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Abstract
The probability density function (PDF) of a performance function can be constructed from the perspective of first four
statistical moments, and the failure probability can be evaluated accordingly. Since the shifted generalized lognormal
distribution (SGLD) model will be fitted to recover the PDF based on the first four statistical moments, the evaluation
of statistical moments of the performance function is of critical significance for the structural reliability analysis. This
paper presents a new method for statistical moments and reliability assessment of structures with efficiency and accuracy,
especially when large variabilities in the input random vector and nonlinearities are considered . First, a numerical method
is established based on rotating the points in the quasi-symmetric point method (Q-SPM), which is very efficient for
evaluating the statistical moments. This numerical method is called the rotational quasi-symmetric point method (RQ-SPM).
The optimal angles of rotation in RQ-SPM can be determined via an optimization problem, where the objective function
is adopted as minimizing the differences between the marginal moments of input random variables estimated by the points
after rotation and their exact values. By doing so, the information of marginal distributions and their tail distributions
could be better reproduced, which is of paramount importance to the statistical moments assessment of the performance
function, especially for the high-order moments. Once the statistical moments are available, the PDF of the performance
function can be recovered by the SGLD model. Finally, the failure probability can be evaluated by a simple integral over
the PDF of the performance function. Several numerical examples are given to demonstrate the efficacy of the proposed
method. Comparisons of the new method, the original Q-SPM, the univariate dimension reduction method (UDRM) and the
bivariate dimension reduction method (BDRM) are also made on the statistical moments assessment. The results manifest
the accuracy and efficiency of the proposed method for both the statistical moments and reliability assessment of structures.

Keywords Statistical moments · High-order moments · Rotational quasi-symmetric point method · Shifted generalized
lognormal distribution · Marginal moments

1 Introduction

Probabilistic and non-probabilistic reliability problems
(Wang et al. 2011, 2016, 2017; Qiu and Wang 2016) are
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always concerned in practical engineering. In probabilistic
reliability assessment, recovering the probability density
function (PDF) of the performance function of uncertain
structural systems is essential (Franko and Nagode 2015),
which arises in a diverse field of engineering practices.
There are usually two kinds of methods to deal with
this problem. The first is the probability density evolution
method (PDEM), which straightforwardly derives the PDF
of a performance function via a partial differential equation
(Li and Chen 2009; Chenn and Yuan 2014a, b; Chen
et al. 2016; Xu and Li 2016; Xu et al. 2016). The
other is the indirect method from a finite number of
statistical moments such as the Edgeworth series (Wallace
1958), the orthogonal expansion method (Winterstein 1988;
Winterstein and Kashef 2000; Choi and Sweetman 2010),
and the maximum entropy method (Zhang and Pandey
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2013, 2014; Xu 2016; Xu et al. 2016, 2017; Xu and
Wang 2017; Xu and Kong 2018), etc.. It is well-known
that the first four central moments, i.e. the mean, standard
deviation, skewness and kurtosis are widely employed
in the indirect methods because they embody the bulk
of the probabilistic information. However, each of these
indirect methods has its own peculiarities. For example, the
Edgeworth series has the weakness of being positive definite
and stable only under certain conditions. The orthogonal
expansion method is a monotonic transformation of the
normal distribution, however, the monotonic transformation
does not hold for certain combinations of skewness and
kurtosis. The maximum entropy method with four integer-
order statistical moments as constraints may not be able
to provide accurate tail distribution. Recently, a new
distribution model, named as shifted generalized lognormal
distribution (SGLD) has been developed for fitting the
first four central moments (Low 2013). This distribution
almost encompasses the entire skewness-kurtosis region
permissible for uni-modal densities. In this regard, this
distribution model has high flexibility in shape and is able
to model several well known distributions as well as actual
datasets. Particularly, the distribution tail can be reproduced
by SGLD model with favorable accuracy, which is closely
related to the evaluation of failure probability, especially
when the small failure probability is concerned. In the
present paper, the SGLD model is employed to reconstruct
the PDF of the performance function by fitting the first
four central moments for structural reliability analysis.
Then, the efficient estimation of statistical moments of
the performance function plays an important role in this
method.

The estimation of statistical moments, especially for the
high-order moments is always a challenging task. This is
because the high-order moments are invariably to analyze,
and they exhibit greater variability when sampled. Several
methods have been developed for evaluating the statistical
moments. The first is the Taylor expansion method (Ibrahim
1987; Singh and Lee 1993), which requires the computation
of derivatives of the performance function. Since the
derivatives of the implicit performance function are difficult
to obtain, this method could not be applicable to general
cases. Instead, the point estimate method (PEM) (Hong
1998; Zhao and Ono 2000), which is a derivative free
approach, is employed to evaluate the statistical moments
based on a weighted summation of the performance function
at a finite number of points. However, it is quite difficult
to keep the tradeoff of accuracy and efficiency by using
the PEM for general purpose. For example, the number
of points grows exponentially if the PEM developed by
Rosenblueth is applied (Rosenblueth 1975); low accuracy
could be encountered if the PEM developed by Zhao and

Ono (2000) is employed for strongly nonlinear problems.
The third is the dimension reduction method (DRM),
which decomposes a multivariate function into several low-
dimensional functions (Xu and Rahman 2004; Rahman and
Wei 2006; Li and Zhang 2011). In this regard, the statistical
moments can be evaluated by several low-dimensional
numerical integrations. The most commonly used DRMs
are the univariate dimension reduction method (UDRM) and
the bivariate dimension reduction method (BDRM). Since
the high-order terms are included in the residue error, the
UDRM may not be able to accurately capture the statistical
moments of the performance function involving multiple
random variables. Although the BDRM is much more
accurate, the computational effort could be prohibitively
large when the number of random variables increases
(Fan et al. 2016). The fourth is the multi-dimensional
numerical integration method, where the tensor product
method (Isaacson and Keller 1994; Xu et al. 2012) and the
sparse grid method (Xiong et al. 2009) could be widely
found. Despite achieving good accuracy, these methods may
still consume large computational effort for estimating the
statistical moments. Alternatively, some efficient cubature
formulas with fixed algebraic accuracy (Xu and Lu 2017)
and unscented transformation (Xiao and Lu 2016, 2017)
have been well developed and investigated for statistical
moments assessment. Unfortunately, when the variabilities
of basic random variables are large and strong nonlinearities
are involved in the performance function, these methods
may not be able to achieve the tradeoff of efficiency and
accuracy to estimate the statistical moments, especially
for the skewness and kurtosis. The errors in estimating
the high-order moments could further induce the incorrect
reliability results when these moments are substituted into
the SGLD model. In some circumstances, the accuracy
of using the first two moments, which are easy to be
accurately and efficiently obtained, for moments based
reliability analysis, e.g. FORM, SORM, may be even better.
Nevertheless, for general purposes, the method, which can
evaluate the first four central moments with the tradeoff of
efficiency and accuracy, still needs to be developed.

The objective of the present paper is to develop a new
method for statistical moments and reliability assessment
of structures with efficiency and accuracy, especially
when large variabilities in the input random vector and
nonlinearities are addressed. This paper is organized as
follows. In Section 2, the formulation of the statistical
moments based on a family of quasi-symmetric point
method (Q-SPM) is introduced. Then, in Section 3,
a new rotational quasi-symmetric point method (RQ-
SPM) is proposed to evaluate the statistical moments of
the performance function with accuracy and efficiency.
Section 4 devotes to introducing the SGLD model to
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reconstruct the PDF of the performance function based on
the statistical moments for structural reliability analysis.
Several numerical examples are investigated to validate the
proposed method in Section 5. The final section contains
some concluding remarks.

2 Statistical moments assessment based
on quasi-symmetric point method

Without loss of generality, the performance function of a
random structural system is denoted as

Z = G (X) (1)

where Z is the performance function of concern, G is a
deterministic operator and X = [X1, X2, X3..., Xd ]T is a d-
dimensional random vector involved in the random system,
whose joint PDF is known as pX(x). Since correlated
non-normal random variables can be transformed to be
independent standard normal random variables, which are
denoted as U = [U1, U2, U3..., Ud ]T , (1) can be written as

Z = G (X) = G
(
T −1 (U)

)
(2)

where T −1 represents the inverse Nataf transformation (Li
et al. 2008).

Then, the statistical moments, here denoted as the first
four central moments, of Z can be approximated by a
weighted summation of a set of deterministic function
evaluations at a finite number of integration points such that
(Cools 2003; Xu et al. 2012; Xu and Lu 2017)

μZ= E [Z] =
∫ +∞

−∞
G
(
T −1(u)

)
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ajG
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)]
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where μZ , σZ , α3Z and α4Z are the mean, standard
deviation, skewness and kurtosis of Z, respectively;

pU (u) =
d∏

i=1
pUi

(
ui

) = 1(√
2π
)d exp

(
−uT u

2

)
is the joint

PDF of random vector U ; aj s are the constant weights and
uj s are the integration points in the d-dimensional infinite
random-variate space.

Then, the determination of the constant weights and
the integration points is of paramount importance to the
tradeoff of efficiency and accuracy for evaluating the
statistical moments. It is noted that Gaussian weighted
multi-dimensional integrals are actually involved in (3)–
(6). In this regard, the numerical methods suitable for the
Gaussian weighted multi-dimensional integral, i.e.

I [f ] =
∫ +∞

−∞
1(√
2π
)d

exp

(
−uT u

2

)
f (u) du =

N∑
j=1

aj f
(
uj

)
(7)

could be applied to evaluate the moments, where f is an
arbitrary integrand. Besides, the methods, which can give
satisfactory accuracy with a small number of deterministic
evaluations, are highly desirable.

Recently, a family of quasi-symmetric point method
(Q-SPM) has been developed by Victoir based on the
orthogonal arrays and invariant theory (Victoir 2004;
Xu et al. 2012) for the Gaussian weighted numerical
integration. This method is also referred to as the thinned
cubature (Bernardo 2015). The following will give the
points and weights in Q-SPM for integrations over the entire
space Rd with weight function pU (u). The index “Perm”
designates a set of fully symmetric points, generated by
permutation of coordinates and their sign. For example,
(r, 0, 0)Perm represents the six points (±r, 0, 0), (0, ±r, 0)
and (0, 0, ±r).

When d ≥ 3, the two symmetric point sets P0 and P1

together with respective weights A0 and A1 involved in the
Q-SPM are given as

P0 = (r, 0, ..., 0)Perm A0 (8)

P1 = (s, s, ..., s)P erm A1 (9)

where the parameters are

r =
√

d + 2

2
, s =

√
d + 2

d − 2
(10)

and

A0 = 8d

(d + 2)2
A1 = (d − 2)2

(d + 2)2
(11)

where A0 + A1 = 1.
It is noted that a total of 2d + 2d points are

involved in these two fully symmetric point sets, where
the set of 2d points in P1 have a product structure
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Fig. 1 Quasi-symmetric points in two-dimensional space

and the same weight. By using the point sets and
weights above in the numerical integration, the 5-th degree
of algebraic(polynomial) accuracy could be achieved.
However, the number of points grows exponentially with
the dimension in P1, which may results in prohibitively
large computational efforts. Based on the orthogonal arrays
and invariant theory, the number of points in P1 can be
reduced, where the 5-th degree of algebraic accuracy is still
ensured. That means a subset of points in P1, which is
called the quasi-symmetric point set, is actually adequate for
the numerical integration (see Fig. 1 for a two-dimensional
illustration). In this regard, this method for the numerical
integration is called the quasi-symmetric point method (Q-
SPM). The number of points in quasi-symmetric point set is
2k with k ≤ d and the total number of points in Q-SPM is
2d + 2k . For practical applications, the exponent k is given
in Table 1 when 3 ≤ d ≤ 24.

Then, the integration points in Q-SPM can be given as

uj =
{

(r, 0, ..., 0)Perm, j = 1, 2.., 2d
(s, s, ..., s)P erm, j = 2d + 1, 2d + 2.., 2d + 2k

(12)

For example, if d = 6 is considered, the integration
points are u1 = (2, 0, ..., 0), u2 = (0, 2, ..., 0), ...u6 =
(0, 0, ..., 2), u7 = (−2, 0, ..., 0), ...u12 = (0, 0, ...,−2),

Table 1 Exponent k as a function of dimension d

d 3-5 6 7 8-9 10-16 17-20 21-24

k d 5 6 7 8 9 10

u13 =
(√

2,
√
2, ...,

√
2
)
, u14 =

(√
2, −√

2, ...,
√
2
)
,

...u48 =
(
−√

2, −√
2, ...,−√

2
)
.

Correspondingly, the weight for each integration point
could be expressed as

aj =
{

4/(d + 2)2, j = 1, 2.., 2d
(d − 2)2/

[
2k(d + 2)2

]
, j = 2d + 1, 2d + 2.., 2d + 2k (13)

where aj > 0 and
∑

aj = A0 + A1 = 1.
In this regard, the integration points together with their

weights in Q-SPM can be employed to numerically evaluate
the statistical moments in (3)–(6). It can be found that
when d ≤ 7, only tens of integration points are required;
when 8 ≤ d ≤ 20, hundreds of points are adequate
for the numerical integration; and when 21 ≤ d ≤ 24,
only one thousand of integration points are generated to
obtain the moments. This feature demonstrates the high
efficiency of Q-SPM. Nevertheless, it was still found in
Ref. Chen and Zhang (2013) that the Q-SPM may not be
accurate enough even for estimating the standard deviation
of response. That may be because the quasi-symmetry
and sparseness of this method leads to the marginal
PDF, especially the tail distribution, cannot be sufficiently
captured (Chen and Zhang 2013). To resolve this problem,
several rotational quasi-symmetric point methods (RQ-
SPM) have been developed, e.g. GF-discrepancy based RQ-
SPM (Chen and Zhang 2013) and fractional moments based
RQ-SPM (Xu et al. 2017). Unfortunately, these RQ-SPMs
may not be applicable to accurately evaluate the high-order
moments (α3Z and α4Z) although they perform quite well
to obtain the mean and standard deviation and fractional
moments of response (Chen and Zhang 2013). The reason
is that the integrands for the high-order moments (5) and
(6) could be oscillatory functions, which are much more
complicated than those for the low-order moments. In this
regard, a new RQ-SPM will be explored for estimating the
statistical moments of the performance function, especially
for the high-order moments.

3Marginal moments based rotational
quasi-symmetric point method

As is mentioned, the marginal PDFs and their tails of
input random vector could be better reproduced by rotating
the integration points in Q-SPM, which is of paramount
importance to the accurate numerical evaluation of the
statistical moments of the performance function. The
Givens transform is actually employed to rotate these points
in multi-dimensional random-variate space. If the point
uj = (

u1,j , u1,j , ...ud,j

)
in Q-SPM is counterclockwise
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rotated in the two-dimensional (k, l) plane by an angle θ (in
rad), then the point after rotation is (Chen and Zhang 2013)

ũj = Wkl (θ) uj (14)

where ũj denotes the point after rotation and Wkl is the
rotational matrix in the (k, l) plane, given by (Chen and
Zhang 2013)

Wkl (θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
0
...
0
...
0

...
. . .
...

...

...

0
...

cos θ

...
sin θ

...
0

...

...
. . .
...

...

0
...

− sin θ

...
cos θ

...
0

...

...

...
. . .
...

0
...
0
...
0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k−th row

l−th row

k−th column l−th column

(15)

Then, the rotation of the point in the entire space can be
expressed as

ũj (θ) =
d∏

k=1

d∏
l=i+1

Wkl

(
θk,l

)
uj = R (θ)uj (16)

where R (θ) =
d∏

k=1

d∏
l=k+1

Wkl

(
θk,l

)
is the rotational matrix

in the entire space. It is seen that a total of d × (d − 1)/2
times plane rotations are implemented and the rotational
angles, denoted as θ = {

θ1,2, θ1,3, ...θd−1,d
}
determine the

points after rotation. It should be noted that the weights

associated with the points after rotation are still the same
with those in Q-SPM. In this regard, the angle vector θ

should be optimally specified to achieve the best results.
The points after rotation is called the rotational quasi-
symmetric points. Figure 2 illustrates the rotation of points
in a two-dimensional case. Clearly, by doing the rotation,
the projection ratio of points is increased and the tail
distribution information may be captured sufficiently by the
points after the rotation.

To optimally determine the angle vector θ , an appropriate
objective function needs to formulated, which is of great
significance for accurate estimating the statistical moments
of the performance function. Besides, the objective function
should be calculated efficiently even in high dimensions.
The basic idea of establishing the objective function is that
the objective function can be estimated based on the points
after rotation together with their weights without conducting
deterministic analysis of systems. Further, the objective
function may take the same formulation with respect to
input random variables with those of statistical moments of
the performance function. In this regard, the more accurate
the objective function is, the more accurate the statistical
moments of the performance function would be.

In the present paper, a marginal moments based objective
function is proposed. The estimated marginal moments of
input random variables can be expressed as

μXi
(θ) =

N∑
j=1

aj T
−1 (ũi,j (θ)

)
, i = 1, 2, ..., d (17)

σ 2
Xi
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ajG
2
[
T −1 (ũi,j (θ)
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(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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ajG
3
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T −1

(
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3

{
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)]}
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3
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+6

{
N∑
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2 − 3μXi
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/σ 4
Xi

(θ)

i = 1, 2, ..., d

(20)

where ũi,j represents the i-th coordinate of the point ũj .
On the other hand, the exact values of marginal moments

of input random variables can be evaluated easily by direct
integrations, which are denoted as μ̄Xi

, σ̄Xi
, ᾱ3Xi

and
ᾱ4Xi

, respectively. It is seen that the estimated marginal
moments of input random variables (17)–(20) have the same

formulations with those in statistical moments of the
performance function(3)–(6), indicating the points after
rotation and their weights may have the same performance
in both the marginal moments of input random variables and
the statistical moments of the performance function. In this
regard, if the estimated marginal moments of input random
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Fig. 2 Rotation of points in
two-dimensional space

variables is close to their exact values, it is expected that
the differences between the estimated statistical moments of
the performance function and their underlying true values
will be small. Thus, the objective function can be defined as
the maximum relative error between the estimated marginal
moments of input random variables and their exact values
such that

J (θ) = emax (θ) = max

[
max
1≤i≤d

{
eμ,i (θ), eσ,i (θ), eα3,i (θ), eα4,i (θ)

}]

(21)

where

eμ,i(θ) =
∣∣μXi

(θ) − μ̄Xi

∣∣
∣∣μ̄Xi

∣∣ (22)

eσ,i(θ) =
∣∣σXi

(θ) − σ̄Xi

∣∣
∣∣σ̄Xi

∣∣ (23)

eα3,i (θ) =
∣∣α3Xi

(θ) − ᾱ3Xi

∣∣
∣∣ᾱ3Xi

∣∣ (24)

eα4,i (θ) =
∣∣α4Xi

(θ) − ᾱ4Xi

∣∣
∣∣ᾱ4Xi

∣∣ (25)

It is noted that the smaller the objective function J (θ) is,
the more accurate the estimated values of marginal moments
by RQ-SPM are. Therefore, the accuracy of the statistical
moments of the performance function will be improved
due to the similarities in the formulations (see (3)–(6) and
(17)–(20)) (Xu and Lu 2017). Then, the task changes to
minimize the objective function J (θ). Since the mean and
standard deviation can be always captured accurately, which
indicates eμ,i and eσ,i , i = 1, 2, ..., d are quite small if the
points in Q-SPM are rotated (Chen and Zhang 2013). Then,
the objective function is equivalent to

J (θ) = emax (θ) = max

[
max
1≤i≤d

{
eα3,i (θ) , eα4,i (θ)

}]

(26)

Further, the objective function can be written as

J (θ) = emax (θ) = max

[
max
1≤i≤d

{
eM3,i (θ) , eM4,i (θ)

}]

(27)

where

eM3,i (θ) =
∣∣M3Xi

(θ) − M̄3Xi

∣∣
∣∣ᾱ3Xi

∣∣ (28)

eM4,i (θ) =
∣∣M4Xi

(θ) − M̄4Xi

∣∣
∣∣ᾱ4Xi

∣∣ (29)

where M3Xi
and M4Xi

denotes the estimated values of the
3rd and 4th raw moments, which are evaluated by

M3Xi
(θ) =

N∑
j=1

ajG
3
[
T −1 (ui,j (θ)

)]
(30)

M4Xi
(θ) =

N∑
j=1

ajG
4
[
T −1 (ui,j (θ)

)]
(31)

and M̄3Xi
and M̄4Xi

are the corresponding exact values,
which can be evaluated easily by

M̄3Xi
=
∫ +∞

−∞
Xi

3fXi (xi) dxi (32)

M̄4Xi
=
∫ +∞

−∞
Xi

4fXi (xi) dxi (33)

Then, the following optimization problem needs to be tackled
to determine the optimal angle vector in RQ-SPM such that

find θ

objective min [J (θ)]
s.t. θkl ∈ [0, 2π ] , ∀θkl ∈ θ

(34)

Obviously, the global optimization method such as the
genetic algorithm and the particle swarm algorithm can
be employed to find the optimal angle vector θ . Then,
the points after rotation ũj s with their weights aj s (j =
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1, 2, ..., N) can be applied for the numerical integration.
Although solving the optimization problem above requires
a certain amount of computational time, the computational
effort for statistical moments assessment mainly depends
on the repeated deterministic analysis of the performance
function. For example, if a total of 30 repeated deterministic
analysis are required to evaluate the moments and each
deterministic analysis involves the time-consuming finite
element analysis, e.g. 30 min, the computational time of the
optimization problem (34), which may cost 5 min, could
be negligible compared to the total effort of performing
repeated deterministic analysis of the performance function,
which is 900 min. It should be also mentioned that the
rotation will not reduce the algebraic degree of accuracy
compared with that of the original Q-SPM (Chen and Zhang
2013; Xu et al. 2017). Besides, the information of marginal
PDFs and the tail distributions of input random variables
could be characterized more clearly by the points after
rotation. In this regard, the accuracy of numerical evaluation
of the high-order moments of the performance function
could be significantly improved by using the points after
rotation. Since the rotation is performed based on the Q-
SPM and the objective function is the marginal moments of
input random variables, this method is called the marginal
moments based rotational quasi-symmetric point method
(RQ-SPM). Substituting uj in (3)–(6) as ũj , the statistical
moments of the performance function can be evaluated by
RQ-SPM without inducing extra difficulty.

Actually, the rotation of the points is performed in the
standard normal random-variate space, which increases the
projection ratio of the points on the tail and may improve
the accuracy for high-order moments calculations. It should
be pointed out that the rotation does not induce correlations
between the input random variables. This could be found
from the covariance matrix CŨŨ, i.e.

CŨŨ =
N∑

j=1

aj

(
ũj − mŨ

)(
ũj − mŨ

)T (35)

where Ũ is the random vector after the rotation andmŨ is the
mean vector. Since the rotation does not change the mean
vector in the standard normal random variate space, which
is stillmŨ = [0, 0, ...., 0]T , the covariance matrix above can
be further expressed as

CŨŨ =
N∑

j=1
aj

(
ũj

)(
ũj

)T

=
N∑

j=1
aj

(
R (θ) uj

)(
R (θ) uj

)T

=
N∑

j=1
R (θ) RT (θ) ajujuj

T

(36)

It can be easily proved that R (θ) RT (θ) = I =
diag (1, 1, ...., 1) (Chen and Zhang 2013). In this regard, we
have

CŨŨ =
N∑

j=1

ajujuj
T = CUU = I (37)

It is noted that the covariance matrix is CŨŨ = I, which
is the same with that before the rotation, which means the
random variables after the rotation are still independent with
each other. Thus, the rotation of points does not induce
correlations among the input random variables.

Further, the proposed marginal moments based RQ-
SPM is different from the fractional moments based one
in Ref. (Xu et al. 2017). The differences lie in: (1). The
fractional moments based RQ-SPM is performed over the
normal random variables, whereas the proposed RQ-SPM
is directly developed on the basis of original input random
variables; (2). The objective function in Ref. Xu et al.
(2017) is formulated based on minimizing the differences
between the fractional moments of normal random variables
in an interval of fractional orders, which are the raw
moments in essence. However, the objective function in
the proposed method is established based on minimizing
the differences of integer central moments of original
input random variables. It is known that the small errors
in raw moments could be accumulated and still result
in quite large errors in central moments. Although the
fractional moments based RQ-SPM works particularly well
for fractional moments assessment, it may be imprudent
to use the fractional moments based RQ-SPM to evaluate
the integer central moments, especially for the high-order
central moments. The similar problem also exists in the GF
discrepancy based RQ-SPM in Ref. (Chen and Zhang 2013).
In this regard, it is of great necessity to develop the new RQ-
SPM particularly applicable for this kind of problems due
to its high efficiency.

4 PDF evaluation and reliability assessment
based on SGLDmodel

Once the first four statistical moments of the performance
function are available, the construction of the PDF
of the performance function from the moments will
be investigated for structural reliability analysis. In the
present paper, the shifted generalized lognormal distribution
(SGLD) model (Low 2013) is fitted to obtain the
PDF based on the first four statistical moments. This
distribution model actually combines the three-parameter
lognormal distribution (Cohen and Whitten 1980), which
is asymmetrical distribution and encompasses the entire
range of skewness, and the exponential power distribution
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Fig. 3 The SGLD with different moments (μZ = 0, σZ = 1)

(Nadarajah 2005), which is a symmetrical distribution
and encompasses the entire range of kurtosis. In this
regard, the SGLD model, which synthesizes the features
of these distributions above, has a high flexibility in the
shape and encompasses the entire skewness-kurtosis region
permissible for unimodal densities (He and Gong 2016). It
should be pointed out that the SGLD model is only effective
when the skewness of the random variable Z is positive.
If negative skewness is involved, one can simply define a
variable Z′ = −Z and obtain the PDF of Z′ for structural
reliability analysis.

The PDF of Z, represented by the SGLD model can be
expressed as (Low 2013)

pZ (z) = α

z − b
exp

(
− 1

rλr

∣∣∣∣ln
z − b

κ

∣∣∣∣
r)

, b < z < ∞ (38)

where b is the location parameter; κ is the scale parameter;
λ > 0 and r > 0 are the shape parameters and the
coefficient α is defined as

α = 1[
2r1/rλ� (1 + 1/r)

] (39)

where �(.) is the Gamma function, which is �(x) =∫∞
0 tx−1e−t dt .
It can be observed that the SGLD model is a four-

parameter distribution, where λ, r, b, κ need to be specified.
Moreover, for each fixed pair (λ, r), the location and scale
parameters (b, κ) can be determined via (Low 2013)

κ = σZ/σY , b = μZ − κμY (40)

where μY and σY are the mean and standard deviation of a
reduced variable Y = (Z − b)/κ , which can be evaluated
from the following raw moments (Low 2013)

E
[
Y k
]

= 1

� (1/r)

∞∑
n=0

(kλ)2n

(2n)! r2n/r�

(
2n + 1

r

)
(41)

for each fixed pair (λ, r).
Then, only two parameters, i.e. λ and r , need to be

determined. Define v = [λ, r]T , it is known that the
skewness and kurtosis of Z are actually the function of
v, which are denoted as α3Z(v) and α4Z(v). Then, the
following moment equations hold

H (v) =
[

α3Z (v) − α3Z

α4Z (v) − α4Z

]
= 0 (42)

where the vector v can be solved by using the Newton’s
iteration method. The iterative scheme can be formulated
such that

vl+1 = vl − J−1 (vl)H (vl) (43)

where the Jacobian is

J (vl) =
[

∂α3Z
∂λ

∂α3Z
∂r

∂α4Z
∂λ

∂α4Z
∂r

]
(44)

which is numerically evaluated at vl

Fig. 4 Rigid-plastic portal frame
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Table 2 Statistical moments and failure probabilities of Example 1

Methods N μZ (R.E.) σZ(R.E.) α3Z (R.E.) α4Z (R.E.) pf (R.E.)

Proposed RQ-SPM 44 1.5827 0.8074 −0.6564 3.9671 0.0388

(0.17%) (0.41%) (4.17%) (1.04%) (0.26%)

Original Q-SPM 44 1.5784 0.8041 −0.6633 3.2725 0.0399

(0.10%) (0.003%) (3.17%) (18.37%) (3.10%)

UDRM 31 1.5983 0.8284 −0.7563 2.9059 0.0473

(1.16%) (3.02%) (10.41%) (27.51%) (22.22%)

BDRM 385 1.5857 0.8099 −0.6318 4.0437 0.0385

(0.36%) (0.73%) (7.77%) (0.87%) (0.52%)

MCS 107 1.5800 0.8041 −0.6850 4.0089 0.0387

Note:N = number of samples; R.E. = relative error

Finally, the PDF of Z can be reconstructed, and the
failure probability can be conveniently evaluated by

pf =
∫ 0

−∞
pZ (z) dz (45)

and the reliability is R = 1 − pf .
Figure 3 shows the PDFs represented by SGLD with

different moments. It is clear that the SGLD model is highly
flexible in shape.

To summarize, the proposed method for structural
reliability analysis involves the following steps:

Step 1. Employ the original Q-SPM to generate the basic
point set for the dimension d.

Step 2. Rotate the basic point set according to the marginal
moments of input random vector (16). In this step,
the optimal angles for the rotation need to be
specified by (34).

Step 3. Evaluate the statistical moments of the performance
function based on the point set after the rotation.

Step 4. Substitute the statistical moments into the SGLD
model to derive the entire range of the PDF of the
performance function.

Step 5. Perform a simple integral over the PDF of
the performance function to obtain the failure
probability/reliability.

5 Numerical examples

Four examples are presented to validate the proposed method
for statistical moments and reliability assessment in this
section. In each example, Monte Carlo simulation method
is carried out to produce the “exact” solutions for compari-
sons. Besides, the performance of the proposed method is
examined through comparisons with the original Q-SPM,
the widely-used univariate dimension reduction method
(UDRM) (Rahman andWei 2006) and the bivariate dimension
reduction (BDRM) (Xu and Rahman 2004), respectively.

5.1 Example 1

The first example considers a rigid-plastic portal frame
subjected to a horizontal load F and a vertical load FG,

Fig. 5 PDF and POE
comparisons (Example 1)
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Fig. 6 PDF and POE
comparisons using UDRM and
Q-SPM (Example 1)

which is shown in Fig. 4. The performance function is given
by (Nie and Ellingwood 2000)

Z = G (X) = min {G1 (X) , G2 (X) , G3 (X)} (46)

where

G1 (X) = X2 + 2X3 + X4 − FGb (47)

G2 (X) = X1 + X2 + X4 + X5 − Fa (48)

G3 (X) = X1 + 2X3 + 2X4 + X5 − Fa − FGb (49)

in which X1-X5 are the plastic bending capacities at the
joints, which are independent lognormal random variables
with means 1 and coefficients of variation (C.O.V.) 0.20;
F is the horizontal load, which is also a lognormal random
variable with a mean 2.4 and a C.O.V. 0.3; FG is the
vertical load, which is a deterministic value as 1.15; and
the distances a = b = 1 are considered in this case. It is
seen that the large variability is involved in the input random
vector, which consists of 6 independent random variables.

Table 2 lists the statistical moments of the performance
function by RQ-SPM, Q-SPM, UDRM and BDRM,
respectively. Simultaneously, the results by MCS (107 runs)
are taken as the “exact” values for comparisons. The relative
errors between the results obtained by different methods
and those of MCS are also shown in Table 2. It is noted
that all these methods can result in very accurate means
and standard deviations. Besides, the RQ-SPM and the
original Q-SPM only use 44 deterministic evaluations to
obtain the moments of the performance function, which is
almost comparable with that of UDRM (26 deterministic
runs). However, the original Q-SPM gives the kurtosis α4Z

with less accuracy, where the relative error is as large as
18.37%. The skewness α3Z and the kurtosis α4Z given
by the UDRM severely deviate from the results by MCS.
Further, although the BDRM can produce the results with
relatively fair accuracy, the computational time is far larger

than that of UDRM and the original Q-SPM. Remarkably,
the proposed RQ-SPM is still able to give very accurate
moments of the performance function with a few number
of deterministic evaluations, where the maximum relative
error is less than 4.2%. In this regard, it is demonstrated
that the proposed RQ-SPM can achieve very good tradeoff
of accuracy and efficiency for evaluating the statistical
moments of the performance function.

Further, the reliability is evaluated based on the SGLD
model. It is noted that the skewness of the performance
function is smaller than zero and the SGLD model is
effective for positive skewness. In this regard, we define
Z′ = g(X) = −G(X) and the failure probability is pf =∫∞
0 pZ′ (z) dz. Figure 5a shows the PDF of Z′ obtained
from the proposed method, where the histogram by MCS
is also pictured for comparison. It is seen that the result by
the proposed method accord very well with the histogram.
Besides, the probability of exceedance (POE) curves in
logarithmic scale are compared in Fig. 5b, where the close
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Table 3 Random variables in
Example 2 Variable Description Distribution Mean C.O.V.

X1 Area of reinforcement Lognormal 1260mm2 0.10

X2 Yield stress of reinforcement Lognormal 300N/mm2 0.20

X3 Effective depth of reinforcement Lognormal 770N/mm2 0.10

X4 Stress-strain factor of concrete Lognormal 0.35 0.10

X5 Compressive strength of concrete Weibull 25mm2 0.10

X6 Width of beam Lognormal 200mm 0.20

MB Applied bending moment Lognormal 100kN .m 0.30

Table 4 Statistical moments
and failure probabilities of
Example 2

Methods N μZ (R.E.) σZ(R.E.) α3Z (R.E.) α4Z (R.E.) pf (R.E.)

Proposed RQ-SPM 78 180024207.6 73693051.5 0.4918 3.7987 0.0028

(0.01%) (0.01%) (0.71%) (2.82%) (3.40%)

Q-SPM 78 180012611.3 73669221.0 0.4684 3.2921 0.0043

( 0.01%) (0.04%) (4.08%) (10.89%) (48.27%)

UDRM 36 180018554.4 72820576.9 0.1652 1.345 0.0039

(0.01%) (1.19%) (66.16%) (63.60%) (34.48%)

BDRM 533 179997299.2 73705847.1 0.4840 3.5964 0.0027

(0.01%) (0.01%) (0.88%) (2.65%) (6.90%)

MCS 107 180002994.4 73701267.9 0.4883 3.6944 0.0029

Fig. 8 PDF and CDF
comparisons (Example 2)
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Fig. 9 Nine bar truss structure
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Table 5 Statistical moments
and failure probabilities of
Example 3 (Ub = 0.15m)

Methods N μZ (R.E.) σZ(R.E.) α3Z (R.E.) α4Z (R.E.) pf (R.E.)

Proposed RQ-SPM 24 0.0643 0.0155 0.7506 3.9682 1.15 × 10−4

(4.60E-05) (0.08%) (0.17%) (1.19%) (4.17%)

Q-SPM 24 0.0643 0.0155 0.6977 3.6891 6.20 × 10−5

(4.90E-05) (0.08%) (6.89%) (8.14%) (48.33%)

UDRM 21 0.0643 0.0150 0.1225 1.5215 1.20 × 10−6

(0.02%) (3.08%) (83.66%) (62.11%) (99.15%)

BDRM 161 0.0643 0.0156 0.7214 3.6669 5.81 × 10−5

(0.001%) (0.19%) (3.73%) (8.69%) (51.58%)

MCS 106 0.0643 0.0155 0.7493 4.0158 1.20 × 10−4

agreement can be noticed again. As far as the failure
probability is concerned, the proposed method gives 0.0388,
where the failure probability by MCS is 0.0387. It should
be emphasized that this high accuracy is achieved just with
44 deterministic evaluations of the performance function.
These computational results demonstrate the accuracy and
efficiency of the proposed method for structural reliability
analysis.

If the UDRM and the original Q-SPM is applied to
evaluate the statistical moments in the SGLD model,
the results are shown in Fig. 6. Obviously, it can be
noted that the PDFs and POE curves by using UDRM
and Q-SPM in the SGLD model deviate seriously with
the results obtained from MCS. The comparisons of
failure probabilities are also listed in Table 2. Again, it
is noted that the relative errors of failure probabilities
evaluated by the SGLD with UDRM and Q-SPM are
obviously much larger than that by the proposed method.
Besides, the proposed method can achieve the compa-
rable accuracy for failure probability assessment with
that by BDRM but cost much less computational effort.
In summary, the proposed method still gives the most
accurate failure probability with minimum number of
samples.

It is also noted that the relative error of kurtosis by
the proposed method is relatively large, say > 4%, which
actually affects the accuracy of the far-end of the tail
distribution. Since the failure probability above is relatively
large, which is related to the near-end of the tail distribution,
this moment error does not induce quite large error in
assessing the failure probability. Further, whenZ = G(X)+
4 is considered for reliability analysis, only the mean is
changed and other statistical moments are still the same with
those above, where the large relative error of kurtosis still
exists. The POE in logarithmic scale of Z′ = −G(X) −
4 is shown in Fig. 7. Clearly, slight deviation between
the results by the proposed method and MCS could be
observed at the far-end of the tail distribution. The failure
probabilities given by the proposed method and MCS are
1.04 × 10−5 and 1.67 × 10−5, respectively. Although
the relative error becomes much larger for small failure
probability problems, the accuracy could be still acceptable
for most of engineering problems.

5.2 Example 2

The second example involves the ultimate bending
moment of resistance of a reinforced concrete, where the

Fig. 10 PDF and POE
comparisons (Example 3)
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Table 6 Failure probabilities of Example 3

Threshold Proposed method MCS

0.13 0.0010 0.0011

0.14 3.46 × 10−4 3.71 × 10−4

0.15 1.15 × 10−4 1.20 × 10−4

0.16 3.78 × 10−5 3.90 × 10−5

0.17 1.24 × 10−5 1.70 × 10−5

0.18 4.15 × 10−6 4.00 × 10−6

performance function is given by (Breitung and Faravelli
1994; Zhou and Nowak 1988; Zhang and Pandey 2013)

Z = G(X) =
[
X1X2X3 − X2

1X
2
2X4

X5X6

]
− MB (50)

where the involved random variables and their descriptions
are listed in Table 3. It is noted that a nonlinear performance
function with large C.O.V.s of random variables are actually
considered in this case.

The computational results are shown and compared in
Table 4. It can be found that the UDRM produces the
spurious results of the high-order moments, i.e. α3Z and
α4Z although it consumes the smallest computational time.
Besides, even the relative error of standard deviation σZ is
larger, say 1.19% than the counterparts of other methods.
The accuracy of α3Z and α4Z is not satisfactory by Q-
SPM, where the relative error of α4Z goes up to 10.89%.
Again, the results by the proposed RQ-SPM accord very
well with those by MCS, where the maximum relative error
in this case is less than 3%. Besides, this high accuracy
of RQ-SPM is only based on 78 deterministic analyses of
the performance function. It is noted that the results by
the proposed RQ-SPM are quite close to those of BDRM
in this example. However, the BDRM requires 533 times
deterministic analyses of the performance function. In this
regard, the computational efficiency of the proposed RQ-
SPM is much better than that of BDRM.

It is noted that the skewness in this example is
positive, and the PDF and CDF in logarithmic scale of
the performance function can be obtained by the proposed
method, which are shown in Fig. 8. Again, it is seen
the results by the proposed method still accord very well
with those of MCS. The failure probabilities are also

listed in Table 4. It is seen that the proposed method
still gives the most accurate failure probability with the
lowest computational burden. Therefore, the efficacy of the
proposed method for structural reliability is validated again.

5.3 Example 3

The third example considers a nine-bar planar truss structure
under vertical loads, which is shown in Fig. 9 (Xu et al.
2017). The young’s modulus E, the cross sectional area
of each bar A, and the external loads F1 and F2 are all
lognormal random variables with means 2.0 × 105MPa,
2.5 × 10−3m2, 500kN , 400kN and C.O.V.s 0.1, 0.05, 0.3,
0.3, respectively. Note that a closed-form expression for the
nodal deflection is not available and it has to be computed
by linear finite-element analysis. The implicit performance
function is defined as (Xu et al. 2017)

Z = G (X) = Ub − max
1≤i≤6

{√
U2

Xi
+ U2

Yi

}
(51)

where UXi
and UYi

denote the horizontal and the vertical
deflection at the i-th node andUb is the deterministic threshold.

Actually, if we define Z′ = max
1≤i≤6

{√
U2

Xi
+ U2

Yi

}
, then

the failure probability goes to pf = ∫∞
Ub

pZ′ (z) dz. In this
regard, the statistical moments and the entire distribution of
Z′ is of great concern.

Table 5 compares the results of statistical moments by
the proposed RQ-SPM, the original Q-SPM, UDRM and
BDRM, respectively. The “exact” results are also provided
by 106 direct MCS. Similarly, it is seen that the UDRM
is still not able to give accurate results of the high-order
moments, whereas the BDRM cannot achieve the balance of
accuracy and efficiency. The means and standard deviations
by RQ-SPM and Q-SPM are the same, however, the
proposed RQ-SPM can significantly improve the accuracy
of the high-order moments. In this example, the maximum
relative error of moments by RQ-SPM is only 1.19%. It
should be emphasized that only 24 deterministic evaluations
are performed in RQ-SPM. Thus, the RQ-SPM is indeed of
accuracy and efficiency for statistical moments assessment
of the performance function (Table 5).

Since positive skewness is involved herein, the SGLD
model with the RQ-SPM is employed to derive the entire

Table 7 Statistical moments
and failure probabilities of
Example 3 (2) (Ub = 0.15m)

Methods N μZ (R.E.) σZ(R.E.) α3Z (R.E.) α4Z (R.E.) pf (R.E.)

RQ-SPM 24 0.0643 0.0155 0.7007 3.6153 5.15 × 10−5

(GF-discrepancy) (1.01E-04) (0.02%) (5.56%) (9.97%) (57.08%)

RQ-SPM 24 0.0643 0.0155 0.7753 4.2860 1.87 × 10−4

(Fractional moments) (9.60E-05) (0.11%) (3.64%) (6.73%) (55.33%)
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distribution of Z′. Similarly, the PDF and POE curve in
logarithmic scale of Z′ are pictured in Fig. 10, where
the results by MCS are provided for comparisons. The
failure probabilities evaluated by different methods are
also shown in Table 5 when ub = 0.15m. Remarkably,
the proposed method is still able to reproduce the entire
distribution range and provides the failure probability with
high accuracy and efficiency. Table 6 lists the comparisons
of failure probabilities by the proposed method when
the threshold Ub is assigned different values. Again, it
is noted that the proposed method can even accurately
and efficiently obtain the very small failure probabilities
(order of 10−4 − 10−6).

Further, in this example, the GF discrepancy based RQ-
SPM (Chen and Zhang 2013) and fractional moments based
RQ-SPM (Xu et al. 2017) are employed to evaluate the
statistical moments and reliability. The results are shown in
Table 7 and Fig. 11. Obviously, although the efficiency of
these RQ-SPMs is the same, the accuracy of the proposed
RQ-SPM is much better than other ones for both the
statistical moments and reliability assessment.

5.4 Example 4

The last example considers a three-bay eight-storey planar
frame structure subjected to lateral loads, which is pictured
in Fig. 12. The structural parameters are given as follows:
Young’s modulus E = 210Gpa; cross sectional area
of beam AB = 73.303cm2; cross sectional area of
column AB = 120.4cm2; moment of inertial of beam
IB = 11400cm4 and moment of inertial of column IC =
20500cm4. The lateral loads F1-F8 are lognormal random
variables with means 10kN , 11.5kN , 12kN , 12kN , 12kN ,
10kN , 11kN and 13kN and C.O.V.s all being 0.3. Likewise,
the finite-element analysis of the structure is carried out and
the implicit performance function is

Z = G (X) = ub − max
1≤i≤8;1≤j≤4

∣∣uij (x)
∣∣ (52)

Fig. 12 Three-bay eight-storey frame structure

where uij (x) represents the inter-storey-drift at the j -th
joint on the i-th storey, and ub is the deterministic allowable
drift.

Like Example 3, the reliability can be evaluated by pf =∫∞
ub

pZ′ (z) dz, whereZ′ = max1≤i≤8;1≤j≤4
∣∣uij (x)

∣∣. Then,
the statistical moments and entire distribution of Z′ is of
interest.

The results of statistical moments of Z′ are shown
in Table 8. Again, it can be observed that the results
by UDRM and the original Q-SPM are not close to the
“exact” results by MCS. The accuracy of RQ-SPM with
only 144 samples is comparable with that of BDRM with
705 samples. However, the proposed RQ-SPM is much
more efficient than BDRM. This example also demonstrates
the efficiency and accuracy of the proposed RQ-SPM for
statistical moments assessment of the performance function.

Fig. 11 POE comparisons with
other RQ-SPMs
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Table 8 Statistical moments
and failure probabilities of
Example 4 (ub = h/250m)

Methods N μZ (R.E.) σZ(R.E.) α3Z (R.E.) α4Z (R.E.) pf (R.E.)

Proposed RQ-SPM 144 0.0074 0.0012 0.5740 3.7165 3.35 × 10−4

(9.22E-04) (0.02%) (2.21%) (3.43%) (11.04%)

Q-SPM 144 0.0074 0.0012 0.4932 2.8917 2.42 × 10−5

(9.09E-04) (0.14%) (12.17%) (19.53%) (91.88%)

UDRM 41 0.0074 0.0012 0.0881 1.7124 1.01 × 10−6

(9.20E-04) (2.23%) (84.31%) (52.35%) (99.66%)

BDRM 705 0.0074 0.0012 0.5593 3.4921 2.66 × 10−4

(0.103%) (9.90E-05) (0.39%) (2.81%) (10.74%)

MCS 106 0.0074 0.0012 0.5615 3.5934 2.98 × 10−4

The PDF and POE curve in logarithmic scale are shown
in Fig. 13, which are compared with the results by MCS. For
example, if the allowable drift is adopted as ub = h/250,
the failure probabilities given by different method are also
listed in Table 8. Again, very good accordance between the
results by the proposed method and MCS can be observed,
which validates the effectiveness of the proposed method
for structural reliability analysis.

6 Concluding remarks

A new method, named the rotational quasi-symmetric
point method (RQ-SPM), has been developed for statistical
moments assessment of the performance function. This
method has been established based on rotating the points
in the quasi-symmetric point method (Q-SPM), where the
optimal angles need to be found. The marginal moments of
input random variables has been employed to formulate the
objective function. The new method can better reproduce
the marginal probabilistic information of input random

variables, especially for the tail distributions. In this
regard, it can efficiently evaluate the statistical moments
of the performance function, particulary for the high-
order moments with high accuracy. Then, this method
has been combined with the shifted generalized lognormal
distribution (SGLD) to obtain the entire range of the
PDF of the performance function for structural reliability
assessment.

Four numerical examples involving both explicit and
implicit performance functions have been analyzed to
demonstrate the efficiency and accuracy of the proposed
method. In all examples, Monte Carlo simulations have
been carried out to provide the results for comparisons. It
has been observed that the proposed method is much more
accurate than the original Q-SPM, univariate dimension
reduction method. Besides, it has been also found that this
method is much more efficient than the bivariate dimension
reduction method.

It is noted that the proposed method is applicable for
problems with 3-24 random variables. For high-dimensional
reliability problems, further investigations are needed.

Fig. 13 PDF and POE
comparisons (Example 4)
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