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Abstract
This paper presents a sequential surrogate model method for reliability-based optimization (SSRBO), which aims to reduce the
number of the expensive black-box function calls in reliability-based optimization. The proposed method consists of three key
steps. First, the initial samples are selected to construct radial basis function surrogate models for the objective and constraint
functions, respectively. Second, by solving a series of special optimization problems in terms of the surrogate models, local
samples are identified and added in the vicinity of the current optimal point to refine the surrogate models. Third, by solving the
optimization problem with the shifted constraints, the current optimal point is obtained. Then, at the current optimal point, the
Monte Carlo simulation based on the surrogate models is carried out to obtain the cumulative distribution functions (CDFs) of the
constraints. The CDFs and target reliabilities are used to update the offsets of the constraints for the next iteration. Therefore, the
original problem is decomposed to serial cheap surrogate-based deterministic problems and Monte Carlo simulations. Several
examples are adopted to verify SSRBO. The results show that the number of the expensive black-box function calls is reduced
exponentially without losing of precision compared to the alternative methods, which illustrates the efficiency and accuracy of
the proposed method.

Keywords Expensive black box function . Radial basis function . Sequential sampling . Reliability-based optimization . Monte
Carlo simulation

Nomenclature
X Vector of random variables
x Mean value of X
xL, xU Lower and upper bounds of x
U Vector of random variables in standard normal

space
u Mean value of U
m Number of variables
p Number of constraint functions
ε Difference vector between X and x
R Vector of constraint reliabilities

J(·) Objective function
g(·) Vector of constraint functions
�̂ð Þ Value of surrogate models
(·)i The ith component of a vector
E(·) Expectation of a random variable
P{·} Probability of a random variable
CDF Cumulative distribution function
Fε(·) Vectorized CDF for ε
FU(·) Vectorized CDF for U
βi The ith reliability index of the

constraint functions
ϕ(·) CDF of the standard normal distribution
RBO Reliability-based optimization
SSRBO Sequential surrogate reliability-based

optimization
MCS Monte Carlo simulation
LSF Limit state function
MPP Most probable point
RBF Radial basis function
AMA Approximate moment approach
RIA Reliability index approach
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PMA Performance measure approach
SORA Sequential optimization and reliability

assessment
SLSV Single loop single variable
ASORA Advanced sequential optimization and reliability

assessment
SLA Single-loop approach
AHA Adaptive hybrid approach
AH_SLM Adaptive hybrid single-loop method

1 Introduction

In engineering design, deterministic optimization methods are
used to improve the theoretical design performance. However,
the optimization does not take into account the uncertainties of
external loads and material properties etc., which may result in
an infeasible design in practical applications. To ensure the
reliability of the design, the safety factor is adopted in engi-
neering, nevertheless, it is mainly based on the engineering
experience which is inaccurate and not always available (Qu
and Haftka 2004; Breitkopf and Coelho 2010). More recently,
reliability-based optimization (RBO) with random variables
has received much attention from the engineering community.
With RBO, it is possible to get more accurate designs to meet
the reliability requirements. However, this is a nested optimi-
zation problem including optimization and reliability analysis
(or assessment), which faces the challenge of huge computa-
tional cost. To solve the problem, different approximate ap-
proaches have been developed in the past decades (Breitkopf
and Coelho 2010; Tsompanakis et al. 2010; Valdebenito and
Schuoller 2010).

As a typical method for RBO, the approximate moment
approach (AMA) (Koch et al. 2004; Tsompanakis et al.
2010) transforms the reliability constraints into approximated
deterministic constraints with the Taylor series expansion.
AMA is very efficient since it does not require an extra cost
for reliability analysis. However, this method implies many
simplifications and cannot obtain accurate reliability result. In
addition, the main disadvantage lies in the assumption that the
random variables are normally distributed, which is not prac-
tical for most engineering structures. Consequently, the appli-
cation field of AMA is limited.

To improve the accuracy of AMA, the reliability index
approach (RIA) (Enevoldsen and Sørensen 1994; Grandhi
and Wang 1998; Tu et al. 1999; Tsompanakis et al. 2010)
was proposed. It converts the reliability constraints, at the
current design point, into the constraints of reliability in-
dexes by the first-order reliability method (FORM)
(Verderaime 1994; Haldar and Mahadevan 1995;
Cawlfield 2000; Du 2008) or the second-order reliability
method (SORM) (Cizelj et al. 1994; Cawlfield 2000),
which transforms the reliability-based optimization

problem into a relatively simple deterministic optimiza-
tion problem. However, in the process of the reliability
analysis, the searching of the most probable point (MPP)
needs extra optimization and expensive function calls.
Thus, in the whole optimization process, RIA is still com-
putationally expensive. Moreover, FORM and SORM
have a poor accuracy for the higher nonlinear constraints.
Therefore, RIA is suitable for the problems with low non-
linearity constraints.

To further reduce the computational cost of RBO, the
performance measurement approach (PMA) (Youn et al.
2004; Tsompanakis et al. 2010) was proposed. This meth-
od transforms the reliability constraint into deterministic
constraints by solving the optimization problem of inverse
MPP, which is easier with respect to the searching process
of MPP. Youn and Choi (2004) showed that PMA is more
efficient, stable and less dependent on probabilistic distri-
bution types than RIA. However, the reliability analysis of
PMA is embedded into the optimization loop, which
means PMA still requires a large number of function calls,
due to the two-level optimization.

To avoid the computationally expensive two-level optimi-
zation, Du and Chen (2004) proposed the sequential optimi-
zation reliability assessment (SORA) method, which decou-
ples the RBO into serial deterministic optimizations with
shifted constraints and reliability assessments (or analyses).
Within one iteration circle of SORA, two optimization proce-
dures are included: the optimization with the modified con-
straints and the optimization searching for the inverse MPPs.
SORA decomposes a two-level optimization to a series of
single-level optimizations, which greatly reduces the compu-
tational cost. Yi et al. (2016) presented an approximate se-
quential optimization reliability assessment (ASORA) meth-
od, which is reported more efficient than the original SORA.
However, such methods require a series of optimizations
based on the computationally expensive black-box functions.
Meanwhile, the methods based on the inverse MPPs have
large errors on the boundary with high nonlinear constraints.

More recently, some modified methods based on the
RIA, PMA, and SORA were suggested (Li et al. 2013;
Yi et al. 2016). In addition, as a different methodology
of improving efficiency, the surrogate models (also named
meta-model or response surface method) were used to
approximate the objective and constraint functions within
the local or global region of interest (Li et al. 2016; Meng
et al. 2017; Strömberg 2017). Jiang et al. (2017) proposed
an adaptive hybrid single-loop method (AH_SLM) to
search the MPP more efficiently and alleviate the
oscillation in the search process. Doan et al. (2018) pro-
posed an efficient approach for RBO combining SORA
with radial basis function. Zhou et al. (2018) presented
an enhanced version of single-loop approach (SLA)
(Liang et al. 2008) where the adaptive surrogate models
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and screening strategies are adopted in the RBO process.
Several representative RBO methods are introduced
above, and more methods, such as adaptive hybrid ap-
proach (AHA) and single loop single variable (SLSV)
etc., can be found in reviews of the literatures (Yang
and Gu 2004; Tsompanakis et al. 2010; Jiang et al.
2017). However, most reliability analyses of the existing
methods are based on the FORM, SORM, which also
inherits the disadvantages of the accuracy and efficiency.

In this article, a new RBO method based on sequential
radial basis function (RBF) and Monte Carlo simulation is
proposed to reduce the computational cost. Assume that the
optimal point for the RBO is near the deterministic optimal
point, and then surrogate models are adopted to improve the
local accuracy of the important region (the neighborhood of
the deterministic optimal point) to reduce the computational
cost. After the local surrogate models of the objective and
constraint functions are constructed iteratively, Monte Carlo
simulations based on the surrogate models are carried out at
the deterministic optimal point, and then the cumulative dis-
tribution functions (CDF) of the constraints are obtained.
Therefore, the quantiles of the prescribed reliabilities can be
obtained by the inverse CDF as the offsets of the deterministic
constraints. The offsets generate the new equivalent reliability
constraints. The optimal point is then added to the sample set
to update the surrogate model for a new loop until the offsets
convergence.

The remainder of this article is structured as follows. In
Section 2, the formulation and several typical methods of
RBO are introduced. In Section 3, the surrogate model tech-
nology used in this paper is introduced, and then the detailed
process of the proposed method is described and discussed. In
Section 4, several numerical examples are used to validate the
efficiency and accuracy of the proposed method. Finally, con-
clusions are given in Section 5.

2 Overview of reliability-based design
optimization

In this section, the mathematical description of RBO is intro-
duced, and then several typical RBOmethods are described in
uniform formulations. Finally, some features of the existing
methods are discussed to verify why the proposed method is
better than the existing methods.

2.1 Formulation of RBO problem

Reliability-based optimization is the extension of the de-
terministic optimization problem, in which the variables
with uncertainties and the reliability constraints are in-
cluded. Assuming Xi = xi + εi(i = 1, 2,⋯, m), where Xi is
the ith random variable; xi is the mean value of Xi; εi is

the difference between Xi and xi, thus its expected value is
written as E(εi) = E(Xi − xi) = 0. The general formulation
of a deterministic optimization, which does not consider
uncertainties, is given by

min
x

J xð Þ s:t:
g xð Þ≤0
xL≤x≤xU

�
ð1Þ

Thus, a typical formulation of RBO problem can be
expressed as follows (Valdebenito and Schuoller 2010; Yi et
al. 2016)

min
x

E J xþ εð Þ½ �≈E J xð Þ þ ∂J xð Þ
∂xT

ε
� �

¼ J xð Þ

s:t:
P g xþ εð Þ≤0f g≥R
xL≤x≤xU

�
ð2Þ

where x ∈ℝm is the mean value vector of design variables; xL
and xU are the lower and upper bounds of x, respectively; ε is
the vector of the new random variables;m is the number of the
random variables; J (x) denotes the objective function; g(∙) is
the vector of the constraint limit state functions; R ∈ℝp is the
vector of the prescribed target reliabilities, and p is the number
of the constraints. In what follows, several typical RBO
methods are introduced.

2.2 Typical RBO methods

2.2.1 Approximate moment approach

The approximate moment approach (AMA) (Tsompanakis et
al. 2010) approximates the objective and constraint functions at
the mean value x with a Taylor series expansion. The vector of
constraint functions with uncertainties can be approximated as

g xþ εð Þ≈g xð Þ þ ∂g xð Þ
∂xT

ε ð3Þ

Assuming the components of ε are independent and normal-
ly distributed, according to the additivity of independent normal
distributions, the components of g(x + ε) are also normally dis-
tributed. Therefore, the RBO problem is transformed into

min
x

J xð Þ

s:t: gi xð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂gi xð Þ
∂xT

cov ε; εð Þ ∂gi xð Þ
∂x

r
⋅ϕ−1 Rið Þ≤0

xL≤x≤xU; i ¼ 1; 2;⋯; p

8<
:

ð4Þ
where ϕ−1(·) is the inverse cumulative distribution function
(CDF) of the standard normal distribution,ϕ−1(Ri) is the reliabil-
ity index for the ith constraint function, p is the number of the
constraint functions, cov(ε, ε) is the covariance matrix of the
random vector ε, and the row vector ∂gi(x)/∂xT is the gradient
of the ith constraint function gi(x).
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2.2.2 Reliability index approach

In the reliability index approach (RIA) (Tsompanakis et al.
2010), the constraints of the probability reliabilities are trans-
formed into the constraints of reliability indexes. Therefore,
the RBO problem is converted to

min
x

J xð Þ

s:t:
βi xð Þ ¼ min

u
uk k s:t: gi xþ F−1

ε FU uð Þ� � ¼ 0
h i

βi xð Þ≥ϕ‐1 Rið Þ; i ¼ 1; 2;⋯; p
xL≤x≤xU

8><
>:

ð5Þ
where βi(x) is the ith reliability index at the mean value point x.
The function ϕ−1(·) is the inverse CDF of the standard normal

distribution. F−1
ε εð Þ ¼ F−1ε1 ε1ð Þ; F−1ε2 ε2ð Þ;⋯; F−1εm εmð Þ

h i
T is

the inverse CDF vector of the random vector ε, and FU uð Þ ¼
FU 1 u1ð Þ; FU2 u2ð Þ;⋯; FUm umð Þ½ � T is the CDF vector of the
standard normal distribution.

2.2.3 Performance measure approach

In the performance measure approach (PMA) (Youn et al.
2004; Tsompanakis et al. 2010), a reliability constraint is con-
verted into a deterministic constraint such that the inverse
most probable point (IMPP) is feasible. IMPP is the point
which minimizes the limit state function subjected to the pre-
scribed reliability constraint in U-space. The RBO problem
can be formulated as follows:

min
x

J xð Þ

s:t:
αi xð Þ ¼ min

u
gi xþ F−1

ε FU uð Þ� �
s:t: uk k ¼ ϕ−1 Rið Þ

h i
αi xð Þ≥0; i ¼ 1; 2;⋯; p
xL≤x≤xU

8><
>:

ð6Þ
where,αi(x) is the value of the limit state function at the IMPP,
and the other symbols are the same as the those described in
the previous sections.

2.2.4 Sequential optimization and reliability assessment

The method of sequential optimization and reliability assess-
ment (SORA) (Du and Chen 2004; Yi et al. 2016) transforms
the two-level optimization into a sequence of deterministic
optimizations and reliability analyses. For each loop, the per-
formance measure is performed after the current deterministic
optimization. The new value of the performance measure is
then used in the next loop as a limit state constraint function.
The RBO problem can thus be formulated as

xkþ1 ¼ argmin
x

J xð Þ

s:t: gi x−ξ
i
k

� �
≤0

xL≤x≤xU

�
ξi
kþ1 ¼ argmin

ξ
gi xkþ1 þ ξð Þ

s:t: F−1
U Fε ξð Þ�� �� ¼ ϕ−1 Rið Þ

Start : ξi
0 ¼ 0

i ¼ 1; 2;⋯; p

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

The flowchart of SORA is shown in Fig. 1. This formulation
solves the deterministic problem with a classical optimization
algorithm. However, the whole process requires a series of
optimizations, which reduces the efficiency of the approach.

2.3 Discussion of RBO methods

The computational complexity of RBO comes from three as-
pects: first, the analysis model is time-consuming; second, the
optimization process requires a large number of function calls;
and third, the reliability analysis process requires a large num-
ber of function calls to search for the MPPs with a sub-
optimization process. Therefore, methods to reduce the cost
of computation are based on these three aspects. AMA just
simplifies the reliability analysis process of the constraint
functions through the Taylor series expansion, and transforms
the reliability optimization problem into a deterministic opti-
mization problem, but brings a loss of precision. Both RIA
and PMA solve nested optimization problem based on the
original time-consuming models, therefore the number of
function calls of the original models is large. SORA avoids
the nested optimization process, but it is still based on the
original time-consuming models, which still requires a large
number of function calls during the optimization process. In

Start: ξk =0

Deterministic Optimization for xk+1

Reliability Analysis for ξk

Converged?

End

Yes

No

k=k+1

i

i

Fig. 1 Flowchart of the SORA method
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order to avoid the time-consuming function calls, we use sur-
rogate models instead of original time-consuming target and
constraint functions based on SORA. Meanwhile, since the
result of RBO is near the deterministic optimal point, we can
increase the local accuracy near the deterministic optimal
point, which reduces the number of time-consuming model
evaluations further. In order to avoid the approximate error
caused by FORM and SORM in the reliability analysis pro-
cess, Monte Carlo simulation can be used for reliability anal-
ysis. As the surrogate model is very fast, the time consumed
by a direct Monte Carlo simulation is relatively small com-
pared to a single evaluation of the time-consuming model.

3 Sequential surrogate models
for reliability-based optimization

As discussed in Section 2, the existing methods perform
Taylor expansion of the limit state function in X or U space,
which only use the local information of the expansion point.
When the nonlinearity of the limit state function is strong, the
approximation error is large. However, surrogate models con-
tain all the sample information and have a better approxima-
tion accuracy for the limit state function in the failure region.
In addition, since the time-consuming optimization processes
are performed based on the cheap surrogate models, a large
number of function evaluations are avoided and the computa-
tional efficiency is improved.

In this section, the surrogate techniques used in the pro-
posed method are introduced, and then the details of the pro-
cess are described and discussed.

3.1 Surrogate model

A surrogate model ŷ xð Þ is an approximate prediction model of
a complex or unknown model y(x) with a set of input-output
training samples S = {(xi, yi)|i = 1, 2, ⋯, n}. Instinctually, the
surrogate model is an interpolation or regression model, be-
longing to a branch of machine learning (Hastie et al. 2008).
Common surrogate models include polynomial response sur-
face method (PRSM) (Forrester et al. 2008), radial basis func-
tion (RBF) (Regis and Shoemaker 2005; Forrester et al. 2008),
Kriging (Laurenceau and Sagaut 2008; Ronch et al. 2011),
support vector regression (SVR) (Forrester et al. 2008) and
artificial neutral net (ANN) (Hurtado and Alvarez 2001;
Forrester et al. 2008).

Since the proposed method requires an accurate local
surrogate model near the deterministic optimal point, it is
necessary for the surrogate model to go through the sam-
ple points. PRSM is a global regression method with poor
local accuracy, so it is not appropriate here. The Kriging
and ANN methods are promising surrogate models, but
due to too many model parameters, the training process

is time-consuming. SVR is generally regarded as a special
form of support vector machine (SVM) in most of the
literature. SVM generally refers to classification, while
SVR refers to model prediction or regression.

RBF is considered as a special form of SVR (Forrester et al.
2008). The model is more flexible (it can determine the number
of parameters according to the needs). It is a method based on
other methods and is easy to implement. This is why RBF
always has its place when discussing the surrogate models.
Moreover, RBF has two advantages: first, it has strong nonlin-
ear adaptability and goes through the samples, which illustrates
RBF has good local accuracy; second, it has only one hyper-
parameter, which means less time for model construction and
parameter optimization. It is worth noting that when the original
model itself is very time-consuming, the time of training model
is negligible, and RBF can also be replaced with SVR, Kriging
and ANN. This article uses RBF to construct the sequential
surrogate model. RBF uses a linear combination of radial basis
functions to approximate the expensive black-box function, and
the general expression of RBF is given by

ŷ̂ xð Þ ¼ ∑
n

i¼1
βi f x−xik kð Þ ¼ f xð ÞTβ ð8Þ

where x ∈ℝm,m is the number of the variables; n is the number
of the samples; βi is the ith component of the coefficient vector
β; f(‖x − xi‖) is the ith component of the radial basis function
vector with the common forms shown in Table 1. Assume r to
be the Euclidean distance between two points and c is the shape
parameter of the radial basis function.

Substitute the samples into Eq. (8),

y1
y2
⋮
yn

2
664

3
775 ¼

f x1−x1k kð Þ f x1−x2k kð Þ ⋯ f x1−xnk kð Þ
f x2−x1k kð Þ f x2−x2k kð Þ ⋯ f x2−xnk kð Þ

⋮ ⋮ ⋱ ⋮
f xn−x1k kð Þ f xn−x2k kð Þ ⋯ f xn−xnk kð Þ

2
664

3
775

β1

β2

⋮
βn

2
664

3
775 ð9Þ

And Eq. (9) can be denoted by a matrix form,

y ¼ Fβ ð10Þ

As F ∈ℝn × n is a non-singular matrix, Eq. (10) has a unique
solution β = F−1y. Thus the prediction model is given by

ŷ̂ xð Þ ¼ f xð ÞTF−1y ð11Þ

Table 1 Radial basis functions

Function type f(r)

Gaussian exp(−cr2)
Multi-quadric (MQ) (1 + cr2)1/2

Inverse multi-quadric (IMQ) (1 + cr2)−1/2

Thin plate spline r2 ln(1 + cr2)
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where f(x) is the radial basis function vector for the prediction
point, and hence the prediction model is determined by the
prediction point x and the training sample set S. It should be
pointed out that the shape parameter c, which has a great
influence on the accuracy of the model, is included in f(x)
and F. In general, c is determined by experience or other
optimization criteria. This paper uses the cross-validation
criteria to optimize the shape parameter c.

3.2 Validation of the surrogate model

A common method to validate the accuracy of the surrogate
model is the root mean square error (RMSE) with another
validation set (Ronch et al. 2017). However, there is not al-
ways enough samples available in engineering. Therefore, the
cross-validation (CV) method is adopted here (Hastie et al.
2008). The samples are divided into K roughly equal-sized
parts. For the kth (k = 1, 2,⋯,K) part, the model is construct-
ed with the other K − 1 parts of the samples, and calculates the
prediction error of the approximate model when predicting the
kth part of the samples. Cross-validation can fully reflect the
matching degree between the samples and the model. In par-
ticular, when K is equal to the sample size n, it is called leave-
one-out cross-validation error (LOOCV). Thus the RBF shape
parameter c can be estimated by the following sub-
optimization problem:

min
c

LOOCV cð Þ ¼ ∑
n

i¼1
yi−ŷ̂ xi; S− xi; yið Þf gð Þ½ �2 ð12Þ

In Eq. (12), it can be seen that the evaluation of LOOCVerror
requires n times construction of the surrogate model. However,

the LOOCVerror does not require additional verification points,
which is capabl1e of describing thematching degree between the
samples and the prediction model. According to the surrogate
model and obtained the shape parameter c, a sequential surrogate
model for RBO can be constructed.

3.3 Process of the proposed method

Themethod of sequential surrogate model for reliability-based
design optimization (SSRBO) constructs the RBF surrogate
models of the objective and constraint functions with the ini-
tial training samples. Then, a series of optimizations for
adding points is performed to update the surrogate models in
important regions (the neighborhood of the determined opti-
mum point). When the refined local surrogate models are con-
structed, the Monte Carlo simulation is carried out at the de-
termined optimal point by using the surrogate model to obtain
the cumulative probability density functions (CDF) of the
limit state functions (Bowman and Azzalini 1997). Thus the
offset of the constraints can be obtained with the inverse
CDFs.

The flowchart of the SSRBO method is shown in Fig. 2,
and the more detailed process is described as follows.

Step 1: Initial surrogate construction.

Step 1.1: Select the initial input samples xi(i = 1, 2,⋯, n0)
with the design of experiment (DoE) method
Latin hypercube sampling (LHS). There are
two reasons for choosing LHS. First, LHS can
obtain well-distributed and representative

Initial surrogates 

model construction

Optimization for 

adding points

Sample set update

Surrogates update

Converged?

Start

Yes
No

k=k+1

Initial Sample n0Initial Sample 1

DoE

...

Initialize the offsets 

of the constraints

Deterministic optimization

CDFs of the Constraints

Monte Carlo simulation

Offsets of the Constraints 

Offsets converge

End

Sample set update

Surrogates update

Step 2:
Local 

surrogates

update

Step 1:
Initial 

surrogates

construcion

Step 3: Sequential optimization and Monte 

Carlo simulation

No

Yes

Step 1.1

Step 1.2

Step 1.3

Step 2.1

Step 2.2

Step 2.3

Step 2.4

Step 3.1

Step 3.2

Step 3.3

Step 3.4

Step 3.5

Step 3.6

Step 3.7

Step 3.8q=q+1

Fig. 2 Flowchart of the SSRBO
method
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design points with less cost from the design
space, so as to obtain accurate model informa-
tion more effectively. Second, LHS has the
freedom to define the number of sample
points, thereby providing greater flexibility
and broader applicability. The number of
the initial samples is chosen as n0 = 2m + 1,
where m is the dimension of the design
variables.

Step 1.2: Evaluate the input samples with the expensive
black-box model to obtain the response values
of the objective J (xi) and constraint vector g
(xi). Thus, the initial sample set S0 is given by

S0 ¼ xi; J xið Þ; g xið Þð Þji ¼ 1; 2;⋯; n0f g ð13Þ

Step 1.3: Use the initial sample set S0 to construct the

surrogate objective function Ĵ xjS0ð Þ and the
surrogate constraint vector ĝ xjS0ð Þ. Then the
shape parameters of the surrogate models are
optimized with LOOCV (See Section 3.2).
Here the surrogate models are constructed with
RBF, which strictly goes through the samples
and has strong nonlinear adaptability. The
RBF code is complemented with the authors’
in-house MATLAB toolbox.

Step 2: Local surrogates update. This step is an iteration
process as follows:

x*k ¼ argmin Ĵ̂
x

xjSkð Þ s:t:

ĝ̂ xjSkð Þ≤0
min
Skj j

i¼1
x−xik k≥dmin

xL≤x≤xU

8><
>: Skþ1 ¼ Sk∪ x*k ; J x*k

� �
; g x*k
� �� �	 


Start : S0Stop : k≥kmax or g x*k
� �

−ĝ̂ x*k jSk
� ��� �� < 1:0� 10−4

8><
>: ð14Þ

where, Sk is the set with k added samples; Ĵ xjSkð Þ and ĝ xjSkð Þ
are the surrogate objective function and surrogate constraint
vector constructed with Sk; x*k is the kth added sample; dmin is
the minimum distance. In order to facilitate the description of
the following steps, assume the total number of the samples
added in this step is n1.

Step 2.1: Solve the optimization problem of Eq. (14) to
find the new point x*k . As the optimization
problem has an inequality constraint of mini-
mum distance which is not differentiable,
gradient-based optimization algorithm, such as
sequential quadratic programming (SQP), can-
not be utilized here. Therefore, the genetic al-
gorithm (GA) which is not restricted by the
differentiability is adopted here. The optimiza-
tion problem is solved with the MATLAB op-
timization toolbox.

Step 2.2: Evaluate the new point to obtain the response
values of the objective and constraint functions,
and th en upda t e t he s amp l e s e t w i t h
Skþ1 ¼ Sk∪ x*k ; J x*k

� �
; g x*k
� �	 


.
Step 2.3: Reconstruct the surrogate models with the updated

sample set Sk + 1, and then optimize the model
shape parameters. This step is similar to that of
Step 1.3.

Step 2.4: Convergence check. If one of the termination
criterions, (a) the number of added points

reaches the maximum number(k = kmax), (b)
the difference between the real constraint vec-
tor and the surrogate constraint vector is below

a target threshold ( g x*k
� ��� −ĝ x*k jSk

� �k ≤1:0�
10−4 ), is satisfied, go to Step 3, otherwise, set
k = k + 1 and then go to Step 2.1.

Step 3: Sequential optimization and Monte Carlo simula-
tion. The key process is given by

x*q ¼ argmin Ĵ̂
x

xjSq
� �

s:t: ĝ̂i xjSq
� �þΔi

q≤0
xL≤x≤xU

�

Δi
qþ1 ¼ CDF−1q;i RijSq; x*q

� �
‐ĝ̂i x*qjSq

� �
i ¼ 1; 2;⋯; p

Sqþ1 ¼ Sq∪ x*q; J x*q

� �
; g x*q

� �� �n o
Start : Δi

q0
¼ 0; q0 ¼ n0 þ n1 þ 1

Stop : q≥qmax or Δqþ1−Δq
�� ��≤1:0� 10‐3

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð15Þ
where, x is the expected mean value of the ran-

dom vector X; Δi
q is the ith constraint offset in

the qth iteration; Ri denotes the ith prescribed
target reliability; CDF−1(·) is the inverse cumu-
lative distribution function, which is determined
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by 1 × 106 Monte Carlo simulations (MCS) with
the surrogate constraint functions and the func-
tion “fitdist” and “icdf” in Matlab. Furthermore,
the process of the constraint shifting is shown
in Fig. 3. The process is similar to that of AMA
in Eq. (4), however, the offset variable Δ is not
based on the gradient and normal distribution but is
based on the CDF of MCS, which captures more
failure information of the constraint.

Step 3.1: Set the initial offsets of the constraint functions as

Δi
q0
¼0; i ¼ 1; 2;⋯; pð Þ. In fact, whenΔi

q0
¼0, the

optimization problem in Eq. (15) is approximately
equivalent to the original deterministic optimiza-
tion problem.

Step 3.2: Solve the optimization problem with the shifted
constraint functions in Eq. (15) to search for the
current optimum. Since the offsets have great in-
fluence on the result of the optimization problem,
the optimization algorithm with high accuracy is
required. In order to balance the global search abil-
ity and local search accuracy, a search strategy
combing GA and SQP is adopted. In this strategy,
GA finds an approximated global optimum, and
then SQP uses the optimum as the initial value to
find a more accurate optimization point as the cur-
rent optimum x*q.

Step 3.3: Evaluate the current optimum to obtain the re-
sponse values of the objective and constraint func-
tions, and then update the sample set with

Sqþ1 ¼ Sq∪ x*q; J x*q

� �
; g x*q

� �� �n o
.

Step 3.4: Reconstruct the surrogate models with the updated
sample set. However, it is not necessary to opti-
mize the shape parameters of the surrogate models,
because the added point varies within a smaller
range around the deterministic optimum.

Step 3.5: Generate random samples xj(j = 1, 2,⋯, 1 × 106)
with the given probability density function (PDF)
of random vector X, the expected value of which
is E Xð Þ ¼ x*q. Then evaluate the response values

of the surrogate objective Ĵ x j
� �

and surrogate con-

straint vector ĝ x j
� �

.
Step 3.6: Fit cumulative distribution functions (CDFs) of the

constraints with the 1 × 106 surrogate samples ĝ x j
� �

j ¼ 1; 2;⋯; 1� 106
� �

. Therefore, the surrogate
CDF of each constraint function at the current opti-

mum x*q can be formulated as CDFq;i ∙jSq; x*q
� �

i ¼ 1; 2;⋯; pð Þ. It can be complemented with the
“fitdist” function in Matlab.

Step 3.7: Calculate offsets of the constraints. As the target re-
liability of each constraint isRi(i= 1, 2,⋯, p) and the
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Fig. 3 The constraint offset of the
SSRBO method, where x1 and x2
are the expectations of the random
variables, respectively
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surrogateCDFof each constraint function is obtained
in step 3.7, the offset of each constraint is given by

Δi
qþ1 ¼ CDF−1q;i RijSq; x*q

� �
‐ĝi x*qjSq

� �
.

Step 3.8: Offsets convergence check. If the number of the
added samples reaches themaximumvalue(q≥ qmax)
or the error between two adjacent offset vectors is
below a certain threshold (‖Δ

q + 1
−Δq‖ ≤ 1.0 ×
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10−3), go to the end of SSRBO, otherwise, go to Step
3.2. Repeat Step 3.2 to Step 3.8 until the stopping
criterion is satisfied.

In the process of SSRBO, the surrogate models are refined
by adding samples in the neighborhood of the deterministic
optimum sequentially, which improves the local precision in
the important region with high failure probability. The follow-
ing step carries on the iterative cycle of reliability analysis and
deterministic optimization until the offsets converge. All the
reliability analysis and optimization processes of SSRBO are
based on the surrogate models. The time-consuming function
evaluation only selects the points in the important region,
which greatly reduces the number of sample points, and also
ensures the accuracy of the reliability-based optimization.

4 Numerical examples

In this section, several mathematical and engineering ex-
amples are carried out to demonstrate the performance of
SSRBO, and the results are compared with the existing
RBO methods. The initial sample number is n0 = 2m + 1,
where m is the variable dimension. For each function call,
the values of the objective and constraints are estimated
simultaneously. In Step 1, the initial surrogate is con-
structed via the samples generated by LHS. GA is used
in Step 2 to update the local surrogate models, while a
strategy combining GA and SQP is used in Step 3. The
examples are implemented in Matlab.

4.1 2D problem

This example is from literature (Cho and Lee 2011; Li et al.
2013; Yi et al. 2016), which is a typical two-variable problem
with three reliability constraints. In this problem, the number
of the variables is small, and the objective and constraint func-
tions are relatively simple. The problem is described as

min
x

E J xþ εð Þð Þ ¼ x1 þ x2

s:t:
Pr g1 xþ εð Þ≤0f g≥ϕ β1ð Þ
Pr g2 xþ εð Þ≤0f g≥ϕ β2ð Þ
Pr g3 xþ εð Þ≤0f g≥ϕ β3ð Þ

8<
:

ð16Þ

where, xi ∈ [0, 10](i = 1, 2) is the expected value of the random
variable Xi(E(Xi) = xi); the difference variable εi between Xi

and xi is dependent and normally distributed, εi~ℕ(0, 0. 3
2);

the prescribed target reliability index is βj = 3.0, (j = 1, 2, 3).
The detailed formulation of the constraint functions is
expressed as

g1 xð Þ ¼ 1−
x21x2
20

g2 xð Þ ¼ 1−
x1 þ x2−5ð Þ2

30
−

x1−x2−12ð Þ2
120

g3 xð Þ ¼ 1−
80

x21 þ 8x2 þ 5

ð17Þ

As the result of the 2D problem, Fig. 4 shows the limit state
functions, the failure region and the additional samples in the
iteration process, Fig. 5 shows the iteration process of the
reliability indexes corresponding to the constraint functions,
and Fig. 6 shows the iteration process of the objective function
value.

As shown in Fig. 4, the error between the approximate limit
state functions (LSFs) and the true LSFs is larger at the begin-
ning of the iteration, however, the approximate LSFs near the
active constraints (g1 and g2) are becoming more and more
accurate. At the same time, since the non-active constraint g3
is far from the important region, the samples are sparse and the
accuracy is poor. However, g3 always meets the reliability
constraints, so the poor accuracy does not affect the property
of the non-active constraint, which reduces the samples and
improves the efficiency of the algorithm. As shown in Fig. 5,
the first three iterations in Step 3 fluctuates greatly, due to the
large shift of the constraints. However, with the iteration going
on, the constraint shift change smaller and smaller, and the
reliability indexes converge gradually. As shown in Fig. 6,
the iteration process of the SSRBO method is divided into
three parts: Step 1 (samples 1 to 5), the values of the objective
function are irregular, due to the Latin hypercube sampling;
Step 2, the local surrogate models update step (samples 6~15),
the overall trend of the objective function value is increasing,
due to the minimum distance constraints, which forces the
added points to be far away from the deterministic optimal
point; Step 3, the optimization and Monte Carlo simulation
step, since the constraints move inside the feasible domain, the
objective function value becomes larger and larger until it
converges. It is worth noting that both Fig. 5 and Fig. 6 show
the iteration process of the optimization and Monte Carlo sim-
ulation step, however, the number of the objective function is
less than that of the reliability indexes iteration, because some
too close samples are not added to the sample set.

The detailed iteration process of SSRBO for the 2D prob-
lem is listed in Table 2 and the compared results of various
RBO methods are shown in Table 3, which includes the ob-
jective function value at the optimal point, the reliability in-
dexes of the constraints and the number of the function calls.

βMCS
j j ¼ 1; 2; 3ð Þ is the reliability index of the jth constraint

with the Monte Carlo simulations for 1 × 106 times, which is
used to validate the accuracy of the reliability constraints. As
shown in Table 3, the objective function values of different
methods are close. The objective function of SSRBO is a little
larger than the existing methods, however, the reliability
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constraints of the existing methods are not satisfied strictly. In
this example, 5 initial samples and 23 additional samples are
used in SSRBO, with a total number of 28 function calls,
which is 1.96%~58.3% of the existing RBO methods.

Compared with the existing RBO methods (RIA, PMA,
SORA and ASORA (Yi et al. 2016); SLSV (Yang and Gu
2004)), the SSRBO method does not carry out the opti-
mization with the computationally expensive model direct-
ly, without nesting the optimizations for searching the
MPPs, which reduces the function calls of the two pro-
cesses dramatically. Moreover, SSRBO uses multiple sam-
ples in the neighborhood of the important region, which
has a higher reliability accuracy than the single point ap-
proximation of the Taylor series expansion at the MPP.
Most of the computation cost of SSRBO is the function
calls of the initial and additional samples. Since the com-
putation cost of the surrogate model itself is much lower
than the time of a single function call, the time of each
sub-optimization process is negligible.

4.2 Hock and Schittkowski problem

Hock and Schittkowski problem is a typical RBO problem
with 10 random variables and 8 reliability constraints from
literature (Lee and Lee 2005; Yi et al. 2016). In this problem,
the number of the variables and constraint functions increases,
and the objective function is more complex. The formulation
is given by

where, the random variables εi~ℕ(0,0.02
2), (i = 1, 2) are

independent and normally distributed. The prescribed tar-
get reliability indexes βj = 3.0 (j = 1, 2,⋯, 8). More details
of the constraint functions are described by

Table 2 The added samples for the 2D problem

Iteration x1 x2 J(x) g1(x) g2(x) g3(x)

0 5.0000 5.0000 10.0000 −5.2500 −1.0333 −0.1429
2.5000 0.0000 2.5000 1.0000 0.0396 −6.1111
10.0000 2.5000 12.5000 −11.5000 −1.0438 0.3600

0.0000 7.5000 7.5000 1.0000 −2.3771 −0.2308
7.5000 10.0000 17.5000 −27.1250 −5.9604 0.4336

1 3.3381 4.5529 7.8910 −1.5367 −0.7338 −0.5219
2 3.4550 2.4419 5.8969 −0.4575 −0.0327 −1.1935
3 4.3391 2.6103 6.9494 −1.4573 −0.0058 −0.7893
4 2.7245 3.1326 5.8571 −0.1627 −0.3075 −1.1343
5 2.2415 3.8961 6.1375 0.0213 −0.5969 −0.9421
6 2.0351 4.7721 6.8072 0.0118 −0.9187 −0.6907
7 3.6045 3.3297 6.9342 −1.1631 −0.2704 −0.7925
8 1.8152 5.6449 7.4601 0.0700 −1.2899 −0.4966
9 2.7852 5.2694 8.0547 −1.0439 −1.0593 −0.4569
10 1.6703 6.5332 8.2036 0.0886 −1.7117 −0.3321
11 2.5298 3.1326 5.6624 −0.0024 −0.3382 −1.1941
12 3.5996 2.4419 6.0415 −0.5820 −0.0158 −1.1338
13 3.5746 2.8362 6.4107 −0.8120 −0.1232 −0.9769
14 3.4399 3.2033 6.6432 −0.8952 −0.2432 −0.8841
15 3.4459 3.2673 6.7133 −0.9399 −0.2624 −0.8599
16 3.4529 3.2803 6.7332 −0.9555 −0.2659 −0.8534
17 3.4565 3.2799 6.7364 −0.9593 −0.2654 −0.8524
18 3.4561 3.2861 6.7422 −0.9625 −0.2674 −0.8504
19 3.4587 3.2841 6.7428 −0.9643 −0.2666 −0.8503
20 3.4597 3.2900 6.7497 −0.9690 −0.2683 −0.8480
21 3.4586 3.2865 6.7451 −0.9656 −0.2673 −0.8496
22 3.4590 3.2878 6.7469 −0.9669 −0.2677 −0.8490
23 3.4584 3.2854 6.7438 −0.9648 −0.2670 −0.8500

Table 3 Comparison of different methods for the 2D problem

Method Objective Variables βMCS
1 βMCS

2 βMCS
3 Number of function

calls

AMA 7.077 (3.633,3444) 3.775 3.377 +∞ 694

RIA 6.726 (3.439,3.287) 2.970 3.050 +∞ 882

PMA 6.728 (3.439,3.289) 2.970 3.060 +∞ 1431

SORA 6.726 (3.439,3.287) 2.970 3.050 +∞ 210

SLSVa 6.731 (3.434,3.297) 2.970 3.090 +∞ 484

ASORAb 6.725 (3.440,3.285) 2.970 3.050 +∞ 48

SSRBO 6.743 (3.458,3.285) 3.009 3.012 +∞ 28

a Single loop single variable
b Approximate sequential optimization and reliability assessment

min
x

J xð Þ ¼ x21 þ x22 þ x1 þ x2−14x1−16x2 þ x3−10ð Þ2 þ 4 x4−5ð Þ2 þ x5−3ð Þ2þ
2 x6−1ð Þ2 þ 5x27 þ 7 x8−11ð Þ2 þ 2 x9−10ð Þ2 þ x10−7ð Þ2 þ 45

s:t:
P g j xþ εð Þ≤0
n o

≥ϕ β j

� �
; j ¼ 1; 2;⋯; 8

0≤xi≤10; i ¼ 1; 2;⋯; 10 ð18Þ

(

450 X. Li et al.



g1 xð Þ ¼ 1−
4x1 þ 5x2−3x7 þ 9x8

105
g2 xð Þ ¼ 10x1−8x2−17x7 þ 2x8

g3 xð Þ ¼ 1−
−8x1 þ 2x2 þ 5x9−2x10

12

g4 xð Þ ¼ 1−
3 x1−2ð Þ2 þ 4 x2−3ð Þ2 þ 2x23−7x4

120

g5 xð Þ ¼ 1−
5x21 þ 8x2 þ x3−6ð Þ2−2x4

40

g6 xð Þ ¼ 1−
0:5 x1−8ð Þ2 þ 2 x2−4ð Þ2 þ 3x25−x6

30
g7 xð Þ ¼ x21 þ 2 x2−2ð Þ2−2x1x2 þ 14x5−6x6
g8 xð Þ ¼ −3x1 þ 6x2 þ 12 x9−8ð Þ2−7x10

ð19Þ

Figure 7 and Fig. 8 show the iterative process of the reli-
ability indexes of the constraint functions and the value of the
objective function, respectively. As shown in Fig. 7, the eight
reliability index constraints satisfy the convergence condition
after 20 iterations. At the beginning of the iteration, due to the
large offsets, the reliability indexes changes dramatically.
However, with the iteration going on, the offsets decrease
gradually, leading to the reliability indexes converge gradual-
ly. The active constraints converge to the prescribed target
value of 3.0, while the non-active constraints remain a high
reliability index about 7.34. It can be seen from Fig. 8 that the
initial sample is 21, the number of samples in Step 2 is 15, and

the number of samples in Step 3 is 25. In Step 1, the initial
sample has no obvious trend due to the use of Latin hypercube
sampling. In Step 2, due to the use of the minimum distance as
a constraint in the optimization of adding points, the objective
function value changes from small to large. In Step 3, the new
samples are obtained by the deterministic optimization with
the shifted boundaries. Since the algorithm adopts the SQP,
the function value converges relatively smoothly.

Table 4 and Table 5 show the results of different RBO
methods (Lee and Lee 2005) with the number of function calls,

where βMCS
j j ¼ 1; 2;⋯; 8ð Þ represents the 1 × 106 times

Monte Carlo simulations of the reliability indexes. As
shown in Table 4, the number of the function calls required
for SSRBO is about 0.0036%~0.16% of the alternative
methods, reducing the computational cost remarkably.
Meanwhile, as shown in Table 5, the Monte Carlo simula-
tion reliability indexes of SSRBO are close to 3.0, meeting
closely the reliability constraints.

4.3 The speed reducer problem

The speed reducer problem (Cho and Lee 2011; Yi et al. 2016)
shown in Fig. 9 is an engineering application, which deals with
the reliability-based optimization during the design of a gear-
box. The speed reducer consists of a gear and pinion and
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respective shafts. There are 7 design variables and 11 reliability
constraints. The random design variables are gear width (x1),
gear module (x2), the number of pinion teeth (x3), distance
between bearings (x4, x5) and shaft diameters (x6, x7). The ob-

jective is to minimize the weight of the speed reducer, subjected
to the physical properties such as the bending stress, contact
stress, longitudinal displacement, shaft stress and geometry
constraints.
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Table 4 Results of different
methods for Hock and
Schittkowski problem

Method Objective Variables Number of
function calls

AMA 27.75 (2.13,2.33,8.71,5.10,0.92,1.44,1.39,9.81,8.16,8.47) 1288
RIA 27.62 (2.13,2.35,8.72,5.14,1.00,1.61,1.38,9.79,8.16,8.47) 93629
PMA 27.80 (2.13,2.34,8.72,5.12,0.99,1.60,1.38,9.80,8.14,8.46) 157650
RIA+EFa 34.31 (2.16,2.37,8.00,5.08,1.03,1.84,1.49,9.69,8.00,8.29) 65545
PMA+EFa 32.64 (2.19,2.35,7.91,5.12,1.02,1.83,1.48,9.81,8.07,8.56) 34694
SSRBO 27.75 (2.13,2.34,8.71,5.12,0.93,1.46,1.38,9.80,8.17,8.52) 56

a Envelope function (Lee and Lee 2005)

Table 5 Reliability indexes of different methods for Hock and Schittkowski problem

Method βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5 βMCS

6 βMCS
7 βMCS

8

AMA 2.966 3.026 2.958 3.041 2.970 +∞ 2.950 +∞
RIA 3.328 3.218 2.439 2.988 2.949 +∞ 2.871 +∞
PMA 3.154 2.989 2.955 2.727 3.026 +∞ 3.037 +∞
RIA+EF +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
PMA+ EF 2.796 +∞ +∞ +∞ +∞ +∞ +∞ +∞
SSRBO 3.005 2.982 3.005 3.063 2.991 +∞ 2.996 +∞
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In this problem, the number of the variables and
constraint functions is large, and the objective and con-
straint functions are more complex. The problem is for-
mulated as:

minJ xð Þ ¼ 0:7854x1x22 3:3333x23 þ 14:9334x3−43:0934
� �

−1:5079x1 x26 þ x27
� �

þ 7:477 x26 þ x37
� �þ 0:7854 x4x26 þ x5x27

� �
s:t:

P gi xþ εð Þ≤0f g≥ϕ βið Þ; i ¼ 1; 2;⋯; 11
xL≤x≤xU

�

ð20Þ
w h e r e x L = [ 2 . 6 , 0 . 7 , 1 7 , 7 . 3 , 7 . 3 , 2 . 9 , 5 . 0 ] T ,
xU = [3.6,0.8,28,8.3,8.3,3.9,5.5]T are the lower and upper
bounds, respectively. ε is the vector random variables, and εi is

normally distributed, εi~ℕ(0,0.02
2). βi= 3.0 (i = 1, 2,⋯, 11) is

the ith reliability index. Moreover, the deterministic constraint
functions are given by

g1 xð Þ ¼ 27

x1x22x3
−1≤0

g2 xð Þ ¼ 397:5

x1x22x
2
3

−1≤0

g3 xð Þ ¼ 1:93x34
x2x3x46

−1≤0
g4 xð Þ ¼ 1:93x35

x2x3x47
−1≤0

g5 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� �2
þ 16:9� 106

r
110x36

−1≤0 g6 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� �2
þ 157:5� 106

r
85x37

−1≤0

g7 xð Þ ¼ x2x3−40≤0
g8 xð Þ ¼ 5−

x1
x2
≤0;

g9 xð Þ ¼ x1
x2
−12≤0

g10 xð Þ ¼ 1:5x6 þ 1:9

x4
−1≤0

g11 xð Þ ¼ 1:1x7 þ 1:9

x5
−1≤0

ð21Þ

As the results of the speed reducer problem, Fig. 10 shows the
iterative process of the reliability indexes of the constraints.
Figure 11 shows the iterative process of the objective function
value of three steps. In the initial sample step, there are no obvi-
ous patterns of the change of the function value due to the use of
optimum Latin hypercube sampling. In the step of the local sur-
rogate model update, with the number of the samples increases,
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Fig. 9 Structure of the speed reducer
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the function value is getting bigger and bigger. However, when
the sample increases to a certain extent, the surrogate models
change greatly, so the objective function value begins to reduce.
In the optimization and Monte Carlo simulation step, the initial
constraint boundary offset is zero, and then the constraint is
shifted according to the approximated cumulative distribution
function until the final convergence.

Table 6 and Table 7 show the results of different RBO
methods (Cho and Lee 2011) for the speed reducer problem,

where βMCS
j j ¼ 1; 2;⋯; 11ð Þ represents the reliability indexes

of 1 × 106 Monte Carlo simulations with the practical model at
the corresponding reliability optimum points. As shown in Table
6, the objective function value of the SSRBO method is similar
with the alternative methods. However, the number of the func-
tion evaluations is only 0.13% ~ 6.22% of the alternative

methods, which indicates that the computational cost is greatly
reduced. As shown in Table 7, the sixth reliability index of
SSRBO is slightly less than 3.0 (the required reliability index
constraint), due to the local inaccuracy of the surrogate model.
The error is equivalent to that of the fifth reliability index of RIA.
In addition, AMA fails to get a feasible solution, while the SORA
andASORA’s 11th active constraint reliability index is far greater
than 3, making the design more conservative and therefore the
objective function is larger.

4.4 Design of crashworthiness of vehicle side impact

This example is a vehicle crashworthiness design (Youn andChoi
2004; Jiang et al. 2017), a more complex practical engineering
problem with 11 random variables and 10 reliability constraints.
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Fig. 11 Iteration of the objective
function for the speed reducer
problem

Table 6 Results of different
methods for the speed reducer
problem

Methods Objective Variables Number of function calls

AMA 3126.94 (3.600,0.700,17.322,8.166,7.646,3.396,5.314) 280

RIA 3038.58 (3.577,0.700,17.000,7.300,7.754,3.365,5.302) 29096

PMA 3040.02 (3.578,0.700,17.000,7.300,7.764,3.366,5.302) 5852

SORA 3040.02 (3.578,0.700,17.000,7.300,7.764,3.366,5.302) 1023

SLSVa 3048.45 (3.589,0.700,17.000,7.300,7.783,3.369,5.307) 1771

ASORAb 3040.61 (3.580,0.700,17.000,7.300,7.764,3.366,5.302) 627

SSRBO 3038.53 (3.576,0.700,17.000,7.300,7.754,3.366,5.301) 39

a Single loop single variable
b Approximate sequential optimization and reliability assessment. (Cho and Lee 2011)
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The finite element model is shown in Fig. 12. The original non-
linear transient dynamic finite element simulation takes CPU time
about 20 h for a single run. Therefore, the approximated model is
adopted for the demonstration. In this work, the optimization task
is to minimize the weight, subject to the reliability constraints,
which is formulated as

minJ xð Þ ¼ 1:98þ 4:90x1 þ 6:67x2 þ 6:98x3 þ 4:01x4

þ 1:78x5 þ 2:73x7

s:t:
P gi xþ εð Þ≤0f g≥ϕ βið Þ; βi ¼ 3:0; i ¼ 1; 2;⋯; 11
xL≤x≤xU

� ð22Þ

where, the random variables are normally distributed, and the
distribution parameters are shown in Table 8. The target reliability
index is βi= 3.0, and more detailed expressions of the constraint
functions are given by

g1 xð Þ ¼ LoadAbdomen‐1 ¼ 1:16−0:3717x2x4−0:00931x2x10−0:484x3x9 þ 0:01343x6x10‐1
g2 xð Þ ¼ Deflectionribupper‐32 ¼ 28:98þ 3:818x3−4:2x1x2 þ 0:0207x5x10 þ 6:63x6x9−7:7x7x8 þ 0:32x9x10
g3 xð Þ ¼ Deflectionribmiddle‐32 ¼ 33:86þ 2:95x3 þ 0:1792x10−5:057x1x2−11:0x2x8−

0:0215x5x10−9:98x7x8 þ 22:0x8x9‐32
g4 xð Þ ¼ Deflectionrib1ower‐32 ¼ 46:36−9:9x2−12:9x1x8 þ 0:1107x3x10
g5 xð Þ ¼ VCupper‐32 ¼ 0:261−0:0159x1x2−0:188x1x8−0:019x2x7 þ 0:0144x3x5þ

0:0008757x5x10 þ 0:08045x6x9 þ 0:00139x8x11 þ 0:00001575x10x11‐32
g6 xð Þ ¼ VCmiddle‐32 ¼ 0:214þ 0:00817x5−0:131x1x8−0:0704x1x9 þ 0:03099x2x6−0:018x2x7þ
0:0208x3x8 þ 0:121x3x9−0:00364x5x6þ 0:0007715x5x10−0:0005354x6x10þ 0:00121x8x11‐32
g7 xð Þ ¼ VClower‐32 ¼ 0:74−0:061x2−0:163x3x8 þ 0:001232x3x10−0:166x7x9 þ 0:227x22‐32
g8 xð Þ ¼ Forcepublic‐4:01 ¼ 4:72−0:5x4−0:19x2x3−0:0122x4x10 þ 0:009325x6x10 þ 0:000191x211‐4:01
g9 xð Þ ¼ Velocitypillar‐9:9 ¼ 10:58−0:674x1x2−1:95x2x8 þ 0:02054x3x10−0:0198x4x10 þ 0:028x6x10‐9:9
g10 xð Þ ¼ Velocitydoor‐15:69 ¼ 16:45−0:489x3x7−0:843x5x6 þ 0:0432x9x10−0:0556x9x11−0:000786x2‐15:69

ð23Þ

As shown in Table 8, the random variables X1 to X7 are
structure variables, X8 and X9 are material property parame-
ters, X10 and X11 express barrier height and barrier hitting
position respectively. As X8 to X11 are parameters, the upper
bound and the lower bound are equal.

The RBO results are listed in Table 9 and Table 10. As
shown in Table 9, SSRBO obtains an objective value
28.3229 with 66 function calls, the computation cost of which
is about 0.345 to 15.9% of the compared methods (Jiang et al.
2017). The reliability indexes of the reliability constraint func-
tions in Table 10 are verified by MCS with 1 × 106 samples.
As the target reliability index is 3.0, the eighth and tenth reli-
ability constraints are violated in SSRBO. Thus, the total vio-
lation of SSRBO is 0.522, while the violation of SLA is 2.098,
and the violations of the other methods are 0.567~0.684.
Therefore, SSRBO performs higher efficiency and compara-
ble accuracy in the vehicle side impact problem.

4.5 Design of aircraft wing structure

This example is an RBO problem for a high-speed aircraft
wing structure. The design variables are the positions of

Fig. 12 Vehicle impact model

Table 7 Reliability indexes of different methods for the speed reducer problem

Methods βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5 βMCS

6 βMCS
7 βMCS

8 βMCS
9 βMCS

10 βMCS
11

AMA 2.095 +∞ +∞ +∞ 2.193 1.393 +∞ 0.988 +∞ +∞ −3.333
RIA +∞ +∞ +∞ +∞ 2.960 3.079 +∞ 3.006 +∞ +∞ 2.935
PMA +∞ +∞ +∞ +∞ 3.163 3.062 +∞ 3.072 +∞ +∞ 4.265
SORA +∞ +∞ +∞ +∞ 3.152 3.064 +∞ 3.066 +∞ +∞ 4.159
SLSV +∞ +∞ +∞ +∞ 3.772 4.159 +∞ 3.503 +∞ +∞ +∞
ASORA +∞ +∞ +∞ +∞ 3.174 3.077 +∞ 3.134 +∞ +∞ 4.376
SSRBO +∞ +∞ +∞ +∞ 3.129 2.946 +∞ 3.010 +∞ +∞ 3.085
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the beams and ribs, and 26 design variables are involved
(See Fig. 13). The objective function is to minimize the
weight of the wing structure. The design constraint is that
the maximum stresses of each component do not exceed
the allowable stress of the material. There are 29 stresses
involved in the problem. As shown in Fig. 14, the struc-
tural model is a finite element analysis model without
explicit expression. The model contains 18504 unstruc-
tured meshes, and the single analysis (with the solver
Nastran) takes an average of 64.8 s (Environment:
Windows, 64 bits, 2 GHz).

minJ xð Þ ¼ Weight xð Þ
s:t:

P gi xþ εð Þ≤0f g≥ϕ βið Þ; βi ¼ 3:0; i ¼ 1; 2;⋯; 29

xL≤x≤xU; εi∼ℕ 0; 0:02 xU;i−xL;i
� �� �2� �(

ð24Þ
The SSRBO algorithm is used to solve this problem. The

number of initial samples is 53. The stress distribution for the
optimized wing structure is shown in Fig. 15. The iteration
processes of reliability indexes and objective function are
shown in Fig. 16 and Fig. 17 respectively. The calculation
results are shown in Table 11.

Table 8 Distribution of random
variables for the vehicle side
impact problem

Random variables Mean xL xU Standard deviation

B-Pillar inner X1 x1 0.5 1.5 0.03
B-Pillar reinforcement X2 x2 0.45 1.35 0.03
Floor side inner X3 x3 0.5 1.5 0.03
Cross member X4 x4 0.5 1.5 0.03
Door beam X5 x5 0.875 2.625 0.05
Door belt line reinforcement X6 x6 0.4 1.2 0.03
Roof rail X7 x7 0.4 1.2 0.03
Material of B-Pillar inner X8 x8 0.345 0.345 0.006
Material of floor side inner X9 x9 0.345 0.345 0.006
Barrier height X10 x10 0 0 10
Barrier height X1position X11 x11 0 0 10

Table 9 Results of different
methods for the vehicle side
impact problem

Methods Objective Variables Number of
function calls

AMA 30.6840 (0.8722,1.3498,0.8169,1.5000,0.8850,0.9744,0.7821,0.345,0.345,0,0) 1596
PMA 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,1.2000,0.7284,0.345,0.345,0,0) 19128
SORA 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,

1.2000,0.7284,0.345,0.345,0,0)
2148

SLAa 28.9740 (0.9220,1.3500,0.6887,1.5000,0.8750,
1.2000,0.4000,0.345,0.345,0,0)

415

AHAb 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,
1.2000,0.7284,0.345,0.345,0,0)

2184

AH_SLMc 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0705,
1.2000,0.7284,0.345,0.345,0,0)

759

SSRBO 28.3229 (0.7701,1.5000,0.5078,1.5000,0.6307,1.4376,0.6895,0.345,0.345,0,0) 66

a Single-loop approach
bAdaptive hybrid approach
c Adaptive hybrid single-loop method. (Jiang et al. 2017)

Table 10 Reliability indexes of different methods for the vehicle side impact problem

Methods βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5 βMCS

6 βMCS
7 βMCS

8 βMCS
9 βMCS

10

AMA +∞ 2.991 4.107 3.527 +∞ +∞ +∞ 2.325 +∞ +∞
PMA +∞ 3.003 4.344 3.005 3.003 +∞ +∞ 2.433 +∞ 3.206
SORA +∞ 3.003 4.244 3.005 3.358 +∞ +∞ 2.433 +∞ 3.206
SLA +∞ 2.998 4.173 3.707 3.358 +∞ +∞ 2.431 +∞ 1.473
AHA +∞ 3.003 4.344 3.005 4.056 +∞ +∞ 2.433 +∞ 3.206
AH_SLM +∞ 3.003 4.344 3.005 3.358 +∞ +∞ 2.433 +∞ 3.206
SSRBO +∞ +∞ +∞ 3.554 +∞ +∞ +∞ 2.528 4.753 2.950
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As shown in Fig. 16, since β1 trends to 3.0, g1(x) is the
active constraint. The constraint boundary begins to move in a
large range, and the oscillation is performed for a longer time
to satisfy the convergence condition. Figure 17 shows the
improvement of the objective function with the increase of
the samples. It can be seen that the value of the objective
function undergoes a large degree of change during the step
2 to step 3, and the value of the objective function also in-
creases as the reliability increases. In step 3, due to the strict
convergence conditions, the convergence speed is slow.
Table 11 shows the calculation results of different methods
and the reliability indexes come from 10,000 times Monte
Carlo simulations with the original model. Since the RIA,
PMA, and SORA methods have taken much time and there
are no obvious signs of convergence, the results when the
number of calculations reaches 50,000 are taken as the final
results. In order to compare the effect of different surrogate

models on the performance of SSRBO, SVR and ANN are
used instead of RBF. It can be seen that different surrogate
models have similar results in the problem. As different sur-
rogate models have different construction and forecasting
time, it will eventually have a certain impact on the time cost
of the entire optimization problem, but the computing time is
generally at an order of magnitude. It can be seen from
Table 11 that the SSRBO method has comparable results with
the existing methods, but the calculation time is only 0.28 to
1.21% of the comparison methods. This shows that the pro-
posed method improves the efficiency of RBO in the practical
engineering problem.

5 Conclusions

In this paper, a reliability-based design optimization meth-
od with sequential surrogate model (SSRBO) is proposed.
SSRBO involves three key steps. First, the global surro-
gate models of the objective function and constraint func-
tions are constructed with the initial samples. Second, the
surrogate models are updated with the optimization crite-
rion of adding points in the important region with high
failure probability. Third, the cumulative distribution
function of the constraints at the current point is obtained
by the kernel method with the Monte Carlo simulation;
therefore, the offsets of the constraint for the next iteration
are determined.
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Fig. 13 Positions of the beams and ribs

Fig. 14 Meshes of the wing
structure
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The numerical and engineering examples with different
number of variables and constraints show that SSRBO
effectively reduces the number of the function calls with-
out losing accuracy of the reliabilities compared with the
existing methods. SSRBO updates the local surrogate
models of objective and constraint functions in the vicin-
ity of the deterministic optimization point. Moreover, it
carries out Monte Carlo simulation with surrogate models
to obtain the offsets, which avoids the functions calls of
reliability analysis and retains the accuracy. Since this
paper mainly solves the RBO problems of time-
consuming models, the number of function calls can be
used to approximate the overall time of SSRBO. For the
non-linear active constraints, in order to satisfy a given
accuracy, more sample points are required; for the weak
non-linear constraints, with only a small number of sam-
ples the results converge quickly.

The number of additional samples has great influence on
the convergence performance. How to adopt the additional
sample in step 2 of SSRBO according to the complexity of
the model and to increase the stability of the algorithm is a
major direction for future research. Moreover, SSRBO is
highly depended on the surrogate model; therefore, how to
improve the construction accuracy and efficiency of the sur-
rogate model for a multiple-input-multiple-output system is
also an interesting research topic.
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