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Abstract
Multi-objective design under uncertainty problems that adopt probabilistic quantities as performance objectives and consider
their estimation through stochastic simulation are examined in this paper, focusing on development of a surrogate modeling
framework to reduce computational burden for the numerical optimization. The surrogate model is formulated to approximate the
system response with respect to both the design variables and the uncertain model parameters, so that it can simultaneously
support both the uncertainty propagation and the identification of the Pareto optimal solutions. Kriging is chosen as the
metamodel, and its probabilistic nature (its ability to offer a local estimate of the prediction error) is leveraged within different
aspects of the framework. To reduce the number of simulations for the expensive system model, an iterative approach is
established with adaptive characteristics for controlling the metamodel accuracy. At each iteration, a newmetamodel is developed
utilizing all available training points. A new Pareto front is then identified utilizing this surrogate model and is compared, for
assessing stopping criteria, to the front that was identified in the previous iteration. This comparison utilizes explicitly the
potential error associated with the metamodel predictions. If stopping criteria are not achieved, a set of refinement experiments
(new training points) is identified and process proceeds to the next iteration. A hybrid design of experiments is considered for this
refinement, with a dual goal of global coverage and local exploitation of regions of interest, separately identified for the design
variables and the uncertain model parameters.

Keywords Designunderuncertainty .Multi-objectivedesign .Augmented inputspace .Adaptivemetamodels .Kriging . Iterative
optimization

1 Introduction

Design optimization plays an important role in analysis of
engineering systems, aiming to identify the optimal design
configuration for some chosen performance objectives and
constraints. For engineering applications that involve conflict-
ing and incommensurable objectives, this design approach is
frequently formulated as a multi-objective problem (Marler
and Arora 2004), and its solution identifies a set of Pareto
optimal design configurations representing different trade-

offs for these objectives. Such optimization problems pose
always greater computational challenges than single-
objective ones, with a requirement to thoroughly explore the
design space in order to comprehensively assess performance
trade-offs. Their complexity increases when modeling uncer-
tainties are also addressed in the problem formulation. Such
uncertainties, stemming from the incomplete knowledge about
the examined system and its environment (Helton et al. 2004;
Beck and Taflanidis 2013), impact performance predictions
and therefore the design process. A rational framework to ex-
plicitly consider them in this process is a probability logic
approach (Beck and Taflanidis 2013), employed by assigning
probability distributions to the uncertain model characteristics.
The design objectives are then expressed through the expecta-
tion of some chosen performance measure (Beck and Santana
Gomes 2012; Papadimitriou and Papadimitriou 2016). Multi-
objective design problems within this context are commonly
formulated as applications of robust design optimization
(RDO) (Lagaros and Papadrakakis 2007; Ren and Rahman
2013; Medina and Taflanidis 2015), with the conflicting
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objectives related to the mean and variance of the (same) sys-
tem response. More general approaches, though, exist that ex-
amine broader performance quantifications, adopting objec-
tives that relate to different response outputs and to advanced
probabilistic descriptions for performance (Wang and Stengel
2000; Verros et al. 2005; Gidaris et al. 2016; Liang and
Mahadevan 2017). This paper discusses such multi-objective
design under uncertainty problems that employ general prob-
abilistic quantities as design objectives (no specialized struc-
ture assumed), and focuses on applications that involve com-
plex numerical models. For such applications, stochastic (i.e.,
Monte Carlo) simulation is the only applicable generalized
method for calculating the probabilistic performances.
Unfortunately, this approach has an associated high computa-
tional cost, requiring a large number of calls to the determin-
istic, computationally intensive simulation model.

A framework relying on surrogate modeling to approximate
the system response is discussed here to alleviate this burden.
Within the aforementionedmulti-objective design under uncer-
tainty setting, traditional approaches for incorporating
metamodels can be distinguished in two general categories.
In the first category, metamodels are formulated in the design
optimization level, by approximating the objective function
(estimated utilizing the exact time-consuming system model)
in the design space (Ruiz et al. 2016; Leotardi et al. 2016). In
the second category, metamodels are exploited at the uncertain-
ty quantification level, by approximating the system perfor-
mance in the random variable space for each design configu-
ration the optimizer examines (Poles and Lovison 2009).
Approaches that combine these two formulations also exist
(Coelho et al. 2011), combining separate metamodels for an
outer loop (optimization in the design space) and an inner loop
(uncertainty quantification in the random variables space).
Here, an alternative approach is adopted that considers the
formulation of a single metamodel in the so-called augmented
input space of the probabilistic design problem, composed of
both the design variables and the random variables. The
metamodel then simultaneously supports both the uncertainty
propagation and the design optimization. Such a formulation
has been examined primarily for single-objective applications,
in a variety of settings with respect to performance objective
definition. Approaches based on Kriging metamodeling have
been extensively investigated (Dubourg et al. 2011; Bichon et
al. 2013; Moustapha et al. 2016) for problems where the prob-
ability of response exceeding certain threshold or response’s
specific quantile is of interest, as often encountered in
reliability-based design optimization (RBDO). Applications
dealing directly with the expected value of the response also
exist, relying on Kriging (Janusevskis and Le Riche 2013) or
stochastic collocation (Kouri et al. 2014). In Zhang et al.
(2016), and using again Kriging as metamodel, a unified im-
plementation was discussed (accommodating different statisti-
cal measures) through the introduction of a performance

function related to the system response. Recently (Dubreuil
et al. 2018), a metamodeling implementation combining poly-
nomial chaos expansion and Kriging was examined for opti-
mization of the extreme value of the response, investigating the
performance under any possible system realization considering
the uncertainty in the model description. All these single-
objective applications have incorporated some approach to
adaptively control the metamodel accuracy, focusing primarily
on critical, near-optimum regions. In contrast, for multi-
objective problems, the augmented input space formulation
has been adopted simply as a direct implementation of the
aforementioned ideas (Gidaris et al. 2016), with no effort to
adaptively control the metamodel accuracy.

This work establishes a complete framework for adaptive
implementation of surrogate modeling in the augmented input
space for multi-objective design under uncertainty problems,
and formally establishes the MODU-AIM (multi-objective de-
sign under uncertainty with augmented input metamodels) al-
gorithm. Kriging (Sacks et al. 1989; Kleijnen 2009) is adopted
as metamodel since it has been proven highly efficient for ap-
proximating complex functions, while simultaneously being
able to provide a local approximation to the metamodel predic-
tion error (Jin et al. 2003). The main novel contribution of this
work is the development of an iterative optimization scheme
that further reduces the number of calls to the time-consuming
simulation model. The underlying principle of leveraging an
iterative formulation to reduce computational burden is the
same as the approach advocated in Zhang et al. (2016), though
the implementation here for multi-objective problems is [and
needs to be (Yang et al. 2002)] fundamentally different. A
global metamodel covering the entire design domain is pro-
posed and iteratively refined using information for the
metamodel accuracy and the updated (at each iteration) Pareto
front. The design of experiments (DoE) for this refinement and
accuracy/convergence criteria for the iterative process are based
on global comparisons, as opposed to the local, trust-region-
based approach developed in Zhang et al. (2016). The proba-
bilistic nature of the Kriging metamodel is explicitly leveraged
in multiple aspects of the proposed framework: in the modifi-
cation of the probabilistic objectives, in the DoE, and in the
stopping criteria for assessing convergence.

In the next section, the multi-objective design under uncer-
tainty problem is formulated, and in Section 3, the modification
of the problem through the metamodel implementation is
discussed. In Section 4, the iterative optimization scheme is
presented, and in Section 5, the overall framework is reviewed,
before discussing the illustrative applications in Section 6.

2 Problem formulation

Consider an engineering systemwith design vector x∈X⊂ℜnx,
where X is the admissible design space, and uncertain
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parameters (i.e., random variables) θ∈Θ⊂ℜnθ with probabili-
ty density function (PDF) p(θ) (facilitating ultimately the un-
certainty quantification). Let z x;θð Þ⊂ℜnz denote the response
vector of the system model (with zm representing its mth com-
ponent), assumed here to be obtained through a time-
consuming call to a deterministic numerical function (simula-
tor), and let hi x;θð Þ : ℜnx�nθ→ℜ denote the performance
measure used for quantification of the ith design objective.
The nh-dimensional performance measure vector, including
all such measures, will be denoted h. The notation h[z| x,θ]
will be also used herein to denote the performance measure
vector; this notation indicates explicitly that this measure is a
function of the response vector z but assumes also knowledge
of design variables x and model parameters θ.

The ith performance function (i.e., design objective) is de-
fined as

Hi xð Þ ¼ E p θð Þ hi x;θð Þ½ � ¼ ∫Θhi x;θð Þp θð Þdθ ð1Þ

whereE p θð Þ :½ � denotes the expectation under probability mod-

el p(θ). The probabilistic performance function vectorH(x) is
defined as the vector with components Hi(x). The multi-
objective design under uncertainty problem corresponds to
the identification of the feasible design vector that minimizes
H(x):

x* ¼ argmin
x∈X

H xð Þ ð2Þ

Note that in this representation of the design problem, any
deterministic constraints are assumed to be incorporated in
the definition of admissible design space X.

For the multi-objective problem in (2), a design configura-
tion x is defined as dominating (strongly) any other x′ if all
components in its performance function vector are lower. If
objectives are competing, there is no single design configura-
tion that dominates all others. In such applications, design
optimization of (2) is transformed to identification of the
Pareto optimal solutions, corresponding to designs that are
not dominated by any other feasible ones. The set of all such
configurations is denoted as thePareto setXpwith its elements
denoted as xp. The Pareto front is the performance function
space representation of the Pareto setHp = {H(x)| x ∈Xp}. It is
generally impractical to find all Pareto optimums so the
optimization strategies usually aim at finding a subset of
them that represents Hp well and can provide the decision
maker with a comprehensive picture of trade-offs (Zitzler et
al. 2000).

For identifying the Pareto set, the probabilistic objectives
need to be calculated, and as discussed in Section 1, this
is established here through stochastic simulation. Using Ni

samples from some importance sampling (IS) density
qi(θ), introduced for improving computational efficiency by

concentrating the stochastic simulation effort in domains of
importance for the uncertain model parameters (Robert and
Casella 2004), the integral in (1) is estimated as

Ĥ i xj θf gi
� � ¼ 1

Ni
∑
j¼1

Ni

hi x;θ
j
i

� � p θ j
i

� �
qi θ

j
i

� � ð3Þ

where θf gi ¼ θ j
i ; j ¼ 1;…;Ni

� �
is the sample set from qi(θ)

and the notation Ĥ i xj θf gi
� �

stresses that this estimate is de-
pendent on the sample set utilized. Note that the IS density
qi(θ) and number of samples Ni can be different for each ob-
jective. Should be pointed out that selection of an efficient IS
density can be challenging (Medina and Taflanidis 2014), es-
pecially in the context of multi-objective optimization where
the domains of importance for θ might be drastically different
across the different Pareto optimal solutions. Identifying and
properly combining information from these domains is not
straightforward. In the context of the proposed Kriging-aided
optimization framework, this will be further discussed in
Section 5.1.

By combining all component estimates Ĥ i xj θf gi
� �

obtain-
ed through (3), the estimate for the probabilistic objective

vector Ĥ xj θf gð Þ is obtained, and the multi-objective design
under uncertainty problem can be then solved by substituting
H (x) with that estimate. The resultant optimization problem is
computationally challenging to solve, primarily due to the
high computational cost associated with each performance
function vector evaluation and the existence of an unavoidable
stochastic simulation estimation error. To address these chal-
lenges, a metamodeling-aided approach in augmented input
space is formulated in this paper.

3 Kriging-aided multi-objective optimization
in augmented input space

3.1 Kriging-aided optimization

The metamodel output is chosen to correspond to the response
vector z, rather than the performance measure vector h. The
advantages of this choice are discussed in detail in Zhang et al.
(2016). With respect to the metamodel input, this is chosen
to encompass both the design and random variables, leading
to definition of augmented input vector as y = [x; θ].
Modifications in this definition for applications that knowl-
edge of all components of vectors x and θ is not necessary for
evaluating z are discussed in Zhang et al. (2016). As discussed
in Section 1, Kriging is adopted as metamodel. The funda-
mental hypothesis in Kriging is that any component in the
response vector zm is approximated as a realization of a
Gaussian process (Sacks et al. 1989; Kleijnen 2009) with
some chosen correlation function R(y,y′). For forming the
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Kriging metamodel, the output {zm(y
t), t = 1, …,n} is ob-

served at n distinct locations for the input {yt, t = 1, …,n},
called training (or support) points or experiments. The selec-
tion of these locations is called design of experiments (DoE).
Ultimately, Kriging provides the following distribution for the
Gaussian process approximating zm based on observations
Y = [y1…yn]T (Sacks et al. 1989)

Mm yjYð Þ∼N μm yð Þ;σ2
m yð Þ� � ð4Þ

where N (a,b) stands for Gaussian distribution with mean a
and variance b, whereas μm(y) and σ2

m yð Þ correspond to the
predictive mean and predictive variance, respectively, for the
output zm. Once the Kriging metamodel is established, all
estimates for the predictive mean and variance are provided
with negligible computational burden (Lophaven et al. 2002;
Jia and Taflanidis 2013). For the entire vector z, the approx-
imation is established by combining the different compo-
nents of the response vector and will be denoted as
Mz(y|Y). The essential parts of this approximation are the pre-
dictive mean, μz(y), and variance, σ2

z yð Þ, vectors assembled

through the components of μm(y) and σ2
m yð Þ, respectively.

Further details for the metamodel formulation in this context
(augmented input space) may be found in Zhang et al.
(2016). For applications whose response vector z is high-
dimensional, developing a separate metamodel for each re-
sponse component might be impractical. In such instances,
alternative approaches should be preferred, for example, de-
veloping a single metamodel for the entire vector z as de-
tailed in Zhang et al. (2016) [single metamodel directly pre-
dicts entire μz(y) and σ2

z yð Þ vectors] or combining dimen-
sion reduction techniques (Jia and Taflanidis 2013).
Adoption of such approaches avoids any constraints related
to the nz value.

The optimization problem can be now solved by utilizing
the metamodel approximation for z(y) when estimating the
probabilistic performances, with metamodel error (and ulti-
mately its probabilistic nature) explicitly incorporated in the
formulation (Zhang et al. 2016). This leads to the following

predictive performance measure hkrigi that approximates hi

hkrigi x;θð Þ ¼ E M hi zjx;θ½ �jY½ �

¼ ∫ℜnz hi zjx;θ½ �ϕ z−μz yð Þ
σz yð Þ

� �
dz

¼ hkrigi μz yð Þ;σz yð Þjx;θ½ � ð5Þ

where EM :jY½ � denotes conditional expectation under
Mz(y|Y) and ϕ corresponds to the standard Gaussian PDF.
The integration in (5) is equivalent to propagation of the error
associated with the Kriging metamodel and typically can be
analytically performed (Zhang et al. 2016). It is assumed

herein that hkrigi x;θð Þ ¼ hkrigi μz yð Þ;σz yð Þjx;θ½ � is an easy
to compute measure and that it is continuous and differentia-
ble with respect to μz(y) and σz(y).

This approach facilitates then the following approximation

for Hi, denoted as the predictive performance function Hkrig
i :

Hkrig
i xð Þ ¼ E p θð Þ hkrigi x;θð Þ

h i
¼ ∫Θhkrigi x;θð Þp θð Þdθ ð6Þ

which may be estimated though stochastic simulation as:

Ĥ
krig

i xj θf gi
� � ¼ 1

Ni
∑
j¼1

Ni

hkrigi x;θ j
i

� � p θ j
i

� �
qi θ

j
i

� �
 !

ð7Þ

where, recall, θf gi ¼ θ j
i ; j ¼ 1;…;Ni

� �
is the sample set

from qi(θ). Selection of N and qi(θ) to establish a target accu-
racy for the estimate in (7) within the optimization framework
will be addressed in Section 5. Evaluation of the gradient of the
predictive performance function is discussed in Appendix 1.

3.2 Solution through epsilon-constraint method

For performing the multi-objective optimization, the epsilon-
constraint method is adopted because of its ability to identify a
Pareto front with a desired, prescribed density, even if the latter
has nonconvex regions (Haimes et al. 1971). Herein, we focus on
the application to bi-objective problem (nh = 2), though the pre-
sented framework can be extended to multi-objective problems
with nh > 2, albeit with considerable increase in the computation-
al complexity when combined with the epsilon-constraint ap-
proach (Mavrotas 2009). Without loss of generality assuming
H1 as optimization function (and H2 constraint function), the
epsilon-constraint method converts the multi-objective optimiza-
tion problem to a set of single-objective constraint optimization
problems with different constraint bounds εr:

xrp ¼ argmin
x∈X

H1 xð Þ

such that H2 xð Þ≤εr
ð8Þ

where the superscript r is utilized to describe the rth such con-
straint. Systematic variation of εr facilitates identification of the
Pareto front.

Utilizing the metamodel-aided approximations for the per-
formance functions (7), we establish the following single-
objective constraint optimization problem:

xrp ¼ argmin
x∈X

Ĥ
krig

1 xj θf g1
� �

such that Ĥ
krig

2 xj θf g2
� �

≤εr

ð9Þ

Exploiting the numerical efficiency of theKrigingmetamodels
and the ability to obtain gradient information (as discussed in
Appendix 1), the approximate optimization problem of (9) can
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be efficiently and accurately solved by any appropriate optimizer,
even for a large number of constraints (different values of εr).

4 Iterative optimization scheme

The important question is how to obtain a predictive Pareto set
through the use of the Kriging metamodel [i.e., optimization
of (9)] that approximates the actual Pareto set [i.e., optimiza-
tion of (8)] well, and perform this with small computational
effort (i.e., number of calls to exact numerical models). With
no a priori knowledge of regions of importance in Y (especial-
ly Pareto optimal regions), a globally accurate metamodel has
to be developed. This could be, though, overly conservative
and create an excessive computational burden. An iterative
approach is established for this purpose, adaptively control-
ling the metamodel accuracy and identifying regions of im-
portance for efficiently solving the multi-objective problem at
hand.

4.1 Fundamentals for the iterative optimization

At each iteration, the metamodel is constructed from the cur-
rent set of experiments, and the design configurations belong-
ing to the predictive Pareto set are identified and compared to
the set identified in the previous iteration. If convergence is
not reached yet, the set of experiment is enriched with refine-
ment experiments, a new metamodel is developed, and the
optimization proceeds to the next iteration. In this manner,
refinement experiments can be selected based on information
from previous iterations.

To formalize this approach, let X k−1ð Þ
p ¼ xr k−1ð Þ

p ; r ¼ 1;…; n k−1ð Þ
p

n o
be the predictive Pareto set available at the beginning of the kth
iteration (this corresponds to the set identified at the end of the
k-1st iteration), further denoted as current Pareto set. A super-
script in parenthesis (k) will be used herein to denote the itera-
tion. The total number of training points for developing the
metamodel is n(k) whereas for all stochastic simulations per-

formed within the kth iteration the same sample set θf g kð Þ
i is

utilized for each of the performance functions. This approach
corresponds to the concept of exterior sampling and creates a
consistent estimation error in the comparisons within the cur-
rent iteration (Spall 2003). This set changes, though, across
iterations (interior sampling). All evaluations of the perfor-
mance are established utilizing the current metamodel, leading

to approximation hkrig kð Þ
i x;θð Þ and estimate for the objective

Ĥ
krig kð Þ
i xj θf g kð Þ

i

� 	
[obtained by (7)]. Using this estimate, the

Pareto front can be identified using any appropriate algorithm,

potentially using members of the current Pareto set X k−1ð Þ
p as

initial guesses (if chosen algorithm can leverage such
information).

At each iteration, the developed framework includes three
key tasks: identifying the new (representative subset of the)
Pareto set, checking for convergence, and enriching the set of
experiments. Details of these tasks are discussed sequentially
next.

4.2 Pareto set generation

The Pareto set generation is facilitated through the proper
selection of the constraint εr. This selection is performed with
a dual goal: (i) restrict optimization of (9) in feasible regions;
(ii) adequately represent the entire Pareto front by populating
evenly its different regions. Figure 1 demonstrates some of
these concepts in the context of the second illustrative exam-
ple considered later.

The first goal is satisfied by identifying first the anchor
points, i.e., the points representing theminimum for individual
objectives. This is established through the unconstrained
single-objective optimization:

xan kð Þ
i ¼ argminx∈X Ĥ

krig

i xj θf g kð Þ
i

� 	
; i ¼ 1; 2 ð10Þ

These optimizations define the boundaries of current Pareto
front and also establish the range for feasible constraints as

εr∈ Ĥ
krig
2 xan kð Þ

2 j θf g kð Þ
2

� 	
; Ĥ

krig
2 xan kð Þ

1 j θf g kð Þ
2

� 	h i
.

For the second goal, the remaining solutions (interior
points) in the Pareto set are generated as following. The per-

formance functions for the design configurations in X k−1ð Þ
p are

first updated using the current metamodel and new sample set

θf g kð Þ
i (diamonds in Fig.1). Design configurations whose cor-

responding values for Ĥ
krig
2 belong in the feasible constraint range

Ĥ
krig
2 xan kð Þ

2 j θf g kð Þ
2

� 	
; Ĥ

krig
2 xan kð Þ

1 j θf g kð Þ
2

� 	h i
are retained and

utilized as values εr to update the Pareto set in their vicinity. If

X∼
k−1ð Þ
p ¼ x∼

r k−1ð Þ
p ; r ¼ 1;…; n∼

k−1ð Þ
p

n o
denotes the set of such

retained configurations, then this update corresponds to solution
of optimization problem (squares in Fig. 1),

xr kð Þ
in ¼ argmin

x∈X
Ĥ

krig kð Þ
1 xj θf g kð Þ

1

� 	
s:t:

Ĥ
krig

2 xj θf g kð Þ
2

� 	
≤εr ¼ Ĥ

krig kð Þ
2 x∼

r k−1ð Þ
p j θf g kð Þ

2

� 	
;

r ¼ 1;…; n∼ k−1ð Þ
p

ð11Þ

In cases the set X∼
k−1ð Þ
p is unavailable (i.e., in the first itera-

tion) or in the extreme cases that none of its design configu-

rations gets retained (n∼
k−1ð Þ
p ¼ 0), the constraint problem in
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(11) can be solved with a pre-defined number (ndp) of equi-
spaced constraints across the boundaries of εr instead.
Combining all interior points, obtained through (11) with the
two anchor points obtained through (10), the candidate Pareto
set is obtained. Even distribution of the corresponding Pareto
front is enforced by an adaptive refinement (Kim and De
Weck 2006), removing solutions in over-populated regions
of the front, and identifying new solutions in under-
populated regions (see also Fig. 1).

4.3 Stopping criteria

As stopping criteria, the discrepancy between the Pareto sets
identified in consecutive iterations is utilized, using both con-
vergence and coverage concepts (Deb 2001) to evaluate dis-
crepancy. In early iterations, it is expected that the improve-
ment of the metamodel accuracy will lead to identification of
design configurations clearly dominating some precedent
ones. As the optimization progresses, and the identified ap-
proximate Pareto set approaches the actual Pareto set, it is
expected that design configurations identified in subsequent
iterations should be non-dominant over each other, and also
extend over similar regions in the objective function space.
Since it is computationally prohibitive to evaluate the actual
performance of the identified solutions, a probabilistic assess-
ment of the performance is adopted (Teich 2001), utilizing the
metamodel for the comparison, but explicitly considering its
probabilistic nature (error).

To accommodate this, define the probability of superiority
for the ith objective function ℙ i x≻x

0� �
as the probability that

the ith performance objective for x will be lower than the one

for x
0
considering the uncertainty incorporated through the

probabilistic nature of the metamodel. To calculate this proba-
bility, each performance function {Hi, i = 1, 2} is approximated

through the conditional realization Hcr
i ; i ¼ 1; 2

� �
considering

the predictive distribution for the metamodel output Mz(y|Y).
The conditional realizations can be given by an expression

similar to (6) by substituting hkrigi :ð Þ with hi[z| .] and using
realizations of response z from distribution Mz(y|Y). The

probability ℙ i x≻x
0� �
can be finally expressed as:

ℙ i x≻x
0

� 	
¼

∫ℜ2I Hcr
i xð Þ−Hcr

i x
0

� 	h i
p Hcr

i xð Þ;Hcr
i x

0
� 	� 	

dHcr
i xð ÞdHcr

i x
0

� 	
ð12Þ

where the indicator function I :½ � is one if the condition
within the brackets is satisfied, else it is zero. Evaluation
of this two-dimensional integral requires generation of

samples for Hcr
i xð Þ and Hcr

i x
0� �
. This is established through

the approach discussed in Appendix 2 which yields Ncr sam-

ples for Ĥ
cr
i xð Þ

h it
and Ĥ

cr
i x

0� �h it
; t ¼ 1;…;Ncr. The probability

ℙ i x≻x
0� �
is then estimated as

ℙ̂ i x≻x
0

� 	
≈

1

Ncr
∑
t¼1

Ncr

I Ĥ
cr

i xð Þ
h it

< Ĥ
cr

i x
0

� 	h it
 �
ð13Þ

Expression ∣ℙ i x≻x
0� �
− 0.5∣ quantifies proximity of x

and x
0
with respect to the ith objective, with a value close to

0 meaning that x does not exhibit superiority or inferiority

to x
0
. The maximum value for this expression across both

objectives is an indicator of closeness in the objective space.
This observation leads to definition of the convergence
indicator, which compares a new point to all members of a

set (here, the previous Pareto set X k−1ð Þ
p is utilized)

Iconv xjX k−1ð Þ
p

� 	

¼ min
r¼1;2;…;n k−1ð Þ

p

max
i¼1;2

jℙ i x≻xr k−1ð Þ
p

� 	
−0:5j

� �
ð14Þ

A small value for Iconv means that x is close to some member
ofX k−1ð Þ

p . A large value indicates a significant difference between

x and all members of X k−1ð Þ
p (concept also illustrated in Fig. 1).

As the process approaches convergence, precedent Pareto set

X k−1ð Þ
p should be near Pareto optimal even in current iteration.

This means, equivalently, that Iconv should not take high values

for any point inX kð Þ
p which leads to following convergence stop-

ping criterion:

∀x∈X kð Þ
p : Iconv xjX k−1ð Þ

p

� 	
≤δconv ð15Þ

where δconv is a predetermined threshold.
For evaluating coverage of the Pareto front, a secondary

criterion is needed that compares performance to the anchor
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Fig. 1 Evolution of Pareto front in the k = 2nd iteration for a sample run
of the optimization algorithm (results are for the car suspension design
problem discussed later)
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points of the previous front. The coverage indicator is intro-
duced for this reason, defined as

Icov xj x k−1ð Þ
an;i

n o
i¼1;2

� �
¼ max

i¼1;2
ℙ̂ i x≻x k−1ð Þ

an;i

� 	
ð16Þ

A large value for Icov indicates that point x clearly domi-
nates anchor point across the objective it corresponded to a
minimum for, so coverage of the Pareto front has changed.
This leads to the second coverage stopping criterion:

∀x∈X kð Þ
p : Icov xj x k−1ð Þ

an;i

n o
i¼1;2

� �
≤δanch ð17Þ

where δanch is a predetermined threshold.
The optimization progress is terminated when both conver-

gence and coverage stopping criteria are satisfied. Parameters
δconv and δanch affect the convergence rate of the iterative
scheme and their selection represents a trade-off between
quality of solutions and algorithmic efficiency. As a reference,
consider the ideal case that current Pareto front is identical to

the precedent one, leading toℙ i x≻x
0� �
= 0.5 for all objectives.

Hence, δanch should be selected around 0.5–0.7 (probability
up to 20% of exceeding previous minimums) and δconv also
around 0–0.2 (probability of superiority is bounded between
30 and 70%). Parametric studies on the illustrative examples
considered later showed little impact on the quality of the
identified solutions of these selections (as long as they are
chosen in the recommended range).

4.4 Hybrid design of experiments for refinement
of metamodel

If convergence has not been achieved at the end of the kth iter-
ation, the current set of experiments needs to be enriched to
inform the development of a more accurate (refined) metamodel.
In this work, we employ a hybrid DoE that combines both
space-filling DoE and adaptive DoE to achieve: (Ro.i) satisfac-
tory global accuracy and (Ro.ii) sufficient local accuracy for
regions of importance for the augmented input under the multi-
objective optimization context. New experiments na1 and na2 are
obtained from each strategy for a total of na = na1 + na2 addition-
al experiments. This leads to a total of n(k+1) = n(k) + na training
points for the metamodel in the next iteration.

The space-filling DoE populates the entire domain for the
augmented input y using Latin hypercube sampling (LHS).
For x LHS from uniform distribution within the design do-
main, X is adopted, whereas for θ LHS from distribution p(θ)
is utilized. The space-filling DoE strategy guarantees that
metamodel accuracy will be improved over the entire domain
and, therefore, achieves (Ro.i), and reduces risk of missing
optimum design configurations that could belong in yet unex-
plored regions with lower metamodel accuracy.

On the other hand, the adaptive DoE targets regions of
importance for the augmented input. A sample-based DoE
(Dubourg et al. 2011) is adopted here for this purpose that
identifies a new set of experiments using a target density to
represent domains of interests in Y, a utility function to incor-
porate metamodel accuracy in the DoE and clustering to elim-
inate close-proximity experiments. The target density is sepa-
rately defined for the design variables x and the uncertain
model parameters θ since for each domain of interests
have different attributes. For the former, a kernel-based

density ~πd xjX kð Þ
d

� 	
around non-convergent regions of

the Pareto front is chosen X kð Þ
d ¼ xr kð Þ

d ; r ¼ 1;…; nd
n o

whereas for the latter the density representing the IS den-
sity for each design configuration x is chosen, represented
for computational efficiency as a kernel-based density

conditional on the elements of X kð Þ
d , ~π θjxr kð Þ

d

� 	
. Details

for these definitions are included in Appendix 3. The util-
ity function incorporates in the DoE considerations about
the metamodel accuracy by prioritizing candidate experi-
ments with larger predicted error. The linearized predic-
tion variance (Zhang et al. 2016) is chosen as utility func-
tion to facilitate this, given by

VAR hkrigi yð Þ
h i

¼ ∑
m¼1

nz ∂hi zjx;θ½ �
∂zm

����
μ yð Þ

⋅σm yð Þ
 !2

ð18Þ

where :jμm yð Þ denotes evaluation for z = μ(y).

The sample-based adaptive DoE strategy is composed
of the following steps with objective to sample na2
experiments

Step 1. Obtain a large number nc>>na2 of candidate
experiments Y = {yj = [xj; θj], j = 1,…, nc} from

the DoE target density π kð Þ
s x;θð Þ ¼ ~πd xjX kð Þ

d

� 	
~π θjxr kð Þ

d

� 	
.

Step 2. The linearized predictive variances of both perfor-

mance measures VAR hkrigi yð Þ
h i

; i ¼ 1; 2 are calcu-

lated for all nc candidate experiments. As scalar ac-
curacy metric, the following quantity is adopted

VAR yð Þ ¼ max
i¼1;2

VAR hkrigi yð Þ
h i

1

nc
∑
j¼1

nc

VAR hkrigi y j� �h i� 	 ð19Þ

corresponding to the larger normalized variance,
where normalization is established with respect to
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the sample mean. Candidate samples are then
ranked based on this metric and only a certain por-
tion arnc>>na2 [where ar < 1] are retained corre-

sponding to higher VAR yð Þ values.
Step 3. The retained experiments are finally clustered

through K-means (Hartigan and Wong 1979) to
the desired number of na2 experiments.

One final question is how to achieve the balance between
space-filling and adaptive DoE. In early iterations, greater
focus should be put on space-filling DoE to avoid premature
convergence due to poor metamodel accuracy in specific do-
mains, with this focus shifted to local exploitation of regions
of importance (i.e., adaptive DoE) as convergence is poten-
tially established. This is achieved by choosing the ratio of

experiments selected by the adaptiveDoE, n kð Þ
a2 =na, as a mono-

tonically decreasing function of the ratio of configurations in

X kð Þ
p being retained into the DoE set X kð Þ

d , i.e., n kð Þ
d =n kð Þ

p . A

lower value indicates that a greater portion of the Pareto front
has converged, inferring sufficient global coverage of the
metamodel, and thus greater potential benefits from concen-
trating efforts on the remaining, non-convergent domains. To
avoid the extreme case of getting no experiments from the

adaptive DoE when no configuration is retained (n kð Þ
d ¼ 0), a

certain percent of experiments (20% chosen here) is always
chosen from the adaptive DoE, while among the remaining
ones (80%), the adaptive DoE also accounts for a portion

proportional to n kð Þ
d =n kð Þ

p .

5 Optimization implementation

This section reviews the overall iterative optimization ap-
proach starting with some remaining implementation details.

5.1 Initial DoE and selection stochastic simulation
characteristics

The remaining implementation details pertain to the initial
DoE strategy and the IS density and number of samples N
selection. For the former, the space-filling DoE approach
described in Section 4.4 is adopted, within an adaptive set-
ting for selecting a sufficient number of experiments (Zhang
et al. 2016). An initial number of training points ninit is ob-
tained; then, the metamodel is developed and its accuracy is
evaluated using leave-one-out cross validation. If some min-
imum desired accuracy is not achieved, ninita additional
training points are obtained and the latter two tasks are
repeated.

For the IS densities, the density for ith performance
function is selected as a mixture of optimal IS densities

πi(θ|x) [IS densities defined in Appendix 3 in (40)] for the

design configurations in the precedent Pareto set X k−1ð Þ
p :

q kð Þ
i θð Þ ¼ 1

n k−1ð Þ
p

∑
n k−1ð Þ
p

r¼1
πi θjxrp k−1ð Þ
� 	" #

ð20Þ

This mixture corresponds to an appropriate density across the
entire current Pareto set and is efficiently approximated
through samples from it using kernel density estimation
(KDE) (Scott 1992): using rejection sampling (Robert and
Casella 2004), nis samples are first obtained from each density

πi θjxrp k−1ð Þ
� 	

; r ¼ 1;⋯; n k−1ð Þ
p ; these samples are then com-

bined to yield a total of nis � n k−1ð Þ
p samples defining set

θISf g kð Þ
i which is finally used for the KDE approximation

[yielding, ultimately, a similar expression as in (38)]. For Ni,
a sufficiently large value should be chosen to guarantee high
accuracy in the stochastic simulation, something that is com-
putationally affordable due to the numerical efficiency of the
Kriging metamodel. This value can be adaptively adjusted if a
sufficient accuracy is not achieved. For this purpose, the co-
efficient of variation for the current selection of the IS density
can be utilized, approximated (Robert and Casella 2004) as

δcvi xjq kð Þ
i θð Þ

� 	
≈

1ffiffiffiffiffi
Ni

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ni
∑
j¼1

Ni

hkrig kð Þ
i x;θ j

i

� � p θ j
i

� �
q kð Þ
i θ j

i

� �
 !2

1
Ni

∑
j¼1

Ni

hkrig kð Þ
i x;θ j

i

� � p θ j
ið Þ

q kð Þ
i θ j

ið Þ
� �" #2 −1

vuuuuuuuut ð21Þ

where θ j
i ; j ¼ 1;…;Ni

� �
is the sample set from q kð Þ

i θð Þ. Ni

can be adjusted across iterations to maintain a desired accura-
cy threshold δcvth . For the kth iteration, and using the current
Pareto set as reference (i.e., establish δcvth over this set), this
leads to updated value

Nup
i ¼ Ni

max
r¼1;2;…;n k−1ð Þ

p

δcvi xr k−1ð Þ
p jq k−1ð Þ

i θð Þ
� 	
δcvth

0
BB@

1
CCA

2

ð22Þ

where Ni corresponds to number of samples used for estimate

δcvi xr k−1ð Þ
p jq k−1ð Þ

i θð Þ
� 	

. To guarantee adequate accuracy over

the entire domain X, and since there is little gain in overall
efficiency by using small Ni values (due to the metamodel
computational efficiency), Ni should be chosen always larger
than some minimum value Nmin, based on the computational
burden consideration of estimation of (7) (for example, Ni

that allows estimation of each performance objective in less
than 1 s).
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This IS density formulation addresses the challenges
outlined in Section 2 regarding the IS density selection by
primarily relying on the metamodeling computational effi-
ciency. Note that more advanced approaches could be adopted
for the IS formulation (Medina and Taflanidis 2014), some-
thing that will create, though, additional computational bur-
den. In the proposed approach, the improvement of the sto-
chastic simulation accuracy is sought after by leveraging the
metamodel computational efficiency (use of large Ni value)
and not by trying to identifying the optimal IS density to
use. An easy-to-define, but still good, IS density is considered
sufficient for the latter.

It should be finally pointed out that beyond the satisfaction
of accuracy threshold δcvth , the adoption of exterior sampling
further reduces the impact of the stochastic simulation estima-
tion error on the identified solutions (Spall 2003).

5.2 Review of algorithm

When combining the previous ideas, one can formulate the
following optimization approach (illustrated also in Fig. 2),
referenced herein as MODU-AIM. First, define the predictive
performance vector hkrig(x, θ) and assign the optimization
function H1 and constraint function H2. Set the thresholds
for stopping criteria δconv and δanch and select the number of
conditional realization samples Ncr. Set the rules for choosing
the number of refinement experiments through the space-

filling DoE n kð Þ
a1 and the number of refinement experiments

through the adaptive DoE n kð Þ
a2 , and for the adaptive DoE,

choose the number of candidate samples nc and the reduction
ratio ar based on metamodel accuracy. Finally, choose the
number of samples for the IS density approximation nis, the
minimum number of samples Nmin for the stochastic simula-
tion and the accuracy threshold δcvth .

Step 1. (Initial DoE): In the first iteration employ the initial
DoE strategy to obtain total of n(1) training points,
gradually increasing number of points till satisfacto-
ry cross-validation accuracy is achieved. Evaluate
model response for these points {z(yt); t = 1,
…,n(1)}.

Step 2. (Kriging model): Utilize all available observations in
the database to formulate the Kriging metamodel and

obtain approximation hkrig kð Þ
i x;θð Þ.

Step 3. (IS density formulation): Obtain nis samples from

each density πi θjxrp k−1ð Þ
� 	

and combine them to

formulate IS density q kð Þ
i θð Þ for each performance

function through kernel density approximation. For

elements belonging to X k−1ð Þ
d , these samples are

readily available from the previous iteration (step

9). In the first iteration, skip this step and use q 1ð Þ
i θð Þ

¼ p θð Þ [no prior information available].
Step 4. (Stochastic simulation sample generation): Simulate

set θf g kð Þ
i ofNi samples from q kð Þ

i θð Þ as the stochas-
tic simulation sample set. For Ni, use Nmin in first
iteration ormaximum betweenNmin and updated val-
ue given by (22).

Step 5. (Anchor point identification): Identify anchor points
for the predictive Pareto front by solving optimiza-
tions described by (10). Use as initial guess for gra-
dient optimization the previously identified anchor

points x k−1ð Þ
an;i .

Step 6. (Interior point identification): Calculate first the retained
Pareto set of design configurations identified at previous

step X∼
k−1ð Þ
p ¼ x∼

r k−1ð Þ
p ; r ¼ 1;…; n∼

k−1ð Þ
p

n o
that fall

within the current anchor points (skip in first itera-
tion). Identify interior points of the predictive Pareto
front by solving optimizations described by (11).
Use as initial guess for gradient-based algorithms

the reference points xr k−1ð Þ
p for optimization in (11).

Combine points from steps 5 to 6 to obtain candidate

Pareto set X kð Þ
cp .

Step 7. (Refinement procedure of the Pareto front): Refine

the Pareto setX kð Þ
cp by resolving under-populated and

over-populated regions to obtain a uniform distribu-
tion of the set.

Step 8. (Stopping criteria checking): Check if the stopping
criteria have been reached as detailed in Section 4.3.
If they are met or computational effort has been
exhausted, the optimization process is terminated.

Step 9. (Hybrid DoE for refinement): If optimization process
is not terminated, employ the hybrid DoE strategy
detailed in Section 4.4 to obtain total of na training

points, n kð Þ
a1 from the space-filling DoE and n kð Þ

a2 from
the adaptive DoE.

Step 10. (Evaluation of the response): Evaluate the model re-
sponse {z(yt); t = 1, …,na} for the newly identified
training points at step 9 and combine with the previous
observations in a database over all iterations. Proceed
back to step 2 advancing to k + 1st iteration.

With respect to selection of the different characteristics of the
algorithm (recall δconv, δanch, and Nmin have been already
discussed), the following recommendations are provided. The
number of conditional realization samples Ncr should be chosen

higher than 100; for the case that ℙ i x≻x
0� �
= 0.5 (designs hav-

ing identical performance), this establishes a coefficient of var-
iation below 5%. The number of the initial experiments ninit and
the additional refinement experiments na should be chosen
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proportional to the dimension of input space ny following the
recommendations in Jones et al. (1998). A 7- to 30-fold increase
has been found effective in the applications examined: it avoids
incremental only updates in the metamodel due to addition of
small only number of experiments, something that can lead to
premature convergence, while it also facilitates the adaptive
characteristics of the algorithm, allowing a gradual increase of
experiments. For the IS sampling density, nis should be chosen
in the range of [10nθ, 50nθ] to facilitate adequate accuracy for
the kernel-based approximation (Scott 1992). Finally, the num-
ber of candidate samples nc should be much larger than na to
make both reduction and clustering effective. Appropriate selec-
tion for nc is 200nawhereas for the reduction ar, value of 5–10%
has been shown to work well in the applications examined. It
should be noted that besides na, these selections have not been
found to have a strong impact on algorithmic efficiency.

6 Illustrative examples

The framework is illustrated next with two examples. The first
one corresponds to a simpler, low-dimensional problem with
analytical performance measures and the second one to a

challenging engineering application examining the design of bi-
linear passive dampers for the suspension of a half-car nonlinear
model riding on a rough road. These two examples will be herein
referenced, respectively, as “analytical” and “car suspension de-
sign”. All characteristics of the numerical optimization that are
independent of ny (or nθ and nx), i.e., independent of the dimen-
sion of the design variables and the uncertain model character-
istics, are selected common for both examples. For the stopping
criteria characteristics, the thresholds δconv and δanch are taken as
15% and 65% respectively, whereas Ncr = 500 is assumed for
the conditional realization samples. The number of candidate
samples nc is taken as 200nawith the reduction ar taken as 10%,

whereas the number of DoE experiments n kð Þ
a1 and n kð Þ

a2 are cho-
sen based on the criteria discussed at the end of Section 4.4. The
stochastic simulation characteristics (dependent on nθ) and the
number of experiments (dependent on ny) are reported individ-
ually for each of the examples. As pointed out earlier besides
the number of experiments, these selections are not anticipated
to have a strong impact on the efficiency of the algorithm and
sensitivity studies performed have verified this.

For each problem, a reference (benchmark) solution is ob-
tained (whose procedure will be elaborated later) in order to
compare the quality of the identified Pareto front. For evaluating

Create conditional realization samples 

for performance functions and calculate    

                  . Estimate convergence Iconv
and coverage Icov indicators

Evaluate model response 

for the new training points 

{z(yt); t=1,…,na}

Perform initial DoE and get n(1) training 

points. Gradually increase n(1) till satisfactory 

accuracy is obtained (cross-validation). 

Evaluate response  {z(yt); t=1,…,n(1)}

Utilizing all training points formulate Kriging metamodel 

and obtain approximation hi
krig(k)(x,θ)

i

1st 

iteration 

(k = 1)

k=k+1

Perform Space-
filling DoE and get 

na1
(k) training points

no

yes

Obtain nis samples from each density πi(θ|xp
r(k-1)) and use 

them to formulate IS density qi(θ) for each performance 

functions through KDE (use p(θ) in first iteration)

Icov<δcov, Iconv<δconvStop

Identify anchor points for the Pareto front through single 

objective optimization

Proceed to 

next iteration

Perform Adaptive    
DoE* and get na2

(k)

training points

Hybrid DoE

( ) ( )ˆarg min  ( | { } )kgirkkna
iiXi Hxx x θ

Combine interior and anchor 

points for candidate set Xcp
(k)

Initialization
Define response vector z, augmented input 

y, calculate hkrig(x,θ)= hkrig[μz,σz |x,θ]

Refine Xcp
(k) to obtain well 

distributed final Pareto set               
Xp

(k) 
={xp

r(k) r=1,…,np
(k)}

)()()(

1 1

( ) ( ) ( 1) ( )

2222

ˆ                arg min  ( | { } )  

ˆ ˆ such that ( | { } ) ( | { } )

r k krig k k
in

X

krig k krig k r k k
p

H

H H
x

x x θ

x θ x θ

( ) ( ) ( ) ( )

2 2 2 2 1 2
ˆ ˆ[ ( | { } ),  ( | { } )]krig an k k krig an k kH Hx θ x θ

( 1) ( 1) ( 1){ ; 1,..., }k r k k
p p pr nX x

Define domain for epsilon constraint 

Retain previous Pareto front whose updated performance belongs in this 

domain,                                                 , and identify new interior  

points for the pareto front solving 

ˆ 'i x x

Determine set Xd
(k)

not satisfying convergence criteria, obtain nis samples from density 

πi(θ|xd
r(k)) for each design configuration in  Xd

(k)
, approximate target density 

using these samples for θ and set Xd
(k)

. Perform the three step adaptive DoE identification. 

*Adaptive DoE process

( ) ( )( | ) ( | )k r k
d dx X θ x

Update Ni
up to satisfy accuracy threshold δth

cv
and generate 

corresponding samples from qi(θ) to define simulation set {θ}i
(k)

used in current iteration (for all stochastic simulation estimates) 

d

Fig. 2 Schematic of MODU-
AIM algorithm

360 J. Zhang



the computational efficiency of the proposed approach, the
problem is also solved by another surrogate model aided opti-
mizer appropriate for multi-objective problems, SOCEMO
(Müller 2017). SOCEMO is a derivative-free algorithm devel-
oped for efficiently solving deterministic multi-objective prob-
lem with expensive, black-box performance functions, like the
ones discussed in this manuscript. It allows for a direct control
of the number of evaluations of the expensive performance
objectives. It has been already shown (Müller 2017) to offer
enhanced efficiency for applications with expensive functions
when compared to many other standard approaches for solving
multi-objective problems, like the NSGA-II algorithm (Deb et
al. 2002). This is the reason it is selected here (instead of such,
more popular, alternatives). As SOCEMO is not directly appli-
cable for design under uncertainty problems, it is applied here
adopting a “double-loop,” i.e., “nested” formulation, a common
approach for such problems (Eldred et al. 2002): for each design
configuration evaluation of the expensive design objectives is
performed by stochastic simulation utilizing IS, as described by
(3), adopting an exterior sampling approach. The total number
of model evaluations for SOCEMO is the product of the num-
ber of required expensive evaluations of the design objectives
and the sample size utilized in the stochastic simulation. For
such double-loop approaches, an inevitable trade-off exists be-
tween the overall computational efficiency and the stochastic
simulation accuracy. Higher sample size directly reduces com-
putational efficiency but also reduces the stochastic simulation
accuracy, lowering potentially quality of the identified solutions
(Spall 2003). Since the inner loop is treated as a black-box,
adaptive control of this accuracy is not possible. For the sto-
chastic simulation, the IS densities are selected as the efficient
ones identified in the final iteration of the MODU-AIM imple-
mentation, given by (20). In the overall comparisons of the
computational efficiency, this provides a relative advantage to
SOCEMO: formulation of good IS densities requires a consid-
erable computational burden, especially in the context of design
optimization, since such densities are not common across the
whole design configurations examined (Medina and Taflanidis
2013). Here, efficient IS densities are provided for the inner
loop of the SOCEMO implementation with no computational
cost.

6.1 Analytical problem

6.1.1 Design problem formulation and optimization details

The expressions of two performance measures are:

h1 x; θð Þ ¼ log x1 þ 2θð Þ2 þ 2x2−x1ð Þ2 þ 3 4θ−x2ð Þ2
h i

h2 x; θð Þ ¼ 15−exp −
x1 þ 2x2 þ 2θ

20

� � ð23Þ

where x = [x1 x2] is the design vector and θ = θ the single
uncertain parameter, taken as a standard Gaussian variable.
For simplicity, the response vector corresponds directly to
the performances measures, leading to z = [h1(x,θ) h2(x,θ)]

T.
The predictive performance measure in (5), the partial deriv-
ative in (34), and the linearized prediction variances of (18)
can be expressed in closed forms as (i = 1,2):

hkrigi yð Þ ¼ ∫ℜzi⋅ϕ
zi−μi yð Þ
σi yð Þ

� �
dzi ¼ μi yð Þ

∂hkrigi yð Þ
∂xl

¼ ∂μi yð Þ
∂xl

VAR hkrigi yð Þ
h i

¼ σi yð Þð Þ2
ð24Þ

The design domains X has upper bounds [10, 10], and
lower bounds [− 10, − 10] and the starting point of the algo-
rithm (first iteration) is set to be x(1) = [0, 0], the center of this
domain. The pre-specified number of constraints ndp is taken
at 20, while the refinement procedure guarantees the Pareto set
to have 10 to 40 well-distributed members. For the DoE char-
acteristics, the number of the initial support points ninit and the
additional refinement support points na are chosen as 20,
whereas the number of incremental support points with unsat-
isfied cross-validation accuracy ninita is taken as 10. The num-
ber of samples from the target IS density nis is taken as 20, the
number of minimum samples Nmin for the stochastic simula-
tion as 1000, and the accuracy threshold δcvth as 5%.

The reference solution is obtained by solving problem ana-
lytically and in this case corresponds to the actual Pareto front,
whereas for the SOCEMO implementation two variants are
examined: one (denoted as SOCEMO 502) terminates after 50
evaluations of the actual performance objectives with a IS sam-
ple size of 50 (total 2500 expensive model evaluations per
optimization), while the other (SOCEMO1002) terminates after
100 evaluations of the actual performance objectives with a IS
sample size of 100 (10,000 expensive evaluations per run).

6.1.2 Results and discussion

Due to the relative simplicity of this example, focus is placed
here on the final results only. Behavior across the iterations of
the algorithm will be discussed in the next example. Results
for a sample run of the proposed algorithm (MODU-AIM) and
the two SOCEMO variants are shown in Table 1. The pro-
posed algorithm converged in 4 iterations, requiring a total of
80 evaluations of the system response. This provides a con-
siderable computational efficiency compared to any of the two
SOCEMO variants examined. For comparing quality of the
obtained solutions, once the Pareto sets are identified, the
performance objectives, and corresponding Pareto fronts, are
analytically evaluated (to avoid the influence of any errors
stemming from the stochastic simulation in this comparison).
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Figure 3 presents the identified Pareto fronts along with the
reference one. Apart from the visual comparison, a quantita-
tive comparison is established using two common metrics for
assessing quality of approximate solutions to multi-objective
problems (Goh and Tan 2006). The first metric is the genera-
tional distance, GD, which compares the identified Pareto
front to the actual one:

GD ¼ 1

np
∑
r¼1

np

d2r ð25Þ

where np is the number of members in the Pareto set, and d2r is
the squared Euclidian distance in the objective space between
the rth member and its closes neighbor in the actual Pareto
front. Lower values of GD indicate smaller deviations from
the reference front and therefore higher quality of the identi-
fied solution. The second metric is the maximum spread, MS,
which computes the portion of the reference Pareto front that
covered by the identified one:

MS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nh
∑
i¼1

nh min max
r

Hi xrp

� 	h i
;Hi;max

� 	
−max min

r
Hi xrp

� 	h i
;Hi;min

� 	
Hi;max−Hi;min

2
4

3
5
2

vuuut
ð26Þ

where Hi,max, Hi,min represents the max/min value of the ith

objective across the actual Pareto front, and max
r

Hi xrp

� 	h i
;

min
r

Hi xrp

� 	h i
represents the max/min value of that objective

across the identified Pareto front. MS is bounded in [0, 1],
and higher values for it indicate better coverage (i.e., higher
quality identification). Note that MS metric can be imple-
mented by comparing simply to anchor points whereas GD
metric requires comparison to the actual Pareto front, or at
least a reference discrete front with large number of solu-
tions. This stems from the need to identify the closest
neighbor, which assumes a very well populated front to
compare to.

The results in Fig. 3 (qualitative, visual comparison) and
Table 1 (quantitative comparison) show that the proposed im-
plementation (MODU-AIM) identifies a Pareto front close to
the actual one (GD value) and with the same coverage (MS

value). In contrast, the Pareto fronts identified by both
SOCEMO implementations include non-dominant design
configurations (evident in Fig. 3 comparisons) and, in general,
identify lower quality Pareto fronts (Table 1 measures).
Consideration, additionally, of the difference in the number
of evaluations of the performance measures required by the
two approaches, 80 for MODU-AIM compared to 2500 or
10,000 by SOCEMO, reveals the advantages offered by the
proposed approach: higher computational efficiency and
higher identification quality for the Pareto front are accom-
plished. The double-loop approach employed for implemen-
tation of SOCEMO cannot outperform the efficiency offered
by the formulation of a surrogate model in the augmented
input space. This should not be considered as a deficiency of
SOCEMO, rather than a limitation of generalized, nested op-
timization approaches for design under uncertainty design
problems.

Another important question is what are the computation-
al efficiency benefits provided by the iterative scheme
discussed in Section 4. In other words, whether the advan-
tages reported for MODU-AIM simply stem from the de-
velopment of the metamodel in the augmented input space.
Exploiting the numerical simplicity of this analytical exam-
ple considered here, a non-iterative implementation is con-
sidered; this is accomplished by considering only the first
iteration of the proposed algorithm with a predetermined
number of experiments. This number is gradually increased
till the same quality (similar values as the ones reported in
Table 1) is established for the Pareto front identification.
The non-iterative implementation required over 500 evalu-
ations of the performance measures. Comparison to the
computational effort required by the iterative implementa-
tion, only 80 evaluations, makes it evident that the iterative
scheme, as expected, facilitates significant computational
benefits.

Finally, the low dimensionality of this analytical exam-
ple is leveraged to demonstrate the DoE sampling density
for the design variables x in Fig. 4. The converged/non-
converged parts of the Pareto set, as well as 1000 DoE
candidate samples are shown in this figure for the 2nd,
3rd and 4th iterations of the algorithm. One thousand
samples, as opposed to the 20 used in the algorithm, are
utilized to better illustrate the sampling density character-
istics. In earlier iterations, the DoE samples are distributed
more evenly across the entire design domain X. This is
desirable as discussed earlier, to avoid premature conver-
gence due to locally poor metamodel accuracy. As itera-
tions evolve, design subdomains close to the non-
converged parts of the Pareto set are prioritized in the
DoE, with samples populating more densely these re-
gions. This facilitates, ultimately, an improvement of the
convergence speed in these regions, without an impact on
the other, converged already, domains.

Table 1 Comparison of quality of the identified Pareto fronts by all
considered implementations for the first illustrative example (analytical
problem)

Metric MODU-
AIM

SOCEMO 502 SOCEMO 1002

GD 9.01 × 10−5 8.01 × 10−3 8.71 × 10−4

MS 0.987 0.929 0.878
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6.2 Car suspension design problem

6.2.1 Design problem formulation

The schematic of the half-car model is shown in Fig. 5. A
complete description of the numerical model is included in
Medina and Taflanidis (2014). For the suspension damper, a
passive nonlinear implementation is considered, allowing a dif-
ferent stroke reaction when the suspension is moving down-
wards as opposed to when moving upward (Verros et al.
2005). The average damping coefficients Cl and the percentage
increase of damping rn for upwards movement of the suspen-
sion are taken as the design variables. They are allowed to be
separately selected for the front and rear dampers (distinguished
by subscript f or r), leading to the definition of design variable

vector as x = Cl
f rnf Cl

r rnr
h iT

. The road surface is modeled as

a zero-mean Gaussian stationary stochastic process with power
spectral density parameterized by the roughness coefficient, κi.
A time-domain realization for this input is obtained by the

spectral representationmethod assuming that the car drives with
a constant horizontal velocity vc. Apart from the car length, all
other parameters for its model are assumed to be uncertain; this
includes the eccentricity between the chassis geometric center
and center of mass, ex; the masses for the chassis and front and
rear tires, mc, mtf, mtr, respectively; the chassis moment of iner-
tia, Ic; the spring and dashpot coefficient for front and rear tire,
Ktf,Ctf,Ktr,Ctr, respectively; and the linear and nonlinear spring

coefficients for the front and rear suspension Kl
f , K

n
f ,K

l
r, K

n
r ,

respectively. This leads to definition for the uncertain parameter

vector θ = [κi vc ex mc mtf mtr Ic Ktf Ctf Ktr Ctr Kl
f K

n
f K

l
rK

n
r ]

with nθ = 15. The probability models for θ are discussed in
detail in Medina and Taflanidis (2014).

The performance of the suspension system is evaluated
assuming that car drives on the rough road for a lengthy
stretch, so that response reaches stationary characteristics that
can be quantified for design purposes through root mean
square (RMS) statistics (Verros et al. 2005). The only source
of uncertainty impacting the response of the suspension
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system is, therefore, the uncertainty associated with the model
parameter vector θ (no influence of the stochastic excitation
characteristics, since stationary conditions achieved). The
competing performance objectives for formulating the multi-
objective design problem are related to the ride comfort and
road holding, both common objectives for car suspension de-
sign (Dahlberg 1978). For the ride comfort the fragility of the
RMS vertical acceleration at the center of mass RMSac is used,
whereas for the road holding the sum of RMS dynamic forces
developed between the ground and tires (RMStf, RMStr) is
adopted. These forces are calculated for each tire considering
both the spring and dashpot connecting it to the ground,
whereas dynamic characteristics pertain to deviation from
the static force developed to compensate for the car
weight. For the acceleration fragility, log-normal charac-
teristic are assumed (Medina and Taflanidis 2014) with
threshold b = 1 m/s2 defining acceptable performance and
coefficient of variation σb = 5% for the fragility. This leads
to the following performance measures

h1 x;θð Þ ¼ Φ
ln RMSacð Þ−ln bð Þ

σb

� �
h2 x;θð Þ ¼ RMStf þ RMStr

ð27Þ

The response vector is taken to correspond to the log of the
RMS acceleration and the RMS tire forces, representing the
quantities needed in the performance measures of (27),
z = [ln(RMSac) RMStf RMStr]

T. The RMS response is evalu-
ated through time-domain numerical simulation (Medina and
Taflanidis 2014) to address the various source of nonlinear-
ities included in the car model.

6.2.2 Kriging implementation characteristics

The predictive performance measures are evaluated as

hkrig1 yð Þ ¼ ∫ℜΦ
z1−ln bð Þ

σb

� �
ϕ

z1−μ1 yð Þ
σ1 yð Þ

� �
dz1 ¼ Φ

μ1 yð Þ−ln bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b þ σ2

1 yð Þ
q
2
64

3
75

hkrig2 yð Þ ¼ ∫ℜ2 z2 þ z3½ �ϕ z−μz yð Þ
σz yð Þ

� �
dz2dz3 ¼ μ2 yð Þ þ μ3 yð Þ

ð28Þ

which lead ultimately to the desired analytic expressions for
them. The partial derivatives in (34) are

∂hkrig1 yð Þ
∂xl

¼ ϕ
μ1 yð Þ−ln bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b þ σ2

1 yð Þ
q

0
B@

1
CA�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b þ σ21 yð Þ

q ∂μ1 yð Þ
∂xl

−
1

2

μ1 yð Þ−ln bð Þ
σ2
b þ σ2

1 yð Þ� �3=2 ∂σ2
1 yð Þ
∂xl

0
B@

1
CA

∂hkrig2 yð Þ
∂xl

¼ ∂μ2 yð Þ
∂xl

þ ∂μ3 yð Þ
∂xl

ð29Þ

In addition, the linearized prediction variances of (18) are
calculated as

VAR hkrig1 yð Þ
h i

¼ 1

σb
ϕ

μ1 yð Þ−ln bð Þ
σb

� �
⋅σ1 yð Þ

� �2

VAR hkrig2 yð Þ
h i

¼ σ2 yð Þð Þ2 þ σ3 yð Þð Þ2
ð30Þ

6.2.3 Numerical optimization details

The design domains X has upper bounds [4000 Ns/m, 1,
4000 Ns/m, 1], and lower bounds [400 Ns/m, − 1,
400 Ns/m, − 1]. The starting point of the algorithm (first
iteration) is set to be x(1) = [500 Ns/m, 0, 500 Ns/m, 0] which
correspond to small damper configurations with pure linear
component. The pre-specified number of constraints ndp is
taken at 10, while the refinement procedure guarantees the
Pareto set to have 5 to 20 well-distributed members.
Additionally, for the Pareto front refinement, the log of the
first objective log (H1(x)) was utilized since the variation of
that objective across the Pareto is large (ranging from 0.05 to
20%). This choice facilitates a better representation across the
front of small failure probabilities, deemed of importance for
the application here. For the DoE characteristics, two values
will be examined for the number of the initial support points
ninit and the additional refinement support points na, either (a)
500 or (b) 200, whereas the number of incremental support
points with unsatisfied cross-validation accuracy ninita is taken
as 100. The two different instances for na examined will be
referenced as DoE500 and DoE200 herein. The number of

sry

sfy

tsfF

cy

cψ
xe

cI
cm cv

tsrF tdrF
trm try

drFsrF tfy

fu

ru

tdfF

g
tfm

sfF dfF

 

 Simplified  subscript notation   

: { , } {either front or rear}o f r

front
rear

3

Spring and dashpot 

( )

( )

(

force

)

s

( )nl
sf so to so to

tso to to

tdo to to

oo

o

o

K y y K y
K y u

F

C y u

y
F
F

Passive suspension-damper 
 ( ) | |do so to soo t

l l
o o

n
oy yF C C r y y

Fig. 5 Half-car model schematic
and forces involved

364 J. Zhang



samples from the target IS density nis is taken as 200, while the
number of minimum samples Nmin for the stochastic simula-
tion as 5000 and the accuracy threshold δcvth as 5%.

The reference (benchmark) solution cannot be obtained in
this application analytically. Instead, it is approximated by a

reference Pareto set Xref ¼ xrref ; r ¼ 1;…; nref
n o

containing

nref = 15 well-distributed solutions. This reference solution is
obtained here by solving the original design optimization prob-
lem of (2) using the adaptive weighted sum algorithm
discussed in Kim and De Weck (2006) to convert the design
problem to an unconstrained single-objective optimization, and
the efficient global optimization algorithm (EGO) (Jones 2001)
to solve the latter. These choices were promoted due to the high
computational burden associated with estimation of the perfor-
mance objectives, though any other appropriate methodology
could had been adopted for identifying the reference solution.
Like in the SOCEMO implementation, the performance is
evaluated through stochastic simulation [i.e., through (3)] uti-
lizing the exact numerical model and exterior sampling. The IS
densities for generating the respective sample set were chosen
as the ones used in the final iteration of the iterative Kriging-
based optimization, described in (20). The number of samples
N was selected to be sufficiently large (N = 5000) to guarantee
high quality of the identified solutions. This sample sets is

denoted as the reference sample set θf grefi ; i ¼ 1; 2. To further
reduce such computational cost, an initial set of common can-
didate solutions for EGO was constructed, consisting of 200
design configurations determined by LHS in the whole design
domain. The total number of function evaluations to obtain the
reference Pareto set is 3,590,000.

For comparing computational efficiency, the SOCEMO
implementation is again considered. The variant with only
50 samples for the stochastic simulation provided poor results
in this case (significant errors in identifying parts of the
Pareto front close to one of the anchor points), so only the
implementation SOCEMO 1002 is discussed further. Recall

that a single run of SOCEMO 1002 requires 10,000 evalua-
tions of the computational expensive system model.

6.3 Results and discussion

Five runs of the proposed algorithm (MODU-AIM) and one
run of the SOCEMO approach are conducted. The proposed
implementation converged in 4–8 iterations for the DoE500
implementation and 8–14 iterations for the DoE200. The av-
erage computational effort is then 3100 model runs (6 itera-
tions) for DoE500 and 2000 model runs for DoE200 (10 iter-
ations). Upon convergence, the performance functions for all
identified Pareto sets are evaluated using the exact numerical

model, utilizing the reference sample set θf grefi ; i ¼ 1; 2 to
facilitate consistent comparisons.

Discussion first focuses on a sample run of the pro-
posed MODU-AIM algorithm. Figure 1 in Section 4.2
depicts the progression of the Pareto front in the second
iteration, including the set identified in the first iteration

Ĥ
krig 1ð Þ
i x 1ð Þ

p j θf g 1ð Þ
i

� 	
, its update using the new metamodel,

Ĥ
krig 2ð Þ
i x 1ð Þ

p j θf g 2ð Þ
i

� 	
, and the set identified in the second

iteration Ĥ
krig 2ð Þ
i x 2ð Þ

p j θf g 2ð Þ
i

� 	
. Comparison between

Ĥ
krig 2ð Þ
i x 1ð Þ

p j θf g 2ð Þ
i

� 	
and Ĥ

krig 1ð Þ
i x 1ð Þ

p j θf g 1ð Þ
i

� 	
shows the

prediction accuracy improvement with the updated
metamodel, especially in regions corresponding to smaller

values for H1, whereas comparison of Ĥ
krig 2ð Þ
i x 2ð Þ

p j θf g 2ð Þ
i

� 	
to Ĥ

krig 2ð Þ
i x 1ð Þ

p j θf g 2ð Þ
i

� 	
shows the evolution of the identified

solutions towards higher quality (i.e., dominant) designs. The
bigger discrepancies shown for objective H1 should be attrib-
uted to its special characteristics; for certain parts of the front,
objective H1 represents events with small likelihood of occur-
rence, for which an adaptive DoE strategy that target the
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domains in Θ contributing to failure can provide substantial
benefits (Zhang et al. 2016). The proposed framework adap-
tively adjust to this challenge and improves metamodel accu-
racy and subsequently the quality of the identified solutions
across the iterations, as also shown in Fig. 6 which depicts the
evolution of the Pareto front across the different iterations of
the algorithm using either [part (a)] the metamodel established

at each iteration, i.e., Ĥ
krig kð Þ
i x kð Þ

p j θf g kð Þ
i

� 	
or [part (b)] the

exact numerical model Ĥ i x kð Þ
p j θf g kð Þ

i

� 	
. As the algorithm

progresses, discrepancies between the identified fronts gradu-
ally decrease and convergence is established with great com-
putational savings, as pointed out earlier. This convergence
holds for both the metamodel-based evaluation [part (a)],
which corresponds to what the algorithm approximates as be-
havior of the objective function, as well as for and the exact
numerical model based evaluation [part (b)]. Comparison be-

tween Ĥ
krig
i and Ĥ i shows greater differences for small values

of objective H1, agreeing with the aforementioned discussion
of greater challenges in accurately approximating rare events.
Note, though, that the proposed framework does not place any

emphasis on agreement between Ĥ
krig
i and Ĥ i, and despite any

differences existing in this comparison, it still converges to the
correct front (see discussion on Fig. 7 next). This supports the
philosophy for targeting convergence to correct solutions by
an adaptive iterative scheme, rather than requiring develop-
ment of accurate metamodels.

The focus moves now to the performance comparisons
among all implementations. Results across the five different
runs of MODU-AIM are reported in Fig. 7 for either the
DoE500 [Fig. 7, part (a)] or DoE200 [Fig. 7, part (b)], and
results for SOCEMO are reported in Fig. 8. In all instances,
the reference Pareto front is included for comparison. These
figures facilitate the visual comparison for the quality of the
obtained solution. The results demonstrate good agreement
between the reference and the identified solutions in both
DoE cases for MODU-AIM. For SOCEMO, a significant por-
tion of the identified Pareto set is non-dominant with respect
to the reference solution. This behavior is especially evident
for lower values of H1 objective and therefore should be at-
tributed to the inaccurate stochastic simulation because of
using 100 only samples, despite the efficient IS densities.
This lower accuracy impacts disproportionally domains where
H1 has characteristics of a rare event. An evident remedy is to
increaseN1 for SOCEMO (it was found that a 10-fold increase
to N1 = 1000 greatly improves results). However, as discussed
previously, this larger value will directly impact computation-
al efficiency. For example, for maintaining the same total
computational effort with an increase value of N1, the number
of expensive evaluations of the design objectives would pro-
portionally decrease. Beyond the visual comparison the quan-
titative comparison results are reported in Table 2, adopting

similar metrics as in the previous example. In this case, the
generational distanceGD is no longer meaningful since only a
discrete reference Pareto front is available. For this reason, the
MS metric is only reported. For the DoE200 and DoE500 the
coefficient of variation forMS over the 5 different trials is also
reported in parenthesis. The comparison of the results in
Figs. 6 and 7 and Table 2 shows that both variants of the
proposed scheme, DoE200 and DoE500, outperform
SOCEMO. This is established, similar to the previous exam-
ple, with a remarkable computational efficiency (check also
summary results in Table 3 later), with the number of expen-
sive model evaluations not exceeding 4000 for DoE500, and
2800 for DoE200 compared to SOCEMO (10000) or the EGO
for obtaining the reference solutions (3,590,000).

Focusing on MODU-AIM, for both DoE500 and DoE200
implementations, some discrepancies with respect to the sec-
ond objective exist for regions close to the minimum for H1.
These trends are anticipated: for most multi-objective prob-
lems, high sensitivity exists for the Pareto front close to the
anchor points, with small improvements of the primary objec-
tive (the one that corresponds to the single-objective mini-
mum) coming at large “sacrifice” for the secondary objective.
This feature creates the differences between the approximate
and reference solutions and can be resolved, if desired, by
further refinement of the optimization around these domains,
either by using a smaller value for δanch, or through a second
optimization stage focusing explicitly at the anchor points, for
example, through the single-objective optimization frame-
work described in Zhang et al. (2016), leveraging existing
experiments for the metamodel development. These chal-
lenges are compounded for regions close to the anchor point
ofH1 due to the rare event characteristics. Such challenges are
greater for the DoE200 implementation, with DoE500 dem-
onstrating better robustness across the different runs. This
should be attributed to the fact that addition of only 200 ex-
periments per iteration might not significantly alter the
metamodel across consecutive iterations and therefore might
lead to premature convergence. Remedy for this challenge
could be to rely on the evaluation of the convergence across
multiple iterations, i.e., not comparing only kth to k-1st itera-
tions. Nevertheless, the overall Pareto front identified in all
DoE implementations shows good agreement with the refer-
ence solution.

Finally, the discussion moves to the effect on different
choices of na (the number of refinement experiments), based
on the overall optimization efficiency and accuracy for
DoE500 and DoE200. The following metrics are used for
evaluating the performance across the different runs:
(i) computational efficiency metrics, evaluated by the average
(Ntot

avg) or worst-case (N
tot
wc) total numbers of calls to the exact

system model, and (ii) accuracy metrics, evaluated by the

average (Errrefi;avg), and worst-case (Errrefi;wc) error rate of ith
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performance function. The latter calculates the average rela-
tive absolute error of the metamodel across the entire front
[i.e., comparing parts (a) and (b) of Fig. 6] and is given by

Errrefi ¼ 1

np
∑
r¼1

np Ĥ i xrpj θf grefi

� 	
−Ĥ

krig

i xrpj θf grefi

� 	
Ĥ i xrpj θf grefi

� 	
�������

������� ð31Þ

Lower error rate indicates higher accuracy over the critical
regions in multi-objective optimization, namely the true
Pareto set. In all instances, average results correspond to the
mean over the five runs, whereas worst case corresponds to
the least favorable performance over these five runs.

The results in Table 3 stress the computational efficiency of
the proposed approach as the convergence to the Pareto front
is accomplished with small computational effort, not

exceeding 4000 model evaluations in either case. The
DoE500 case takes extra computational effort (compare Navg

tot

and Ntot
wc), but also leads to higher quality results (compare

Errrefi;avg and Errrefi;wc), which can provide greater robustness in

identifying better quality solutions as discussed earlier.
Further focusing on the predicted performance across the

identified front, described through Errrefi , low error rate is
reported for the first performance function (not higher than
0.114) and an almost vanishing error rate (not higher than
0.016) for the second one. The higher error rate of the first
objective function is in line with the aforementioned trends. It
is also interesting to compare this error across the iterations of
the optimization algorithm. For the sample run, illustrated in
Fig. 6 earlier, the evolution of Err across iterations for objec-
tive 1 (i = 1) from 1st iteration to 5th iteration is [0.798, 0.493,
0.194, 0.137, 0.088] and for objective 2 (i = 2) is [0.027,
0.014, 0.013, 0.016, 0.010]. Evidently, the proposed adaptive
iterative scheme facilitates a gradual improvement of the
metamodel accuracy over the domains of importance, which,
in turn, allows the identification of higher quality solutions as
demonstrated in Fig. 6.

Overall, the results in the figures and tables demonstrate
the benefits from the proposed iterative scheme for adaptively
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Table 2 Comparison of quality of the identified Pareto fronts by all
considered implementations for the car suspension design problem. For
DoE500 and DoE200, the mean over 5 trials and coefficient of variation
in parenthesis are reported

DoE500 DoE200 SOCEMO

MS 0.998 (0.4%) 0.996 (0.49%) 0.967
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adjusting metamodel accuracy: the algorithm gradually
converges and identifies problematic regions for improv-
ing metamodel accuracy, while it demonstrates a very good
agreement with reference solutions with great computa-
tional savings. Selection of smaller number of experiments
to add per iteration leads to greater computational efficien-
cy, but at the potential expense of robustness in identifying
the part of Pareto front closer to the anchor points. This can
be resolved through a second optimization refinement as
discussed earlier.

7 Conclusions

A Kriging-based, iterative optimization framework was
developed for reducing the computational burden associ-
ated with multi-objective design under uncertainty prob-
lems that involve complex numerical models and adopt
stochastic simulation for evaluation of the different per-
formance functions. The metamodel was utilized for
predicting the model response, whereas its formulation
was established in the augmented input space, composed
of both the design variables and uncertain model param-
eters. The probabilistic nature of the metamodel was di-
rectly exploited to evaluate the predictive performance
measure, i.e., propagate metamodel error from predicted
response to system performance functions. The epsilon-
constraint approach was adopted for identifying the
Pareto front, whereas an iterative optimization scheme
was developed to reduce the number of simulations for
the expensive system model. At each iteration, a new
metamodel is developed utilizing all available support
points and a new predictive Pareto set is generated. This
set is then compared to the one generated in the precedent
iteration across different stopping criteria that evaluate
whether new solutions emerged in the current iteration.
If convergence has not been established, the algorithm
proceeds to the next iteration and new training points
(experiments) are obtained to improve accuracy of the
metamodel. A hybrid design of experiment (DoE) was
established for this purpose combining a space-filling
DoE and an adaptive, sample-based DoE that aims at im-
proving accuracy in regions of importance. These regions
are separately identified for the design variables and the

uncertain model parameters, and sample-based techniques
utilizing kernel density estimation were developed to ef-
ficiently approximate the distributions defining them.

As illustrative examples, both an analytical example
and an engineering example considering the design of
nonlinear passive dampers for the suspension systems of
a half-car model riding on a rough road were investigated.
Results demonstrated the computational efficiency and
robustness of the proposed algorithm as it was able to
achieve convergence and coverage of the true Pareto front
with small computational burden, comparing to an alter-
native surrogate-based multi-objective optimizer appropri-
ate for problems with expensive design objectives. Both
the formulation of the metamodel in the augmented input
space and the iterative scheme were shown to contribute
to the efficiency of the proposed scheme. With respect to
the iterative scheme and the adaptive control of the
metamodel accuracy, it was demonstrated that as the iter-
ations progress, the Pareto front gradually approaches the
reference solution with increasingly accurate objective
function estimates. Solution of the design problem with-
out the proposed iterative scheme was shown to greatly
impact the computational efficiency. For the specific ex-
amples considered, the metamodel development in aug-
mented input space setting coupled with the iterative,
adaptive optimization scheme led to a significant increase
in algorithmic efficiency without compromising the qual-
ity of the results. Selection of smaller number of experi-
ments to add per iteration led to greater computational
efficiency, though at the potential expense of robustness
in identifying the complete Pareto front close to the an-
chor points.

There remain some interesting directions to fully explore
and investigate, in order to improve the efficiency and appli-
cability scope of the current algorithm. Rather than
balancing the exploitation and exploration based on adap-
tively allocating number of experiments between space-
filling and adaptive DoE, it might be beneficial to develop
a more intelligent adaptive DoE that can automatically bal-
ance between exploration and exploitation. In addition, the
current work uses stationary correlation function for
Kriging. The use of alterative non-stationary correlation
functions that incorporates problem-specific knowledge
might also be helpful.

Table 3 Overall computational efficiency of the algorithm for both the DoE500 and DoE200 implementations for the car suspension design example.
For metrics pertaining to average statistics, the coefficient of variation for each metric over 5 runs is also reported in parenthesis

Navg
tot N tot

wc Errref1;avg Errref1;wc Errref2;avg Errref2;wc

DoE500 3100 (26.4%) 4000 0.099 (17.5%) 0.114 0.009 (54.8%) 0.016

DoE200 2000 (30.8%) 2800 0.177 (39.6%) 0.263 0.010 (54.9%) 0.018
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Appendix 1: Gradient for predictive
performance function

The gradient vector ∇Hkrig
i xð Þ of the predictive performance

function in (6) corresponds to

∇Hkrig
i xð Þ ¼ ∇E p θð Þ hkrigi x;θð Þ

h i
¼ E p θð Þ ∇ hkrigi x;θð Þ

h i
ð32Þ

with ∇ hkrigi x;θð Þ representing the vector of partial derivatives
with respect to x,

∇ hkrigi x;θð Þ ¼ ∂hkrigi x;θð Þ
∂x1

…
∂hkrigi x;θð Þ

∂xnx

" #T
ð33Þ

Each of these partial derivatives can be easily obtained
based on the derivative information for the Kriging metamodel
as

∂hkrig x;θð Þ
∂xl

¼ ∑
m¼1

nz ∂hkrig μz yð Þ;σz yð Þjx;θ½ �
∂μm yð Þ

∂μm yð Þ
∂xl

þ ∂hkrig μz yð Þ;σz yð Þjx;θ½ �
∂σ2m yð Þ

∂σ2m yð Þ
∂xl

� �

ð34Þ

where ∂hkr i g [μ z (y ) , σ z (y ) | x , θ ] /∂μm (y ) and ∂hkrig

μz yð Þ;σz yð Þjx;θ½ �=∂σ2
m yð Þ are obtained through the analyti-

cal expression for hkrig[μz(y),σz(y)| x, θ], and derivatives
∂μm(y)/∂xl and ∂σ2

m yð Þ=∂xl are directly available through the
metamodel (Lophaven et al. 2002). Using stochastic simula-
tion an estimate for the gradient in (32) is obtained as:

∇ Ĥ
krig

i xj θf gi
� � ¼ 1

Ni
∑
N

j¼1
∇ hkrigi x;θ j

i

� � p θ j
i

� �
qi θ

j
i

� �
 !

ð35Þ

Appendix 2: Generation of samples
for performance functions

Since both Hcr
i xð Þ and Hcr

i x
0� �

correspond to probabilistic
integral with respect to θ, a simplification is established here
for their calculation by replacing them with their sample-
based estimates in a stochastic simulation setting. The same

sample set θf g kð Þ
i is used for all estimates, as this choice

facilitates consistency in comparisons, and furthermore great-
ly enhances computational efficiency (as will be shown next).

Pairs of conditional samples for Hcr
i xð Þ and Hcr

i x
0� �

are

obtained through the following process, termed herein as con-
ditional realization sampling

Step 1. Construct the 2Ni × ny sample matrix ~Y ¼
y1;…; yNi ; y01;…; y0Ni

h i
where sample yj and y′j

stand for the jth augmented input sample, each com-
posed of x

0
, respectively, along with each sample θj

within θf g kð Þ
i . Elements of ~Y are denoted ~y. For

each response component zm, the 2Ni × 2Ni correla-

tion matrix Rcr
m

~Y
� �

is calculated with tp- element
R ~yt; ~ypð Þ; t,p = 1,…,2Ni, where, recall, R(.,.) stands
for the correlation function for the Kriging
metamodel. The lower Cholesky factorization of this

matrix is then obtained as Ccr
j

~Y
� �

.

Step 2. 2Ni conditional realizations are obtained for each

response quantity zm over the set ~Y, with each sam-

ple having mean μm ~yl
� �

, variance σm ~yl
� �

, and the

samples corresponding to correlationRcr
m

~Y
� �

. These
samples are given by

zcrm ~yl
� 	

¼ μm ~yl
� 	

þ elm⋅σm ~yl
� 	

ð36Þ

where elm is the lth component of Ccr
m

~Y
� �

wm, with
wm a vector of 2Ni independent identically distrib-
uted standard Gaussian variables. Utilizing these
samples we get a pair of conditional realization sam-
ple for the performance function as:

Ĥ
cr

i xð Þ ¼ 1

Ni
∑
j¼1

Ni h
hi
�
zcr ~y j
� 	

jx;θ j
i

	i p θ j
i

� �
qi θ

l
i

� �
 !

Ĥ
cr

i x0ð Þ ¼ 1

Ni
∑
j¼1

Ni

hi
�
zcr ~y jþN
� 	

jx0 ;θ j
i

	 p θ j
i

� �
qi θ

j
i

� �
 ! ð37Þ

where zcr ~yl
� �

is the vector composed of components

zcrm ~yl
� �

.

Step 3. Step 2 is repeated Ncr times utilizing different sam-
pleswm and therefore obtaining different conditional

samples for Ĥ
cr
i xð Þ

h it
and Ĥ

cr
i xð Þ

h it
; t ¼ 1;…Ncr

This repetition involves minimal computational bur-
den since it merely requires use of different samples
for wm. This efficiency stems from the decision
discussed above to use same set for θ samples (no
need to repeat step 1).

Appendix 3: Definition of target densities
for adaptive DoE

The domains of interest for x for defining the target density in
DoE context are evidently close to the current Pareto set, since
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the latter represents the domainwhere the numerical optimization
is expected to converge. Rather than considering, though, the
entire set, domains with sufficient metamodel accuracy should
be neglected as establishing improvement in those is not expect-
ed to provide any additional benefits. These domains ultimately
correspond to the ones for which the Pareto set has been already
demonstrating convergence based on the criteria discussed in
Section 4.3. Based on this observation, the set of retained con-

figurations for DoE X kð Þ
d ¼ xr kð Þ

d ; r ¼ 1;…; nd
n o

is defined as

the elements of X kð Þ
p that correspond to (i) Iconv xjX k−1ð Þ

p

� 	
>

δconv or (ii) Icov xj x k−1ð Þ
an;i

n o
i¼1;2

� �
> δanch. The target density may

be ultimately approximated based on X kð Þ
d through any desired

approach. Here, this is established through multivariate product
kernel density estimation (KDE):

~πd xjX kð Þ
d

� 	
¼ 1

nd
∑
r¼1

nd

~πd xjxr kð Þ
d

� 	
;

~πd xjxr kð Þ
d

� 	
¼ ∏

l¼1

nx 1

bl
K

xl−x
r kð Þ
d;l

bl

 !" # ð38Þ

where K(.) is the chosen kernel (for example Gaussian kernel)
with bl the bandwidth parameter defining the spread of the kernel
and subscript l is used to describe the lth component of design
vector x (Scott 1992). An illustration of this density is included in
the first illustrative example examined in Section 6.

For the uncertain model parameters θ, the domain of
interests corresponds to domains in Θ that provide higher
contribution towards the integrand representing the two
performance functions (in other word IS densities). This
is established by introducing the auxiliary density for de-
sign configuration x:

π θjxð Þ ¼ 1

2
∑
2

i¼1

jhkrigi x;θð Þj
∫Θjhkrigi x;θð Þjp θð Þdθ p θð Þ ¼ 1

2
∑
2

i¼1
πi θjxð Þ ð39Þ

where the optimal IS density for each performance func-
tion, representing the domain of importance for θ for that
function, is defined as

πi θjxð Þ ¼ jhkrigi x;θð Þjp θð Þ
∫Θjhkrigi x;θð Þjp θð Þdθ

∝jhkrigi x;θð Þjp θð Þ ð40Þ

with ∝ denoting proportionality. Density π(θ| x) corre-
sponds to the mixture of these IS densities.

Combining (38)–(39), the DoE target density π kð Þ
s x;θð Þ is

finally defined as:

π kð Þ
s x;θð Þ ¼ ~πd xjX kð Þ

d

� 	
π θjxð Þ ð41Þ
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Fig. 9 Demonstration of
approximation for πi (θ|x) for
case with nd = 3: (a) samples for

~πi θjxr kð Þ
d

� 	
for three different

xr kð Þ
d and (b–d) KDE

approximations established for

each ~πi θjxr kð Þ
d

� 	
; r = 1,2,3
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Generating a sample [x, θ] from this density, as re-
quired in the first step of the adaptive DoE procedure, is
decomposed into two tasks: (i) simulate the design vari-

able sample xj from mixture-density ~πd xjX kð Þ
d

� 	
by first

randomly choosing x j kð Þ
d from set X kð Þ

d and then generating

sample xj from ~πd xjxr kð Þ
d

� 	
and (ii) simulate the uncertain

model parameter sample θj according to the auxiliary
density conditioned on the simulated xj, π(θ| xj). Task
(ii) is, though, non-trivial, especially when repeated for
each different xj. For this reason, a relaxation is intro-

duced by first replacing πi(θ| x) with πi θjx j kð Þ
d

� 	
and then

approximating the latter through KDE utilizing samples
from it. This approximation requires generation of nis

samples from density πi θjxr kð Þ
d

� 	
i ¼ 1; 2, which can be

performed through rejection sampling (Robert and Casella

2004), and then forming approximation ~πi θjxr kð Þ
d

� 	
[yielding similar expression as in (38)]. It can be also
seamlessly integrated with the IS density formulation

discussed in Section 5.1. Finally, π θjxr kð Þ
d

� 	
can be

substituted by its KDE approximation ~π θjxr kð Þ
d

� 	
.

Figure 9 demonstrates the DoE target density for θ for a

case where nd = 3 (i.e., set X kð Þ
d includes three elements) for

specific iteration k of the MODU-AIM algorithm and spe-
cific performance objective Hi. Part (a) shows samples for

~πi θjxr kð Þ
d

� 	
separately for each xr kð Þ

d (different symbols) and

parts (b–d) the KDE approximations established for

~πi θjxr kð Þ
d

� 	
; r = 1,2,3. Sample θj is ultimately obtained by

generating a sample from the specific KDE approximation

[from parts (b–d)] that corresponds to the same xr kð Þ
d utilized

to generated sample xj [using approximation ~πd xjxr kð Þ
d

� 	
].

Note that the combination of the KDE approximations in parts
(b–d) of this figure also facilitates the IS approximation in (20).

As the algorithm progresses, the density ~πi θjxr kð Þ
d

� 	
is mod-

ified iteratively due to variation of the set X kð Þ
p or reduction of

the retained configurations X kð Þ
d due to local convergence of

the front. For example, if the front in vicinity of x3 kð Þ
d has

converged for some iteration k, then part (d) of Fig. 9 is no
longer considered for the definition of the DoE density for θ.
The bigger impact across the iterations of MODU-AIM is on

the DoE target density for x, ~πd xjX kð Þ
d

� 	
, which, as discussed

earlier, is illustrated in the first example examined in Section 6.
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