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Abstract
In this paper, we investigate the use of multiple kernel functions for assisting single-objective Kriging-based efficient global
optimization (EGO). The primary objective is to improve the robustness of EGO in terms of the choice of kernel function for
solving a variety of black-box optimization problems in engineering design. Specifically, three widely used kernel functions
are studied, that is, Gaussian, Matérn-3/2, and Matérn-5/2 function. We investigate both model selection and ensemble
techniques based on Akaike information criterion (AIC) and cross-validation error on a set of synthetic (noiseless and noisy)
and non-algebraic (aerodynamic and parameter tuning) optimization problems; in addition, the use of cross-validation-
based local (i.e., pointwise) ensemble is also studied. Since all the constituent surrogate models in the ensemble scheme are
Kriging models, it is possible to perform EGO since the Kriging uncertainty structure is still preserved. Through analyses of
empirical experiments, it is revealed that the ensemble techniques improve the robustness and performance of EGO. It is also
revealed that the use of Matérn-kernels yields better results than those of the Gaussian kernel when EGO with a single kernel
is considered. Furthermore, we observe that model selection methods do not yield any substantial improvement over single
kernel EGO. When averaged across all types of problem (i.e., noise level, dimensionality, and synthetic/non-algebraic), the
local ensemble technique achieves the best performance.

Keywords Efficient global optimization · Kernel function · Surrogate model · Model selection · Model ensemble

1 Introduction

Numerical optimization plays an important role in engi-
neering design, in order to discover more efficient designs
in terms of performance. In engineering design, an opti-
mization method is usually coupled with partial differential
equation (PDE) solvers in order to evaluate and opti-
mize the performance of new designs. One challenge with
the majority of PDE-based engineering optimization prob-
lems is that they are typically computationally expensive
and provide no gradient information. Nowadays, computer

experiments take great advantage of surrogate models in
order to accelerate the optimization process. One merit
of surrogate models is that they are not bounded by any
discipline, thus can be used in a variety of disciplines.

Among various surrogate models, Kriging models (or
also known as Gaussian processes) (Krige 1951; Matheron
1969) have been widely applied in engineering design opti-
mization. The use of Kriging models for modeling computer
experiments was firstly initiated by Sacks et al. (1989) and
their use has particularly flourished in the field of optimiza-
tion. Note that direct optimization using Kriging prediction
might lead to the discovery of false/local optima. To han-
dle this problem, an efficient optimization strategy based on
Kriging models called efficient global optimization (EGO)
that uses the expected improvement (EI) metric (Močkus
1975) has been developed in order to improve the efficiency
and robustness of surrogate-based optimization (Jones et al.
1998). In the machine learning community, this optimiza-
tion strategy is popular under the name of Bayesian opti-
mization. The EGO framework is not just limited to the
EI metric; implementation of other metrics such as the
probability of improvement (Jones 2001), entropy search
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(Hennig and Schuler 2012), and bootstrapped EI (Kleijnen
et al. 2012) are also possible. The EGO framework has
been successfully employed in various engineering applica-
tions such as aerodynamic design (Jeong et al. 2005), gait
parameter optimization in robotics (Tesch et al. 2011), and
an injection molding process (Shi et al. 2010), to name a
few. Implementation of EGO with various enrichment cri-
teria for solving noisy problems has also been studied by
Picheny et al. (2013).

For efficient surrogate modeling using Kriging, it is
important to choose the most appropriate form for a spe-
cific application by selecting a proper kernel function for
constructing the covariance matrix. To this end, several
studies have been performed within various contexts such
as optimization and uncertainty quantification. Mukhopad-
hyay et al. (2017) compared the effect of various kernel
functions on Kriging approximation in the context of uncer-
tainty quantification in the dynamics of a composite shell
and argued that the Gaussian correlation function is the
best in terms of approximation error. Similarly, experi-
ments by Acar (2013) showed that Gaussian is superior
to exponential and linear correlation functions. The use of
advanced correlation functions such as Matérn kernels for
EGO in the context of engineering design optimization is
still rare. Matérn kernels are recommended and suggested
for real-world processes since they address the problem
of unrealistically smooth behavior due to the Gaussian
correlation function (Rasmussen and Williams 2006). Nev-
ertheless, presently, no comprehensive comparison between
Matérn and Gaussian correlation function within the context
of EGO has been done.

The methodology of the ensemble of surrogates has
recently attracted renewed interest. Instead of choosing the
most potential surrogate model for a specific application,
the main reason for utilizing the ensemble of surrogates
is to make the best use of an individual surrogate model
to create a robust and/or strong single learner. Firstly
initiated for a function approximation problem by Goel
et al. (2007), the technique was then improved by using
an optimization formulation to minimize the error metric
(Acar and Rais-Rohani 2009). A comprehensive study on
the ensemble of surrogates was then performed by Viana
et al. (2009). It is also possible to construct a local ensemble
of surrogates that uses a non-constant weight function to
average the surrogate (Acar 2010). Zhang et al. (2012)
proposed a hybrid surrogate model that exploits the local
measure of accuracy. Recently, Liu et al. proposes a local
ensemble of surrogates with multiple radial basis functions
and applied the method for blade design (Liu et al. 2016).
Ben Salem and Tomaso (2018) discusses an automatic
selection technique for general surrogate models that aims
for good accuracy. Ensemble of surrogates techniques have
been applied to various interesting engineering cases such

as robust parameter design (Zhou et al. 2013) and axial
compressor blade shape optimization (Samad et al. 2008).

There are also similar developments in multiple kernel
techniques within the machine learning community. In par-
ticular, Archambeau and Bach (2011) discuss the convex
combination of kernel matrices to improve the general-
ization on unseen data. Durrande et al. (2011) proposes
an additive kernel for a Gaussian process model, where
multiple kernels with various length scales are added. In
other related literature, although not in the context of Krig-
ing/Gaussian processes, is the hierarchical kernel learning
technique (Bach 2009). The main difference between these
techniques and ensemble of surrogates is that the kernels are
typically combined inside the surrogate model itself. In this
paper, we focus on the ensemble of Kriging models, that
is, multiple Kriging models are constructed and then com-
bined into one model through weighted sum formulation.
The ensemble formulation is also convenient for general
purposes since one can use various implementations of
Kriging/Gaussian processes, e.g., ooDACE (Couckuyt et al.
2014) and UQLab (Marelli and Sudret 2014), with little
modification to utilize the ensemble of surrogates or model
selection.

One aspect that is often overlooked is that the goal
of optimization is not to pursue global accuracy but to
efficiently discover the global optimum. Therefore, it is
more important that the surrogate model should be more
accurate in the vicinity of the global optimum, while
still useful enough to guide the optimization process
into the near-global optimum location. Furthermore, one
disadvantage of creating an ensemble of surrogate models
that do not provide uncertainty structure is that it becomes
non-trivial to perform Bayesian optimization since the
uncertainty structure vanishes after the ensemble process. In
a relevant past study, Ginsbourger et al. (2008) suggest the
mixture of Kriging with multiple kernel functions to assist
EGO; they propose mixing Kriging models via Akaike
Information Criterion (AIC)-based weight determination.
However, this study is relatively limited since no extensive
empirical experiments were performed.

In this paper, we revisit the concept of mixing a set of
Kriging models with multiple kernel functions for more
effective EGO. Besides the mixture of Kriging models,
Kriging model selection (i.e., choosing the model with
greatest potential) is also investigated. The primary objec-
tive of this research is to develop a robust and powerful
EGO method that uses information from multiple kernel
functions. In this paper, we empirically investigate sev-
eral approaches to analyze the best ensemble or model
selection method in terms of optimization performance. To
this end, empirical tests on selected synthetic and non-
algebraic problems were performed. Furthermore, we also
studied the impact of deterministic noise as in typical
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computer experiments on the performance of EGO with sin-
gle and multiple kernel functions. Specifically, we studied
the global ensemble approach of Acar and Rais-Rohani
(2009), local ensemble approach of Liu et al. (2016), AIC-
based mixtures suggested by Ginsbourger et al. (2008), and
model selection based on AIC and cross-validation (CV)
error. The engineering problems selected to represent gen-
eral engineering problems come from the field of aerody-
namic optimization. EGO itself has been extensively used
in the field of aerodynamic design and optimization (Jeong
et al. 2005; Kanazaki et al. 2015; Bartoli et al. 2016; Namura
et al. 2016).

The remainder of this paper is structured as follows:
in Section 2 we explain the basic of Kriging model and
the choice of kernel functions; in Section 3 we detail the
techniques for the ensemble and model selection of Kriging
with various kernel functions; in Section 4 we present and
discuss the results from the computational studies; the paper
is then concluded and recommendations for the future work
are given in Section 5.

2 Kriging surrogate model

2.1 Basics

Kriging approximates the relationship between the input
x = {x1, . . . , xm}T , where m is the dimensionality of
the decision variables, and the output y is a mean of the
realization of a random field that is governed by the prior
covariances. To construct a Kriging model, a finite set of
experimental design (ED) X = {x1, . . . , xn}T and the
corresponding responses y = {y1, . . . , yn}T , where n is the
number of sampling points, in the design space need to be
collected first.

Within the context of ordinary Kriging (OK), the
black box function is approximated using the following
expression:

Y (x) = μKR + Z(x), (1)

where μKR is the mean of the Kriging approximation and
Z(x) denotes the deviation from the mean.

The main assumption of Kriging models are that the
difference between the responses of two different points is
small when their distance is also small. This assumption is
modeled by the use of a kernel (or correlation) function. The
correlation between two points x(i) and x(j) is described by
Rij = corr[Z(x(i)), Z(x(j))], that is further described by
the hyperparameters θ = {θ1, . . . , θm}.

The OK prediction for an arbitrary input variable reads
as follows:

ŷ(x) = μKR + r(x)T R−1(y − 1μKR), (2)

with the mean-squared error of the Kriging prediction ŝ2(x)

reads as:

ŝ2(x) = σ 2
(

1 − (r(x)T R−1r(x)) +
(

1 − 1T R−1r(x)
)2

×
(
1T R−11

)−1
)

. (3)

Here, R is the n × n matrix with the (i, j) entry
is corr[Z(x(i)), Z(x(j))], r(x) is the correlation vector
between x and X whose (i, 1) entry is corr[Z(x(i)), Z(x)],
1 is a vector of ones with length n, and σ 2 is the process
variance. The Kriging mean term, i.e., μKR , is obtained as
follows:

μKR = (1T R−11)−11T R−1y. (4)

Readers are referred to Jones et al. (1998) and Sacks et al.
(1989) for more information regarding Kriging model.

2.2 Kernel function

To construct the Kriging model, it is necessary to determine
the type of kernel function that models the correlation
between design points. In this paper, we opt for the Gaussian
and Matérn kernel functions and study their performance
individually and as a mixture of models on the optimization
of synthetic and non-algebraic problems. The Gaussian
kernel function is selected primarily due to its wide use
in engineering design optimization. The Gaussian kernel
assumes that the response function is smooth, however,
this assumption is somehow unrealistic for real-world
processes (Stein 2012). Instead, Stein recommends the use
of Matérn class correlation function (Stein 2012).

2.2.1 Gaussian

The Gaussian kernel function is defined as:

R(θ)(i) = exp

(
− h2

2θ2

)
. (5)

where h = ||x(i) −x(j)||, with the indices i and j indicating
two distinct design points, and θ is the length scale of the
kernel. In multivariable approximation, there are m length
scales (i.e., hyperparameters) to be tuned, that is, θ =
{θ1, . . . , θm}. Considering its wide use, including Gaussian
as a constituent of the ensemble model in our study is then
relevant for our investigation.

2.2.2 Matérn class

The use of Matérn class functions for Kriging model was
proposed by Stein (2012) based on the work of Matérn.
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The general form of Matérn kernel function is expressed
as

R(h, θ, ν) = 1

2ν−1�(ν)

(
2
√

ν
|h|
θ

)ν

Kν

(
2
√

ν
|h|
θ

)
, (6)

where ν ≥ 1/2 is the shape parameter, � is the Gamma
function, and Kν is the modified Bessel function of the
second kind. A specific Matérn kernel function can be
constructed by using a specific value of ν; however, a
half-integer value of ν (i.e., ν = p + 1/2, where p is a non-
negative integer) is typically used for a simple expression
of Matérn kernel function. According to Rasmussen and
Williams (2006), the most interesting cases for machine
learning cases are ν = 3/2 and ν = 5/2.

For ν = 3/2 the formulation of Matérn kernel function is

R(h, θ, ν = 3/2) =
(

1 +
√

3|h|
θ

)
exp

(
−

√
3|h|
θ

)
, (7)

while for ν = 5/2, the Matérn kernel function is defined as

R(h, θ, ν = 5/2)=
(

1 +
√

5|h|
θ

+ 5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
.

(8)

Matérn−3/2 and Matérn−5/2 are two forms of Matérn
kernel function that are widely used to model real-world
processes. We, therefore, used these two forms of Matérn
kernel function in our study and compare them with the
standard Gaussian.

2.3 Hyperparameter estimationmethod

Every kernel function possesses a set of hyperparameters
that need to be optimized. The standard technique to
construct Kriging is to find the set of hyperparameters
that optimize the so-called likelihood function, a method
commonly termed maximum likelihood (ML) estimation,
defined as (Jones 2001)

L(μKR,σ 2,θ)= 1√
(2πσ 2)n/2|R(θ)|) 1

2

×exp

(
−1

2

(y−1μKR)TR(θ)−1(y−1μKR)

σ 2

)
,

(9)

where the maximum likelihood estimates of the Kriging
variance σ̂ 2 is computed as follows:

σ̂ 2(θ) = 1

n
(y − 1μKR)T R(θ)−1(y − 1μKR). (10)

For this study, we use a hybrid of genetic algorithm with local
hill climbing to optimize the hyperparameters. The local hill
climbing is executed on the hyperparameters found by GA
in order to further refine the optimized hyperparameters.

2.4 Expected improvement

EGO utilizes a special metric that take into account both the
Kriging prediction and estimation error in order to drive the
optimization process. The most common metric to be used
for EGO is the EI metric, defined as

E[I (x)] = (ymin − ŷ(x))�

(
ymin − ŷ(x)

ŝ(x)

)

+s(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
, (11)

where ymin is the function value of the best solution
observed, and �(.) and ϕ(.) are the cumulative distribution
function and probability density function of a normal
distribution, respectively. The next sample to be added into
the experimental design is then found by maximizing the
EI metric. We maximize the EI value by using the same
strategy with that of hyperparameters optimization.

2.5 Handling noisy problems via reinterpolation

To handle noisy problems, we use the reinterpolation
procedure of Forrester et al. (2006). In noisy problems, we
use regressing Kriging where a regression factor term λ is
added to the correlation matrix R, that is, R+λI , where I is
an identity matrix. Here, λ is also tuned in the range of 10−6

and 10−1 in a logarithmic scale to improve the likelihood of
the data (Forrester et al. 2006).

The primary goal of the reinterpolation procedure is to
avoid resampling that is caused by the non-zero error at
sampling points due to the use of regression Kriging. The
basic idea of reinterpolation is to construct an interpolating
model through the Kriging predictor from the Kriging
regression. The classical EI criterion can then be employed
on the new interpolating model to seek the next point to
be evaluated as in the noise-free problems. In this paper,
we employ Kriging regression and reinterpolation on noisy
synthetic problems and non-algebraic problems. Kriging
with reinterpolation is also suggested by Picheny et al.
(2013) in cases where the noise level is difficult to be
identified beforehand; in this paper, we assume that we
have no prior knowledge regarding noise level on the noisy
synthetic problems.

3 Utilizingmultiple kernel functions
for efficient global optimization

In practice, it is not easy to select the best kernel function for
a specific application. To handle this problem, we advocate
the use of Kriging models with multiple kernel functions
in order to boost the robustness and performance of EGO.
This can be done via two ways: creating an ensemble of
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surrogates or selecting a Kriging model with a specific
kernel function in an online fashion. By these methods,
we seek to improve the robustness of EGO in the situation
with misspecified kernel function. Furthermore, we expect
that an improvement in optimization performance can be
achieved through the combination of multiple learners,
which are the Kriging surrogate models in this case.

3.1 Ensemble of Krigingmodels

The general form of the ensemble of surrogate models, which
can also be interpreted as a mixture of experts, reads as

ŷens(x) =
K∑

i=1

wi(x)ŷi(x) (12)

where K is the number of surrogate models, {ŷ1(x), . . . ,

ŷK(x)} is the vector of function predictions of the K

surrogate models, and w(x) = {w1(x), . . . , wK(x)} is the
weight vector that defines the contribution of individual
surrogate models. There are various existing techniques to
compute the weight function; in this paper, we use several
proven methods to construct the mixture of Kriging with
various kernel functions. We briefly explain the techniques
that we studied in this paper below.

3.1.1 Global ensemble via cross validation

The global ensemble approach assigns a constant weight
for each surrogate model in the given range of the design
space. Goel et al. (2007) proposed a heuristic based on the
individual and total CV error of the surrogate models. The
method is further refined by Acar and Rais-Rohani (2009)
that uses Bishop’s technique (Bishop 1995) to compute the
weight so as to directly minimize the CV error; we use this
approach in this paper.

The computation of CV error is vital to the construction
of an error-based ensemble of surrogates; mostly leave-
one-out CV (LOOCV) error is employed for this purpose.
Fortunately for Kriging models, the LOOCV error can be
computed analytically without the need to build n Kriging
models (Dubrule 1983). We first define ei = {e(1)

i , . . . , e
(n)
i }

as the vector of CV error for the surrogate i, where e
(j)
i =

y(x(j)) − ŷ(i,−j)(x(j)) is the cross-validation error for
sample j with sample j removed from the experimental
design and ŷ(i,−j)(x(j)) is the prediction of surrogate i

without taking into account sample j .
The weight vector w is found by solving the following

minimization problem

min
w

MSEens = E

(
e2

WAS(x)dx
)

= wT Cw, (13)

where MSEens is the mean squared error of the global
ensemble (i.e., the objective function to be minimized), C is

an K × K matrix of cross validation error for all surrogate
models with its element is computed as cij = 1

n
eT
i ej , and

eWAS is the squared error of the weighted average surrogate.
To ensure a positive weight, we follow Viana et al.’s
suggestion (Viana et al. 2009) to solely used the diagonal
matrix of C to compute w using Lagrange multipliers.

3.1.2 Global ensemble via Akaike information criterion

The second global ensemble that we investigate is the
ensemble via Akaike weights that is based on AIC (Gins-
bourger et al. 2008). Central to this method is AIC, which
denotes the Kullback-Leibler distance between the truth and
the model. AIC is computed as

AIC = −2 ln(L) + 2Nf , (14)

where Nf is the number of free parameters. In the context
of ordinary Kriging, the constant mean and the process
variance should also be counted as the free parameters. The
total number of free parameters for interpolating ordinary
Kriging in the current implementation is then the length of
θ + 2. Furthermore, λ is also counted as a free parameter
in the regression Kriging. After the AIC is computed, the
Kriging model with the lowest AIC (i.e., AICmin) is firstly
used as the reference model. We can then compute the
relative AIC difference between other models and the model
with the lowest AIC, that is, 
AICi = AICi − AICmin. The
Akaike weight for a model i is then computed as Burnham
and Anderson (2003).

wi = exp(−0.5
AICi )∑K
j=1 exp(−0.5
AICj )

. (15)

In practice, it is better to use the corrected version of AIC,
i.e., AICc to take into account the factor of sample size and
increase the penalty for model complexity with small data
sets. The AICc is defined as

AICc = AIC + 2N2
f + 2Nf

n − Nf − 1
. (16)

Although its use in Kriging with multiple kernels was
first mentioned by Ginsbourger et al. (2008), the lack
of empirical experiment left the knowledge regarding the
potential of this method scarce. Moreover, Martin and
Simpson (2005) argued that AICc is a better predictor of
surrogate model accuracy compared to CV error.

3.1.3 Local ensemble via cross validation

Another alternative to the global ensemble is the local ensem-
ble (i.e., pointwise) approach that employs a non-constant
weight function. Our main reasoning to consider local
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ensemble is that there is a good reason to trust a specific
kernel function in a certain region, while another might be
more accurate in other regions of the design space. In this
paper, we opt for Liu et al.’s approach (Liu et al. 2016) to
construct local ensemble of Kriging models. To compute the
weight for surrogate i at a certain design point, the following
equation is used:

wi(x) =

⎧⎪⎨
⎪⎩

if x �= xj : ∑n
j=1

d
−Bj �

j Wji∑
d

−Bj �

j

,

if x = xj : Wji

(17)

where � is the attenuation coefficient that is automatically
selected using cross-validation error, dj is the distance
between x and xj , Bj is the normalized global accuracy of
the constituent model that yields the lowest error at xj , and
W is the observed weight matrix (i.e., one at the sampling
points and zero elsewhere for the surrogate that yields the
lowest CV error). Liu et al.’s method constructs a non-
constant weighting function through a 0-1 weight strategy,
where the weight is one for a specific surrogate at locations
where that surrogate yields the lowest CV error. The value
of �, which is set to a value between 0 and 15 in steps of 1,
determines the influence of the weight matrix to unobserved
points as a function of distance. In this case, � = 0 results
in a situation that mimics that of the global ensemble while
� = 15 yields the highest influence of the weight matrix.
Readers are referred to Liu et al. (2016) for a detailed
explanation of the method.

3.1.4 Computation of expected improvement

The prediction of the ensemble of Kriging models is
computed similarly with (12). On the other hand, the
corresponding mean-squared error and EI are, respectively,
computed by Ginsbourger et al. (2008)

s2
ens(x) =

K∑
i=1

wis
2
i (x) +

K∑
i=1

wi[(ŷi(x) − ŷens(x))2], (18)

and

EIens(x) =
K∑

i=1

wiEIi(x). (19)

The MATLAB-based UQLab tool is employed to
construct the Kriging model (Marelli and Sudret 2014). We
also modified the source code of UQLab so that we could
tune the nugget term for noisy optimization.

3.2 Online selection of kernel function

In contrast to the ensemble approach, the online selection
approach chooses a Kriging model with a specific kernel

function at each iteration of EGO. To this end, we simply
select the Kriging model via one of the following two
criteria: the lowest CV error or the lowest AIC. The
implementation of this online selection technique is fairly
simple: one needs to build a number of Kriging surrogate
models using various kernel functions at each iteration,
the LOOCV error/AIC of these models are then assessed
and the model that yields the lowest LOOCV error/AIC is
selected.

3.3 Research questions

With the primary goal to improving the robustness of EGO
and, if possible, boosting its search performance, we have
specific questions to be answered regarding its performance
aspects:

a. Could model selection and the mixture of Kriging with
multiple kernel functions improve the performance and
robustness of EGO?

We expect that the performance of the ensemble
methods to be robust in solving a wide variety of
problems compared to that of model selection. We
also hypothesize that model selection would yield better
performance than that of a single Kernel function.
Comparison with Kriging of single kernel functions is also
of our interest since we want to demonstrate the advantage
of utilizing multiple kernel functions. Furthermore, we
hypothesized that using local ensemble would produce
superior solutions versus those of the global ensemble since
the former has more control on the locality of the objective
function.

b. What is the effect of kernel function selection on the
performance of EGO?

In this paper, we wanted to further investigate the
effect of kernel function on the performance of EGO.
Three kernel functions are selected for this purpose- that
is, Gaussian, Matérn-3/2, and Matérn-5/2. The Gaussian
function is selected mainly due to its popularity for
engineering design optimization, besides, it also has
remarkable approximation power compared to that of
exponential and linear kernel (Acar 2013). On the other
hand, Matérn-3/2 and Matérn-5/2 are selected as the other
kernel functions of interest due to their wide use within the
machine learning context.

c. To what extent does numerical noise affects the choice
of kernel, model selection, and mixture of Kriging?

We wanted to answer this question specifically in the con-
text of EGO. It is well known that computer simulation-based
optimization might be subject to numerical noise due



Efficient global optimization with ensemble and selection of kernel functions for engineering design 99

to truncation errors or changing meshing schemes. This
numerical noise, in turn, might affect the performance of
the kernel, model selection, and the mixture of Kriging.
Depending on the numerical scheme, numerical noise can
be suppressed into a near noise-free level; or if it is just too
difficult to suppress the noise, we have to take its impact into
account when performing EGO. It is then of utmost impor-
tance to analyze the performance in both the noise-free and
noisy setting so that rich discussion could be made concern-
ing this issue. In this paper, we varied the level of noise from
low to moderate in order to gain further insight and shed
light on this question.

4 Results and discussions

4.1 Experimental setup

4.1.1 Test problems

We numerically investigate and compare the performance
of EGO with kernel selection, model mixture, and single
kernel function on seven synthetic and five non-algebraic
problems. In this paper, we select seven synthetic problems
for our study, that is, Branin (F1), Sasena (F2), Hosaki (F3),
Hartmann-3 (F4), Hartmann-6 (F5), modified Rosenbrock
function (F6) from Sóbester et al. (2004), and high-
dimensional sphere function (F7). In general, we set the
initial sample size (i.e., nint ) to 10 × m except for the
Hosaki, modified Rosenbrock, sphere, and non-algebraic
problems. For all synthetic functions, we vary the noise
level from 0% (i.e., noiseless), 1% (low), and 5% (moderate)
of the function standard deviation added to the objective
function. Note that although our main concern is to solve
problems with deterministic noise, the simulated noise does
not differentiate repeatable and non-repeatable noise.

Study of non-algebraic problems is necessary in order
to gain insight into the performance of various considered
optimization methods on solving engineering problems. In
this article, studies on several aerodynamic optimization
cases as representatives for general engineering problems
were performed. The problems are the shape optimization
of an airfoil in a subsonic and transonic flow. Here, we
use XFOIL (Drela 1989) and the inviscid solver from SU2
CFD (Palacios et al. 2013) for the subsonic and transonic
case, respectively. The airfoil is parameterized using nine-
variable PARSEC (Sobieczky 1999) and 16-variable class
shape transformation (CST) (Kulfan 2008) for the subsonic
and transonic case, respectively. We consider two subcases
by varying the design condition: (1) optimization with fixed
Mach number (M) and angle of attack (α), and (2) fixed M

and lift coefficient (Cl), with the lift-to-drag ratio (i.e., L/D)

as the objective function for all cases. In total we have four
different aerodynamic optimization problems as follows:

1. Subsonic airfoil, flight condition: M = 0.3, Cl = 0.5,
Re = 3 × 106.

2. Subsonic airfoil, flight condition: M = 0.3, α = 2◦,
Re = 3 × 106.

3. Transonic airfoil, flight condition: M = 0.73, Cl = 0.7.
4. Transonic airfoil, flight condition: M = 0.73, α = 2◦.

where Re is the Reynolds number.
Besides tests on aerodynamic problems, we also per-

formed a test on the parameter optimization of SVR model
applied to the Abalone data set. Although this is clearly not
an engineering problem, it serves as a good test problem
in the sense that it features several characteristics that are
suitable for this study, that is, deterministic noise and non-
linear response surface. The naming, number of maximum
update (nupd ), nint and other details of the test problems are
detailed in Table 1, Appendices A and B.

Note that the aerodynamic cases and SVR problem
considered in this paper are relatively cheap, especially the
subsonic airfoil cases, where the use of surrogate-based
optimization for solving such problems is actually overkill.
However, our aim is to capture the complexity of real-world
problems in terms of the input-output relationship. That is to
say that the use of a high-fidelity solver does not necessarily
translate into a complex response surface. Hence, tests on
low-fidelity problems are really beneficial to assess the
performance of optimizers that involve randomness. In this
paper, the experiment was repeated in 20 independent runs
for all problems.

4.1.2 Comparisonmethodologies

The performance is assessed using the obtained best
solution at the end of the search and the convergence rate
of the best solution observed. To that end, we use the log of
optimality gap (i.e., OG), reads as

log10(OG) = log10(ymin − yopt ) (20)

where ymin and yopt is the observed minimum of the
objective function and the true optimum of the problem,
respectively. The true optimum solutions are available, or
can be easily discovered, for synthetic problems. On the
other hand, we use the best objective function observed for
non-algebraic problems since the true optimum solutions
are unknown beforehand. For noisy problems, OG is
measured by using the objective function value of the
corresponding noiseless functions rather than those with
the noise. This allows us to assess the performance of the
optimizer in locating the true optimum of the problem (i.e.,
noiseless case) in the presence of noise.
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Table 1 Test problems
employed in this paper and
parameter settings. For
synthetic problems, the noise
level is varied by 0% 1%, and
5%

No. Problem m nint nupd Design variables

F1 Branin 2 20 40 [0, 1]2

F2 Sasena 2 20 40 [0, 5]2

F3 Hosaki 2 12 40 [0, 5]2

F4 Hartmann-3 3 30 60 (0, 1)3

F5 Hartmann-6 6 60 80 (0, 1)6

F6 Mod. Rosenbrock 5 32 64 [−1, 1]5

F7 Sphere 9 30 80 [−5.12, 5.12]9

A1 SVR parameters tuning 2 15 40 [10−3, 103]2

A2 Subsonic airfoil, fixed Cl 9 30 80 See Appendix A

A3 Subsonic airfoil, fixed α 9 30 80 See Appendix A

A4 Transonic airfoil, fixed Cl 16 30 60 See Appendix A

A5 Transonic airfoil, fixed α 16 30 60 See Appendix A

To measure the convergence rate we compute the area
under a curve (AUC) of the optimality gap computed using
trapezoidal rule reads as

AUC = 1

2
(OG0 + 2OG1 + 2OG2 + . . . + 2OGnupd−1

+OGnupd
) (21)

where OGi is the optimality gap at iteration i. Here, a
low value of AUC indicates a faster convergence of the
optimization algorithm. We apply AUC directly to the
OG instead of its log version so as to better capture the
convergence speed in reaching the basin of the global
optimum. Statistical tests were performed using Mann-
Whitney U-test for the log10(OG) and AUC; however, we
directly use OG for non-algebraic problems since we do not
exactly know the true optimum for these problems.

In order to quantify the performance of each method
relative to other methods, we use the average performance

score (APS) from Bader and Zitzler (2011) that employs
the p−value and statistical significance for all respective
methods. The APS metric is fairly simply computed. With
S methods to be compared on Q problems, the APS value
for method i can be computed by firstly counting its
j−th performance score (i.e., PSj

i ), that is, the number of
methods that significantly outperform method i for problem
j . This procedure is then repeated for all Q problems to
obtain PS1

i , . . .,PSQ
i , where the APS for method i is simply

computed by

APSi =
∑Q

j=1 PSj
i

Q
. (22)

Besides the standard APS, we also compute the number of
methods that are significantly outperformed by a specific
method. We believe that computing the performance from
this viewpoint is necessary since the standard APS measures
only one side of the coin. We call this metric APS(+), where
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Fig. 1 Plots of APS(-) versus APS(+) for noiseless synthetic problems
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a higher value indicates a better method, and the original
APS as APS(-).

For the following explanation of the result, we denote
the global ensemble with CV, AIC and the CV-based local
ensemble as GCV, GAIC, and LCV respectively. The model
selection that selects the lowest CV and AIC are denoted
as BCV and BAIC, respectively. Furthermore, EGOs with
single kernel function are denoted as Gss, M32, and M52
for the Gaussian, Matérn-3/2, and Matérn-5/2, respectively.
Since APS(-) and APS(+) might conflicting with each other,
we perform the analysis by plotting the former versus the
latter in a multi-objective optimization-like manner. That is,
the best methods are located in the Pareto front of APS(-)
and APS(+) (notice that we wish to minimize and maximize

the former and the latter, respectively). Here, the APS values
were computed separately for noiseless and noisy problems
since it is more informative if we analyze these clusters of
problem separately.

4.2 Results and discussion for synthetic problems

4.2.1 Results for noise-free synthetic problems

The APS(-) and APS(+) of OG and AUC for the noiseless
problems are shown in Fig. 1a and b, respectively. The
boxplots of OG and AUC for the noiseless synthetic
problem are shown in Figs. 2 and 3, respectively. For each
boxplot, we show the performance score at the left side of
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Fig. 2 Boxplots of optimality gap for noiseless synthetic problems
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Fig. 3 Boxplots of AUC for noiseless synthetic problems

the boxplot in the format of Name of method (PS(-),PS(+)).
For example, BCV(0,1) is for BCV method with the PS(-)
and PS(+) value of 0 and 1, respectively.

By comparing the performance of EGO variants with
single kernel function from the viewpoint of the optimality
gap, it is revealed that EGO with Matérn-5/2 kernel is better
in terms of both APS(-) and APS(+) than that of Matérn-3/2
and Gaussian kernel on the noiseless problems considered in
this paper. EGO with Gaussian kernel generally outperforms
that with Matérn-3/2 kernel except on F6 and F7. The
existence of the steep ridge near the global optimum of
F6 is obviously the challenge for EGO-Gaussian due to
its smoothness assumption. Furthermore, the relatively poor

performance of EGO with the Gaussian kernel on F7 is
also surprising. When considering the convergence speed by
observing the AUC results, all methods perform similarly
except for F1; here, EGO-Gaussian shows significantly
faster convergence speed compared to the other single
kernel EGOs. Our analysis shows that Matérn-3/2 kernel
is not suitable for approximating F1 and yields poor
approximation performance which, in turn, decreases its
convergence speed. In light of the results, we infer that EGO
with Matérn-5/2 kernel is the most robust single-kernel
method for solving noiseless problems. We also observe
that, in general, the choice of kernel yields small impact
on the convergence speed for the noiseless problem except
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in cases where different kernel significantly impacts the
approximation power.

Comparing the results of EGOs with multiple kernels
from the viewpoint of optimality gap, the average perfor-
mance of GCV is outperformed by that of LCV. The most
plausible explanation for this is that GCV does not possess
good control in capturing the locality of the objective func-
tion, which is an important requirement for optimization; it
is also worth noting that all synthetic problems except the
sphere function have nonlinear responses to various degrees.
The fact that LCV provides good solutions in all noise-
less synthetic problem indicates that it has a more precise
accuracy control near the global optimum, which explains
why it outperforms GCV. GCV is particularly poor for
low-dimensional problems (F1-F4) but its performance is
relatively good on medium and high-dimensional problems
(F5-F7); it is capable of avoiding kernel misspecification on
F5 and F6 and even outperforms all EGOs with a single ker-
nel on F7. The results also suggest that the dimensionality
of the problem influence the performance of GCV.

The best performer for the noiseless problem is GAIC;
it yields significantly higher performance on F2, F3, and
F4, outperforming EGOs with single kernel function. GAIC
also performs strongly on F1, F5, and F6. GAIC even
strictly outperforms EGOs with single kernel functions on
F3 and F4 functions which means that mixing multiple
Kriging models could produce significant advantages over
solely using a Kriging with a single kernel. The only
instance where the performance of GAIC is not satisfactory
is on the F7 function; regardless, its performance is still
better than the corresponding worst performer (i.e., EGO
with Matérn-5/2 kernel).

We observe that there is no significant advantage
obtained from utilizing BCV and BAIC. In this respect, both
BCV and BAIC are dominated by all ensemble approaches
as one can observe in the APS(-) vs APS(+) plot for
the optimality gap. Indeed, there is a risk of choosing an
inappropriate kernel even when model selection is utilized.

In some functions, the application of model selection
yields performance worse to that of EGOs with a single
kernel (for example, the result of BCV and BAIC for F2
and F6, respectively). Both BCV and BAIC yield good
performance only on functions where the choice of kernel
significantly impact the Kriging approximation quality as in
F1. However, both BCV and BAIC are unable to outrank
the best performing EGO with a single kernel; this means
that model selection only further complicates the issue and
offering no panacea to the problem of kernel selection.
Conversely, global ensemble techniques include both the
good and poor kernel in the formulation and this creates the
robustness in its performance or even yield a better result.

The fact that the performance of BAIC is worse
than GAIC is rather interesting. On the one hand, the
combination of Kriging with various kernel functions
through Akaike weighting leads to a highly performing
EGO scheme. On the other hand, it is the opposite case
for BAIC. In this regard, the performance of BAIC seems
to be limited by the best performing kernel for a given
particular problem; however, it turns out that it is difficult
to select the best performing kernel via model selection.
In light of the results for synthetic problems, we infer
that GAIC is a highly robust and high performing method
for solving smooth and nonlinear problems. The more
desirable performance of GAIC is also accompanied by its
simplicity; that is, the operation to compute the weights are
fairly simple. Nevertheless, it is necessary to analyze the
performance of each method on noisy and non-algebraic
problems before drawing general conclusions.

4.2.2 Results for noisy synthetic problems

The results for synthetic problems with 1% noise level are
shown in Figs. 4, 5, and 6, while the results for the 5% noise
level are depicted in Figs. 7, 8, and 9.

When comparing EGOs with a single kernel for
handling noisy problems, the first obvious fact that we

Fig. 4 Plots of APS(-) versus
APS(+) for noisy synthetic
problems with 1% noise level
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Fig. 5 Boxplots of optimality gap for synthetic problems with 1% noise level

observe is that EGO with Gaussian kernel yields relatively
poor performance in terms of both optimality gap and
convergence speed. On the other hand, both Matérn kernels
yield relatively good performance when applied on EGO,
especially the Matérn-3/2 kernel. The only instance where
EGO with Gaussian kernel performs relatively better than
that of Matérn-3/2 is on the F1 function with 1% noise level;
which is due to the characteristic of Branin function that
suits the applicability of Gaussian kernel. However, the use
of single Gaussian kernel yields no benefit when the noise
level is moderate. The smoothness assumption imposed by
Gaussian kernel proved to be problematic and this affects

its performance on tackling noisy problems. In light of the
results, it is safe to conclude that EGO with single Gaussian
kernel is not really suitable for handling noisy problems.
Thus, we suggest deploying the Matérn kernels when using
single kernel EGO for handling real-world problems that
possibly feature noise. Furthermore, such observation is also
in line with Stein’s recommendation to use Matérn kernels
in the context of general approximation (Stein 2012).

In some noisy problems, there are clear differences
in convergence speed between all methods, which is
particularly notable on medium and high-dimensional
problems. However, still, no such differences in AUC



Efficient global optimization with ensemble and selection of kernel functions for engineering design 105

0 5 10 15
AUC

BAIC(0,1)

GAIC(0,1)

LCV(0,1)

GCV(0,1)

BCV(0,1)

M52(0,1)

M32(7,0)

Gss(0,1)

0 20 40 60
AUC

BAIC(0,0)

GAIC(0,0)

LCV(0,0)

GCV(0,0)

BCV(0,0)

M52(0,0)

M32(0,0)

Gss(0,0)

0 2 4 6
AUC

BAIC(0,0)

GAIC(0,0)

LCV(0,0)

GCV(0,0)

BCV(0,0)

M52(0,0)

M32(0,0)

Gss(0,0)

0 2 4 6 8
AUC

BAIC(0,0)

GAIC(0,0)

LCV(0,0)

GCV(0,0)

BCV(0,0)

M52(0,0)

M32(0,0)

Gss(0,0)

2 4 6 8
AUC

BAIC(0,0)

GAIC(0,0)

LCV(0,1)

GCV(0,0)

BCV(0,0)

M52(0,1)

M32(0,1)

Gss(3,0)

0 10 20 30
AUC

BAIC(0,0)

GAIC(0,1)

LCV(0,2)

GCV(0,1)

BCV(0,0)

M52(1,0)

M32(0,1)

Gss(4,0)

0 200 400 600
AUC

Best-AIC(0,0)

Global-AIC(0,0)

Local-CV(0,0)

Global-CV(0,0)

Best-CV(0,0)

Matern-5/2(0,0)

Matern-3/2(0,0)

Gauss(0,0)

Fig. 6 Boxplots of AUC for synthetic problems with 1% noise level

Fig. 7 Plots of APS(-) versus
APS(+) for noisy synthetic
problems with 5% noise level
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Fig. 8 Boxplots of optimality gap for noisy synthetic problems with 5% noise level

were observed for F2, F3, and F4, regardless of the
noise level. That is, in low-dimensional problems except
for F1, we observe that the choice of kernel primarily
affects the final convergence (i.e., exploitative power)
and not the convergence speed, which is logical since
it is easier to detect the basin of the global optimum
in low-dimensional problems. In contrast, EGO needs
more function evaluations to explore the high-dimensional
design space before arriving into the basin of global
optimum. That is to say that the presence of noise,
albeit slightly, affects the explorative power of EGO with
various choices of kernel. Especially, the impact of noise
on convergence speed can be clearly observed on F6

where there are clear differences between the performance
scores.

From the viewpoint of model selection and ensemble
of surrogates, the most obvious difference between the
results for noisy versus those of synthetic problems is that
GAIC loses the powerful trait that makes it the strongest
performer on smooth synthetic problems. In this sense, the
convergence speed of GAIC is not significantly affected
but its optimality gap does. It can be seen that the APS(-)
and APS(+) of GAIC in terms of optimality gap becomes
worse relative to the other techniques as the noise level
increases. This indicates that the exploitative capability of
GAIC diminishes as the noise level increases. The results
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Fig. 9 Boxplots of AUC for synthetic problems with 5% noise level

suggest that AIC is not a really useful measure as a selection
or mixing criterion when noise is present. Conversely,
methods that are based on CV error (i.e., BCV, GCV,
and LCV) surprisingly yield better performance on noisy
problems compared to that of smooth problems. For low
levels of noise, LCV appears as the best performer that
generally dominates over the other methods from both the
optimality gap and convergence speed viewpoint; although
the difference in the latter is not so significant. The fact
that LCV performs well in problems with low noise level
indicates that the local measure used to compute the non-
constant weight function in LCV is still useful. However,
such local measure is not really helpful when the noise level

is moderate due to the difficulty in distinguishing between
the true response and the noise. It turns out that the global
average of CV error is more useful for moderate noise level
as indicated by the higher performance of GCV as compared
to LCV on such problems.

The better performance of GCV on moderate noise
level indicates that it is more sensible to trust the CV
error information rather than AIC while constructing the
ensemble of Kriging models in the context of EGO. The
fact that BAIC yields performance that is worse than that of
GAIC further suggests that BAIC tends to select improper
kernels during the model selection process; however, it is
still a better choice than the Gaussian kernel. The results
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demonstrate that model selection based on AIC should
be avoided for solving problems in a noisy environment.
It is also worth noting that it is difficult to predict the
level of noise, particularly in high-dimensional problems.
In this regard, combining Kriging models with AIC is a
better remedy than BAIC since well-performing kernels are
included in the process; although it is worth noting that
GAIC yields performance worse than that of GCV in a
moderate level of noise.

It is also clear to see that performance differences
between all techniques become less for a moderate level
of noise; one can see a smaller range of APS(-) and
APS(+) in the optimality gap, as compared to the problems
with a lower noise level. It is then safe to assume that
differences in performance would further diminish as the
noise levels increase. The reason for this is that it would
become more difficult for the Kriging model to distinguish
the true response and the noise, which particularly affects
how the Kriging model and EGO perceive the location of
the true optimum. Nevertheless, some clear differences still
exist; most notably the relatively poor performance of the
Gaussian kernel. Although the Matérn-3/2 kernel yields the
best performance on the moderate noise level, note that it
outperforms the Matérn-5/2 kernel in terms of optimality
gap only on F3 and F5. In the previous research, Picheny
et al. (2013) observe that the impact of the choice of the
kernel is not significant while our experiments indicate the
opposite. However, it is worth noting that their experiments

were performed in a highly noisy environment (i.e., 5%,
20% and 50% noise level) where it is likely that the choice
of the kernel does not really affect the EGO performance.
Conversely, our experiment also considers low noise levels
(i.e., 1%) which shows that the choice of kernel indeed
affects the performance. Moreover, in our experiment, such
differences also can be observed for the 5% noise level.

4.2.3 Synthetic problems: weight analysis

We analyze the weight generated by GAIC and GCV in
order to gain important insight regarding their mechanism
in seeking the optimal solution. The differences in
performance between GCV and GAIC, despite both
utilizing a constant weight methodology, can only be
attributed to how they determine the weight at each iteration
of EGO. To this end, we studied the weights generated
during the optimization process as shown in Fig. 10, which
shows the mean values of the weight, iteration-wise. For
LCV, we do not depict the generated weights since they are
highly variable over the design space. Instead, we depict
the attenuation coefficients generated by LCV in order to
see the influence of locality (see Fig. 11). We limit the
discussion only on the global and local ensemble techniques
since the performance of BAIC and BCV are generally
lower than the ensemble techniques when averaged across
all problems and noise levels. In our analyses, the weight
and attenuation coefficient plots for F2 and F3 are not
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Fig. 10 Weight history of the global ensemble approaches for F1, F4, F6, and F7 with various noise levels as written inside the brackets. Here,
x−axes and y−axes denote the number of EGO iterations and the weights, respectively
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Fig. 11 Histogram of attenuation coefficients called by LCV on synthetic problems with various noise levels as written inside the brackets. Here,
x−axes and y−axes denote the attenuation coefficients and the normalized frequencies, respectively

shown, since their characteristics are similar to those of F1.
Similarly, the plots for F5 are also not shown due to their
similarity to those of F6.

For noiseless problems, we observe that GAIC tends to
converge toward a single kernel function on the long run. On
all noiseless problems, Gaussian kernel clearly dominates
the composition in GAIC especially at the middle and at
the end of the search. One fact worth noting is that there
is a process of kernel mixing before the weights converged
to a Gaussian kernel; this trend is obviously strong for F7.
It is interesting to see that GAIC outperforms EGO with
single kernel despite that the former tends to select Gaussian
kernel in a long run. Except for F1, i.e., the function where
EGO with a Gaussian kernel strictly dominates those with
Matérn kernels, GCV tends to generate mixing weights that
differ in an extreme way compared to GAIC. To be exact,
GCV tends to be conservative in determining the weight
for the global ensemble. In light of these results, we infer
that the initial mixing of Kriging models at early iterations
produces a favorable effect on the exploration phase for
solving noiseless problems; this, in turn, also leads to a
highly efficient exploitation phase. This testifies that, at
least in noiseless synthetic problems, GAIC has a better
mechanism to find the ‘correct’ weights, compared to its CV
counterpart.

The introduction of noise notably affects the way GCV
and GAIC generate the mixture proportion. In general, the
presence of noise reduces the proportion of Gaussian kernel

and strengthens that of the Matérn kernels in the mixture,
especially for GAIC. This trend can be clearly observed
in the weight results for the F1 and F7 functions; for F7,
the Matérn-3/2 fully replaces the Gaussian kernel on the
5% noise level case. This indicates, as expected, the pres-
ence of noise decreases the appropriateness of Gaussian
kernel and the scheme tends to incline more toward the
Matérn-kernel, which is particularly designed for handling
noisy problems. Unfortunately, the performance of GAIC
decreases as the noise level escalates. On the other hand,
similar to the results for noisy synthetic problems, GCV
stays conservative in determining the mixture proportion.
The only observable significant changes in the weight pro-
portion of GCV is on the F1 function, which is primarily
caused by the decrease in approximation quality of Kriging
with the Gaussian kernel, as the noise increases. Neverthe-
less, the conservativeness of GCV tends to be advantageous
for noisy problems since it yields good performance on
both noise levels.

As can be observed from Fig. 11. The pointwise ensem-
ble yields an observed strong effect on reducing the CV
error and produces fundamentally different surrogate mod-
els compared to those of the pure global ensemble. Further-
more, we also observe that the attenuation coefficients tend
to concentrate on the extremes (i.e., � = 0 or � = 15);
which indicates that the models tends to either mimic the
global ensemble or produce local ensembles with a strong
locality effect. However, the proportion of LCV Kriging
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models with intermediate values of θ is also substantial; it
appears not so significant since they are fairly distributed
between θ = 1 and θ = 14.

The locality effect is particularly strong in low dimen-
sional problems which explain why LCV outperforms GCV
in noiseless synthetic problems. We also observe that LCV
tends to mimic the global ensemble as the dimensional-
ity increases. This is because it becomes more difficult to
predict the appropriate non-constant weight function due
to the sparsity of sampling points in the high-dimensional
design space (i.e., the curse-of-dimensionally). However,
the pointwise ensemble still takes notable effect as can
be observed from the appearance of θ that is higher than
zero even for F7 problem. In fact, this small proportion of
LCV-Kriging models aids in local exploitation of the F7
function that made it outperforms GCV on noise level of
0% and 1%. Furthermore, results show that no clear trend
regarding the impact of the noise level on the attenuation
coefficients of LCV can be observed; thus, no solid con-
clusion could be drawn regarding this issue. However, it
is possible that the presence of noise further strengthens
the effect of locality. At least for F4 and F6, the propor-
tion of LCV model with θ = 0 decreases when noise is
introduced to the synthetic problems. This is reasonable
since noise creates kinks on the response surface which

makes it appears that the problem features stronger local
activity.

4.3 Results and weight analyses for aerodynamic
optimization and support vector regression
problems

Results for non-algebraic problems are shown in Figs. 12
and 13. Note again that we investigate both the optimality
gap and convergence rate since it is important to perform
the analysis from both viewpoints. For the non-algebraic
problems, we do not plot the APS(-) and APS(+) since it is
better to perform individual analysis for each non-algebraic
problem rather than computing the average of them.

Results for non-algebraic problems show that, in general,
EGO with the Matérn-3/2 kernel yields better performance
compared to that of Gaussian and Matérn-5/2. In particular,
EGO with Matérn-3/2 kernel is significantly better than
the other single kernel-based EGOs on case A2 and A3.
However, the EGOs with Matérn-5/2 and Gaussian kernel
are better than that of the Matern-3/2 on A5, which indicates
that there is no single best performing kernel. One can also
see that there are notable outliers in case A2 in terms of
optimality gap, which indicates that the global optimum is
difficult to find and is probably located in a narrow valley
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Fig. 12 Boxplots of optimality gap for non-algebraic problems
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Fig. 13 Boxplots of AUC for non-algebraic problems

similar to that of the Rosenbrock function. The use of single
Gaussian kernel in EGO is not recommended as evidenced
by the worst performance in three out of five non-algebraic
problems (i.e., A1, A2, and A3). The convergence speed
is also affected by the choice of kernel as can be seen in
case A1, A2, and A3; again, EGO with Matérn-3/2 kernel
yields the best convergence speed on the aforementioned
problems.

Two ensemble approaches, i.e., LCV and GCV, take
the spotlight for the non-algebraic problems. On the one
hand, LCV bested the other methods on A1 with regard
to the optimality gap and convergence speed; LCV also
outperforms the others in terms of the optimality gap
for case A4. On the other hand, GCV yields the best
performance on A2 and A3 as evidenced by its lowest APS(-
) and highest APS(+) for the two performance metrics.
GAIC and BAIC display performances that are not better
than those of EGO with the Gaussian kernel. One possible
reason for the poor performance of GAIC is that it
puts too much weight on Gaussian kernel, in which the
Gaussian kernel proved to be an unsuitable kernel for the
non-algebraic problems considered in this paper. We also
observe that there is no gain attained from utilizing BAIC
and BCV for non-algebraic problems.

The weight history plots depicted in Fig. 14 show an
interesting trend. For A4 and A5, we observe a converging

trend of the mixture proportion towards one kernel (i.e.,
Gaussian) for GAIC similar to that of synthetic problems;
however, such trend is not observed in A1, A2, and A3. Such
non-converging trends indicate that the disparity in AIC for
the Kriging models with different kernels do not change
much as the EGO progresses. Regardless, GAIC does not
yield satisfactory solutions on all non-algebraic problems.
On the other hand, GCV is still a conservative technique in
terms of determining the weight for all non-algebraic prob-
lems. However, the conservativeness of GCV tends to be a
positive feature since it yields good performance, especially
on problems A2 and A3. The fact that GCV outperforms
the best performing kernel on case A2 and A3 signifies
that there are extra benefits obtained by utilizing the global
ensemble of Kriging models with different kernels in non-
algebraic problems, which can only be attributed to the
improvement in the quality of the surrogate model.

The histogram of attenuation coefficients for the non-
algebraic problems are shown in Fig. 15. Here, a trend
similar to that of synthetic problems is observed; that
is, the local influence of design points is stronger on
the low-dimensional problem (i.e., A1) compared to high-
dimensional problems (i.e., A2, A3, A4, and A5). The
strong performance of LCV on case A1 can then be
attributed to the capability of LCV in capturing the local
activity in this particular case.
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Fig. 14 Weight history of the
global ensemble approaches for
non-algebraic design problems.
Here, x−axes and y−axes
denote the number of EGO
iterations and the weights,
respectively
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4.4 Discussion and remarks

We highlight some important points in light of the results.
Here, our aim is to summarize the overall findings to serve
as a guideline and also derive some recommendations for a
more efficient application of the mixing or model selection
of Kriging with multiple kernel functions. Moreover, we
also synthesize the finding from experiments on synthetic
and non-algebraic problems.

1. There is no single best performing kernel. That is,
the best kernel depends on the characteristics of the
problem and the noise level; however, we do have rec-
ommendations. For the noiseless problems considered
in this paper, Matérn-5/2 is the best performing ker-
nel, that surpassing Gaussian and Matérn-3/2. However,
when noise corrupts the black-box function, Matérn-
3/2 outranks the others regardless of the noise level.
Even EGO with Matérn-3/2 generally outperforms the
ensemble and model selection techniques for moderate

noise levels. On the other hand, in light of the results,
we do not recommend using Gaussian kernels, since it
yields results that are typically worse compared to the
other kernels on synthetic and non-algebraic problems.
It is worth noting that when we say worse it does not
necessarily mean that its performance is poor, it only
means that there are other methods that surpass its per-
formance. In light of these results, we recommend the
use of Matérn kernels instead of Gaussian for handling
real-world problems when one wishes to deploy a single
kernel in EGO.

2. Model/kernel selection offers no advantage com-
pared to the single kernel EGO. Using model selec-
tion is perilous in the sense that it is likely that the
selection scheme chooses non-optimal kernels during
the optimization process as evidenced by the gener-
ally worse performance of model selection compared to
the single best-performing kernel. We, therefore, do not
suggest the crude use of CV and AIC for online model
selection.

Fig. 15 Histogram of
attenuation coefficients called
by LCV on non-algebraic
problems. Here, x−axes and
y−axes denote the attenuation
coefficients and the normalized
frequencies, respectively
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3. In general, ensemble of Kriging methods yields bet-
ter performance than that of model selections. Fur-
thermore, ensemble techniques are able to increase the
optimization performance in terms of optimality gap
and convergence speed, or at least avoiding poor ker-
nels. Nevertheless, the answer to the question of which
ensemble technique should be applied depends on the
noise level of the problem. In this regard, the global
ensemble based on Akaike weight is useful for noise-
less problems; however, its performance significantly
deteriorates as the noise level increases. On the other
hand, CV-based ensemble techniques are more robust
to the impact of noise and show satisfactory perfor-
mance on noisy synthetic and non-algebraic problems.
Hence, unless one could really be sure that the problem
to be tackled is free of noise, one should deploy either
CV-based global or local ensemble techniques for han-
dling real-world problems. Despite its (slightly) more
complex implementation as compared to the global
ensemble, EGO with CV-based local ensemble (i.e.,
LCV) performs favorably in all test problems. We
particularly recommend to use LCV when the dimen-
sionality is low (although it also shows relatively good
performance on medium to high-dimensional prob-
lems), not to mention that LCV performs well on
both noiseless and noisy problems. On the other hand,
GCV is recommended for medium to high-dimensional
noisy problems.

As a side note, it is worth noting that not all charac-
teristics of real-world problems can be fully replicated by
synthetic problems; hence, whenever possible, tests on opti-
mization of real-world processes/non-algebraic problems
should also be performed with proper statistical tests. That
is to say that we could learn important insights regarding the
capability of optimization methods from tests on synthetic
problems, which is beneficial and necessary since they are
cheap to evaluate; nevertheless, tests on real-world problems
should not be just treated as a mere application but also for
gaining important understanding.

5 Conclusions

When performing Kriging-based efficient global optimiza-
tion (EGO), one typically fixes the choice of kernel function
in order to approximate the response surface. It is likely
that the performance of EGO can be improved through a
proper choice or mixing of Kriging models with differ-
ent kernel functions. In the present article, Kriging with
automatic selection and mixture of kernel functions were
investigated for solving global optimization problems under
limited budget. We investigated model selection based on

CV and AIC in order to identify the most potential kernel
function on a set of synthetic and non-algebraic problems.
Besides automatic kernel selection, several methods to mix
multiple Kriging models were also studied, that is, global,
local (i.e., pointwise) ensemble based on cross validation,
and global ensemble based on AIC. Three widely used
kernel functions (i.e., Gaussian, Matérn-3/2, and Matérn-
5/2) are employed to construct the individual Kriging
models.

The performance of Kriging models with single kernel
function, automatic kernel selection, and the mixture of
kernel function were assessed on seven noiseless and
noisy synthetic problems and five non-algebraic problems
(i.e., aerodynamic design and parameter tuning in SVR).
Considering our main objective that attempts to tackle
engineering design optimization, the results suggest that
there is an evident merit obtained from utilizing the
ensemble of Kriging with multiple kernel functions. The
most apparent advantage is that the use of the ensemble
approach avoids a performance penalty that could be
incurred by kernel misspecification. We also observe that
a proper use of ensemble technique yields substantial
improvements in solution quality and convergence rate as
compared to EGOs with single kernel. However, one needs
to take into account the impact of noise when choosing the
suitable ensemble technique to be employed.

EGO with global ensemble based on AIC bested the
others on noiseless synthetic problem. However, its use
is not recommended for noisy problems, which might be
typical for a majority of engineering design problems. EGO
with AIC-based global ensemble is then more suitable for
solving nonlinear problems with smooth characteristics,
which could be encountered in problems such as the
tuning of a neural network or also engineering problems in
situations where one could really suppress numerical noise.
On the other hand, CV-based ensemble techniques, global
or local, yield considerable performance and robustness in
noisy synthetic and non-algebraic problems. We also note
that the EGO with local ensemble is a highly performing
method regardless of the noise level and dimensionality;
in this regard, the CV-based local ensemble possesses
more control on the local surface than its CV-based global
ensemble counterpart.

In the future, we hope to perform tests on more
instances of real-world processes from various engineering
and research disciplines. Such tests would further improve
our understanding of the capabilities, and thus also the
pitfalls, of the ensemble of Kriging with multiple kernels
on solving real-world problems. We acknowledge that
our work is still limited in terms of parallelization in
the sense of batches of function evaluations, although
parallelization still could be done for the function evaluation
itself. Future work will include this type of parallelization,
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especially regarding the most effective technique to perform
such parallelization. Another interesting research avenue
is to consider the mixture of kernel directly inside the
Kriging model and compare it with the present approaches.
Finally, further development for handling multi-objective
optimization problem is to be considered in the near
future.
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Appendix A: Non-algebraic optimization
test problems

This appendix details the non-algebraic cases used as
benchmark problems for this paper. The objective function
for the four aerodynamic cases is to maximize L/D. Note
that the flight conditions for all aerodynamic cases is
explained in Section 4.1.1.

A.1 Case A1: support vector regression parameters
tuning test problems

This problem is the parameter optimization of a SVR model
in order to minimize the CV error; that is, the task is
to construct an SVR model that generalizes the data set
well. Here, we use the abalone data set that contains the
physical measurements of abalones with 4177 samples,
1 categorical predictor, 7 continuous predictors, and an
integer response variable. Although this problem is not an
engineering problem, it serves as a good test problem due to
its nonlinear response surface characteristic and moderate
level of noise; which we believe represent some engineering
problems in terms of the input-output relationship.

The decision variables are the box constraint parameter
and kernel scale which are defined in the [10−3, 103]2

space in a logarithmic scale. For this problem, the objective
function is to minimize the 5-fold CV error of the SVR
model. The problem is relatively fast to evaluate due to
the relatively low size of the training set used to construct
the SVR model. Furthermore, the problem exhibits a
relatively low level of noise which means that Kriging

Table 2 The upper and lower bounds for subsonic airfoil optimization
problems (case A2 and A3)

Variable Definition lb ub

rle leading edge radius 0.0108 0.0162

Xup upper crest position in horizontal 0.328 0.493

coordinates

Zup upper crest position in vertical 0.083 0.124

coordinates

ZXXup upper crest curvature −0.870 −0.580

Xlo lower crest position in horizontal 0.325 0.488

coordinates

Zlo lower crest position in vertical −0.069 −0.046

coordinates

ZXXlo
lower crest curvature 0.308 0.462

αte trailing edge direction −0.228 −0.152

βte trailing edge wedge angle 0.112 0.168

with re-interpolation should be used to seek the optimal
solution.

A.2 Case A2 and A3: shape optimization of subsonic
airfoil

The first and second aerodynamic cases (i.e., case A2 and
A3) are the shape optimization of a subsonic airfoil with
PARSEC method (Sobieczky 1999). PARSEC is an intuitive
airfoil parameterization technique that has been widely used
in a number of aerodynamic optimization studies. From the
original 11 variables of PARSEC, we keep two parameters
fixed (i.e., thickness and ordinate of trailing edge are set
to zero) which leave us with nine variables as design
variables. Figure 16 and Table 2 shows an illustration of
PARSEC and the variables definition together with upper
and lower bounds of the optimization problem used in this
paper. We used the low-fidelity XFOIL (Drela 1989) code
that couples a panel method and boundary layer solver
to evaluate the aerodynamic performance for the subsonic
case. Multiple independent runs can be evaluated due to
the very fast evaluation times of XFOIL (i.e., less than one
second). Based on a total of 160 independent runs from
eight different methods, the highest L/D for case A2 and
A3 is 164.5763 and 234.7368, respectively.

Fig. 16 Illustration of PARSEC
airfoil parameterization
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Table 3 The lower and upper
bounds of the decision
variables for transonic airfoil
optimization problems (case
A4 and A5)

x (lower) 1 2 3 4 5 6 7 8

lb −0.153 −0.178 −0.131 −0.308 −0.11 −0.130 −0.06 0.05

ub −0.102 −0.118 −0.087 −0.205 −0.074 −0.087 −0.044 0.074

x (lower) 9 10 11 12 13 14 15 16

lb 0.102 0.103 0.141 0.097 0.190 0.133 0.159 0.164

ub 0.153 0.154 0.212 0.146 0.285 0.199 0.239 0.247

A.3 Case A4 and A5: shape optimization
of an inviscid transonic airfoil

Case A4 and A5 deal with transonic airfoil optimization in
inviscid flow. For this case, the airfoil is parameterized via
class shape transformation (CST) (Kulfan 2008) that creates
an aerodynamic shape by summing a number of Bernstein
polynomials. The design variables according to the CST
parameterization are the coefficients of these Bernstein
polynomials. As a consequence, the CST parameters are not
as intuitive as PARSEC; regardless, it is highly flexible since
the number of parameters can be tuned. For cases A4 and
A5, eight variables are used to create each the upper and
lower surfaces (i.e., 16-variables in total). The upper and
lower bounds for the CST design variables used in this paper
are listed in Table 3. Based on a total of 160 independent
runs from eight different methods, the highest L/D for case
A4 and A5 are 303.86 and 290.59, respectively (note that
this value is unrealistic for real-world design due to the use
of Euler solver, nevertheless, our aim is to use these test
cases so that we can perform statistical analyses).

Appendix B: Test functions

1. F1: Branin function (two variables).

f1(x) =
(

b2 − 5.1

4π2
b2

1 + 5

π
b1 − 6

)2

+10

[(
1 − 1

8π

)
cos (b1) + 1

]
, (23)

where b1 = 15x1 − 5, b2 = 15x2, and x1, x2 ∈ [0, 1]2.
2. F2: Sasena function (two variables).

f (x) = 2 + 0.01(x2 − x2
1)2 + (1 − x1)

2 + 2(2 − x2)
2

+7sin (0.5x1)7sin (0.7x1x2),

x1 ∈ [0, 5], x2 ∈ [0, 5]. (24)

3. F3: Hosaki function (two variables)

y(x) =
(

1−8x1+7x2
1 − (7/3)x3

1 + (1/4)x4
1

)
x2

2e−x1 ,

x1 ∈ [0, 5], x2 ∈ [0, 5]. (25)

4. F4: Hartmann-3 function

f (x) = −
4∑

i=1

αi exp

⎛
⎝−

3∑
j=1

Aij (xj − Pij )
2

⎞
⎠ .

x ∈ (0, 1)3. (26)

5. F5: Hartmann-6 function

f (x) = −
4∑

i=1

αi exp

⎛
⎝−

6∑
j=1

Aij (xj − Pij )
2

⎞
⎠ .

x ∈ (0, 1)6. (27)

6. F6: Modified Rosenbrock function

f (x) = 1

206

[
k−1∑
i=1

100(xi+1 − x2
i )2 + (1 − x2

i

+
k∑

i=1

75 sin(5(1 − xi)) − 300

]
,

x ∈ [−1, 1]5. (28)

7. F7: Sphere function

f (x) =
k∑
i

x2
i ,

x ∈ [−5.12, 5.12]9. (29)
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Sóbester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for
approximating and optimizing high fidelity computer simulations.
Struct Multidiscip Optim 27(5):371–383

Sobieczky H (1999) Parametric airfoils and wings. In: Recent develop-
ment of aerodynamic design methodologies. Springer, pp 71–87

Stein ML (2012) Interpolation of spatial data: some theory for Kriging.
Springer Science & Business Media

Tesch M, Schneider J, Choset H (2011) Using response surfaces and
expected improvement to optimize snake robot gait parameters. In:
2011 IEEE/RSJ International conference on intelligent robots and
systems (IROS). IEEE, pp 1069–1074

Viana FA, Haftka RT, Steffen V (2009) Multiple surrogates: how
cross-validation errors can help us to obtain the best predictor.
Struct Multidiscip Optim 39(4):439–457

Zhang J, Chowdhury S, Messac A (2012) An adaptive hybrid surrogate
model. Struct Multidiscip Optim 46(2):223–238

Zhou X, Ma Y, Tu Y, Feng Y (2013) Ensemble of surrogates for
dual response surface modeling in robust parameter design. Qual
Reliab Eng Int 29(2):173–197

http://arXiv.org/abs/1111.6233

	Efficient global optimization with ensemble and selection of kernel functions for engineering design
	Abstract
	Introduction
	Kriging surrogate model
	Basics
	Kernel function
	Gaussian
	Matérn class

	Hyperparameter estimation method
	Expected improvement
	Handling noisy problems via reinterpolation

	Utilizing multiple kernel functions for efficient global optimization
	Ensemble of Kriging models
	Global ensemble via cross validation
	Global ensemble via Akaike information criterion
	Local ensemble via cross validation
	Computation of expected improvement

	Online selection of kernel function
	Research questions

	Results and discussions
	Experimental setup
	Test problems
	Comparison methodologies

	Results and discussion for synthetic problems
	Results for noise-free synthetic problems
	Results for noisy synthetic problems
	Synthetic problems: weight analysis

	Results and weight analyses for aerodynamic optimization and support vector regression problems
	Discussion and remarks

	Conclusions
	Acknowledgments
	Appendix 1  A: Non-algebraic optimization test problems
	A.1 Case A1: support vector regression parameters tuning test problems
	A.2 Case A2 and A3: shape optimization of subsonic airfoil
	A.3 Case A4 and A5: shape optimization of an inviscid transonic airfoil
	  B: Test functions
	Appendix 2  B: Test functions
	Publisher's Note
	References


