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Robust topology optimization of skeletal structures with imperfect
structural members

Babak Ahmadi1 ·Mehdi Jalalpour2 · Alireza Asadpoure1 ·Mazdak Tootkaboni1

Abstract
A topology optimization framework is proposed for robust design of skeletal structures with stochastically imperfect
structural members. Imperfections are modeled as uncertain members’ out-of-straightness using curved frame elements in
the form of predefined functions with random magnitudes throughout the structure. The stochastic perturbation method is
used for propagating the imperfection uncertainty up to the structural response level, and the expected value of performance
measure or constraint is used to form the stochastic topology optimization problem. Sensitivities are derived explicitly using
the adjoint method and are used in conjunction with an efficient gradient-based optimizer in search for robust optimal
topologies. Topological designs for three representative examples are investigated with the proposed algorithm and the
resulting topologies are compared with the deterministic designs. It is observed that the new designs primarily feature
load path diversification, which is pronounced with increasing level of uncertainty, and occasionally member thickening to
mitigate the impact of the uncertainty in members’ out-of-straightness on structural performance.

Keywords Topology optimization · Gradient-based optimizer · Adjoint method · Structural imperfections · Stochastic
perturbation · Curved beam element

1 Introduction

Topology optimization is a versatile design technique for
identification of optimized structural configurations (mem-
bers’ connectivity, existence and sizes) via a systematic
search of the design space while the design constraints
are satisfied (Bendsoe and Sigmund 2004). A large body
of research and development in structural topology opti-
mization has been devoted to design under deterministic
conditions, where both the external or operating condi-
tions (e.g. applied loads) and structural characteristics (e.g.,
material properties, geometry) are assumed to be known
with full certainty (Suzuki and Kikuchi 1991; Sigmund and
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Jensen 2003; Allaire et al. 2004; Deaton and Grandhi 2014).
However, this assumption is often challenged in real-world
engineering design applications where multiple sources of
uncertainty exist (e.g., uncertain load magnitudes and direc-
tions and structural member properties). These “input uncer-
tainties” lead to variability in the structural response, which
may be exacerbated for deterministic designs that are opti-
mized overlooking these effects. In trying to address this, a
recent trend in topology optimization has focused on formal
incorporation of these uncertainties within the design pro-
cess. While methodologies to manage the uncertainties in
loading (especially for static loads) is rapidly being devel-
oped (see e.g., Ben-Tal and Nemirovski 1997; Lógó 2007,
2009; Csébfalvi 2014 and references therein), the incorpora-
tion of uncertainties in structural characteristic has received
relatively low attention. This is primarily because, incor-
poration of these uncertainties leads to uncertain stiffness
matrices, which from a computational point-of-view, signif-
icantly complicates efficient characterization of structural
response variability within the optimization process. When
the designer’s knowledge about the uncertainty is lim-
ited, non-probabilistic methods such as worst-case design
(WCD) and fuzzy design (see Lombardi and Haftka 1998;
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Luo et al 2006; Allaire and Dapogny 2014) offer a power-
ful platform to reduce this complexity; see also Moens and
Vandepitte (2005) for a survey, and Guo et al. (2009, 2011)
and Venini and Pingaro (2017) for recent developments
that propose or use rigorous “confidence” formulations for
WCD. These methods, however, may make too conservative
assumptions that undermine the final design performance
(Martı́nez-Frutos et al. 2016). Probabilistic topology opti-
mization methods are, therefore, being developed which
model the sources of uncertainty (more realistically) with
random variables (or random fields) and directly include
the statistical properties of these random variables in the
design process. As a result, the structural response becomes
random and a probabilistic uncertainty quantification (UQ)
methodology is required to determine some statistics at the
response level (e.g, mean and standard deviation of the
response); see e.g. Asadpoure et al. (2011), Tootkaboni et al.
(2012), Gu et al. (2013), Dunning and Kim (2013), Medina
and Taflanidis (2015), Jalalpour and Tootkaboni (2016).

From the two formal design methodologies to manage the
variability in response in topology optimization, reliability-
based topology optimization (RBTO) and robust topology
optimization (RTO), in this work we focus on the latter,
which aims to produce designs that are relatively less
sensitive to uncertainties, while limiting the treatment to
the case where the stiffness matrix becomes stochastic as
a result of randomness in structural characteristics. In what
follows, we review some of the recent developments in this
area and refer the reader to the references therein.

One of the first attempts in RTO under structural
characteristics uncertainties was by Sandgren and Cameron
(2002) where they used Monte Carlo simulation for
uncertainty quantification in topology optimization of
trusses under geometric and material property uncertainties.
Sigmund (2009) proposed a (non-probabilistic) RTO
algorithm for uniformly under or over-etched manufactured
products and Jang et al. (2012) attempted topology
optimization under boundary uncertainty by modeling
boundary perturbations via bounded-but-unknown (BBU)
variables which was shown to produce designs that
control the effects of these uncertainties. The methodology
proposed by Sigmund (2009) was extended to account
for spatially varying manufacturing errors using Monte
Carlo as the UQ engine (Schevenels et al. 2011) and
using re-analysis to achieve computational efficiency
(Amir et al. 2012). However, Monte Carlo-based UQ
within topology optimization, which itself is an iterative
search process, becomes computationally demanding. To
address this challenge alternative methodologies that
aim to reduce the computational burden associated with
repeated UQ are being developed recently. One of the
first attempts in this direction, following the work of
Guest and Igusa (2008), was by Asadpoure et al. (2011)

where topology optimization was formally combined with
stochastic perturbation to perform design optimization
under uncertainty. Lazarov et al. (2012) later used this
framework for topology optimization under over- and
under-etching manufacturing errors and Jansen et al.
(2015) used it for RTO of continua under geometric
imperfections which also included the nonlinear effects of
these imperfections on the structural response. Jalalpour
et al. (2011) was the first to extend this framework for
truss design under nodal uncertainty while accounting for
global structure instabilities, and later for RBTO of continua
under uncertainty (Jalalpour and Tootkaboni 2016), stress-
based frame design under geometric uncertainties (Changizi
et al. 2017b) and compliance-based RTO under geometric
and material property variability (Changizi and Jalalpour
2017a). Attempts to integrate recent advances in stochastic
computations with topology optimization appeared only
a few years ago with the work of Chen et al. (2010)
where a non-intrusive approach was used and Tootkaboni
et al. (2012) where a fully intrusive formulation based on
Polynomial Chaos expansion was developed for topology
optimization under uncertainty. Stochastic expansions were
later used for topology optimization under uncertainty in
material placement using spatially correlated random fields
and numerical quadrature (Jansen et al. 2013), RTO of
trusses (Richardson et al. 2015) (with a genetic algorithm
as optimizer), RTO of continua under material properties
and loading uncertainties using stochastic collocation
(Martı́nez-Frutos et al. 2016) and most recently in
Keshavarzzadeh et al. (2017) for RTO and RBTO of
structures under loading and geometric uncertainties.

A quick look at the literature surveyed above, particu-
larly those related to discrete topology optimization under
uncertainty in structural characteristics, reveals that recent
attempts have mainly focused on topology optimization
considering geometric imperfections in the form of struc-
tural node location variabilities or material property uncer-
tainties modeled via spatially varying random fields. In
this work, we draw upon our recent efforts on integra-
tion of topology optimization and stochastic perturbation
and develop a robust topology optimization framework
that allows for incorporating stochastic structural mem-
ber imperfections in the topological design process. The
member imperfections, sometimes referred to as “camber”
in the literature, could be a result of manufacturing, stor-
age and transportation of (steel) structural members. Our
approach to model such imperfections rests on a general and
parameterized member geometry definition and its associ-
ated stiffness matrix and does not follow the usual path
of member subdivision and nodal coordinate perturbations,
thereby reducing the dimensionality of the topology opti-
mization problem in the stochastic space. As such, while
the focus of this work is on discrete structures, we note
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that the proposed framework has the potential to be inte-
grated with continuum topology optimization techniques
that make use of explicit representation of geometry in the
design process (see Guo et al. 2014; Zhang et al. 2016).
Uncertainty quantification is efficiently performed using
a second-order stochastic perturbation method where the
derivatives of element stiffness matrices with respect to
random variables parameterizing the crookedness of the
structural members are obtained and assembled to form the
“global” derivative matrices comprising the series represen-
tation of imperfect structure’s stiffness matrix. The expected
value of performance measure is used as the measure to
manage uncertainty in the design process and design sen-
sitivities are analytically derived (using the sensitivity of
stiffness matrices and their first and second order derivatives
with respect to design variables) and fed into a gradient-
based optimizer to achieve higher computational efficiency.
Three numerical examples under different magnitudes of
uncertainty are investigated to show the impacts of struc-
tural member imperfection uncertainty on the optimized
topologies.

2 Deterministic topology optimization

Without loss of generality, we begin with the well-known
minimum compliance design under a limited volume
of material for skeletal structures under deterministic
conditions which can be stated as follows:

min
t

C = fT d0(t)

s.t . K0(t)d0(t) = f
N∑

e

tele ≤ V

tmin ≤ te ≤ tmax

(1)

Here boldface lower and upper case letters denote vectors
and matrices respectively. The objective function is the
compliance C, which is an inverse measure of structural
stiffness under the applied load vector f. Member cross-
sections are assumed rectangles with a unit thickness
perpendicular to the structure’s plane. The design variables
are the cross-sectional height (or area) of these members in
the plane of the structure collected in vector t. In the above
formulation, K0(t) and d0(t) are the global stiffness matrix
and the displacement vector. The subscript 0 is used to show
that these quantities are deterministic. Moreover, N is the
number of elements, te and le denote element’s area and
length, and the total volume of available material is denoted
by V . Finally, tmin is a lower bound for cross-sectional areas
to avoid singularity of stiffness matrix and tmax denotes the
maximum allowable area.

To achieve computational efficiency in topology opti-
mization problems with many design variables the method

of choice is often gradient-based optimization; see Sigmund
(2011) for a discussion. This, however, requires the visibil-
ity of first order sensitivities. We use the adjoint method
for sensitivity analysis. This method begins with adding a
constant multiple of the equilibrium constraint (or any other
equality constraint) to the objective function as follows:

Ĉ = fT d0(t) + μT (f − K0). (2)

Differentiating (2) with respect to a design variable te using
the chain rule results in:

∂C

∂te
= ∂Ĉ

∂te
= (f − K0μ)T

∂d0

∂te
− μT ∂K0

∂te
d0 ∀μ ∈ R

Nd ,

(3)

with Nd the number of degrees of freedom, and where
μ = d0 is set to remove the first component, which then
leads to the following simplification:

∂Ĉ

∂te
= −dT

0
∂K0

∂te
d0. (4)

Finally, because the structure stiffness matrix is an assembly
of element-level stiffness matrices, Ke, the above is
simplified to:

∂Ĉ

∂te
= −deT

∂Ke

∂te
de, (5)

where de is the displacement vector corresponding to
the element e. In the section that follows we present
the elements of a framework for topology optimization
of skeletal structures with imperfect members. While
the framework presented below is generalizable to cases
where the formation of objective and constraint involves
more complex mechanics (e.g. topology optimization under
uncertainty and with stability or stress considerations; see
Jalalpour et al. 2011 and Changizi et al. 2017b) we limit the
derivations here to within minimizing the compliance (or
maximizing the stiffness) under volume or weight constraint
or minimizing volume or weight under compliance (or
stiffness) constraint.

3 Topology optimization of skeletal
structures with imperfect members

In this section, we develop a framework for topology
optimization of skeletal structures under uncertainties in
structural members’ out-of-straightness. We model such
uncertainties by assuming stochastically “crooked” frame
elements in which the crookedness is defined as the amount
of out-of-straightness along the longitudinal axis and
represented through a given functional form parameterized
by random variables and not through subdivision and nodal
coordinate perturbations. We begin by deriving the stiffness
matrix of the crooked element. That is followed by an
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overview of stochastic perturbation, and a formal statement
and analysis of topology optimization under uncertainty in
element-level out-of-straightness that consists in detailed
derivations of the derivatives of stiffness matrices with
respect to uncertain variables (for the sake of forming the
series representation of stiffness matrix for the “imperfect”
structure) and their sensitivities with respect to design
variables to feed the gradient-based optimizer.

3.1 Stiffness matrix of a crooked frame element

Consider an imperfect beam element with an out-of
straightness represented by an arbitrary function y = f (x)

in the co-ordinate system shown in Fig. 1. The beam has
six degrees of freedom but is clamped on the right side. The
bending moment M , and axial and shear forces P, V are
also shown on the same figure and δx , δy and θz denote the
displacements in x and y direction and the rotation of the
free end.

Assuming the shear deformation is negligible (i.e. Euler-
Bernoulli formulation), the elastic strain energy of the beam
can be written as:

U =
S0∫

0

1

2EI
(−V x + Py + M)2 dS +

S0∫

0

1

2EA
(V sin φ + P cos φ)2 dS

(6)

with S denoting the coordinate along the curve, φ = φ(S)

the angle between the member and the horizontal axes and:

dS =
√

1 +
(

dy

dx

)2

and S0 =
l∫

0

dS =
l∫

0

√

1 +
(

dy

dx

)2

dx, (7)

where l is the length of the straight line joining the end
points of the beam member, E is the Young’s modulus, and
A and I are the cross-sectional area and moment of inertia
respectively. Expanding the terms inside the parentheses in
(6), and substituting for dS we get:

U = 1
2EI

[
V 2I1 − P 2I2 − M2I3−
2V PI4 − 2V MI5 + 2PMI6] + (8)

1
2EA

[
V 2I7 + P 2I8 + 2V PI9

]

Fig. 1 A curved cantilever beam

with constants I1 to I9 defined below, and where primes
denote derivative with respect to x.

I1 =
l∫

0
x2

√
1 + y′2dx , I2 =

l∫

0
y2

√
1 + y′2dx

I3 =
l∫

0

√
1 + y′2dx , I4 =

l∫

0
xy

√
1 + y′2dx

I5 =
l∫

0
x
√

1 + y′2dx , I6 =
l∫

0
y
√

1 + y′2dx

I7 =
l∫

0

y′2√
1+y′2 dx , I8 =

l∫

0

1√
1+y′2 dx

I9 =
l∫

0

y′√
1+y′2 dx

(9)

Now, using Castigliano’s theorem, the displacements and
rotation of the free end of the beam can be obtained as
follows:

δ1
x = 1

EI
[−V I4 + PI2 + MI6] + 1

EA
[V I9 + PI8] (10)

δ1
y = 1

EI
[V I1 − PI4 − MI5] + 1

2EA
[V I7 + PI9] (11)

θ1
z = 1

EI
[−V I5 + PI6 + MI3] (12)

which in matrix form reads as:
⎡

⎢
⎢
⎢
⎣

δ1
x

δ1
y

θ1
z

⎤

⎥
⎥
⎥
⎦

= 1

EI

⎡

⎢
⎢
⎢
⎣

I2 + I
A

I8 −I4 + I
A

I9 I6

−I4 + I
A

I9 I1 + I
A

I7 −I5

I6 −I5 I3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

P

V

M

⎤

⎥
⎥
⎥
⎦

(13)

Inverting the matrix obtained in (13) we obtain the top left
block of the 6 × 6 stiffness matrix for a crooked beam
element as:

Ke
11 = 1

k7

⎡

⎢
⎢
⎢
⎣

k1 k2 k3

k2 k4 k5

k3 k5 k6

⎤

⎥
⎥
⎥
⎦

(14)

with {ki}7
i=1 defined below:

k1 = EAI (A(I 2
5 − I1I3) − II3I7)

k2 = EAI (A(I5I6 − I3I4) + II3I9)
k3 = EAI (A(I1I6 − I4I5) + I (I6I7 + I5I9))

k4 = EAI (A(I 2
6 − I2I3) − II3I8)

k5 = EAI (A(I4I6 − I2I5) + I (−I5I8 − I6I9))

k6 = EI (A2(−I1I2 + I 2
4 ) + I 2(I 2

9 − I7I8) + AI (−I1I8−I2I7−2I4I9))

k7 = A2(I1I
2
6 + I2I

2
5 + I3I

2
4 − I1I2I3 − 2I4I5I6) + I 2(I3I

2
9 − I3I7I8)

+AI (I 2
5 I8 + I 2

6 I7 − I1I3I8 − I2I3I7 − 2I3I4I9 + 2I5I6I9)

(15)

It can be easily shown, using the the definition of ij th

entry in element’s stiffness matrix, that the full 6×6 stiffness
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matrix of the imperfect element will be of the following
form

Ke =
⎡

⎣
Ke

11 Ke
12

Ke
21 Ke

22

⎤

⎦ (16)

with Ke
11, Ke

12 = Ke
21, and Ke

22 (re)defined below:

Ke
11 = 1

k7

⎡

⎢
⎢
⎢
⎣

k1 0 k3

0 k4 k4l/2

k3 k4l/2 k6

⎤

⎥
⎥
⎥
⎦

Ke
12 = 1

k7

⎡

⎢
⎢
⎢
⎣

−k1 0 −k3

0 −k4 k4l/2

−k3 −k4l/2 −k6 + k4l
2/2

⎤

⎥
⎥
⎥
⎦

Ke
22 = 1

k7

⎡

⎢
⎢
⎢
⎣

k1 0 k3

0 k4 −k4l/2

k3 −k4l/2 k6

⎤

⎥
⎥
⎥
⎦

where we have assumed the functional form used to model
member imperfection is symmetric, that is k2 = 0 and
k5 = 1

2k4l.

Numerical verification of imperfect element stiffness matrix
The derivations above are verified with analyzing two
simple structures composed of curved structural members.
These structures are analyzed via both the imperfect element
stiffness matrix provided in Section 3.1 and FE analysis
where many straight beam elements are used to model
the curved structural members. The first structure is the
cantilever beam shown in Fig. 1, for which the following
numerical values are assumed: y = sin(πx/l), with l = 2
the length of the beam, P = 1, V = 0, M = 0 and
E = 29500. The cross-section of the beam is a circle
with radius equal to 0.1. All values are expressed in a
consistent system of units. The nodal displacements and
rotations at the free end of the curved cantilever beam are
shown in Table 1 where an excellent agreement is observed
between the curved element formulation and many-element
FE analysis. The second structure is a portal frame shown
in Fig. 2. The frame members are all 60◦ arcs from a circle
with radius R = 1 and the cross-sectional and material
properties are identical to the previous example. The results
from both methodologies are also presented in Table 1
where excellent agreement is observed.

3.2 Representation and propagation of uncertainty
in elements’ out-of-straightness

Having the stiffness matrix of a crooked beam element at
our disposal, we now turn our attention to representation

Fig. 2 A portal frame with curved elements

and propagation of uncertainties in structural elements’
out-of-straightness. Although the development in the
preceding section is general and provides a flexible
platform for parametrization of uncertainty in element-level
imperfections, we assume that members’ out-of-straightness
is expressed with a half sine wave as follows:

y = a sin
(πx

l

)
, (17)

where l is the (projected) element length. The random vari-
able a models the uncertain magnitude of the imperfection
in the midpoint of the element. Therefore, the stiffness
matrix for each element (and the overall structure) becomes
stochastic. Assuming a quasi-static loading and linear elas-
tic behavior, the equilibrium equation takes the following
stochastic form:

K(t, a)d(t, a) = f (18)

where we have collected all uncertain magnitudes of out-
of-straightness in a vector a and t represents the vector of
design variables (cross-sectional heights) as before. It is
observed that the displacement vector is dependent on a. As
a result, the objective function (compliance C) becomes a
random variable and a computational framework is required
to quantify the effect of input uncertainties on the structural
response.

It was mentioned that while Monte Carlo simulation
offers a flexible approach for uncertainty quantification
(UQ), it becomes computationally expensive for topology
optimization that requires a large number of optimization
iterations to search the design space. To address this
challenge, in this work, we use stochastic perturbation to
estimate the statistics of the compliance more efficiently.
Perturbation methods have a long history for UQ in
structural mechanics. The first applications, focused on
first order approximations, can be found in the works
of Collins and Thomson (1969), Shinozuka and Astill
(1972), Cambou (1975). Hisada and Nakagiri (1981)
developed a second-order perturbation analysis framework
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Table 1 Validation of
Imperfect Stiffness Matrix
formulation (Imp. Stiff. Mat.)
results against FE analysis
results obtained using many
straight frame elements to
model the curved members

Deformation Curved Cantilever Curved Portal Frame

Imp. Stiff. Mat. FE analysis Imp. Stiff. Mat. FE analysis

δx 0.54133 0.54131 0.11984 0.11984

δy −0.72740 −0.72738 0.0036197 0.0036195

θz 0.72740 0.72738 0.19031 0.19031

The displacement are reported for the left node of the curved cantilever (in Fig. 1) and the top right node of
the curved portal frame (in Fig. 2)

with improved accuracy that could be used for structural
reliability analysis. Further developments and applications
were proposed in Liu et al. (1986), Kleiber and Hien
(1992). Here, we follow the most common perturbation
method, which aims to replace the nonlinear functions of
input uncertainties by their Taylor series expansions (to the
second-order). This greatly facilitates UQ as was recently
demonstrated in the context of topology optimization by
Guest and Igusa (2008) and Asadpoure et al. (2011). Let
us assume, without loss of generality, that the input random
vector is composed of a (mean) deterministic vector a0 and
a zero mean random fluctuation vector �a as follows:

a = a0 + �a (19)

Perturbation methods replace functions of uncertain param-
eters by their Taylor series expansions. It is customary to
choose the point of expansion to be the mean value of the
random vector a. Proceeding with this choice for represent-
ing the global stiffness matrix and displacement vector, and
collecting terms with the same order, the stochastic equilib-
rium equation can be replaced with the following system of
equations:

K0d0 = f (20)

K0di = −Kid0 (21)

K0dij = −Kidj − Kjdi − Kijd0 (22)

where we have dropped the dependence on the vector of
design variables for brevity. Here, K0 = K(a0), d0 = d(a0)

and by �i and �ij we mean the following:

�i = ∂�

∂ai

∣
∣
∣
∣
a=a0

(23)

�ij = ∂2�

∂ai∂aj

∣
∣
∣
∣
a=a0

(24)

Note that the mean structure does not feature members
with out-of-straightness (unless a mean imperfection field
is assumed to be present) and to solve the equation set (20)-
(22) one has to proceed sequentially (Asadpoure et al. 2011;
Jalalpour et al. 2013). We can now compute the statistics

of the displacement vector d from those of the random
fluctuation vector �a as follows:

E[d] = d0 + 1

2

∑

ij

dij σij (25)

Cov[d] =
∑

ij

didT
j σij + 1

2

∑

ijk

(
didT

jk + dijdT
k

)
σijk

+1

4

∑

ijkl

dijdT
kl

(
σijkl − σij σkl

)
(26)

where E[·] means mathematical expectation, Cov[·] means
covariance and σij = E[�ai�aj ]; similarly for σijk and
σijkl . We can now present analytical expressions for the
statistics of compliance to be used as objective function or
constraint.

While a measure of variability of compliance around its
average can be included in the objective function and/or
constraints through using (26), in this work we focus only
on expected value of compliance which combining (22) and
(25), reads:

E[C] = fT d0 +
∑

ij

σijdT
i K0dj − 1

2

∑

ij

σijdT
0 Kijd0 (27)

where we have further made use of (20) and (21) and
symmetry of the stiffness matrix. The equation above
relates the expected value of compliance to solutions of the
equilibrium equations and second order derivatives of the
global stiffness matrix, which can be determined explicitly.

3.3 Problem statement and sensitivity analysis

The topology optimization of skeletal structures under
uncertainty can now be written in the form of following
optimization problem:

mint E[C] = fT E[d]
s.t . K0d0 = f

K0di = −Kid0

K0dij = −Kidj − Kjdi − Kijd0∑

e

tele ≤ V

tmin ≤ te ≤ tmax

(28)
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The main differences between the above problem and its
deterministic counterpart are 1) the appearance of expected
value of compliance as the objective function and 2) the
replacement of deterministic equilibrium equation with a set
of zeroth-order, first-order and second-order equations for
approximating the stochastic equilibrium in (18).

To derive sensitivities of the expected value of com-
pliance, we use the adjoint method and begin by adding
constant multiples of (20) and (21) to the objective func-
tion. A constant multiple of (22) need not be added since
the second order displacement dij does not appear in (27).
We note, however, that this equation has already been used
to arrive at expected value of compliance. Proceeding with
this choice, we write:

E[C] = fT d0 − 1

2

∑

ij

σijdT
0 Kijd0 +

∑

ij

σijdT
i K0dj

+ μT
0 (f − K0d0) +

∑

j

μT
j

(
K0dj + Kjd0

)
(29)

where it is noted that the last two terms are identically
zero. Taking the derivative with respect to an element design
variable te results in the following equation:

∂

∂te
(E[C]) = −1

2

∑

ij

(

σijdT
0

∂Kij

∂te
d0 − 2σijdT

i

∂K0

∂te
dj

)

+
∑

j

μT
j

(
∂K0

∂te
dj + ∂Kj

∂te
d0

)

− μT
0

∂K0

∂te
d0

(30)

where the computationally expensive terms ∂d0/∂te and
∂di/∂te have been eliminated by choosing the arbitrary
constant vectors μ0 and μj as follows:

μj = −2
∑

i

σijdi (31)

μ0 = d0 − d∗ (32)

where d∗ is the solution to the following linear system of
equations:

K0d∗ =
⎛

⎝
∑

ij

σijKij

⎞

⎠ d0 −
∑

j

Kjμj (33)

The partial derivatives of global stiffness matrices in (30)
with respect to an element design variable reduce to the
derivative of the element stiffness matrix with respect to
the associated element design variable. Moreover, all global

vectors in (30) reduce to their element-level components as
follows:

∂

∂te
(E[C]) =

∑

ij

σij

(

deT
i

∂Ke
0

∂te
de

j +2deT
i

∂Ke
j

∂te
de

0+ 1

2
deT

0

∂Ke
ij

∂te
de

0

)

+ (
de

0 + de
†

)T ∂Ke
0

∂te
de

0 (34)

where de
† is the elemental component of d† that solves:

K0d† = −
∑

ij

σij

(
2Kidj + Kijd0

)
(35)

Examining (22) shows that d† in (35) is identical to the
summation of the second-order coefficients in the expan-
sion of the displacement field: d† = ∑

ij σijdij . Although
either form can be used, it is much more computationally
efficient to solve (35) for d† rather than solving (22) for
each dij , as is pursued in this work. Moreover, for numer-
ical implementation, we do not form the global matrices
Ki and Kij in (35) but rather perform the matrix vec-
tor multiplications at the element level and assemble the
result. Finally, we note that all the linear systems of equa-
tions above have the same left-hand side: the mean global
stiffness matrix K0, which allows reducing the computa-
tional cost significantly as compared to a Monte Carlo-
based algorithm that needs to solve many independent
realizations of the structure with imperfect structural mem-
bers for uncertainty quantification (see Asadpoure et al.
2011 for a detailed discussion).

Returning to (34), it can be seen that the derivatives
of element stiffness matrices with respect to uncertain
variables ai and design variables te are needed to form the
sensitivity of objective function. From (14), (15) and (16), it
is seen that the entries in the stiffness matrix for eth element
are functions of these variables through km(Ae, I e, {I e

n}9
n=1)

for m = 1, 2, · · · , 7. We, therefore, have for Ke
i :

Ke
i = ∂Ke

∂ai

=
7∑

m=1

∂Ke

∂km

9∑

n=1

∂km

∂I e
n

∂I e
n

∂ai

(36)

where we note the above expression is zero for i 	= e. The
derivative of this first-order derivative matrix with respect
to design variable te reads:

∂Ke
i

∂te
=

7∑

m=1

7∑

q=1

∂2Ke

∂km∂kq

(
∂kq

∂Ae

∂Ae

∂te
+ ∂kq

∂I e

∂I e

∂te

) 9∑

n=1

∂km

∂I e
n

∂I e
n

∂ai

+
7∑

m=1

∂Ke

∂km

q∑

n=1

(
∂2km

∂I e
n∂Ae

∂Ae

∂te
+ ∂2km

∂I e
n∂I e

∂I e

∂te

)
∂I e

n

∂ai

(37)

which are again functions of km, I e
n , etc. The second-order

derivatives are derived similarly and are not presented here
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for brevity. As for the terms in the above expression, we
only present a few here that pertain to k7:

∂Ke

∂k7
= − 1

k7
Ke (38)

∂k7

∂I1
= A2

(
I 2

6 − I2I3

)
− AII3I8

∂k7

∂A
= 2A

(
I1I

2
6 + I2I

2
5 + I3I

2
4 − I1I2I3 − 2I4I5I6

)

+I
(
I 2

5 I8 + I 2
6 I7 − I1I3I8 − I2I3I7 − 2I3I4I9 + 2I5I6I9

)

∂k7

∂I
= A

(
I 2

5 I8 + I 2
6 I7 − I1I3I8 − I2I3I7 − 2I3I4I9 + 2I5I6I9

)

+2I
(
I3I

2
9 − I3I7I8

)

∂2k7

∂I1∂A
= 2A

(
I6

2 − I2I3

)
− II3I8

∂2k7

∂I1∂I
= −AI3I8

Moreover, as an example, the derivative of I1 with respect
to the source of uncertainty is given below:

∂I e
1

∂ai

=
∫ l

0
x2 y′

√
1 + y′2

∂y′

∂ai

dx (39)

where we note that ∂I e
1 /∂ai = 0 if e 	= i. Repeating these

derivations for other coefficients completes the sensitivity
analysis.

4 Numerical examples

In this section, we examine the proposed algorithm
for topology optimization of three skeletal structures
under uncertainty in out-of-straightness of all members.
The magnitude of this uncertainty is expressed with its
covariance matrix in the following form:

σ 2
ij =

{
0 i 	= j

(αli)
2 else

(40)

where li is the (projected) length of the ith member and
α is the ratio of maximum imperfection to the elements’
length. It is seen that the standard deviation is expressed as
a fraction of members length, and no correlation between
members is assumed. We note, however, that the proposed
framework is general and can be used for correlated
uncertainties as well. As for α values, a typical value of out-
of-straightness is l/1000 with l the length of the member.
The values in the numerical examples in this manuscript,
therefore, have been chosen to vary in an interval that
includes this level of crookedness. The “ground structure”
approach to topology optimization is employed, where the
initial guess is a dense mesh of candidate elements. All
examples begin with a uniform distribution of material
in this mesh (equal thicknesses for all members). We

also initiate the optimization process with non-uniform
(random) initial guesses to better explore the objective
landscape. Gradient-based optimization is then performed
using MATLAB interior point algorithm (The MathWorks
Inc 2017) with 0.0001% tolerance. After the optimization
iterations converge members with cross-sectional areas
below a threshold are removed from the topology. The
optimization is run again using this new design as the
initial guess. This process is continued until no members
could be removed from the topology by the optimizer.
The convergence was rapid with at most three optimization
trials (note this is different from design iterations) needed
for the examples in this paper. The results of RTO are
compared with the deterministic topology optimization, and
changes are discussed. In all topologies, line thicknesses
show relative member areas, where all areas are normalized
against the maximum area of that specific example.

4.1 A simple frame under compression

The ground structure for the first example is a simply
supported frame subjected to a center compressive load
at its end as shown in Fig. 3a. The width and height of
this structure are L and 3L/8, respectively, and the total
allowable volume is L2/32. The deterministic design (for
α = 0), which features a straight load path to the middle
support is also shown in Fig. 3b.

As mentioned previously, the deterministic design is
derived assuming all members can be manufactured and
transported to the site perfectly straight, an assumption that
rarely holds in real-world engineering conditions. Actual
members may have uncertain out-of-straightness (the mag-
nitude of this uncertainty depends on, for example, the
manufacturing plant and handling conditions of members).
As a result, this deterministic design may become very sen-
sitive to perturbations in members’ out-of-straightness and
suboptimal under real-world conditions. Here, we invoke

Fig. 3 Simple frame subjected to a central compressive load, a ground
structure and b deterministic design
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Fig. 4 Topologically optimized robust designs for the simple frame
under compression with a 0.1%, b 0.3% and c 0.5% variability in
members’ out-of-straightness

our developed robust topology optimization algorithm and
redesign the structure under three levels of uncertainty
as measured by σii = αli . These designs are shown in
Fig. 4. Comparing the first design shown in Fig. 4a with the

deterministic design, it can be seen that the algorithm has
suggested adding two new symmetric load paths strength-
ened by lateral bracings, which begin from the structure
tip (the point with maximum displacement) and end in
the outer supports. With the increase in the magnitude of
input uncertainty, as can be seen with the second and third
designs, these new load paths get reinforced to mitigate the
effects of uncertainty. We note that all designs are derived
under the same volume constraint as in the deterministic
design. Therefore, these new paths are formed via removing
material from the primary load path, the middle member,
and redistributing it in the form of diagonal members and
bracings on the two sides of the main load path.

4.2 A bridge under distributed loads

The next numerical example is focused on design of a
bridge under distributed loads as shown in Fig. 5a. The
ground structure’s width, height, and total allowable volume

are L, 2L, and L2

6 , respectively. Figure 5b shows the
described deterministic design, which has a significant share
of volume devoted to the middle of its top and bottom cords.
These two cords receive smaller cross-sectional areas as
they expand from the center to the supports on either side.
The diagonal members between these cords are also used to
control the deflection of the bottom cord with a significant
impact on structure’s compliance.

The designs under the assumption of member out-of-
straightness with three levels of uncertainty are shown in
Fig. 6. Interestingly, at α = 0.0005 the algorithm chose
to strengthen the primary load path and removed some
diagonal members from the center. In contrast, for the
higher levels of input uncertainty, the algorithm suggested
adding more secondary members to the core of the bridge
which is consistent with recent findings that explicitly

Fig. 5 The ground structure and
the deterministic design for the
bridge under distributed loads
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Fig. 6 Robust minimum expected compliance designs under uncer-
tainty in members’ out-of-straightness with different levels of variabil-
ity (a) 0.05%, (b) 0.1% and (c) 0.3%

encourage structural complexity to improve robustness; see
e.g. Wu et al. (2018). Finally, it is seen in Fig. 7 that
an increase in the magnitude of uncertainty in out-of-
straightness is accompanied by an increase in the value of
(normalized) objective function; this is true for the previous
numerical example with the same objective as well as the
next numerical example where the objective of maximizing
the stiffness is replaced with minimizing the weight.

4.3 A tall structure under a lateral point load

The final topology optimization example is concerned with
the design of a tall frame structure shown in Fig. 8a. The
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Fig. 7 The value of objective in numerical examples normalized with
the value of objective function for deterministic design versus the
magnitude of uncertainty in out-of-straightness (α); α = 0 corresponds
to deterministic design

width and height of this frame are equal to Lx = L,
Ly = 4L respectively. However, the optimization is posed
as a volume minimization problem under a constraint on
expected compliance of the structure given in the form of
(41) below.

mint V =
Nel∑

e

tele

s.t . K0d0 = f
K0di = −Kid0

K0dij = −Kidj − Kjdi − Kijd0

E[C] = fT E[d] ≤ C∗
tmin ≤ te ≤ tmax

(41)

The compliance capacity is chosen as C∗ = FLy/100.
The deterministic design is shown in Fig. 8b. It can be
seen that many of the thinner diagonal bracing members are
perpendicular to the primary load paths (which are signified
with thicker plot pens). This is because these members were
designed to take advantage of their bending capacity.

We now assume all members feature uncertain out-of-
straightness at three different levels and redesign the frame
using the robust topology optimization framework proposed
in the work. As in the previous examples, the magnitude of

Fig. 8 A tall structure under lateral load, a ground structure, b
deterministic design
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Fig. 9 Robust minimum weight designs under members’ out-of-
straightness uncertainty for three different levels of variability
a 0.005%, b 0.01% and c 0.05%

uncertainty is characterized by its standard deviation as a frac-
tion of members’ lengths. The final designs are presented in
Fig. 9. The main change in the design in Fig. 9a, as com-
pared to the deterministic design, is a re-configuration of
bottom bracing members. The next design shown in Fig. 9b
features three significant changes: 1) appearance of new
load paths, 2) fortification of the bracing in the core of the
structure and 3) change of the bracing system at the bottom
core of the structure. Finally, the design under the max-
imum input uncertainty still fortifies the top and bottom
bracing systems, and adds more central bracing members.
Aside from the characteristics of the final design for a
given magnitude of uncertainty, a close look at the suc-
cession of optimum structures as the level of uncertainty
in members’ imperfections increases reveals that topologi-
cal changes come in the form of member thickening and/or
redistribution of material often in the form of extra bracing
with thinner elements. The choice made by the computa-
tional optimizer as to what to do and where to introduce
topological changes, however, may not be the optimal one
due to non-convexity of the objective and constrains and the
possibility of being trapped in local minima.

5 Conclusions

This article presented a methodology for topology optimiza-
tion of skeletal structures with imperfect structural members

under uncertainty in members’ out-of-straightness. This
type of imperfection and uncertainty could be a direct result
of manufacturing of (for example) steel beams, which are
rarely straight as assumed in conventional design algo-
rithms. The out-of-straightness or crookedness was modeled
through a functional form parameterized by random vari-
ables and the stiffness matrix of the imperfect frame element
with an arbitrary shape was derived using energy method.
Uncertainty quantification was efficiently performed using
the stochastic perturbation method. Further efficiency was
achieved through explicitly deriving the sensitivities of the
objective and constraint and using them with a gradient-
based optimizer, which was chosen as the interior-point
method. Design of three structures were investigated. The
resulting designs from the proposed algorithm were com-
pared with the deterministic designs and tangible topo-
logical differences in the form of load path diversifica-
tion, member thickening, and bracing fortification were
observed. The designs also changed based on the magnitude
of the input uncertainty. Extensions to higher order statisti-
cal moments of the performance measure and incorporation
of structural stability constraints are the future directions
with this research.
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