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Abstract
The role of robust design optimization (RDO) has been eminent, ascertaining optimal configuration of engineering
systems in the presence of uncertainties. However, computational aspect of RDO can often get tediously intensive in
dealing with large scale systems. To address this issue, hybrid polynomial correlated function expansion (H-PCFE)
based RDO framework has been developed for solving computationally expensive problems. H-PCFE performs as a
bi-level approximation tool, handling the global model behavior and local functional variation. Analytical formula for
the mean and standard deviation of the responses have been proposed, which reduces significant level of computations
as no further simulations are required for evaluating the statistical moments within the optimization routine.
Implementation of the proposed approaches have been demonstrated with two benchmark examples and two practical
engineering problems. The performance of H-PCFE and its analytical version have been assessed by comparison with
direct Monte Carlo simulation (MCS). Comparison with popular state-of-the-art techniques has also been presented.
Excellent results in terms of accuracy and computational effort obtained makes the proposed methodology potential for
further large scale industrial applications.
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1 Introduction

History has witnessed the inevitable role of optimization
in engineering science and technology. Edge cutting per-
formances of manufactured industrial products have been
the consequences of employing advanced level design
optimization tools. In dealing with large and complex

systems, efficient algorithms of engineering design opti-
mization have been prerequisites at every stage for re-
ducing cost, time and increase functionality in substance.
However, conventional design optimization (Fang et al.
2015) may not always meet the required objectives, es-
pecially in presence of uncertainties. They can easily
lead to significant fluctuations from the desired perfor-
mance and consequently add to the life cycle costs in-
cluding inspection planning, repair and maintenance pro-
grams. The presence of uncertainties are unavoidable in
manufacturing and operational activity in industries.
Therefore, incorporation of effect of uncertainty on prod-
uct analysis and design is of paramount importance to
the engineering community.

The mitigation of the effect of uncertainty on optimi-
zation can be effectively performed with the help of
robust design optimization (RDO). RDO has been de-
veloped in order to improve the product quality and
reliability in industrial engineering. Hence, the role of
RDO lies in redefining the optimization in terms of
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robustness. RDO has been successfully applied in vari-
ous fields such as telecommunications and electronics
(Taguchi 1986, 1987; Phadke 1989), aerospace (Hicks
and Henne 1978; Sobieszczanski-Sobieski and Haftka
1997; Alexandrov and Lewis 2002), ship design (Sen
and Yang 1998; Parsons and Scott 2004; Hart and
Vlahopoulos 2009; Diez and Peri 2010), automobile
(Hwang et al. 2001; Sun et al. 2011; Fang et al.
2013), structural mechanics (Doltsinis and Kang 2004;
Lagaros et al. 2007; Lee et al. 2009), structural dynamic
analysis and vibration control (Zang et al. 2005; Roy et
al. 2014; Cheng et al. 2014; Roy and Chakraborty
2015), fatigue analysis (McDonald and Heller 2004;
Lee and Jung 2006; Li et al. 2011) in the past.

RDO provides a mathematical framework for optimi-
zation motivated to minimize the propagation of input
uncertainty to output responses (Chen et al. 1996;
Ramakrishnan and Rao 1996; Du and Chen 2000;
Huang and Du 2007; Beyer and Sendhoff 2007). The
objective and/or constraint functions in RDO involve
mean and standard deviation of stochastic responses.
The solution of RDO would require uncertainty quanti-
fication of stochastic responses. Moreover, gradient
based optimization algorithms make the problem com-
putationally demanding. Therefore, RDO problems are
computationally intensive, if not prohibitive, and require
significantly improved and efficient design paradigms
(Lucas 1994; Schuëller and Jensen 2008).

For addressing the issues of computational inefficien-
cy, various meta-modelling schemes have evolved. These
techniques decrease the simulation time significantly by
approximating the underlying computational model in a
sample space (Bucher and Bourgund 1990). The widely
used techniques available in the literature are least
squares approximation (Kim and Na 1997), moving least
square (Kang et al. 2010; Goswami et al. 2016), poly-
nomial chaos expansion (PCE) (Jacquelin et al. 2015),
high dimensional model representation (Rao and
Chowdhury 2009; Chowdhury and Rao 2009), Kriging
(Kaymaz 2005) and radial basis function (RBF) (Deng
2006). A review of various techniques of this kind can
be found in (Sacks et al. 1989; Giunta et al. 1998; Jin et
al. 2001; Sudret 2012; Chatterjee et al. 2017). One may
also be interested in recent meta-modelling techniques
(Zhao et al. 2010; Dai et al. 2015; Volpi et al. 2015;
Liu et al. 2015; Shu and Gong 2016; Chatterjee and
Chowdhury 2017).

In this paper, a novel RDO framework based on hy-
brid polynomial correlated function expansion (H-PCFE)
has been developed to improve the performance and

cost effectiveness of existing RDO methodology in case
of computationally expensive problems, especially those
involving finite element (FE) analysis, computational
fluid dynamics (CFD) etc. As previously mentioned,
the objective and/or, constraint functions often involve
mean and standard deviation of responses. To compute
the statistical moments, large number of simulations are
required. Therefore, analytical formulae for approximat-
ing the first two statistical moments have been proposed
by utilizing H-PCFE. This reduces a significant level of
computations for each function evaluation in optimiza-
tion iteration. The proposed approaches have been ap-
plied to two benchmark examples and two FE truss
models. The robust optimal solution results obtained
using H-PCFE have been validated with that of direct
Monte Carlo simulation (MCS). Comparison has also
been performed with that of few other standard surro-
gate models.

The rest of the paper has been organized in the fol-
lowing sequence. In Section 2, various formulations of
RDO have been discussed, which cover its entire frame-
work. The proposed approach to be incorporated in RDO
formulation has been presented in Section 3. The analyt-
ical expressions for approximating the statistical mo-
ments have been illustrated in Section 4. The proposed
approaches have been applied to few examples in
Section 5. Finally, conclusion has been drawn by
discussing the results obtained from the study.

2 Robust design optimization (RDO)

Unlike deterministic design optimization which do not
account for uncertainties, an RDO problem develops a
solution which is least sensitive to variations of the
nominal design. Thus, the goal of RDO is that of min-
imizing the effects of uncertainties involved in system
design without suppressing their causes (Zang et al.
2005).

Several past works (Chen et al. 1996; Zang et al. 2005;
Park et al. 2006; Beyer and Sendhoff 2007; Schuëller and
Jensen 2008) have assigned different type of interpreta-
tions to RDO depending on the application and hence
attracted various forms of problem formulation. The var-
ious indices of robustness assessment have been summa-
rized as follows:

(i) Minimization of the standard deviation (SD) of ob-
jective function pertaining to usual constraints as
illustrated by (1). This design leads to robustness
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in a strict sense with minimum sensitivity with re-
spect to the variation of the probabilistic parameters
(Taguchi 1986).

min σ f x; dð Þð Þ
s:t:dL≤d≤dU

ð1Þ

Where, σ(f(x, d)) denotes the standard deviation of ob-
jective function, x denotes the random variables and dL
and dU represents lower and upper bounds of the design
variable d. Often in practice, design variables in RDO
are nothing but mean of the random variables.

(ii) Multi objective optimization by minimizing the objec-
tives as illustrated by (2) (Doltsinis and Kang 2004;
Zang et al. 2005).

min μ f x; dð Þð Þ;σ f x; dð Þð Þ½ �
s:t:dL≤d≤dU

ð2Þ

Where, μ(f(x, d)) denotes the mean of objective function.
Two possible alternatives for solving (2) exists in liter-

ature. The first alternative couples the two objectives by
assigning relevant weightages to each of the respective
functions (Chen et al. 1996) as,

min α
μ f x; dð Þð Þ

μ* þ 1−αð Þ σ f x;dð Þð Þ
σ* ; 0≤α≤1

s:t:dL≤d≤dU
ð3Þ

Where the weighing factor α represents the relative
importance of two objectives. μ∗ and σ∗ are the outcomes
of ideal design. The primary advantage of this approach
resides in its simplicity. However, with this method and
other related improvements (Chen et al. 1991, 2000;
Messac 1996), it is not possible to cover the design do-
main over the Pareto front. The second alternative uses
multi-objective optimization algorithms to directly ad-
dress the problem as stated in (2) (Marano et al. 2010;
Fang et al. 2015). Popular multi-objective optimization
algorithms include, multi-objective genetic algorithm
(Fonseca and Fleming 1995), strength Pareto evolutionary
algorithm (Zitzler 1999; Zitzler et al. 2001) non-
dominated sorting genetic algorithm (Srinivas and Deb
1994; Deb et al. 2002), multi-objective particle swarm
optimization (Sierra and Coello 2005), multi-objective

evolutionary algorithm based on decomposition (Zhang
and Li 2007), etc.

(iii) Minimization of percentile difference, which is de-
fined by

Δ f α2
α1

¼ f α2− f α1 ð4Þ

where, P f ≤ f αið Þ ¼ αi ∀i ¼ 1; 2 (Du et al. 2004; Huang
and Du 2007). It has been observed that minimizing Δ

f α2
α1

leads to restricting the variation of the probability

distribution of f(x). Although more accurate, this index
is only applicable for unimodal distributions, unlike the
above representations.

Moreover, in context to feasibility robustness of the con-
straints, one is referred to (Du and Chen 2000). Since the
development of an analytical moment approximation based
framework is the primary motive of this study, therefore the
RDO form as illustrated in (3) has been adopted. However, it
is to be noted that the proposed approach preserves the gener-
ality of an RDO framework so that representations other than
(3) may be utilized.

The associated computational costs in RDO often prove
to be prohibitive, especially in large scale problems involv-
ing FE and CFD modelling (Myers et al. 1992; Eggert and
Mayne 1993; Gupta and Li 2000). To address the issue of
computational efficiency, a novel meta-model assisted RDO
framework based on hybrid polynomial correlated function
expansion (H-PCFE) has been proposed. H-PCFE has been
incorporated within the RDO framework to compute the
optimal solution in an efficient manner. A flowchart
depicting the flow synthesizing the computationally effi-
cient framework of RDO has been shown in Fig. 1. The
detailed formulation has been presented in the following
section (Section 3) in order to explain the theoretical frame-
work and implementation of H-PCFE.

3 Hybrid polynomial correlated function
expansion (H-PCFE)

H-PCFE (Chakraborty and Chowdhury 2016a; Chatterjee et
al. 2016; Majumder et al. 2017) is a novel metamodelling
technique formulated by coupling polynomial correlated func-
tion expansion (PCFE) (Chakraborty and Chowdhury 2016b,
2016c, 2017a, 2017b) with Kriging (Biswas et al. 2016, 2017;
Mukhopadhyay et al. 2017). H-PCFE, as compared to other
metamodels, has two major advantages. Firstly, H-PCFE
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performs a bi-level approximation: first on a global scale by
using PCFE (Chakraborty and Chowdhury 2016b, 2017a,
2017b) and second, on a local scale by using Kriging
(Biswas et al. 2016, 2017; Mukhopadhyay et al. 2017).
Secondly, H-PCFE, by default has an error metric. This, in
turn, provides the opportunity to locally refine the model

generated by H-PCFE (Chakraborty and Chowdhury 2017c,
2017d).

To introduce the functional form of H-PCFE, let us suppose
x = (x1, x2,…, xN) are the input variables, where x ∈D ⊂ℝN.
The outputM(H − PCFE) can be represented in terms of extend-
ed bases as

M H−PCFEð Þ ¼ g0 þ ∑
M

k¼1
∑

N−kþ1

i1¼1
⋯ ∑

N

ik¼ik−1
∑
k

r¼1
∑
s

m1¼1
∑
s

m2¼1
⋯ ∑

s

mr¼1
α i1i2…ikð Þir
m1m2…mr

ψi1
m1
…ψir

mr

� �� �� �
þ σ2Z x;ωð Þ ð5Þ

where, i ¼ i1; i2;…; iNð Þ∈ℕN
0 and N ≥ 0 is an integer,

g0is a constant term representing the zeroth order com-
ponent function or the mean response of response func-
tion M(H − PCFE). M and s represent order of component
function and order of basis, respectively. Z(x,ω) de-
notes a zero mean, unit variance Gaussian process
and σ2 denotes the process variance. The set of
hyperparameters θ defines the autocorrelation R(x,
x′; θ) between two points x and x′. Some of the popular
autocorrelation functions can be found in (Echard et al.
2011).

Definition 1: Two subspace A and H in Hilbert
space are spanned by basis {a1, a2,…, al} and
{h1, h2,…, hm} respectively. If (i) H ⊃ A and (ii)
H = A⊕ A⊥ where, A⊥ is the orthogonal complement
subspace of A in H, H is termed as extended basis
and A as non-extended basis.

Remark 1: ψ in (5) represents basis function.
Although the functional form of H-PCFE as illus-
trated in (5) is compatible with any functional basis,
orthonormal basis has been adopted in this paper.

Definition 2: The expression obtained by substitut-
ing M = S in (5) is termed as Sth order H-PCFE. A
Sth order H-PCFE consists of all the component
functions up to Sth order, i.e., while first-order H-
PCFE consists zeroth and first order component
functions, a second-order H-PCFE consists zeroth,
first and second order component functions.
Therefore, adding all the Sth order component func-
tions to an existing (S − 1)th order H-PCFE would
yield the Sth order H-PCFE expression.Fig. 1 Flowchart illustrating the H-PCFE assisted RDO framework
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The solution of (5) with respect to α may be obtained as

ψTR−1ψ
� 	

α*¼ψTR−1d ð6Þ

where, d is the difference of response and g0. For the
derivation of (6), one is referred to (Chatterjee et al.
2016). In general, the correlation parameters θ are a
priori unknown. The optimal parameters have been ob-
tained by maximum likelihood estimate (Marrel et al.
2008; Dubourg 2011). The objective function to be min-
imized is obtained as

f ML θð Þ ¼ 1

N
log R θð Þj j þ log dTR θð Þ−1d


 �
ð7Þ

Alternatively, (6) can be represented as

Bα¼C ð8Þ

where, B =ψTR−1ψ,C =ψTR−1d,α =α∗. Since H-PCFE
employs extended bases as already illustrated by (5),
some of the equations in (8) have been found to be iden-
tical. These equations are redundant and hence can be
removed. Removing the redundant from (8), one obtains

B
0
α¼C

0 ð9Þ

where, B′ and C′ correspond to B and C, respectively,
after removing the redundant equations. The resulting
underdetermined set of equations are depicted in (9),
for which infinite number of solutions exist. The motive
is to determine the best solution out of the available
solutions.

Definition 3: Out of all the possible solutions of
(9), the solution that minimizes the least squared
error and satisfies the hierarchical orthogonality
criterion of the component functions, is termed as
the best solution.

In this context, homotopy algorithm has been
employed for obtaining the best solutions (Li and
Rabitz 2010; Chakraborty and Chowdhury 2015;
Chatterjee et al. 2016) as,

αHA ¼ Vq−r UT
q−rVq−r


 �−1
UT

q−r

� �
B

0

 �†

C
0 ð10Þ

where, U and V are obtained by singular value decom-
position of PWHA matrix

PWHA ¼ U
Ar 0
0 0

� �
VT ð11Þ

and

P ¼ I− B
0


 �†
B

0 ð12Þ

(B′)† in (10) and (12) is the generalized inverse of B', sat-
isfying all four Penrose conditions (Rao and Mitra 1971).
WHA in (11) is the weight matrix utilized for formulating the
objective function in the homotopy algorithm.

Once the unknown coefficients associated with the bases in
(9) are determined, the prediction mean and prediction vari-
ance are given as:

μ xð Þ ¼ g0 þMαHA þ r xð ÞR−1 d−ΨαHAð Þ ð13Þ

and

s2 xð Þ ¼ σ2 1−r xð ÞR−1r xð ÞT þ
1−ΨTR−1r xð ÞT

 �

ΨTR−1Ψ

0
@

1
A ð14Þ

where

M ¼ ψ1 xp
� 	

;ψ2 xp
� 	

;…
� 	 ð15Þ

at the prediction point xp and

r xð Þ ¼ R xp; x1
� 	

;R xp; x2
� 	

;…
� 	 ð16Þ

& Remark 2: One important aspect associated with H-PCFE
is selection of suitable correlation matrix R. Based on
observation of previous researchers (Kaymaz 2005;
Dubourg 2011;Mukhopadhyay et al. 2016), Gaussian cor-
relation function has been used due to its superior
performance.

For smooth understanding of the readers, the computation-
al paradigm of H-PCFE has been presented in a sequential
manner in algorithm 1.
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It should be clear that in order to compute the response
statistics, simulations have to be performed on the approxima-
tion model generated by H-PCFE (by utilizing Algorithm 1).
This may require significant time, especially in case of
problems involving large number of random variables,
as response statistics is to be computed at each functional

evaluation of optimization iteration. Therefore, analytical
formulae for mean and standard deviation of responses by
utilizing H-PCFE has been developed, which requires no
further simulations, reducing a significant level of compu-
tations. This has been explained in the next section
(Section 4).

Algorithm 1: Pseudo code illustrating of the computational framework of H-PCFE

1: Input order of H-PCFE, input variable type and parameters. Evaluate variable bounds. 

Generate sample points within the bounds and response is obtained by actual analysis.

2: Normalize the variables.

3: 
0

1
s

n
g g x

n
4: for 1:i n

0i id g x g
end for

5: 1 2
TN

ψ x x x where,

1 1 1 2

1 1 2 1 1 1 2

1121

11211

Tr r r r r
k

r N r N r N r N r
m N m N m N m N

x x x x

x x x x x

x

6: 1 2

T
nd d dd

7: 

22

1

2 2
diag , , mR

8: 
1

diag , ,
m

KW

9: Minimize objective function (refer eq. (7)), to determine the correlation parameter.

10: 
1 1,T T

B ψ R ψ C ψ R d

11: ,B C after removing redundants from ,B C .

12: 
†

' 'P I B B

13: form weightHAW ψ

14: HA, singular valuedecompositionof WPVU

15: 
1 †T T

HA q r q r q r q rα V U V U B C

16: Predict response statistics.
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4 Analytical formulae for the statistical
moments: H-PCFE based approach

For deriving analytical formulae for the statistical moments,
(13) is rewritten as:

M H−PCFEð Þ ¼ g xð Þ
PCFE

þ h xð Þ
Kriging

ð17Þ

Where,

g xð Þ ¼ g0 þMα*
HA ð18Þ

corresponds to PCFE and

h xð Þ ¼ r xð ÞR−1 d−Ψα*
HA

� 	 ð19Þ

corresponds to Kriging. Now, taking expectation of both sides,

E M H−PCFEð Þ

 �

¼ E g xð Þð Þ þ E h xð Þð Þ ð20Þ

where E(•) denotes the expectation operator. Similarly, taking
variance of both sides,

var M H−PCFEð Þ

 �

¼ var g xð Þð Þ þ var h xð Þð Þ

þ 2cov g xð Þ; h xð Þð Þ ð21Þ

where, var(•) denotes the variance operator and cov(•)
denotes the covariance operator. However, for practical
implementation, the covariance term was found to be in-
significant as compared to the variance terms. Hence, for
simplification, the same has not been considered.
Moreover, if analytical expressions for the first two mo-
ments corresponding to PCFE and Kriging can be devel-
oped, the same can be substituted into (20) and (21) for
computing the first two moments of H-PCFE. In this re-
gard, it is to be noted that analytical expression for the
first two moments of PCFE has already been presented in
(Chakraborty and Chowdhury 2016b, 2017b):

E g xð Þð Þ ¼ g0 ð22Þ

var g xð Þð Þ ¼ ∑
N

ij j¼1
∑
r

jij j¼1
αi

ji


 �2
ð23Þ

where α represents the unknown coefficients computed using
HA. Hence, all that remains is to compute analytical expres-
sion for the first two statistical moments of Kriging and the

covariance term. To this end, (19) is again rewritten as:

h xð Þ ¼ ∑
n

i¼1
ri xð Þγi ð24Þ

where n is the number of samples, γi is the ith element of γ
vector obtained as (Chatterjee et al. 2016):

γ ¼ R−1 d−Ψα*
HA

� 	 ð25Þ

It is to be noted that γi is independent of the prediction
point x and only depends on the training points (Dubourg
2011). Now, noting that Gaussian correlation function has
been utilized, (24) can be further modified as:

h xð Þ ¼ ∑
n

i¼1
γi σ2 ∏

j
exp −

x j−x ji
� 	2

2θ2j

 ! !

¼ σ2 ∑
n

i¼1
γi ∏

j
θ j

ffiffiffiffiffiffi
2π

p 1

θ j
ffiffiffiffiffiffi
2π

p exp −
x j−x ji
� 	2

2θ2j

 ! !

¼ σ2 2πð Þd=2 ∏
j
θ j ∑

n

i¼1
γi ∏

j
ℕ x jjx ji ; θ2j

 �

¼ k ∑
n

i¼1
γi ∏

j
ℕ x jjx ji ; θ2j

 �

ð26Þ

where k ¼ σ2 2πð Þd=2 ∏
j
θ j and ℕ x jjx ji ; θ2j


 �
denotes that var-

iable xj is normally distributed with mean x ji and variance θ2j .

Taking expectation of both sides of (26),

E h xð Þð Þ ¼ k ∑
n

i¼1
γiE ∏

j
ℕ x jjx ji ; θ2j

 � !

¼ k ∑
n

i¼1
γi ∏

j
∫ℕ x jjx ji ; θ2j

 �

ϖx jdx j

 ! ð27Þ

where ϖx j is the PDF of variable xj. Now assuming that the

variables are uniformly distributed, (27) can be rewritten as

E h xð Þð Þ ¼ k ∑
n

i¼1
γi ∏

j

1

xulj −xllj
∫
xuli

xlli

ℕ x jjx ji ; θ2j

 �

dxj

0
@

1
A

¼ ∑
n

i¼1
γi ∏

j

1

xulj −xllj
Φ

xuli −x
j
i

θ j

 !
−Φ

xlli −x
j
i

θ j

 !" # ! ð28Þ

where xllj and xulj denote lower limit and upper limit of

variable xj and Φ(•) denotes cumulative distribution func-
tion of standard normal variable. (28) represents the ana-
lyt ical formula for first moment using Kriging.
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Combining (22) and (28), the overall mean is given as:

E M H−PCFEð Þ

 �

¼ g0 þ ∑
n

i¼1
γi ∏

j

1

xulj −xllj
Φ

xuli −x
j
i

θ j

 !
−Φ

xlli −x
j
i

θ j

 !" # !
ð29Þ

Next, applying variance on both sides of (26)

var h xð Þð Þ ¼ var k ∑
n

i¼1
γi ∏

j
ℕ x jjx ji ; θ2j

 � ! !

¼ E k ∑
n

i1¼1
γi1 ∏

j
ℕ x jjx ji1 ; θ2j

 � ! !

k ∑
n

i2¼1
γi2 ∏

j
ℕ x jjx ji2 ; θ2j

 � ! ! !

− E h xð Þð Þð Þ2

¼ E k2 ∑
n

i1¼1
∑
n

i2¼1
γi1γi2 ∏

j
ℕ x jjx ji1 ; θ2j

 �

ℕ x jjx ji2 ; θ2j

 � !

− E h xð Þð Þð Þ2

ð30Þ

Now considering the product of correlation functions in (30)
and simplifying,

ℕ x jjx ji1 ; θ2j

 �

ℕ x jjx ji2 ; θ2j

 �

¼
1

θ j
ffiffiffiffiffiffi
2π

p
 !2

exp −
x j−x ji1
� 	2

2θ2j

 !
exp −

x j−x ji2
� 	2

2θ2j

 !

¼ 1

θ j
ffiffiffiffiffiffi
2π

p
 !2

exp −
x j−x ji1
� 	2

2θ2j
−

x j−x ji2
� 	2

2θ2j

 !

¼ 1

θ j
ffiffiffiffiffiffi
2π

p
 !2

exp −
2x j2 þ x ji1

� 	2
−2x jx ji1 þ x ji2

� 	2
−2x jx ji2

2θ2j

 !

¼ 1

θ j
ffiffiffiffiffiffi
2π

p
 !2

exp −

ffiffiffi
2

p
x j

� 	2
−2

ffiffiffi
2

p
x j

� 	 x ji1 þ x ji2ffiffiffi
2

p
 !

þ x j
i1
þx j

i2ffiffi
2

p
� �2

" #

2θ2j

0
BBBB@ −

x j
i1ffiffi
2

p
� �2

þ x j
i2ffiffi
2

p
� �2

−2
x ji1ffiffiffi
2

p x ji2ffiffiffi
2

p
" #

2θ2j

1
CCCCA

¼ 1

θ j
ffiffiffiffiffiffi
2π

p
 !

exp −

ffiffiffi
2

p
x j−

x j
i1
þx j

i2ffiffi
2

p
� �

2θ2j

20
BBB@

1
CCCA� 1

θ j
ffiffiffiffiffiffi
2π

p
 !

exp −

x j
i1ffiffi
2

p −
x j
i2ffiffi
2

p
� �2

2θ2j

0
BBB@

1
CCCA

¼ 1
θ jffiffiffi
2

p ffiffiffiffiffiffi
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Substituting (31) into (30)

var h xð Þð Þ ¼ E k2 ∑
n

i1¼1
∑
n

i2¼1
γi1γi2 ∏

j
ℕ x jj

x ji1 þ x ji2
2

;
θ2j
2

 !
ℕ xi1 jx ji2 ; 2θ2j

 � !

− E h xð Þð Þð Þ2

¼ k2 ∑
n

i1¼1
∑
n

i2¼1
γi1γi2 ∏

j
ℕ xi1 jx ji2 ; 2θ2j

 �

∫ℕ x jj
x ji1 þ x ji2

2
;
θ2j
2

 !
ϖx jdx j− E h xð Þð Þð Þ2

ð32Þ

Similar to previous case, assuming the variables to be uni-
formly distributed, (32) reduces to

var h xð Þð Þ ¼ k2 ∑
n

i1¼1
∑
n

i2¼1
γi1γi2 ∏

j
ℕ xi1 jx ji2 ; 2θ2j

 � 1

xulj −xllj
∫
xulj

xllj

ℕ x jj
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2
;
θ2j
2

 !
dxj− E h xð Þð Þð Þ2
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∑
n

i2¼1
γi1γi2 ∏

j
ℕ xi1 jx ji2 ; 2θ2j

 � 1
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Φ
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3
775− E h xð Þð Þð Þ2 ð33Þ

(33) is the formula for computing variance by using
Kriging. Using (23) and (33), analytical expression for the
variance is given as:

var M H−PCFEð Þ

 �

¼ ∑
N

ij j¼1
∑
r

jij j¼1
αi

ji


 �2
þ

k2 ∑
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p
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2
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3
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ð34Þ

Thus, with the help of (29) and (34), the mean and variance
of responses can be obtained analytically by utilizing H-
PCFE. In this context, it is important to note that the above
formulae hold only when the variables are uniformly distrib-
uted. Direct application of this formulae to non-uniform vari-
ables is not possible.

To address the issue highlighted above, the input variable is
projected on to ξ, such that

ξ ¼ Φ xð Þ ð35Þ
where Φ(•) denotes the CDF of the variable x. With this trans-
formation, ξ is uniformly distributed, ξ∼U 0; 1ð Þ. Thereafter, a
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H-PCFE model between ξ and the output response y is trained
and the mean and standard deviation of responses are obtained
by using the formulae discussed above (since ξ is uniformly
distributed, direct application of the formulae are possible).
Transformations for popular PDFs have been illustrated in
Appendix B.

& Remark 3: As a further generalization, if the underlying
problem is having correlated and non-uniform variables,
one must first project the variables into a space having
uncorrelated and uniform variables before using the ana-
lytical formulae shown in (29) and (34). The details on
how to project a correlated and non-uniform variable to

space having uncorrelated and uniform variables can be
found in (Chakraborty and Chowdhury 2016b).

The above analytical framework has been utilized in RDO
so as to avoid simulations in each optimization call to approx-
imate the response statistics. The computationally efficient
RDO framework has been depicted by the flowchart in
Fig. 2. The point of improvement in the RDO framework in
Fig. 2 as compared to the one previously proposed in Fig. 1
can be easily identified as no MCS will be required for ap-
proximating the response statistical quantities, minimizing a
significant level of computations for each functional call in the
optimization routine.

Fig. 2 Flowchart of the improved
RDO framework based on
analytical approximation of
statistical moments by H-PCFE
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Next, the two proposed RDO frameworks have been ap-
plied to solve few problems in order to investigate their
performance both in terms of accuracy and computational
efficiency.

5 Numerical examples

In this section, the proposed approaches have been applied to
four RDO problems in order to illustrate its approximation
potential within limited computational effort. Out of the vari-
ous available uniform and non-uniform sampling techniques,
Latin-hypercube sampling (McKay et al. 1979) has been uti-
lized in this paper. Further, sequential quadratic programming
algorithm has been utilized as the optimization routine for
solving the following problems. In doing so, MATLAB® tool-
box fmincon has been employed. The results obtained by the
proposed approaches have been validated with that of direct
MCS and compared with that of few standard surrogate
models.

In order to ensure that the number of training points
have converged, convergence study has been carried out
by gradually increasing the number of training points.
To compute the accuracy of the surrogate models, leave
one out cross validation (LOOCV) has been used. For
all the four examples carried out corresponding to the
response functions, convergence of the surrogate models
based on LOOCV error have been presented in Section
A.1 of Appendix A. For computing the optimum num-
ber of samples in MCS, convergence study has been
carried out where the change in mean and SD of re-
sponse due to increase in sample points have been in-
vestigated. When the change in mean and SD of re-
sponse is within the predefined tolerance, MCS has
been considered to have converged. Additionally, the
confidence intervals (95%) have also been presented.

The convergence study for determining the optimum
number of MCS for all the four examples have been
illustrated in Section A.2 of Appendix A.

H-PCFE based RDO which requires simulations in
order to approximate the statistical response quantities
as illustrated in Fig. 2 has been mentioned as ‘H-
PCFE’ from now onwards. H-PCFE based RDO which
utilizes (29) and (34) (refer Section 4) to approximate
the statistical response quantities explicitly has been la-
belled as ‘Analytical H-PCFE’ from henceforth. It is
quite obvious that statistical response terms involved
in objective and constraint functions have been analyti-
cally determined by the above equations in case of an-
alytical H-PCFE.

5.1 Example 1: Conceptual design of a bulk carrier

The proposed RDO formulation has been applied to
conceptual design of a bulk carrier as illustrated in
Fig. 3 (Sen and Yang 1998; Parsons and Scott 2004).
The basic cost function of the optimization problem has
been considered to be the unit transportation cost. The
design variables have been described in Table 1. The
formulation involves some design constraints and have
been constructed based on geometry, stability and model
validity. Uncertainties from multiple sources have been
accounted for the proposed RDO formulation.The

Table 2 Description of random variables for example 1 in Section 5.1

S
No.

Parameter Unit Distribution
type

Lower
bound

Upper
bound

1 Port handling
rate

ton/day Uniform 1000 11,000

2 Round trip Nm Uniform 1000 5000

3 Fuel price GBP/ton Uniform 50 150

Table 1 Description of design variables for example 1 in Section 5.1

S No. Variable Symbol Unit Lower bound Upper bound

1 Length L M 100 600

2 Beam B M 10 100

3 Depth D M 5 30

4 Draft T M 5 30

5 Block coefficient C 0.63 0.75

6 Cruise speed V knots 14 18

Fig. 3 A typical cross-sectional view of a bulk carrier
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mathematical model of the cost function has been pre-
sented below,

annual cost ¼ capital costsþ running costs

þ voyage costs ð36Þ

capital costs ¼ 0:2 ship costsð Þ ð37Þ

ship cost ¼ 1:3 2000W0:85
S þ 3500W0 þ 2400P0:8

� 	 ð38Þ

steel weight ¼ WS ¼ 0:034L1:7B0:7D0:4C0:5 ð39Þ

outfit weight ¼ W0 ¼ L0:8B0:6D0:3C0:1 ð40Þ

machinery weight ¼ Wm ¼ 0:17P0:9 ð41Þ

displacement ¼ 1:025LBTC ð42Þ

power ¼ P ¼ displacement2=3V3= aþ bFnð Þ ð43Þ

Froude number ¼ Fn ¼ Vk= gLð Þ0:5 ð44Þ

Vk ¼ 0:5144V ð45Þ

With the help of (45), Vk has units of m/s and g = 9.8065m/s2

in (44).

a ¼ 4977:06C2−8105:61C þ 4456:51 ð46Þ

b ¼ −10847:2C2 þ 12817C−6960:32 ð47Þ

running costs ¼ 40000DWT0:3 ð48Þ

deadweight ¼ DWT ¼ displacement−light ship weight ð49Þ

light ship weight ¼ WS þW0 þWm ð50Þ

voyage costs ¼ fuel costþ port costð ÞRTPA ð51Þ

fuel cost ¼ 1:05 daily consumption� sea days

� fuel price ð52Þ

daily consumption ¼ 0:19P24=1000þ 0:2 ð53Þ

sea days ¼ round trip miles=24V ð54Þ

port cost ¼ 6:3DWT0:8 ð55Þ

Table 4 Robust optimal solution
for the case study 1 Design variables H-PCFE Analytical H-PCFE PCE RBF1 ANN MCS

L 151.1785 151.1748 180.0045 165.7109 179.9694 151.1748

B 25.1952 25.1958 28.5101 27.6185 26.7837 25.1958

D 14.9487 14.9491 17.0979 16.5099 19.2892 14.9491

T 10.389 10.389 11.1554 10.389 10.389 10.389

C 0.75 0.75 0.6649 0.6424 0.63 0.75

V 14 14 14 14 14 14

Objective function 2.277 2.3959 3.5822 2.0618 2.7193 2.3704

mean (UTC2) 8.5876 8.5876 8.6632 8.6240 9.0570 8.5876

std3 (UTC) 2.277 2.3959 3.5822 2.0618 2.7193 2.3704

1 violates constraints
2 UTC stands for unit transportation cost
3 std denotes standard deviation

Table 3 Case studies
related to various
configurations of
objective function for
RDO

Case study Objective function

1 σ(UTC)

2 μ(UTC) + σ(UTC)

2146 T. Chatterjee et al.



round trips per year ¼ RTPA

¼ 350= sea daysþ port daysð Þ ð56Þ

port days ¼ 2 cargo deadweight=handling rateð Þ þ 0:5½ � ð57Þ

cargo deadweight

¼ DWT−fuel carried−miscellaneous DWT ð58Þ

fuel carried ¼ daily consumption sea daysþ 5ð Þ ð59Þ

miscellaneous DWT ¼ 2DWT0:5 ð60Þ

annual cargo capacity ¼ DWT � round trips per year ð61Þ

unit transportation cost

¼ annual cost=annual cargo capacity ð62Þ

The unit transportation cost (UTC), which is the ob-
jective function of the optimized conceptual design of a
bulk carrier and can be evaluated using (62). The con-
straints pertaining to the optimization problem have
been defined in (63) – (70).

L=B≥6 ð63Þ

L=D≤15 ð64Þ

L=T ≤19 ð65Þ

T ≤0:45DWT0:31 ð66Þ

T ≤0:7Dþ 0:7 ð67Þ

Fig. 4 Welded beam design problem considered in example 2

Table 6 Number of
sample points utilized for
training response
functions of example 2 in
Section 5.2

Function MCS Surrogate models

f 105 128

g1 105 128

g2 105 128

g3 105 128

g4 105 128

g5 105 128

Table 5 Robust optimal solution
for the case study 2 Design variables H-PCFE Analytical H-PCFE PCE RBF ANN MCS

L 153.8008 154.7543 180.0045 154.0877 166.8899 153.5981

B 25.6335 25.7924 28.5101 25.6813 23.6186 25.5997

D 15.2194 15.3189 17.0979 15.2493 13.9817 15.1984

T 10.389 10.389 11.1554 10.389 10.389 10.389

C 0.7281 0.7205 0.6649 0.7258 0.7334 0.7298

V 14 14 14 14 14 14

Objective function 10.9931 10.9947 11.5219 10.9934 11.009817 10.9932

mean (UTC1) 8.6098 8.6059 8.7018 8.6085 8.6158 8.6109

std2 (UTC) 2.3833 2.3888 2.8200 2.3850 2.3939 2.3823

1UTC stands for unit transportation cost
2 std denotes standard deviation
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25000≤DWT ≤500000 ð68Þ

Fn≤0:32 ð69Þ

GMT ¼ KBþ BMT−KG≤0:07B ð70Þ

Where, KB, BMTand KG have been defined in (71) – (73),
respectively.

vertical center of buoyancy ¼ KB ¼ 0:53T ð71Þ

metacentric radius ¼ BMT ¼ 0:085C−0:002ð ÞB2=TC ð72Þ

vertical center of gravity ¼ KG ¼ 1þ 0:52D ð73Þ

The description of random variables have been provid-
ed in Table 2. Two case studies have been performed for
various configurations of objective function for RDO as
presented in Table 3.

The optimized design variables and objective function
values obtained have been presented in Tables 4 and 5 corre-
sponding to the case studies provided in Table 3. The total
number of sample points employed for training the surrogate
models and MCS are 128 and 105, respectively. Remarkable
similar results have been observed on comparing the perfor-
mance of H-PCFE and its analytical version with that of
MCS. It is worth noting that the accuracy achieved in case of
analytical H-PCFE is quite high, considering the fact that no
simulations are required within each optimization cycle. It is
also clear from the results that the proposed approaches have
outperformed standard models, such as, PCE, RBF and artifi-
cial neural network (ANN) in terms of approximation accuracy.

5.2 Example 2: Welded beam design

The second example considered is that of a welded beam
design as shown in Fig. 4 (Deb 2001). The objective is to
minimize the cost of the beam subject to constraints on shear
stress, bending stress, buckling load, and end deflection.
There are four continuous design variables, namely, beam

Table 7 Robust optimal solutions
for example 2 in Section 5.2 Design variables MCS Analytical H-PCFE H-PCFE Kriging RBF1 MARS

d1 0.2312 0.2492 0.2311 0.5852 0.3103 3.5638

d2 6.7505 7.8688 6.7637 1.3633 0.1 0.8112

d3 8.7636 6.9355 8.7649 0.4902 0.1 0.3011

d4 0.2299 0.2493 0.2308 6.143 10 3.5635

Objective function 2.9059 2.8025 2.9099 2.9887 1.0259 12.9351

mean( f ) 2.43323 2.37885 2.439035 2.74417 0.68807 12.14987

std2( f ) 0.47267 0.42365 0.470865 0.24453 0.33783 0.78523

1 violates constraints
2 std denotes standard deviation

Fig. 5 10-bar plane truss considered in example 3

Table 8 Robust optimal solutions for example 3 in Section 5.3

Weighing factor
(α)

Response
statistics*

Analytical
H-PCFE

MCS

α = 0 mean(W) 37,775.16 37,778.27

std(W) 669.8003 670.0816

α = 0.5 mean(W) 33,633.89 33,642.28

std(W) 713.8395 714.0947

∗W denotes weight of the truss (in N) and std. denotes standard deviation
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thickness t(=x1), beam width b(=x2), weld length l(=x3), and
weld thickness h(=x4).

The problem description can be stated as follows:

Minimize f xð Þ ¼ 1:10471x21x2

þ 0:04811x3x4 14þ x2ð Þ ð74Þ

s:t:
g1 xð Þ ¼ t−tmax≤0
g2 xð Þ ¼ s−smax≤0
g3 xð Þ ¼ x1−x4≤0
g4 xð Þ ¼ d−dmax≤0
g5 xð Þ ¼ P−Pc≤0

ð75Þ

Where,

M ¼ P Lþ x2=2ð Þ ð76Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 x22 þ x1 þ x3ð Þ2


 �r
ð77Þ

J ¼
ffiffiffi
2

p
x1x2 x22=12þ 0:25 x1 þ x3ð Þ2


 �
ð78Þ

Pc ¼ 64746:022 1−0:0282346x3ð Þx3x34 ð79Þ

t1 ¼ P=
ffiffiffi
2

p
x1x2


 �
ð80Þ

)b()a(

Fig. 6 25-bar space truss (a) node
and element numbers (b) loading
details

Table 9 Robust optimal solutions for example 4 in Section 5.4

Weighing factor
(α)

Response
statistics*

Analytical
H-PCFE

MCS

α = 0 mean(W) 292.2333 301.3696

std(W) 4.1928 4.2003

α = 0.5 mean(W) 238.0559 238.1880

std(W) 5.0717 5.0779
Fig. 7 Convergence of the LOOCVerror in approximating the objective
function (UTC) in example 1 with increase in training points by utilizing
the surrogate models
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(a) (b)

(c) (d)

(e) 
Fig. 8 Convergence of the LOOCVerror in approximating the (a) objective function f (b) constraint g1(c) constraint g2(d) constraint g4(e) constraint g5in
example 2 with increase in training points by utilizing the surrogate models
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t2 ¼ MR=J ð81Þ

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t1t2x2=Rþ t22

q
ð82Þ

S ¼ 6PL= x4x23
� 	 ð83Þ

d ¼ 2:1952= x4x33
� 	 ð84Þ

P ¼ 6000; L ¼ 14;E ¼ 30� 106;G ¼ 12� 106;
tmax ¼ 13600; smax ¼ 30000; xmax ¼ 10; dmax ¼ 0:25
0:125≤x1≤10; 0:1≤xi≤10; for i ¼ 2; 3; 4:

ð85Þ

For the RDO formulation of the problem, each of the ran-
dom variables have been assumed to be normally distributed
with 5% coefficient of variation. The RDO problem may be
stated as,

d*¼μ*
x ¼ argmin μ f xð Þð Þ þ σ f xð Þð Þ½ � ð86Þ

where, μ*
x denotes the mean of the design variables at opti-

mum f(x).
The number of training points utilized for the surrogate

models and MCS have been presented in Table 6. The corre-
sponding robust optimal solutions obtained have been report-
ed in Table 7.

The optimized design variables and objective function
values obtained have been presented in Table 7. The
total number of training points employed for all the
surrogate models and MCS are 128 and 105, respective-
ly. Remarkable similar results have been observed on
comparing the performance of H-PCFE with that of
MCS. Analytical H-PCFE has also yielded good results,
considering the fact that it involves significantly reduced
level of computations within each optimization iteration.
It is clear from the above results that the proposed ap-
proaches have convincingly outperformed standard
models, such as, Kriging, RBF and multi adaptive re-
gression splines (MARS) in terms of approximation ac-
curacy. It is worth noting that H-PCFE, an enhanced
version of Kriging, yields significantly accurate results
than that of a primitive version of the latter (Universal
Kriging in this case).

After illustrating the superior approximation accuracy
of H-PCFE in comparison to few available standard
surrogate models, in case of the above two non-linear
analytical examples, it has been employed to solve two
practical engineering problems considering parametric
randomness. They deal with weight minimization of a
10-element plane truss and a 25-element space truss
subjected to displacement and stress constraints. Since
these stochastic problems involve FE modelling, a sin-
gle actual response evaluation may take considerable
amount of time. Hence, the analytical version of H-

Fig. 9 Convergence of the LOOCVerror in approximating the maximum
nodal displacement d and maximum stress in each member σ1 − 10in
example 3 with increase in training points by utilizing H-PCFE Fig. 10 Convergence of the LOOCV error in approximating the

maximum member stress in example 4 with increase in training points
by utilizing H-PCFE
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PCFE (Section 4) has been employed to solve these
problems.

5.3 Example 3: 10-bar plane truss

The 10-bar plane truss structure as illustrated in Fig. 5
has been previously attempted in (Luh and Chueh 2004;
Chatterjee and Chowdhury 2016). The structure has
been modelled in FE package ANSYS Mechanical
15.0 (2013). The objective is to minimize the structural
weight (W) by considering displacement and stress
constraints.

In Fig. 5, L is taken to be 914.4 cm. The cross-sectional
areas A and the elastic modulus E of all the ten members
have been considered to be random. Consequently, total
number of random variables are twenty. The elastic modu-
lus of all the ten elements of the truss have been considered
to be uniformly distributed ranging from 65,502.5 MPa to
72,397.5 MPa. The member cross-sectional areas are con-
sidered to be normally distributed with 5% coefficient of
variation. Mean of the cross-sectional areas are considered
to be the design variables. The material density and
Poisson’s ratio are taken as ρ = 2768 kg/m3 and μ = 0.3.
The maximum allowable nodal displacement dmax and
member stress σmax are considered to be 3.81 cm and
172.375 MPa, respectively. There are eleven constraints
which are, (i) maximum nodal displacement d should not
exceed dmax, and (ii) maximum stress in each member σm
should not exceed σmax.The problem can be stated as:

d* ¼ μ*
A ¼ argmin f xð Þ ¼ α*mean Wð Þ þ 1−αð Þ*std Wð Þ

s:t:
gd xð Þ ¼ mean dð Þ þ 3std dð Þ½ �−dmax ≤0

gσm xð Þ ¼ mean σmð Þ þ 3std σmð Þ½ �−σmax≤0; m ¼ 1 to10

ð87Þ

Where, x = [E,A], μ*
A denotes the mean of the design vari-

ables at optimum f(x), std. denotes standard deviation and α
is the weighing factor illustrated in (3). It should be clear
from (87) that the statistical response terms involved in con-
straint functions have been explicitly determined by utiliz-
ing analytical H-PCFE with the help of (29) and (34).

The number of sample points required for training H-
PCFE is 1000. MCS has been performed for 10,000 sim-
ulations for every function call within the optimization
cycle. The results as illustrated in Table 8, demonstrates
excellent similar response statistics as obtained by analyt-
ical H-PCFE with that of MCS. MCS based RDO require
20 iterations to converge. Thus, the total number of func-
tion evaluations required by MCS to yield the optimal
solutions are 2,00,000 (= 20 × 10,000). On the contrary,
analytical H-PCFE requires 20 iterations for convergence
and thus, the total number of function evaluations in-
volved are 20,000 (= 20 × 1000). Specifically, the compu-
tational effort required by analytical H-PCFE is 10% (=
20,000/2,00,000 × 100) of that required by MCS to yield
highly accurate results.

5.4 Example 4: 25-bar space truss

In this section, the performance of the proposed approach
in RDO formulation of a twenty five bar space truss
(Patelli et al. 2014) has been illustrated. The truss along
with the position of the loads has been depicted in Fig. 6.
The structure has been modelled in FE package ANSYS
Mechanical 15.0 (2013). The objective is to minimize the
structural weight (W) by considering stress constraints. In
Fig. 6(a), L has been assumed as 63.5 cm. The elastic
modulus of all the twenty five elements of the space truss
have been considered to be 6.895 × 104 MPa. The cross-

(a) (b)

Fig. 11 Convergence of (a) mean
of UTC (b) SD of UTC and their
95% confidence interval (CI) with
increasing number of MCS
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(a) (b)

(c) (d)

(e) (f)
Fig. 12 Convergence of (a) mean of f (b) SD of f (c) mean of g1 (d) SD of g1 (e) mean of g2 (f) SD of g2 (g) mean of g4 (h) SD of g4 (i) mean of g5 (j) SD of
g5 and their 95% confidence interval (CI) with increasing number of MCS
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sectional areas of the twenty five truss elementsAi, i = 1 −
25, which are assumed to be normally distributed with 5%
variation. Mean of the cross-sectional areas are considered
to be the design variables. The values of loads P1, P2, P3,
P4, P5 and P6 as shown in Fig. 6(b) are assumed to be
44,500, 44,500, 44,500, 44,500, 2225, and 2670 (in N).
The material density and Poisson’s ratio are taken as ρ =
2768 kg/m3 and μ = 0.3. The maximum allowable member
stress σmax is considered to be 103.425 MPa. There are
twenty five constraints such that the maximum stress in
each member σm should not exceed σmax. The problem
statement can be stated as:

d* ¼ μ*
x ¼ argmin f xð Þ ¼ αw

*mean Wð Þ þ 1−αwð Þ*std Wð Þ
s:t:

gσm xð Þ ¼ mean σmð Þ þ 3std σmð Þ½ �−σmax≤0; m ¼ 1 to25
ð88Þ

Where, μ*
x denotes the mean of the design variables at

optimum f(x), std. denotes standard deviation. It should
be clear from (88) that the statistical response terms in-
volved in constraint functions have been explicitly deter-
mined by utilizing analytical H-PCFE with the help of
(29) and (34).

The number of training points required for approximat-
ing σm by utilizing analytical H-PCFE is 1000. The results
obtained have been presented in Table 9 below which
illustrates analytical H-PCFE has achieved accurate solu-
tions in terms of close proximity to MCS based RDO.
MCS based RDO requires 46 iterations to converge.
MCS has been performed for 10,000 simulations for every
function call within the optimization cycle. Thus, the total
number of function evaluations required by MCS to yield

(g) (h)

(i) (j)
Fig. 12 continued.
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the optimal solutions are 4,60,000 (= 46 × 10,000). On the
contrary, analytical H-PCFE requires 45 iterations for
convergence and thus, the total number of function eval-
uations involved are 45,000 (= 45 × 1000). Specifically,
the computational effort required by analytical H-PCFE
is 9.8% (= 45,000/4,60,000 × 100) of that required by
MCS to yield strikingly similar results.

∗W denotes weight of the truss (in N) and std. denotes
standard deviation.

As the scale and dimensionality of the stochastic
problem increases, it is quite obvious to expect that
analytical H-PCFE will yield solutions at a faster rate

as compared to H-PCFE. Thus, the study proposes an
accurate and efficient analytical surrogate assisted RDO
framework, likely to be potential for further large scale
and complex applications.

6 Conclusions

A novel approximation technique has been incorporated
within the traditional RDO formulation for addressing
the prohibitive computational issues. It serves as a bi-
level approximation, first on a global scale using a set

(a) (b)

(c) (d)
Fig. 13 Convergence of (a) mean of d (b) SD of d (c) mean of σ1 (d) SD
of σ1 (e) mean of σ2 (f) SD of σ2 (g) mean of σ3 (h) SD of σ3 (i) mean of
σ4 (j) SD ofσ4 (k) mean of σ5 (l) SD of σ5 (m) mean of σ6 (n) SD ofσ6 (o)

mean of σ7 (p) SD of σ7 (q) mean of σ8 (r) SD of σ8(s) mean of σ9 (t) SD
of σ9 (u) mean of σ10 (v) SD of σ10 and their 95% confidence interval (CI)
with increasing number of MCS
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(e) (f)

(g) (h)

(i) (j)
Fig. 13 (continued).
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(k) (l)

(m) (n) 

(o) (p)
Fig. 13 (continued).
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of polynomials and then on a local scale by accounting
for local functional variations. The polynomials ad-
dresses the accuracy and the local interpolation im-
proves efficiency, especially in regions of high local
undulations. Moreover, in order to reduce significant
level of computations, analytical expressions for statisti-
cal moments of response quantities have been proposed
by using H-PCFE. This analytical framework has been
incorporated within RDO routine, in which further computa-
tional efficiency has been achieved as no simulations are re-
quired to approximate the statistical quantities within each
optimization iteration.

Comparison of the results obtained by using H-PCFE
and MCS in two benchmark examples and two practical

problems carried out demonstrate good agreement. Also,
the proposed approaches have outperformed popular sur-
rogate models in terms of accuracy in yielding the ac-
tual optima. It is worth mentioning that analytical H-
PCFE has achieved decent level of accuracy by utilizing
significantly less computational effort in comparison to
H-PCFE and other surrogate models. Thus, it is recom-
mended to be utilized for large-scale computational ex-
pensive problems.

The highlights of the proposed approaches have been sum-
marized as follows:

& Since homotopy algorithm is utilized for determining the
unknown coefficients, L2 error norm is minimized as well

(q) (r) 

(s) (t)
Fig. 13 (continued).
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as the orthogonality of the component functions is en-
sured. As a result, H-PCFE is convergent in mean-square
and optimal in Fourier sense.

& H-PCFE is flexible enough to be applied with any other
available sampling schemes.

& In terms of accuracy, excellent performance by H-PCFE
has been observed. The proposed bi-level approximation
renders robustness and capability to approximate the glob-
al and local functional behaviour effectively.

& The analytical formulae of the first two statistical mo-
ments derived for H-PCFE allows the response statistics
to be obtained without the need for further simulation,
thus, saving significant level of computations.

Acknowledgements Tanmoy Chatterjee and Rajib Chowdhury acknowl-
edge the support of CSIR via Grant No. 22(0712)/16/EMR-II.

Additional results of the numerical examples
based on convergence study

Convergence of the surrogate models based
on LOOCV error with increase in number of training
points

For all the four examples carried out, convergence of the sur-
rogate models based on LOOCV error have been presented
below in Figs. 7, 8, 9, and 10. For determining the LOOCV
error in this study, the following expression has been utilized,
LOOCV error ¼ ŷ−yj j =y, where, y and ŷ are the actual and
approximate response functions, respectively.

Example 1: Conceptual design of a bulk carrier

Example 2: Welded beam design

Example 3: 10-bar plane truss

Example 4: 25-bar space truss

Convergence of the response statistics with increase
in number of MCS

The convergence study for determining the optimum number
of MCS for all the four examples have been presented below
in Figs. 11, 12, 13, and 14.

Example 1: Conceptual design of a bulk carrier

Example 2: Welded beam design

Example 3: 10-bar plane truss

Example 4: 25-bar space truss

Transformation to non-uniform
variablesEquation Section (Next)

Uniform to Gaussian variable

z ¼ μþ σ Φ−1 xð Þ� 	 ðB1Þ

(a) (b)

Fig. 14 Convergence of (a) mean
of maximum stress (b) SD of
maximum stress and their 95%
confidence interval (CI) with
increasing number of MCS
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Where x is uniformly distributed in [0, 1] and z is a normal
variable with mean μ and standard deviation σ.

Uniform to lognormal distribution

z ¼ exp μþ σ Φ−1 xð Þ� 	� 	 ðB2Þ

Where x is uniformly distributed in [0, 1] and z is a lognormal
variable with parameters μ and σ

Uniform to Gumbell distribution

z ¼ a−blog −log xð Þð Þ ðB3Þ
Where x is uniformly distributed in [0, 1] and z follows
Gumbell distribution with parameters a and b.

Uniform to Rayleigh distribution

z ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2a2log xð Þ

p
ðB4Þ

Where x is uniformly distributed in [0, 1] and z follows
Rayleigh distribution with parameters a and b.
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