and RANS (bottom)-
based turbulence models. The
normalization discussed in
Fig. 16 is applied here as well.
Color meaning as in Fig. 12

Fig. 21 Near-wall mean velocity
magnitude and surface LIC
based on DDEs, for the BLC
(a–c) and P8 (d–f) geometries,
computed at 30◦ side-wind

Fig. 22 Difference of the local
C30◦

M value between the P4 and
BLC geometries, plotted on the
former, evaluated using DDEs
(top)- and RANS (bottom)-
based turbulence models. The
normalization discussed in
Fig. 16 is applied here as well.
Color meaning as in Fig. 12
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7 Conclusions—discussion

The continuous adjoint method for the aerodynamic shape
optimization of steady-state, incompressible flows was
presented, by focusing on the sensitivity derivative (SD)
terms resulting from the differentiation of the RANS
variant of the Spalart–Allmaras turbulence model and the
Hamilton–Jacobi PDEs; this development was presented
for the first time in the literature. Numerical investigations
showed that the impact of these terms is significant, since
their omission resulted in wrongly signed SD for almost
one third of the design variables parameterizing the shape
of a 2D Ahmed body. Then, a gradient-based optimization
algorithm based on the RANS equations coupled with the
Spalart–Allmaras model and supported by the continuous
adjoint method was used to conduct a two-point, two-
objective optimization of a concept car, targeting minimum
drag for a longitudinal wind and minimum yaw moment
for a 30◦ side-wind. Within about 60 optimization cycles
and a cost of about 240 equivalent flow evaluations, or
3.5 days on 40 processors, a well-populated Pareto front
of non-dominated solutions containing eight members was
obtained. Using the RANS model, half of the Pareto
members outperform the baseline car w.r.t. both objectives,
while the two extreme points lead to a reduction by ∼ 8%
and ∼ 24% in the drag and yaw moment, respectively. The
main mechanisms behind the drag reduction are a lowered
spoiler, a boat-tailing effect, and a prolonged and widened
diffuser. On the other hand, reduction in the yaw moment
comes mainly through an increased spoiler height.

Then, the baseline geometry as well as some of the
Pareto front members were re-evaluated using DDEs, in
an attempt to answer the question of whether a geometry
optimized using a RANS model is better than the baseline
when both are re-evaluated using a higher fidelity tool. After
their re-evaluation, the two extreme Pareto front members
were indeed better than the baseline w.r.t. their objective
of interest; the improvement however was smaller than that
computed by RANS (reduction of 5.8% instead of 8% for
C0◦

D and 16.4% instead of 24% for C30◦
M , for the P1 and

P8 geometries, respectively). Out of the six aerodynamic
coefficients re-evaluated with DDEs (C0◦

D and C30◦
M for P1,

P4, and P8), only the C0◦
D of P4 had a different trend than

that computed by RANS (1.2% increase computed by DDEs
instead of 4% reduction based on RANS). However, even in
this case, the P4 geometry laid in the DDEs-evaluated front
of non-dominated solutions, providing a potentially useful
solution to the decision maker.

Taking into consideration the excessive resources that
would be required by a DDEs-based optimization (indica-
tively, a single DDEs run took more than half the time of the
entire RANS-based Pareto computation when run on five
times more processors), it can be argued that RANS-based

optimization can be used as a computationally affordable
approach for optimizing car external aerodynamics, with
a relative confidence that the outcome of the optimiza-
tion can be reconfirmed using DDEs, at least qualitatively.
It should be mentioned that the geometry changes com-
puted in this article were relatively large, since the studied
case pertains to the early stages of the design of a concept
car. Whether the conclusions drawn in this study hold for
smaller deformations as well remains to be reconfirmed in
the future.

Appendix A: Derivation of theAT
jk term in (17)

This section focuses on the mathematical derivation of the
SD terms resulting by differentiating the Spalart–Allmaras
turbulence model PDE (3) and the Hamilton–Jacobi (4).

While developing (6), among others, the following
integral has to be expanded

∫

Ω

ν̃a

δRν̃

δbn

dΩ =
∫

Ω

ν̃a

δvj

δbn

∂ν̃

∂xj

dΩ +
∫

Ω

ν̃avj

δ

δbn

(
∂ν̃

∂xj

)
dΩ

︸ ︷︷ ︸
T1

−
∫

Ω

ν̃a

δ

δbn

{
∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]}
dΩ

︸ ︷︷ ︸
T2

−
∫

Ω

2ν̃a

cb2

σ

∂ν̃

∂xj

δ

δbn

(
∂ν̃

∂xj

)
dΩ

︸ ︷︷ ︸
T3

+
∫

Ω

ν̃aν̃

(
− δP

δbn

+ δD

δbn

)
dΩ

︸ ︷︷ ︸
T4

(23)

Spatial gradient variations w.r.t. bn are present in the
integrals marked with an under-brace on the RHS of (23).
Symbols δ()/δbn and ∂()/∂xj do not permute but are linked
through (7) instead. The TSD terms resulting from applying
(7) to the spatial gradient variations contribute to the SD
expression. Applying (7) to the T1 term of (23) yields

T1 =
∫

Ω

ν̃avj

∂

∂xj

(
δ̃ν

δbn

)
dΩ

︸ ︷︷ ︸
TF,T 1

−
∫

Ω

ν̃avj

∂ν̃

∂xk

∂

∂xj

(
δxk

δbn

)
dΩ

︸ ︷︷ ︸
TSD,T 1

(24)

Term TF,T 1 is further processed using the Gauss divergence
theorem in order to yield some terms of the adjoint PDEs
and boundary conditions. Since the purpose of this appendix
is to derive the field integral terms contributing to the SD,
TF terms will not be further expanded; the interested reader
should refer to Zymaris et al. (2009) for their development.
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On the contrary, TSD terms (like the TSD,T 1 one in (24)) are
the focus of this appendix.

Expanding term T2 using (7) yields

T2 = −
∫

Ω

ν̃a

∂

∂xj

{
δ

δbn

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]}
dΩ
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T2a

+
∫
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∂xk
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σ
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∂xj

]
∂

∂xj

(
δxk

δbn

)
dΩ

︸ ︷︷ ︸
TSD,T 2a

(25)

Term TSD,T 2a contributes to the SD expression. Term T2a
still contains a spatial gradient variation. After applying
the Gauss divergence theorem and, subsequently, (7), we
get

T2a = −
∫

S

ν̃anj

δ

δbn

[(
ν+ ν̃

σ

)
∂ν̃

∂xj

]
dS+

∫

Ω

1

σ

∂ν̃a

∂xj

∂ν̃

∂xj

δ̃ν

δbn

dΩ
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(
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−
∫
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)
∂ν̃a
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∂

∂xj

(
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)
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(26)

Terms on the first two lines of (26) are free of spatial
gradient variations w.r.t. bn and can, hence, be further
developed to give contributions to the adjoint PDEs and
boundary conditions. Term TSD,T 2b contributes to the SD
expression.

Applying (7) to term T3 in (23) yields

T3 = −
∫

Ω

2ν̃a

cb2

σ

∂ν̃

∂xj

∂
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(
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∫

Ω

2ν̃a

cb2

σ

∂ν̃

∂xj

∂ν̃

∂xk

∂

∂xj

(
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)
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(27)

with TSD,T 3 contributing to the SD.
Term T4 (23) includes the variation in the production

and destruction terms of the Spalart–Allmaras model; P

and D are functions of Y which, in turn, is a function of
the vorticity magnitude (i.e., it contains spatial derivatives
of v). Hence, this part of δP/δbn and δD/δbn has to be

developed with the help of (7). In the interest of space, only
the variation of Y is presented, i.e.,

δY

δbn

= δ‖S‖
δbn

= δ

δbn

(∥∥∥∥eqjl
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Incorporating TSD,S into T4 yields

TSD,4 = −
∫

Ω

ν̃aν̃CY
Sq

‖S‖eqjl
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∂xk

∂

∂xj

(
δxk
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)
dΩ (29)

with CY = − ∂P
∂Y

+ ∂D
∂Y

.
Terms TSD,T 1 (24), TSD,T 2a (25), TSD,T 2b (26), TSD,T 3

(27), and TSD,T 4 (29) are the contributions of the Spalart–
Allmaras model differentiation to the SD expression. By
retaining the Hamilton–Jacobi equation to its original
eikonal form, the SD contribution of (4) is given by TSD,RΔ ,
formulated as

∫

Ω

Δa

δ

δbn

(
∂Δ
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∂Δ

∂xj
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)
dΩ =

∫
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T
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(30)
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