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Abstract
Satellite constellation system design is a challenging and complicatedmultidisciplinary design optimization (MDO) problem involving
a number of computation-intensive multidisciplinary analysis models. In this paper, the MDO problem of a constellation system
consisting of small observation satellites is investigated to simultaneously achieve the preliminary design of constellation configuration
and the satellite subsystems. The constellation is established based on Walker-δ configuration considering the coverage performance.
Coupled with the constellation configuration, several disciplines including payload, power, thermal control, and structure are taken into
account for satellite subsystems design subject to various constraints (i.e., ground resolution, power usage, natural frequencies, etc.).
Considering the mixed-integer and time-consuming behavior of satellite constellation systemMDO problem, a novel sequential radial
basis function (RBF) method using the support vector machine (SVM) for discrete-continuous mixed variables notated as SRBF-
SVM-DC is proposed. In this method, a discrete-continuous variable sampling method is utilized to handle the discrete variables, i.e.,
the number of orbit planes and number of satellites, in the satellite constellation systemMDOproblem. RBF surrogates are constructed
and gradually refined to represent the time-consuming simulations during optimization, which can efficiently lead the search to the
optimum. Finally, the proposed SRBF-SVM-DC utilized to solve the satellite constellation systemMDO problem is compared with a
conventional integer coding based genetic algorithm (ICGA). The results show that SRBF-SVM-DC significantly decreases the system
mass by about 28.63% subject to all the constraints, which greatly reduces the cost of the satellite constellation system. Moreover, the
computational budget of SRBF-SVM-DC is saved by over 85% compared with ICGA, which demonstrates the effectiveness and
practicality of the proposed surrogate assisted optimization approach for satellite constellation system design.
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1 Introduction

Constellations of satellites have received growing interest in
recent years due to their merits in Earth and space observation,

guidance and navigation, and telecommunication. In con-
stellations, multiple satellites work cooperatively for spe-
cific space missions to significantly enhance the capability
and reliability of space systems. To achieve different space
missions, several fundamental constellations have been de-
veloped in the past decades, e.g., Walker constellations
(Walker 1977), Flower constellations (Mortari et al.
2004), etc. Many of them have been successfully applied
in practice such as the famous GPS and Iridium. Based on
those works, the existing studies of constellation design
mostly focused on optimizing the configuration parameters
(e.g., altitude, inclination, and number of satellites) or ex-
tending the design framework of constellation to acquire
better system indexes, e.g., coverage performance, geomet-
ric dilution of precision (GDOP), etc. For instances, Pu
(Pu et al. 2017) designed a small satellite constellation
with maximum target observation time through a robust
NSGA-II based multi-objective optimization method.
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Arnas (Arnas et al. 2018) investigated the methodology of
2D Necklace Flower Constellations based on the 2D
Lattice Flower constellation, which is flexible for configu-
ration design and optimization. Casanova (Casanova et al.
2014) utilized an, enhanced particle swarm optimization
(PSO) algorithm to obtain the flower constellation with
the best GDOP considering different numbers of satellites.
Asgarimehr (Asgarimehr and Hossainali 2014) used genet-
ic algorithm to optimize the geometry of navigation con-
stellation system considering different design criteria. Note
that the design of constellation is subject to the capability
of satellite subsystems (e.g., satellite mass and power bud-
gets, and payload performance) in engineering practices,
and the satellite subsystems design also needs to be adap-
tive to a given constellation configuration. Hence, the sat-
ellite constellation system design is practically a multidis-
ciplinary design optimization (MDO) problem (Budianto
2000), where it is preferable to design the constellation
configuration and satellite subsystems simultaneously. In
this way, the inter-couplings between the constellation configu-
ration and satellite subsystems can be fully exploited to improve
the design quality and performance of the aerospace system.
However, most aforementioned literatures simply regarded a
complex satellite system as geometry nodes within a constella-
tion network, where the parameters of satellite subsystems are
fixed or even not considered.

Multidisciplinary design optimization was defined as “a
methodology for the design of complex engineering systems
and subsystems that coherently exploits the synergy of mutu-
ally interacting phenomena” (Sobieski 1993), which has been
widely applied in aerospace system design (Sobieszczanski-
Sobieski and Haftka 1997; Martins and Lambe 2013).
However, the satellite constellation system MDO problems
face the challenge of enormous computational cost due to
the use of time-consuming simulation models, e.g., finite ele-
ment analysis (FEA) model of satellite structures. Hence, the
evolutionary algorithms (e.g., GA and PSO) for conventional
constellation configuration design are unsuitable for optimiz-
ing the computation-intensive satellite constellation system
MDO problems, because these methods generally require an

excessive number of function evaluations to search the opti-
mum. To reduce computational cost, surrogate-based analysis
and optimization (SBAO), or metamodel-based design optimi-
zation (MBDO) (Jin et al. 2001; Wang and Shan 2007; Forrester
and Keane 2009; Queipo et al. 2005) have been widely
employed. In SBAO, a surrogate is constructed to replace the
expensive analysis model for optimization. And the surrogates
are usually refined via progressive sampling based on certain
criteria to improve the approximation accuracy during the opti-
mization, which gradually leads the search to the optimum. In the
literatures, a number of SBAO methods have been developed in
recent years (Wang et al. 2004; Long et al. 2015; Shi et al. 2016),
and some of them have been successfully applied for aerospace
system design optimization problems, e.g., all-electric GEO sat-
ellite MDO problem (Shi et al. 2017), maneuver satellite system
MDO problem (Huang et al. 2014), and emergency libration
point orbits transfer problem (Wang 2017). In view of the expen-
sive black-box simulations inMDO of satellite constellation sys-
tems, it is valuable and promising to apply SBAO to improve the
overall system performance and save computational cost.
However, few studies on surrogate assisted optimization for sat-
ellite constellation system design have been reported.

To address the challenges of satellite constellation system
multidisciplinary design optimization and associated expen-
sive computational cost, this paper investigates the satellite
constellation systemMDO problem using surrogates. A novel
SBAO method termed SRBF-SVM-DC is developed based
on our previously proposed sequential radial basis function
method using support vector machine (SRBF-SVM) (Shi et
al. 2016), which is tailored to efficiently solve the satellite
constellation system MDO problem including both continu-
ous and discrete variables. The remainder of this paper is
organized as follows. The studied satellite constellation sys-
tem MDO problem is introduced in Section 2, where the con-
figuration is based on Walker-δ constellation and the satellite
system involves four disciplines. The disciplinary analysis
models of the constellation and satellite system are detailed
in Section 3. The algorithm of SRBF-SVM-DC is described in
Section 4. The application of the proposed SRBF-SVM-DC to
solve the satellite constellation system MDO problem is
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Fig. 1 Illustration of Earth
observation satellite configuration
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explained in Section 5 and compared with a conventional
integer-coding-based genetic algorithm (ICGA). Finally, the
conclusions are summarized in Section 6.

2 Description of satellite constellation system
MDO problem

In this study, a coverage constellation consisting of small sat-
ellites is established to achieve the Earth observation mission.
Considering the coupling relationships among different disci-
plines of the satellite constellation system, the configuration of
the constellation and design parameters of the satellite subsys-
tems are simultaneously optimized to enhance the system per-
formance. In this work, the constellation configuration is
established based onWalker-δ constellation. InWalker-δ con-
stellation, the ascending nodes of the orbit planes are uniform-
ly distributed around the reference plane (i.e., the equator for
most cases), and the satellites are uniformly distributed within
the orbital planes at the same inclination (Walker 1977). The
small Earth observation satellite in the constellation is a cu-
boid with the dimension of 1200(X) × 1100(Y) × 900(Z) mm,
whose configuration is graphically illustrated in Fig. 1. The
solar arrays are installed on the North/South surfaces of the
satellite to provide power, and a CCD camera is equipped in
the payload cabin of the satellite system to implement the
observation mission. Other devices (e.g., the batteries and
control systems) are mounted in the service cabin.

The satellite constellation system MDO problem can be
therefore divided into two parts, i.e., the design optimization

of constellation configuration and the satellite subsystems.
The coupling relationships among different disciplines are
graphically organized in a design structure matrix (DSM) as
shown in Fig. 2.

In the DSM, the diagonal elements are the disciplines, and
the black squares represent the coupling variables as listed in
Table 1. In this work, the constellation configuration consists
of the orbit, coverage, and mass disciplines, which determines
the constellation geometry, observation coverage ratio, and
entire mass of the system respectively. The satellite subsys-
tems involve the payload, power, thermal control (TC), and
structure disciplines. Other disciplines such as attitude control
(AC) and communication can follow the mature design of
existing small satellites, which are not included in the MDO
problem and simply regarded as the fixed mass budget on
the satellite platform in the preliminary design phase.
For instances, the satellite communication is in S-band, and
the satellite system is three-axis-stabilized using three
magnetorquers and hydrazine propulsion for attitude control
and orbit change maneuvers. In the preliminary design phase,
the parameters of payload, power, TC, and structure subsys-
tems are assumed to be identical for the satellites in the con-
stellation system.

Since the decrease of weight can directly save launch cost,
the objective of the MDO problem in this paper is to minimize
the total mass of the satellite constellation system (i.e., the
total mass of all the satellites) for saving the overall cost of
the system, subject to engineering constraints such as cover-
age performance. In this work, both continuous and discrete
variables (e.g., orbit altitude, number of satellites) need to be
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Fig. 2 Design structure matrix of
satellite constellation MDO
problem

Table 1 Coupling variables of different disciplines

Symbol Definition Symbol Definition

y12 Constellation parameters y45 Power budget of payload

y13 Total number of satellites y47, y43 Mass budget of payload

y14 Orbit altitude y56 Satellite power usage

y15 Incidence angle of sunlight; maximum eclipse time y57, y53 Mass budget of power subsystem

y16 Incidence angle of sunlight; maximum lightening time y67, y63 Mass budget of TC subsystem

y36 Satellite mass y73 Structural mass
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optimized subject to a number of engineering constraints (e.g.,
payload resolution, natural frequency of structure). The de-
tailed multidisciplinary modeling process and mathematical
formulation of the satellite constellation system MDO prob-
lem are presented in Section 3.

3 Multidisciplinary modeling for satellite
constellation systems

In this section, the multidisciplinary modeling processes for the
satellite constellation MDO problem are detailed. Based on the
disciplinary models, the mathematical formulation of the MDO
problem is presented.

3.1 Orbit discipline

For the Walker-δ constellation in this paper, the semi-axis, incli-
nation, and eccentricity (i.e., zero for circular orbits in this study)
of different orbits are equal, while the orbit planes are uniformly
distributed along the equator with respect to the right ascension
of ascending node (RAAN). In the orbit discipline, the constel-
lation parameters including the altitude, inclination, and the
RAAN of the first orbit plane are designed to establish the fun-
damental configuration of constellation, which is the basis for
satellite constellation systemmodeling and analysis. In this study,

the modified equinoctial elements (MEE) (Walker 1986) are
employed to establish the orbit model due to its desirable prop-
erty of no practical singularity. The MEE are given by (1)

p ¼ a 1−e2
� �

f ¼ ecos ωþ Ωð Þ
g ¼ e sin ωþ Ωð Þ
h ¼ tan i=2ð Þcos Ωð Þ
k ¼ tan i=2ð Þsin Ωð Þ
L ¼ Ωþ ωþ v

8>>>>>><
>>>>>>:

ð1Þ

where a, e, i, Ω, ω, and M are the classical Keplerian orbital
elements. The constellation dynamics model in terms of MEE is
formulated in (2) (Ghosh and Coverstone 2015):
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where fR, fT, and fN are respectively the disturbance accelerations
expressed in the RTN coordinate system. In the preliminary de-
sign phase, it is assumed that the dynamics model only considers
the disturbance accelerations due to the J2 zonal harmonics of
non-spherical gravitational potential, which is given in (3)
(Ghosh and Coverstone 2015)

a J2 ¼

−
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e
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where [x, y, z] is the position of the satellite in ECI, Re = 6378 km
is the radius of the Earth, J2 = 1.082626 × 10

−3 is the zonal har-
monics coefficient, and μ =398,600.5km3s−2 is the Earth’s grav-
itational constant.

Given the inclination and RAAN of the orbit, the incidence
angle of sunlight χ to the orbit plane as shown in Fig. 3 is

Sunlight

90

Normal of

Orbital Plane

Fig. 3 Illustration of sunlight incidence angle

Table 2 Design variables of orbit discipline

Parameter Description Symbol Unit Range

Orbit altitude Design variable (continuous) h km [500,1500]

Orbit inclination Design variable (continuous) i Deg [30,60]

RAAN of the first orbit plane Design variable (continuous) Ωo Deg [0,30]

Number of orbit planes Design variable (discrete) P – [2,3,4,5,6]

Number of satellites in each orbit plane Design variable (discrete) S – [1,2,3,4]
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computed by (4) (Xi 2003):

sin χð Þ ¼ cos αSð Þsin ið Þsin Ωð Þ þ cos Ωð Þcos εð Þsin ið Þsin αSð Þ−cos ið Þsin εð Þsin αSð Þ ð4Þ

where ε = 23.5∘ is the obliquity of the ecliptic, and αs is the
celestial longitude of the sun. To simplify the analysis for prelim-
inary design, the solar arrays of the satellite are assumed to be
consistently perpendicular to the orbital plane and point to the
sunlight. Hence, the incidence angle of sunlight to the solar ar-
rays is approximately equal to χ as shown in Fig. 3. As for
circular orbit, the orbit period T, lightening factor Ks, and the
eclipse factor Ke of the satellite are given by (5) (Xi 2003). The
maximumKs andKe over the year are determined as the coupling
input of the TC discipline and power discipline respectively. The
design variables of the orbit discipline are summarized in
Table 2.

T ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re þ hð Þ3

μ

s

Ks ¼ 1

2
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rehþ h2

p
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 !
=π
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2
−arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rehþ h2

p
Re þ hð Þcos χð Þ

 !
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ð5Þ

3.2 Coverage discipline

In the coverage discipline, the coverage ratio of the
constellation for the Earth region of interests is calcu-
lated as a local constraint of the MDO problem. The
coverage analysis model of a single observed point is
graphically illustrated in Fig. 4, where S represents the
satellite and G is the associated satellite bottom point.
In view of the minimum observation angle on the
ground σ (i.e., 10° in this study), the coverage angle
dσ, central angle ασ, and coverage width Swσ are pre-
sented in (6) (Wertz 1999).

dσ ¼ arccos
Recos σð Þ
Re þ h

� �
−σασ ¼ π=2−dσ−σSwσ ¼ 2Re⋅dσ ð6Þ

Given the longitude and latitude of the ground observed
point T (i.e., λW and φW respectively), the field angle for the
Earth center between S and T is determined by (7) (Wu et al.
2013a):

cos θð Þ ¼ sin φWð Þsin φSð Þ þ cos φWð Þcos φSð Þcos λW−λSð Þ ð7Þ
where λS and φS are the longitude and latitude of G respec-
tively. If θ ≤ dσ, the ground observed point is covered by the
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Fig. 4 Coverage model of a
single observed point
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Fig. 5 Illustration of observation region and feature points
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satellite. As for the observation region, a number of feature
points are generated within the region to identify if the region
is covered by the constellation according to (7). To achieve
good distribution quality, the margins of longitude and latitude
between the adjacent feature points are calculated through (8)
(Dai and Wang 2009):

Δλ ¼ Δl= Recos φð Þð Þ
Δφ ¼ Δl=Re

�
ð8Þ

where Δl is the length of ground arc between the adjacent
feature points, and φ is the latitude of the feature point. In
the preliminary design,Δl is assumed to be 500 km to make a
trade-off between the coverage analysis accuracy and simula-
tion cost. The associated longitude and latitude of the feature
points are then given by (9)

λi ¼ λmin þ iΔλ i ¼ 0; 1;…; n
φ j ¼ φmin þ jΔφ j ¼ 0; 1;…;m

�
λi∈ λmin;λmax½ �
φ j∈ φmin;φmax½ �

�
ð9Þ

where λmin , φmin and λmax ,φmax are respectively the lower
and upper bounds of longitude and latitude of the region to be
observed. In this work, the region to be observed on the Earth
is 73°E~135°E and 3°N~53°N as illustrated in Fig. 5 (a), and
the dots in Fig. 5 (b) represent the feature points in the obser-
vation region.

The coverage ratio of the constellation for the region of
interests is defined by (10) (Dai and Wang 2009):

CR ¼
∑
n

i¼1
Ti=n

T simulation
ð10Þ

where n is the number of feature points, Ti is the time of the i-
th feature point being covered by one or multiple satellites,
and Tsimulation is the total simulation time. CR indicates the

global or local coverage performance of the constellation,
which generally increases as the orbit altitude grows. The
coverage ratio is output as the local constraint of the coverage
discipline, which should be no less than 80% as for the studied
satellite constellation system in this paper.

3.3 Mass discipline

Given the number of orbit planes P and the number of satel-
lites in each plane S, the entire mass of the satellite constella-
tion system Msystem is determined according to (11).

M system ¼ mpayload þ mpower þ mthermal þ mstructure þ mothers

� �
� S � P

ð11Þ

In (11), mpayload, mpower, mthermal, and mstructure, are the mass
budgets of the payload, power, TC, and structure subsystems
respectively, which are determined by the associated disciplinary
models.mothers = 198 kg (Wu et al. 2013a) is the other fixedmass
budget of the satellite including communication subsystem, atti-
tude control (AC) subsystem, etc. The entire mass of the system
is output as the objective of the MDO problem, which should be
minimized.

3.4 Payload discipline

The payloads of satellite in the constellation can be remote
sensing equipments (e.g., CCD cameras and SAR), telecom-
munication devices (e.g., antennas and transponders), and so
on. In this work, the payload of the satellite is a 4-band CCD
camera with the spectrum range from 0.45~0.52 μm,
0.52~0.59 μm, 0.61~0.69 μm, and 0.76~0.89 μm respective-
ly. In the payload discipline, the aperture size D and focus
length f of the CCD camera are designed to achieve the sizing

Table 3 Design variables and constraints of payload discipline

Parameters Description Symbol Unit Range

Aperture size of payload Design variable (continuous) DP mm [5,15]

Focus length of payload Design variable (continuous) fP mm [10,50]

Ground pixel resolution of payload Constraint RP m ≤250
SNR of payload Constraint SNR – ≥500

Table 4 Design variables and constraints of power discipline

Parameter Description Symbol Unit Range

Area of solar arrays Design variable (continuous) As m2 [3,8]

Battery capacity Design variable (continuous) Cs Ah [20,80]

Depth of discharge Constraint – – ≤0.3
Power surplus Constraint W W ≥0
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of payload subsystem. Given the altitude of satellite and the
focus length, the ground pixel resolution RP of the payload is
determined by (12) (Wu et al. 2013a):

Rp ¼ hd
f

ð12Þ

where d is the size of pixel of the CCD camera. RP generally
represents the minimum size of target that could be observed
by the payload, which is proportional to the altitude of orbit.

Besides the resolution, the signal to noise ratio (SNR) of
the payload is defined in (13) (Chen 2003). In the equation, Vn

is the noise voltage of the payload, Vs is the signal voltage,
F = f/D is focus length over the aperture size, ρ(λ) = 0.5 is the
ground reflection ratio, τa(λ) = 0.8 and τ0(λ) = 0.75 are the
transmittance of atmosphere and optical devices respectively,
S0 = 1353W/m2 is the solar constant, andΔλ is the bandwidth
of the associated spectrum band (Chen 2003).

SNR ¼ Vs

Vn
;Vs ¼ 1

4F2 ρ λð Þτa λð Þτ0 λð ÞS0Δλ ð13Þ

Given the aperture size D and focus length f, the mass and
power of the payload is sized via the subscale model accord-
ing to (Wu et al. 2013a) as shown in (14):

mpayload ¼ ρm⋅1600⋅D
2⋅ f

Ppayload ¼ ρp⋅1600⋅D
2⋅ f

ð14Þ

where pm = 10−3kg/mm3 and ρp = 3.7 × 10−3W/mm3 are re-
spectively the mass and power densities of the payload in this
study. The estimated mass and power of the payload are out-
put to the power, TC, and structure disciplines. For the studied
satellite constellation system in this paper, the design variables
and constraints of the payload discipline are summarized in
Table 3 based on the system design indexes provided by (Wu
et al. 2013a).

3.5 Power discipline

The area of solar arrays and capacity of battery are designed in
the power discipline to obtain the overall surplus power of the
satellite and discharge depth of battery, which are output as the
local constraints of the MDO problem. The beginning-of-life
power (PBOL) of the satellite is given in (15) (Shi et al. 2017):

PBOL ¼ S0X iX sX eX 0ASηFc βpΔT þ 1
� �

cos χð Þ ð15Þ

where Xi = 0.95, Xs = 0.9637, Xe = 1, and X0 = 0.98 are the
correction factors, AS is the area of the solar arrays, η = 0.28
is the photoelectric conversion efficiency of the solar cell,
Fc = 0.98 is the solar array loss coefficient, βp is the power
temperature coefficient and βpΔT + 1 = 0.826 in this study,
and χ is the incident angle of sunlight output by the orbit
discipline.

In this study, the required power of the satellite is estimated
by (16):

PN ¼ P0⋅T þ Ppayload⋅Tpayload þ Pthermal⋅Te

T−Te
ð16Þ

where P0 = 167 W is the long-term power usage of the satel-
lite, Tpayload = 600 s is the working time of the payload in each
orbit period, and Pthermal = 60 W is the power usage of TC
subsystem during the eclipse. The surplus power of the satel-
lite is then calculated by (17):

gw ¼ 1−dy
� �Lt ⋅PBOL− 1þ 5%ð Þ⋅PN ð17Þ

where Lt = 5 years is the on-orbit lifetime of the satellite, and
dy = 2.2% is the annual power degradation of the solar arrays
in LEO. To provide sufficient power for the satellite system,
the surplus power gw needs to be positive in the design.

When the satellite is in the shadow of the Earth, the storage
battery group of the satellite has to provide sufficient power
for the satellite. The depth of discharge (DOD) for the battery
is defined as the ratio of its discharged capacity C to its rated
capacity Cs as shown in (18) (Shi et al. 2017), where VDB =
36 V is the battery voltage. The maximum DOD should be
restricted to a 30% level to prolong the life of battery accord-
ing to (Wu et al. 2013a).

Table 5 Design variable and constraint of TC discipline

Parameter Description Symbol Unit Range

Area of radiator Design variable (continuous) AR m2 [0.5,1.08]

Maximum temperature Constraint T0 K ≤303.15

Fig. 6 FEA model of the satellite
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DOD ¼ C=CsC ¼ P0⋅Te þ Pthermal⋅Teð Þ=VDB ð18Þ
Given the area of solar arrays As and the capacity of battery

Cs, the mass of the power subsystem are estimated by (19):

mpower ¼ ρsaAs þ Cs⋅VDB=γb ð19Þ

where ρsa = 2.83kg/m2 is the areal density of solar arrays, and
γb = 39.6kW/kg is the specific energy of the battery.

The design variables and constraints of the power disci-
pline are summarized in Table 4.

3.6 Thermal control discipline

In the thermal control (TC) discipline, the radiators are sized
to control the temperature inside the satellite in the sunlight
area. In this work, the small satellite is encapsulated by mul-
tilayer insulation (MIL) blankets on the surfaces to reduce the
influence of external heat flux, and the radiators are mounted
on the south/north faces of the satellite. Assuming that the
infrared radiation flow, reflection heat flow of the Earth, and
the fluctuation of sunlight constant over the year are ignored
for the preliminary design phase, the external heat flux of the
satellite is calculated by (20) (Wu and Huang 2012):

qi ¼ cos βið Þ⋅S0 ð20Þ
where βi is the angle between the sunlight and the normal
direction of the i-th surface of the satellite. Given the data of
sunlight incidence angle and lightening factor from the orbit
discipline, the extreme external heat flux of the satellites over
the year can be obtained.

In engineering practices, a number of approaches have
been developed to compute the temperature of satellites,
e.g., finite element based thermal analysis using commercial
software such as SINDA, thermal network analysis, and em-
pirical equations. To balance the analysis accuracy and com-
putational cost for the preliminary design of satellite constel-
lation system, the thermal network analysis method is
employed to determine the steady-state temperature inside
the satellite. Considering the extreme orbital heat flux and
the internal heat source, a thermal network model is
established based on several assumptions, i.e., 1) the complex
heat conduction inside the satellite is neglected; 2) the space
background radiation is neglected; and 3) only the inside part

of satellite has heat conduction to the other panels. Based on
the assumptions, the thermal network model consists of seven
nodes, i.e., inside part of the satellite (Node 0), south panel
(Node 1), north panel (Node 2), top panel (Node 3), bottom
panel (Node 4), east panel (Node 5), and west panel (Node 6).
Without considering the thermal capacity of MIL, the thermal
balance equation of the seven nodes is formulated in (21) (Wu
and Huang 2012):

εiσAiT 4
i þ

Aiλi T i−T0ð Þ
δi

−αiqiAi ¼ 0 ð21Þ

where σ = 5.67 × 10−8W ⋅m−2 ⋅K−4 is the Stefan–Boltzmann
constant, and for the i-th node, Ti is the temperature, εi and αi

are the surface emissivity and absorption factor respectively,
Ai is the surface area, noted that A1,2 = Ar is the area of each
radiator, λi is the equivalent thermal conductivity between the
i-th node and Node 0, δi is the surface thickness, and q is the
average extreme heat flux on surface. The associated thermal
parameters of each node in this study are referred from (Wu
and Huang 2012) and exhibited in the Appendix. Then the
thermal balance equation inside the satellite is formulated in
(22) (Wu and Huang 2012):

cm
dT0

dt
¼ ∑

6

i¼1

Aiλi T i−T0ð Þ
δi

þ Qh ð22Þ

where c = 300 J/K/kg is the specific heat of the satellite, m is
the satellite mass, and Qh is the internal power dissipation. In
this work, Qh is set up to be 60% of the power of the satellite
output by the power discipline. By solving Eqs. (21) and (22),
the maximum temperature in the lightening time is calculated
as the local constraint of TC discipline, i.e., less than 303.15 K
that works for most devices inside the satellite according to
(Wertz 1999). The design variables and constraints of the TC
discipline are summarized in Table 5.

3.7 Structure discipline

For the structure discipline, the natural frequencies of the sat-
ellite are computed as the local constraints of the MDO prob-
lem (Wu et al. 2013b). In preliminary design, the natural fre-
quencies can be empirically estimated by regarding the satel-
lite as a simple cantilever, or computed by finite element
models. According to (Wu et al. 2013b), high-fidelity

Table 6 Design variables and constraints of structure discipline

Parameter Description Symbol Unit Range

Thickness of honeycomb core Design variable (continuous) TH mm [7,13])

Thickness of the ply Design variable (continuous) TP mm [0.07,0.13]

1st order bending frequency about X axis Constraint fX Hz ≥20
1st order bending frequency about Y axis Constraint fY Hz ≥20

2180 R. Shi et al.



structural FEA models can improve the reliability and practi-
cal significance of the optimized results for the spacecraft
MDO problems. Thus, a FEA model of the satellite is
established in the structure discipline to compute the structural
mass and the natural frequencies in this study.

The satellite FEA model contains 4837 nodes and 4982
shell elements, which are exhibited in Fig. 6. In this model,
the joint ring is made of aluminum alloy and fixed on the
bottom, and the material of fuel tank is titanium alloy. All of
the plates in the satellite are made of aluminum honeycomb
sandwich material and different plates are connected rigidly to
each other. The coupling inputs of the structure discipline are
the mass of other subsystems, and they are modeled by the
non-structural mass (NSM) on the corresponding plates. The
solar arrays are simulated by two concentrated masses at the
center of north/south panels. The mechanical parameters of
the sandwich material are listed in the Appendix.

The design variables of the structure discipline are the hon-
eycomb core thickness and the ply thickness of the structural
plates, and the constraints are the first order bending frequen-
cies around the body-fixed X and Y axes, i.e. no less than
20 Hz according to the requirement of launch vehicle as sum-
marized in Table 6.

3.8 Mathematical formulation of the MDO problem

According to the aforementioned disciplinary models, the
mathematical formulation of the satellite constellation sys-
tem MDO problem is finally given by (23), where the
symbols have been defined in the multidisciplinary model-
ing process. In this equation, Xc is the continuous design
variables from different disciplines, while Xd is the dis-
crete design variables, i.e., the number of orbit planes
and the number of satellites in each orbit plane. (23) de-
picts that the design variables are optimized to obtain a
feasible design with the lowest system mass. The optimi-
zation problem in (23) is computational-intensive due to
the expensive simulation models (e.g., FEA model) and
the multidisciplinary design analysis (MDA) iteration pro-
cess. To reduce the computational cost, a novel surrogate-
based optimization method is employed to efficiently solve
the satellite constellation system MDO problem, which is
detailed in Section 4.

minM system ¼ mpayload þ mpower þ mthermal þ mstructure þ mothers

� �� P � S

whereX c ¼ h; i;Ω0;DP; f P;As;Cs; TH; TP½ �; Xd ¼ P; S½ �

s:t

CR≥0:8
RP≤250m; SNR≥500
DOD≤0:3; gw≥0
T0≤303:15K
f X ≥20Hz; f Y ≥20Hz

8>>>><
>>>>:

ð23Þ

4 SRBF-SVM for mixed variable optimization

The satellite constellation MDO problem is computationally
expensive due to the employment of computation-intensive
simulation models (e.g., FEA model). Besides, both continu-
ous and discrete variables need to be handled during the opti-
mization, which further increases the complexity of this MDO
problem. To address the challenges, a novel discrete-
continuous variable sampling method is incorporated with
our previously proposed SRBF-SVM method (Shi et al.
2016) to effectively solve the satellite constellation MDO
problem. The novel SRBF-SVM for optimization of mixed
discrete and continuous variables is denoted as SRBF-SVM-
DC, which is detailed as follows.

1) Discrete-continuous variable sampling method

In SRBF-SVM-DC, sample points are initially generated
by the Latin hypercube design (LHD) method within the de-
sign space of Rn ∈ [0, 1]. Based on the discrete variable han-
dling mechanism proposed in (Kleijnen et al. 2010), a
discrete-continuous variable sampling method is utilized to
map the LHD points to the actual mixed-integer design space
of the satellite constellation system MDO problem.

The design variables of mixed-integer optimization prob-
lems are given by (24)

x ¼ xci x
d
j

h i
i ¼ 1; 2;…; nc; j ¼ 1; 2;…; nd

ð24Þ

where xci is the i-th continuous variable, xdj is the j-th discrete

variable, and nc and nd are the number of continuous and
discrete design variables respectively.

As for the continuous variables (e.g., the orbit altitude), the
mapping is given in (25)

Fig. 7 Illustration of ISR
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xci ¼ UBi−LBið Þ � xi þ LBi ð25Þ
where xi∈ 0; 1½ � is the associated component value of the orig-
inal LHD points, LBi and LBi are respectively the lower and
upper bounds of xci .

As for the discrete variables (e.g., the number of orbit
planes and satellites), the index of the j-th discrete variable
xdj is first determined according to (26)

Index j ¼ max 1þ floor mj � x j
� 	

−ε; 1
� 	

ð26Þ

where floor(·) represents rounding up to the nearest low inte-
ger, mj is the associated number of candidate values for xdj ; x j
∈ 0; 1½ � is the associated component value of the original LHD
points, ε is a sufficiently small number (i.e., 10−6 in this work)
to prevent the index from exceeding mj.

In the mixed-integer optimization problems, the discrete
candidate value set of xdj is given by (27):

Xd; j ¼ d 1ð Þ
j ; d 2ð Þ

j ;…; d
m jð Þ
j


 �
ð27Þ

where d kð Þ
j ; k ¼ 1; 2;…;mj is the k-th candidate value of xdj .

Then the discrete variables can be mapped according to the
associated indexes as shown in (28).\scale95%{

xdj ¼ d
Index jð Þ
j ; Index j ¼ 1; 2;…;mj ð28Þ

2) Interesting sampling region

Interesting sampling region (ISR) is a relatively small hy-
percube sub-region where the global optimum is probably
located. During the optimization of SRBF-SVM-DC, the
RBF surrogates are updated by sequentially adding new sam-
ple points in ISR to improve the approximation accuracy of
RBF surrogates in the vicinity of the global optimum, which
leads the surrogate-based optimization process to the global
optimum with higher probability and less computational cost.
ISR can bemathematically expressed by (29) (Shi et al. 2016):

ISR kð Þ ¼ xjx kð Þ−Bk ≤x≤x kð Þ þ Bk

h i
B kð Þ ¼ η x*−x kð Þ�� ��; 1T ¼ 1; 1;…1½ �nv�1

ð29Þ

where the pseudo optimum x(k), i.e., the current optimum at
the k-th iteration, is the center of ISR, x* is the cluster center of
superior cheap points, B(k) is the boundary vector determined
by the distance between x(k) and x*, and η is the shrinking
coefficient used to control the size of B(k).

Table 7 Optimized designs from SRBF-SVM-DC and ICGA

Design variable Symbol Unit Type Range ICGA SRBF-SVM-
DC

Orbit altitude h km Continuous [500,1500] 1184.1 1243.3

Orbit inclination i Deg Continuous [30,60] 46.3 44.4

RAAN of the 1st orbit Ωo Deg Continuous [0,30] 18.8 29.4

Aperture size of payload DP mm Continuous [5, 15] 10.7 8.6

Focal length of payload fP mm Continuous [10,50] 47.8 50.0

Area of solar arrays As m2 Continuous [3, 8] 4.04 4.8

Battery capacity Cs Ah Continuous [20,80] 29.9 20.0

Area of radiators AR m2 Continuous [0.5,1.08] 1.08 0.73

Thickness of honeycomb core TH mm Continuous [7, 13] 10.9 8.4

Thickness of the ply TP mm Continuous [0.07,0.13] 0.107 0.104

Number of orbit planes P – Discrete [2–6] 4 3

Number of satellite in each plane S – Discrete [1–4] 4 4
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Fig. 8 Flowchart of SRBF-SVM-DC
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The identification of ISR can be graphically illustrated in
Fig. 7 (Shi et al. 2016). To identify the ISR, a SVM classifier is
first trained based on the existing sample points according to
(30)

ŷ̂i ¼ 1 yi≤Pthresh

−1 yi > Pthresh

�
ð30Þ

where ŷ and yi are respectively the classification index and
objective value of the i-th sample point, Pthresh is the classifi-
cation threshold determined by the objective responses of the
existing sample points. Then a large number of points, termed
cheap points, are generated by LHD in the design space and
classified by the trained SVM. If the predicted classification
index is 1, the cheap point is regarded as a superior cheap
point, and the cluster center of all the superior cheap points
are determined via the feature space fuzzy c-means method
(FS-FCM) (Shi et al. 2016). Thus far, the ISR can be success-
fully identified via (29). The ISR identification algorithm is
presented in the Appendix, and more details of ISR are pre-
sented in (Shi et al. 2016).

3) Procedure of SRBF-SVM-DC

The overall procedure of SRBF-SVM-DC is illustrated in
Fig. 8, which are briefly introduced as follows.

Step 1: The initial parameters of SRBF-SVM-DC are con-
figured including the continuous and discrete de-
sign variables, number of initial sample points ns,

newly added sample points na at each iteration, ob-
jective, and constraints of the optimization problem.
The iteration index k is set to be 1.

Step 2: Sample points are generated by the aforementioned
discrete-continuous variable samplingmethod with-
in the initial design space. The associated responses
including the objective and constraints of the sam-
ple points are obtained by evaluating the simulation
models.

Step 3: RBF surrogates of the objective and constraints are
respectively constructed or updated based on the
existing sample points and their associated response
values. The construction method of RBF is present-
ed in the Appendix. ThenGenetic algorithm (GA) is
utilized to conduct global optimization on current
RBF surrogates. Note the samples with discrete var-
iables need to be mapped to the actual mixed-
integer design space via the aforementioned
discrete-continuous variable sampling method be-
fore evaluating the fitness function at each genera-
tion. In the same way, the current optimum obtained
by GA is also mapped to the mixed-integer variable

space, which is set as the pseudo optimum x kð Þ
opt. The

associated objective and constraints at x kð Þ
opt are eval-

uated and added to the existing sample pool.
Step 4: If the number of function evaluations exceeds the

predefinedmaximum value, SRBF-SVM-DC is ter-
minated and the current optimal feasible solution is
output; otherwise, the procedure continues.

Step 5: Based on the current x kð Þ
opt, the interesting sampling

region (ISR) for the next iteration is identified. The
ISR identification algorithm is detailed in the
Appendix. Then na sample points are generated by
the discrete-continuous variable sampling method
within the ISR to refine the RBF models, which
leads the search to the feasible optimum. Then set
k = k + 1, and the procedure turns to Step 3 to con-
tinue the optimization.

Table 8 Constraint values of the optimized design from SRBF-SVM-DC and ICGA

Constraint Symbol Unit Range ICGA SRBF-SVM-
DC

Coverage ratio CR – ≥0.8 0.81 0.80

Resolution of payload RP m ≤250 247.9 248.7

Signal to noise ratio of payload SNR – ≥500 951.2 567.3

Depth of discharge DOD – ≤0.3 0.10 0.15

Power surplus gw W ≥0 33.94 152.3

Maximum temperature T0 K ≤303.15 276.6 279.5

1st order bending frequency around X axis fX Hz ≥20 25.4 25.2

1st order bending frequency around Y axis fY Hz ≥20 28.5 27.3

Table 9 System mass of the optimized design from SRBF-SVM-DC
and ICGA

Parameters ICGA SRBF-SVM-
DC

Mass of a single satellite 330.4 kg 314.5 kg

Entire mass of the satellite
constellation system

5287.2 kg 3773.3 kg

NFE >2000 300
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5 Satellite constellation system optimization
results

As mentioned above, the satellite constellation system MDO
problem in this study is a challenging expensive black-box opti-
mization problem with both continuous and discrete variables.
Our proposed SRBF-SVM-DCmethod is employed to solve the
satellite constellation system MDO problem in this section. In
view of the global exploration and gradient-free merits for solv-
ing black-box optimization problems, genetic algorithm (GA)
has been widely employed for constellation optimization in the
literatures (Meng et al. 2018; Savitri et al. 2017; Kim et al. 2017).
Hence, an integer coding genetic algorithm (ICGA) from
MATLAB native ga toolbox is also utilized to solve the same
satellite constellation MDO problem for comparison.

Considering the limited computational budget, the maxi-
mum generation number of ICGA is set as 10, and other

tuning parameters of ICGA (e.g., population size) are set as
the default values. In this study, the number of initial sample
points is 60, and the number of newly-added sample points at
each iteration is six for SRBF-SVM-DC. To balance the opti-
mization efficiency and global exploration capability of
SRBF-SVM-DC, the maximum number of function evalua-
tions is set as 300. The optimized design variables from ICGA
and SRBF-SVM-DC are listed in Table 7, and the associated
constraints of the optimum are summarized in Table 8. The
objective values (i.e., the entire mass of the satellite constella-
tion system) and associated NFE from ICGA and SRBF-
SVM-DC are compared in Table 9.

The satellites distributions of the optimized designs from
SRBF-SVM-DC and ICGA are graphically displayed in
Fig. 9, and the associated constellation configurations are
illustrated in Fig. 10. The constraint results in Table 8
indicate that the optimized design from SRBF-SVM-DC
is feasible (i.e., all the constraints are satisfied) and better
refined than that from ICGA. According to Table 7, the
number of satellites in each plane from SRBF-SVM-DC
is not changed compared with ICGA, while the number
of orbit planes is cut down by one. Hence, four satellites
are saved in the constellation, which clearly reduces at least
25% of the total mass of the satellite constellation system.
However, the altitude of the constellation from SRBF-
SVM-DC is increased by 59.2 km to compensate the loss
of coverage performance due to the reduced number of
satellites, and the associated inclination and RAAN are also
relatively adjusted. The increased orbit altitude also yields a
larger focus length of the payload to satisfy the resolution
constraint, which enlarges the mass budget of the payload.
Hence, the aperture size of the payload is correspondingly
narrowed to decrease payload mass at the cost of a lower
SNR value compared with that of ICGA. The battery ca-
pacity and area of radiators from SRBF-SVM-DC are also

(a) Optimized designs by ICGA (b) Optimized designs by SRBF-SVM-DC

Fig. 10 Illustration of the optimized
constellation configurations from
SRBF-SVM-DC and ICGA

Fig. 9 Comparison of the satellite distributions from SRBF-SVM-DC
and ICGA
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decreased to reduce the mass of satellite system, while the
area of solar arrays is increased considering different light-
ening conditions of the orbit. Besides, the thicknesses of
the honeycomb core and ply of the structural plates in
SRBF-SVM-DC are decreased respectively to yield a
lighter structural mass compared with ICGA. Although
the structural stiffness of the satellite is relatively weak-
ened, the natural frequency constraints are still satisfied
owing to the reduced non-structural mass from other
disciplines. Via the aforementioned optimization, the
mass of a single satellite from SRBF-SVM-DC is about
16 kg lower than that from ICGA as shown in Table 9,
and the entire mass of the satellite constellation system is sig-
nificantly decreased by about 28.63%, which indicates that the
proposed SRBF-SVM-DC yields better global optimum than
ICGA. Moreover, the required computational cost of SRBF-
SVM-DC is less than 15% of that of ICGA according to
Table 9, which is a significant merit in engineering practices
when the computational budget is limited.

In summary, the investigations above indicate that the
proposed SRBF-SVM-DC is more favorable than the
conventional ICGA for satellite constellation MDO
problem in terms of both global convergence and effi-
ciency. Via SRBF-SVM-DC optimization, the total mass
of the satellite constellation system can be significantly
reduced to save the launch and deployment cost, which
produces considerable economic benefits from the cus-
tomers’ perspective. Hence, the proposed SRBF-SVM-
DC is proved to be feasible and effective to solve the
satellite constellation system MDO problem compared
with the conventional numerical optimization technique
in practice, which can significantly improve the overall
design quality and enhance the optimization efficiency.
On the other hand, it should be noted that the optimized
design might also impose potential challenges for the
satellite constellation system. For instances, the de-
creased numbers of orbit planes and operating satellites
increase the risk of the constellation system, i.e., the
failures of several satellites in orbits could cause a sig-
nificant performance reduction of constellation or even
the failure of aerospace mission; the weakened structure
might breakdown when suffering from unpredictable ex-
traordinary loads. After the preliminary design study in
this paper, those challenges are expected be addressed
in further detailed design of the satellite constellation
system.

6 Conclusions

In this paper, a satellite constellation system MDO
problem is investigated to minimize the system mass
by simultaneously optimizing the parameters of

constellation and individual satellites. Considerable ef-
forts are spent on the multidisciplinary modeling, which
is a new endeavor considering the inter-coupling be-
tween constellation configuration and satellite subsys-
tems. The constellation model is established based on
Walker-δ configuration, and the coverage ratio for the
observation region of interests is computed as the local
constraint. As for the small satellites within the constel-
lation, the disciplinary models of CCD payload, power,
thermal control, and structure disciplines are established
based on different analysis methods, e.g., thermal net-
work for maximum temperature during the lightening
period, finite element method for satellite natural fre-
quency, etc. To efficiently solve the computation-
intensive satellite constellation MDO problem involving
both continuous and discrete variables, a novel SRBF-
SVM-DC method is developed based on the SRBF-
SVM. In this method, the RBF models of the objective
and constraints are respectively constructed and updated
in ISR for optimization, which leads the search to converge
to the feasible optimum efficiently. In addition, a discrete-
continuous variable sampling method is utilized to handle
the discrete design variables. In the end, the proposed
SRBF-SVM-DC is utilized to solve the studied satellite
constellation MDO problem and compared with the con-
ventional ICGA. The optimization results indicate that
the optimized total mass of the satellite constellation
system from SRBF-SVM-DC is reduced by 28.63%
compared with that from ICGA. Moreover, the required
computational cost of SRBF-SVM-DC is only 15% of
that of ICGA. In conclusion, the study illustrates that
the satellite constellation system MDO work is feasible
and effective to improve the design quality and reduce
the system expenses, and it is highly desirable to apply
MBDO techniques to solve the MDO problem with
much less computational cost compared with conventional
evolutionary algorithms. Furthermore, this surrogate-based
satellite constellation system MDO methodology can
be applied for other aerospace constellation system
design problems, e.g., navigation constellation consider-
ing the index of GDOP and mass, which is our future
work.
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Appendix

Thermal network model parameters (Wu and Huang
2012)

Structural FEA model parameters

Radial basis function surrogate

Radial basis function (RBF) is an interpolation method on the
acquired information at discrete sample points xk (Gutmann
2001). A RBF surrogate can be formulated as

ŷ̂¼ βTϕ xð Þ
ϕ xð Þ ¼ ϕ x−x1k kð Þ ϕ x−x2k kð Þ … ϕ x−xnsk kð Þ½ �T

β ¼ β1 β2 … βns

 �T ðA1Þ

where ns is the number of sample points, ϕ(‖x − x1‖), i = 1, 2. .
ns is radial basis function and β is the coefficient vector of
RBF.

Since RBF should satisfy the interpolation condition at
sample points, (A1) can be written as

Aβ ¼ y ðA2Þ
where the matrix A is the radial basis function matrix shown
as below

A ¼
ϕ x1−x1k kð … ϕ x1−xnsk kð

⋮ ⋱ ⋮
ϕ xns−x1k kð ⋯ ϕ xns−xnsk kð

2
4

3
5
ns�ns

ðA3Þ

The vector y consisting of the actual response values at
sample points is formulated as

y ¼ y1 y2 … yns
 �T ðA4Þ

Coefficient vector β can be calculated as

β ¼ A−1y ðA5Þ

Commonly-used radial basis functions can be found in (Wu
et al. 2013b).

Support vector machine

Support vector machine (SVM) developed by Vapnik has
been widely used for pattern classification problems (Burges
1998). Consider a group of training samples belonging to two
different classes

x1; y1ð Þ;…; xl; ylð Þ; xi∈Rn; yi∈ þ1;−1f g ðA6Þ

where xi is the i-th sample point, yi is the discrete classification
value at sample point xi, and l is the number of training
samples.

First, assume that the training samples could be separated
linearly by a hyperplane as shown in (A7)

w⋅xð Þ þ b ¼ 0;w∈Rn; b∈R ðA7Þ

where w = [w1,w2,…wn] is the coefficient vector of the hy-
perplane. The optimal hyperplane can be obtained by solving
the constrained convex quadratic optimization problem in
(A8), and the equation can be rewritten in (A9).

min
1

2
wk k2

s:t gi ¼ yi w⋅xið Þ þ bð Þ≥1; i ¼ 1;…; l
ðA8Þ

min ∑
l

i¼1
αi−

1

2
∑
l

i; j¼1
αiα jyiy j xi⋅x j

� �

s:t
αi≥0; i ¼ 1;…; k

∑
l

i¼1
αiyi ¼ 0

ðA9Þ

In (A9), αi is the Lagrange multiplier of constraint gi,
which is obtained by solving the dual optimization problem.
Then it is easy to obtain w and b (Burges 1998). The classifi-
cation function of linear SVM classifier is shown in (A10)

f xð Þ ¼ sgn ∑
l

i¼1
yiαi x⋅xið Þ þ b

� �
ðA10Þ

where sgn(x) ∈ {−1, +1}, x is an arbitrary design point to be
classified.

Table 11 Material parameters for FEA model

Structure Young’s module, Poison ratio, and density

Joint ring E = 70.6GPa, v = 0.33, ρ = 2800kg/m3

Sandwich ply E = 70.6GPa, v = 0.33, ρ = 2780kg/m3

Sandwich
core

E11 =E22 = 34.9kPa, v = 0.33, G12 = 5238Pa,
G23 = 55.1MPa, G13 = 36.7MPa, ρ = 42kg/m3

Fuel tank E = 101.8GPa, v = 0.41, ρ = 4420kg/m3

Table 10 Parameters of thermal network model

Symbol Value Symbol Value

ε1, ε2 0.86 A5, A6 8.5m2

ε3 ∼ ε6 0.67 λ1, λ2 1.7 W·m−1·K−1

α1, α2 0.27 λ3 ∼ λ6 1.47 × 10−4 W·m−1·K−1

α3 ∼ a6 0.35 δ1, δ2 20 mm
A3, A4 5m2 δ3 ∼ δ6 5 mm
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When the training samples cannot be linearly separated by
a hyperplane in Euclidean space Rn, a nonlinear mapping
φ(x) :Rn→ χ is utilized to achieve the linear classification
of training samples in another space, denoted as feature space
χ. Thus, the optimal hyperplane in the feature space is
expressed as

min
1

2
wk k2

s:t gi ¼ yi w⋅φ xið Þð Þ þ bð Þ≥1; i ¼ 1;…; l
ðA11Þ

The procedure of determining SVM classification function
in χ is the same as that in Euclidean space Rn as shown in
(A12).

f xð Þ ¼ sgn ∑
l

i¼1
yiαi φ xð Þ⋅φ xið Þð Þ þ b

� �
ðA12Þ

According to Mercer’s conditions, the inner product of
nonlinear mapping could be substituted by a certain kind of
kernel function K(x,xi). Based on Mercer’s conditions, (A12)
is rewritten as below. Commonly-used kernel functions can be
found in (Burges 1998).

f xð Þ ¼ sgn ∑
l

i¼1
yiαiK x; xið Þ þ b

� �
ðA13Þ

Algorithm of interesting sampling region

ISR is a relatively small hypercube sub-region where the glob-
al optimum probably is located. ISR is determined by the
distance between the current pseudo optimum and the cluster
center of superior cheap points. The algorithm to identify ISR
is exhibited in Appendix Table 12 (Shi et al. 2016).

Table 12 Algorithm of ISR

Algorithm1 Interesting Sampling Region Identification Algorithm

Input: initial design space S0=[L0, U0]; sample set X and response set Y in sample points database; cheap points set 

Xdata; pseudo optimal point at current iteration x(k), shrinking coefficient .

Output: the interesting sampling region for next iteration ISR(k)

Begin

1 Pthresh Y, )

2 foreach xi in X
3 if yi≤Pthresh

4 ˆ iy = 1

5 else

6 ˆ iy = -1

7 end

8 end

9 Classifier X, Ŷ )

10 Xsup=

11 while Xsup==

12   foreach xdi in Xdata

13 if SVMpredict(Classifier, xdi)==1

14 Xsup = Xsup xdi
15 end

16 end

17 Pthresh Pthresh +0.1abs(Pthresh)

18 end

19 x* FS-FCM(Xsup)

20 Bk
* ( )

2

kx x
21 ISR(k) ace(x(k), Bk)

22 ( ) ( )

0ISR ISRk k S
23 end

24 return ISR(k)
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