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Abstract
Suspended glass panels are monolithic or laminated frameless windows sustained by a number of holders, typically located
in the vicinity of the edges. These panels can be used, among other purposes, as noise barriers. The vibro-acoustic behaviour
of glass windows is critical at low frequencies, where the problem is often tackled by increasing the thickness, thus the mass,
of the panels. As a consequence, solutions which preserve low mass are greatly sought by industries. In this study, the vibro-
acoustic behaviour of different suspended glass panels is addressed. An optimization procedure is implemented, aiming at
finding the position of the holders which maximizes the acoustic transmission loss (TL) averaged at low- and very low-
frequency ranges. First, an iterative procedure, based on comparison of experimental and numerical modal data, has been
implemented to extract the material properties (Young’s modulus and Poisson’s ratio) of the panels. Second, these properties
have been used in an optimization procedure based on finite difference approximation of the objective function, the
averaged transmission loss. The vibro-acoustic analyses, required by the optimization procedure, have performed by means
of hybrid finite element method/statistical energy analysis (FEM/ SEA). 16 different design cases have been considered in
the optimizations, i.e. 2 different frequency ranges (20-300 Hz and 20-1000 Hz), 2 panel geometries (square 1m x 1m and
rectangular 2.5m x 0.8m), 2 constitutive material properties (monolithic tempered glass and laminated tempered glass) and
2 mounting solutions (4 and 6 holders). The transmission losses of the optimized and the standard configurations, where the
holders are placed close to the edges, are compared.

Keywords Laminated glass · Suspended glass panels · Glass windows · FEM/SEA · Optimization

1 Introduction

The use of optimization techniques for the design of struc-
tures with enhanced vibro-acoustic behaviour can be found
in a number of literature articles (Joshi et al. 2015; Bös
2006; Nandy and Jog 2012; Tinnsten and Esping 1999; Bös
2006; Chavan and Manik 2010; Joshi et al. 2015; Nandy
and Jog 2012; Tinnsten 2000; Tinnsten and Esping 1999;
Zargham et al. 2016; Esping 1995; Bös 2006; Belegundu
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et al. 1994). For instance, in the work Joshi et al. (2015)
the panel mass and the radiated acoustic power of a stif-
fened panel have been minimized in a multi-objective opti-
mization approach. In Bös (2006), the acoustical properties
of structures, including plates, are improved by finding
the optimized thickness distribution. In Nandy and Jog
(2012), minimizing the dynamic compliance of the struc-
ture has been shown to indirectly benefit the sound power
levels radiated by the structure.

The present paper addresses the optimization problem
of maximizing the sound transmission loss of suspended
panels, averaged in low- and very low- frequency ranges
(20-300 Hz and 20-1000 Hz, respectively). In fact, theoreti-
cal studies have shown that the insulation at low-frequencies
is mass-controlled, thus intrinsically more challenging to
achieve and critical for the human comfort (Beranek and
Work 1949; Auriemma 2017). This motivates the ranges
of investigation selected in this paper.

The design parameters of the optimization problem are
the positions of the holders used to support the panels,
which have great impact on the vibro-acoustic behaviour
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a) b)

Fig. 1 Suspended glass panels utilized as external walls for a lift
system in Tallinn University of Technology. a Global view. b View of
one of the rectangular suspended panels of the façade

of the panels. Being the suspended panels widely utilized
solutions with both aesthetic and functional purposes (see
Fig. 1), the problem addressed in this paper is of interest for
modern architectural and civil engineering applications.

We remind here that the sound transmission loss of
a partition is defined as a function of the transmission
factor τ :

T L = 10 log

(
1

τ

)
(1)

where τ is the ratio of the transmitted (Pt ) over the incident
power (Pi) and represents the fraction of the acoustic power
transmitted throughout the partition. τ is strictly related to
the vibrational behaviour of the partition.

There is a vast number of theoretical studies about the
sound transmission loss of different types of acoustic par-
titions: perfectly limp plates (Cremer 1942), combinations
of impervious layers, air gaps and acoustical blankets in
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Experimental 
Modal Analysis 

Results

Numerical
Modal Analysis 

Results

Mode shapes,
Natural frequencies

Upda�ng Material 
Glass Proper�es

E,ν

Process variables:
Changing constraint 

posi�ons

Structural analysis
(FEM):

Modal analysis

Acous�c analysis
(FEM/SEA):

TL calclula�on

Objec�ve:
Minimizing the 

averaged TL

Fig. 2 2-step procedure implemented in this study. a Material
characterization; b Optimization

Table 1 Panel configurations examined in this work

Case Shape Nr. of Panel Freq.

mountings structure range [Hz]

1 Square 4 Monolithic 20-300

2 Square 4 Monolithic 20-1000

3 Square 4 Laminated 20-300

4 Square 4 Laminated 20-1000

5 Square 6 Monolithic 20-300

6 Square 6 Monolithic 20-1000

7 Square 6 Laminated 20-300

8 Square 6 Laminated 20-1000

9 Rectangle 4 Monolithic 20-300

10 Rectangle 4 Monolithic 20-1000

11 Rectangle 4 Laminated 20-300

12 Rectangle 4 Laminated 20-1000

13 Rectangle 6 Monolithic 20-300

14 Rectangle 6 Monolithic 20-1000

15 Rectangle 6 Laminated 20-300

16 Rectangle 6 Laminated 20-1000

normal incidence (Beranek and Work 1949) or diffuse
acoustic field (London 1950), infinite panels (Mulholland
et al. 1967), finite partitions (Fahy 1985), thin or tick panels
(Munjal 1993), single- or multi- layered structures (Laurikis
et al. 1992; Ookura and Saito 1978; Bolton et al. 1996; Pan-
neton and Atalla 1986). In most of the literature studies,
finite partitions are examined mainly in simply supported or
clamped configurations.

In the present paper, the transmission loss of the panels
has been computed by means of numerical methods. In
fact, due to the complexity of the boundary conditions
related to the presence of the holders, analytical solutions
would be challenging to achieve and unwieldy. For this
reason, a numerical approach based on hybrid finite
element/statistical energy analysis has been used, where the
statistical energy analysis utilizes the modal data of the
panels obtained by means of finite element method (Maxit
and Guyader 2001b; Stelzer et al. 2010) (see Fig. 2b). In the
acoustical simulations, the panels are considered in baffled
configuration, under diffuse field of excitation.

The optimization process presented here relies on an
Eulerian approach, where each panel is discretized with
the same fixed mesh in all numerical analyses involved in
the process (Sigmund and Maute 2013). As a consequence,
different holder positions are represented by different sets
of fully constrained nodes. The optimization algorithm is
based on finite difference.With this method, an approximate
value of the gradient of the objective function in a
certain point (i.e. for a certain set of holder positions) is
calculated by using the values computed on the discrete
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domain in the neighbourhood of that point. This allows
to easily detect directions of steepest variation of the
objective function. As pointed out in Sigmund (2011), a
gradient based approach is usually preferable in this type of
problems.

Different panel geometries, number of mountings and
layer configurations have been taken into account for both
20-300 Hz (very low-) and 20-1000 Hz (low-) frequency
ranges. Specifically, square and rectangular panels, 4 and
6 discrete mountings, monolithic tempered and laminated
tempered glass panels with an intermediate layer of
polymeric film (Polyvinil Butiral – PVB), summing up to a
total of 16 different configurations (see Table 1).

Preliminarly, the suspended panels are studied by
identifying some of the material properties not known a-
priori. This is done by means of a classical procedure based
on comparison of experimental and numerical modal data
(Siano et al. 2015) (see Fig. 2a).

2Material characterization procedure

As previously mentioned, a two-step procedure has been
implemented in this paper to first characterize the materials
and then to optimize the performance of the panels (see
Fig. 2).

In the first step, the material properties used in a FEM
modal analysis of glass samples have been varied until the
experimental modal results are matched. The final values
describe the actual properties with a level of approximation
which is satisfactory for the purposes of this paper.

This approach provides linear elastic isotropic homog-
enized material properties also for the laminated samples
with PVB layer. The assumption of linear elasticity is
compatible with the constitutive laws and with the small dis-
placement hypothesis underlying the linear vibro-acoustic
analysis. On the other hand, the homogenization of the
properties of laminated samples allows to model the two
constituting materials as if they were one with equivalent
mechanical characteristics. It will be shown that Young’s
modulus and Poisson’s ratio extracted for the laminated
sample are in agreement with the values found in literature.
These values are higher than in case of monolithic sample,
which shows an increase of resistance to the longitudinal
and transverse deformations.

The experimental and numerical methodologies involved
in the material characterization procedure are summarized
in the two following sub-sections.

2.1 Modal analysis with responsemodel

When a structure is excited by a set of sinusoidal forces
provided with with individual frequencies, amplitudes and

phases, it is possible to write the forced response equation,
that is:

{X} =
(
[K] − ω2 [M] + ω [C]

)−1 {F } (2)

where ω is the angular velocity of the force, [K] is
the stiffness matrix, [M] is the mass matrix, [C] is the
damping matrix, {F } and {X} are Nx1 vectors of time-
independent complex amplitudes representing forcing and
displacements, respectively. The general element in the
Frequency Response Matrix (FRF), Hjk (ω), is defined as:

Hjk (ω) =
(

Xj

Fk

)
; Fm = 0; m �= k (3)

An efficient way to determine the FRF parameters makes
use of the modal properties of the system. In this case, the
generic element of the FRF matrix, Hjk (ω), becomes

Hjk (ω) =
n∑

r=1

φ
(r)
j φ

(r)
k

ω2
r − ω2 + iω2νωr

=
n∑

r=1

A
(r)
jk

ω2
r − ω2 + iω2νωr

(4)

where r is the number of the mode shapes or degrees of
freedom, terms φ

(r)
j,k are the mass normalized eigenvector

components, A
(r)
jk are the products of the mass-normalized

eigenvector components (named modal constants), ωr is the
natural frequency, ν = c/2

√
mk is the modal damping

(Edwins 2003).
The general process of the experimental modal analysis

aims at finding the modal parameters, ωr , ν and A
(r)
jk

(thus φ
(r)
j,k), appearing in a theoretical expression of FRF

of the type of (4), which allows to better approximate the
experimental FRF.

There are several techniques to extract the modal param-
eters. In this work, the peak-picking method has been
used (Edwins 2003). It belongs to the class of methods
based on the “single degree of freedom” (SDOF) hypothe-
sis. These methods assume that, in the vicinity of a natural
frequency of mode r∗, the terms of (4) with r �= r∗ sum up
to a constant termB

(r∗)
ij which is approximately independent

from frequency and the (4) becomes:

Hjk (ω ≈ ωr∗) = A
(r∗)
jk

ω2
r∗ − ω2 + iω2νωr∗

+ B
(r∗)
jk (5)

In particular, the peak-picking method assumes that the term
B

(r∗)
ij is negligible. In this case, the (5) at ω = ωr∗ reduces to:

Hjk (ωr∗) = A
(r∗)
jk

iω2νωr∗
(6)

so that |Hjk (ωr∗) | = A(r∗)/
(
2νω2

r

)
. The peak-picking

method is applied by first detecting the individual resonance
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Table 2 Experimental natural frequencies and damping ratios

Mode Monolithic Modal Laminated Modal

number sample damping sample damping

[Hz] (monolithic)[%] [%] (laminated)[%]

1 172 0.42 185 0.96

2 265 0.87 271 2.61

3 477 0.20 497 1.54

4 569 0.35 573 2.26

5 944 0.19 928 2.55

peaks on the FRF plot, the frequencies of the maxima
representing the natural frequencies ωr∗ . Once a local
maximum of the FRF is detected, |H |, the frequency
bandwidth delimited by the response level, |H |/√2, is
determined. Thus, the two “half-power” points ωa and ωb

are intercepted at |H |/√2. Finally, the damping of the mode
is estimated as ν = (

ω2
a − ω2

b

)
/4ω2

r∗ .
Once ωr∗ and ν have been obtained, it is possible

to extract the mode shape φ
(r∗)
j by using the term

Hjj (ωr∗) = φ
(r∗)
j φ

(r∗)
j /(iω2νωr∗), which is the frequency

response function obtained by hitting the point where the
accelerometer is located. Finally, the other φ

(r∗)
k modes are

deduced by using the terms Hjk(ωr∗).
The peak-picking method works adequately when the

following conditions are met: the frequency response
function of the structure exhibits well separated modes;
the modes are not so lightly-damped, otherwise accurate
measurements at resonance are difficult to obtain; the modes
are also not so heavily damped, otherwise the response at
a resonance is strongly influenced by more than one mode.
These conditions are met in the case of panels studied
here. In fact, the damping values do not overcome 3%,
so the peaks considered are all sharp peaks. Moreover,
the natural frequencies are spaced apart at least 76 Hz in
the first 5 modes (see results in Table 2). It must be also
pointed out that the errors related to the modal amplitudes,
sometimes involved in the use of the peak-picking, does
not influence the material characterization process since
this process relies on experimental-numerical comparisons
of eigenvalues rather than eigenvectors. An estimate of the
error on the natural frequencies is ±5 Hz resulting in a
variation of ±2% on the material properties identified.

2.2 Modal analysis with finite elements

The other methodology, used in combination with the
experimental modal test to extract the material properties
of the samples, is the Finite Element Method (Siano et al.
2016, 2010; Rämmal and Lavrentjev 2008).

The FEM has been used to solve the discrete motion free
equation, Zienkiewicz and Taylor (2000):

[M] {ẍ(t)} + [K] {x (t)} = {0} (7)

In a weak formulation, the mass matrix [M] and the stiffness
matrix [K] are expressed as:

[Mi] =
∫

δ�

[Ni]ρ[Ni]t δ� [Ki] =
∫

δ�

[Bi]T [C][Bi]δ�
(8)

In the (8) the integrals are evaluated for each element i

of volume δ� and then assembled by means of a proper
procedure, Petyt (1998). [Ni] is the shape function matrix
of the element i, ρ is the density, [Bi] = δ[Ni]/δx is the
strain displacement matrix of the same element and [C] is
the stress-strain (elasticity) matrix related to the material
properties, including Young’s modulus (E) and Poisson’s
ratio (ν). [C] relates the stress [σ ] and strain [ε] tensors
through the Hooke’s law, [ε] = [C][σ ]. For linear elastic
homogeneous isotropic material this relationship yields to:

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1
E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σzx

σxy

⎤
⎥⎥⎥⎥⎥⎥⎦
(9)

In (9), εij and σij are the strain and stress tensor components
in the plane ij . The material characterization procedure
followed in this paper is based on iterative substitution of the
values of ν and E in the square matrix of (9) until the modal
results match the experimental ones. ρ has been extracted
from weight and volume of the samples.

By assuming that a solution exists of the form {x (t)} =
{X} exp (jωt), the equation of motion becomes:(
[K] − ω2 [M]

)
{X} = {0} (10)

This equation has the classic form of an eigenvalue problem,
from which it is possible to obtain eigenvectors and
eigenvalues, thus mode shapes and natural frequencies.

3 Implementation and results of thematerial
characterization procedure

The procedure for the characterization of the material prop-
erties, described in the previous section, has been applied
to a monolithic and a laminated glass sample (see sket-
ches in Fig. 3) provided with the same material properties
of the panels listed in Table 1.
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Monolithic sample

Laminated sample

500mm

8m
m

Glass

Glass
Glass

500mm

8m
m

PVB layer

Fig. 3 Sketch of monolithic and laminated samples

Both samples have dimensions 500mm× 200mm× 8mm.
For the experimental modal analysis the samples are held
by a suspension system, constituted by soft elastic bands.
These bands are designed to guarantee that the highest rigid
mode frequency is less than 10− 15% of the first resonance
frequency of the suspended structure (Kirs et al. 2018). This
circumstance allows considering the systems as in free-free
conditions.

The classical roving hammer impact test has been
used to measure the frequency response functions and
to implement the peak-picking method (Edwins 2003).
Preliminarily, a set of points are defined on a wire-frame
created on the structure and an accelerometer is fixed on
one of these points. The method consists of measuring
the frequency response functions between the response
measured by the accelerometer and the forced excitation
provided by the hammer when the wire-frame points are
sequentially hit. In the present investigation, the samples
have been schematized with a wire-frame consisting of
12 points displaced in adjacent rectangular patterns. An
impulsive excitation has been provided, along the direction
perpendicular to the plane of the structure, by means of a
hammer AP TechTM AU01 provided with force transducer.
The vibration response has been measured, along the
same direction, by means of an ICP (Integrated Circuit
Piezoelectric) mono- axial accelerometer PCB TM 353B33.
The signal acquisition has been performed by a dynamic
signal analyser (National Instruments TM NIcDAQ 9174
and NI 9234), controlled by PC based virtual instrument
(LabVIEW TM).

Random errors have been reduced by averaging out
three subsequent measurements taken for each point. The
frequency response functions have been estimated as H =
SXY /SXX, i.e. as the ratio of the cross-spectrum of

mode 1
mode 2

mode 3                                                     mode 4

Fig. 4 Comparison between experimental and numerical modal
analyses

excitation and response signals over the auto-spectrum of
the excitation signal. The values of the coherence function
related to the impact tests, γ = |SXY |2/ (SXXSYY ), are
above 98%, indicating low levels of uncorrelated noise
in the measured frequency response data. In Table 2
the experimental values found for the natural frequencies
and the damping ratios are listed. The finite element
modal analysis has been computed in free-free boundary
conditions. Approximate material properties have been used
as first attempt in the numerical model, then adjusted to fit
the experimental data, as previously explained. Physically,
being the mode shapes stationary waves, they are dependent
only on the geometry. For this reason it is immediately
possible to compare the numerical mode shapes with the
experimental ones. The finite element solver used for modal
analysis is ANSYSTM. The test object has been discretized
by means of a 3D mesh consisting of 906 nodes and 401
tetra elements.

In Fig. 4 the first four numerical and experimental
modes of the two samples are shown in comparison. The
modes 1 and 2 are the first bending and the first torsional
modes. The modes 3 and 4 are the second bending and
the second torsional modes. The outcomes of the material
characterization process, i.e. the parameters found for
the glass tempered panel and glass tempered panel with
PVB, are shown in Table 3. The corresponding natural
frequencies, computed with the finite element method by
using these material properties, well match the experimental
data, as shown in Table 4.

4 Optimization process

Once the material properties have been extracted, it has been
possible to perform the second step of the procedure, i.e.
the optimization process for the 16 configurations listed in
Table 1. Square panels and rectangular panels have 1m × 1m
and 2.50m × 0.80m sizes respectively, representing very
common configurations.
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Table 3 Material parameters extracted with indirect characterization
based on modal analysis

Properties Monolithic Laminated

sample sample

Young’s Modulus [N/m2] 6.7 ∗ 109 7.7 ∗ 109

Density [kg/m3] 2450 2490

Poisson’s Ratio 0.25 0.4

The results of the optimized solutions, in terms of aver-
aged sound transmission loss, are compared with the ones
related to the standard configurations, with the mountings
placed peripherally. Through this comparison it has been
possible to asses the advantages of the optimization process
for each case.

The procedure has been implemented by using a software
platform (ModeFrontierTM), which allows to easily couple
an external optimization algorithm, written in MatlabTM

ad-hoc for this problem, with a finite element solver
(ANSYSTM) and a statistical energy solver (VAOneTM),
according to the scheme in the Fig. 2b. We remind here
that the goal of the optimization process is to find the
positions of the holders which maximize the transmission
loss averaged in the very low- and low- frequency ranges
of investigation, 20-300 Hz and 20-1000 Hz respectively.
The optimization algorithm iteratively provides new inputs
for the finite element modal analysis. The positions of
the holders, i.e. the design parameters, are expressed as
sets of fully constrained nodes of the finite element mesh.
The approach is Eulerian and the finite element mesh is
fixed during the whole process. The modal results are the
input for the statistical energy analysis for the evaluation of
the transmission loss, which is strongly dependent on the
resonance phenomena between the acoustic incident field
and the panel. In particular, the modal impedance of each
structural mode affects the transmission loss over the entire
frequency range (Fahy 2000). The intricate dependence of

Table 4 Experimentally and numerically extracted natural frequencies

Monolithic sample Laminated sample

Mode Experimental Numerical Experimental Numerical

number natural natural natural natural

frequency frequency frequency frequency

1 172 172 185 185

2 265 267 271 272

3 477 478 497 502

4 569 569 573 578

5 944 941 1028 1038

the transmission loss on the holder positions motivates the
use of numerical methods for this problem.

The optimization problem can be described in mathemat-
ical terms as:

min f (τ(x)) x ∈ R
2n n = 4, 6

subject to
0 < x < Xc

(11)

In (11), τ is the transmission factor defined in Eq. (1):
f (τ) = 1/T Lav , where TLav is the averaged transmission
loss TLav = 1/(f2 − 20)

∫ f2
20 T L(f )df , with f2 = 300

or 1000 according to the frequency range considered. x =
x1, ..., x2n = X1, ..., Xn, Y1, ..., Yn is the generic point
where τ is defined. It represents the generic set of positions
of the holders, which are (X1, Y1), (X2, Y2), ...(Xn, Yn),
being (Xi, Yi) the Cartesian coordinates of the center
position of the generic i − th holder. The inequality
constraint represents a parametric description of the areas of
the panels (patches) where the holders can be placed. These
patches are shown in Fig. 5. In this figure, holders with
black dashed perimeter are confined in black dashed patches
and holders with red dotted perimeter in red dotted patches.
The patches cover the whole area in case of square panels.
Instead, for rectangular panels, the holders are not allowed
to be placed in the central area of the panel. This type
of constraints are typically referred to as variable bonds
(since they give lower and upper bounds for each xi) or box
constraints (since the feasible set is a hyperrectangle) (Boyd
and Vandenberghe 2004).

Theoretically, f (τ(x)), (thus the TLav) is a non-
linear continuous function of x, for which the gradient
based optimization techniques are particularly suitable
(Sigmund and Maute 2013). However, the problem has
been discretized by means of an Eulerian approach, where
the positions x of the holders can only assume discrete

0.8m

1m 2.5m

1m

x

y
x

y

0.25m

Fig. 5 Square and rectangular panel geometries, 4 and 6 holder
configurations. Up-left scheme: square, 4 holders. Up-right scheme:
rectangular, 4 holders. Bottom-left scheme: square, 6 holders. Bottom-
right scheme: rectangular, 6 holders
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Cartesian values corresponding to the nodal positions of
the fixed mesh. In this way, only an approximated gradient
function of f (τ(x)) can be computed.

In this scenario, the simplest technique for calculating the
derivatives of response with respect to the design variables
is the finite-difference approximation (Haftka and Gürdal
2012). In this study, the optimization procedure relies on the
computation of forward approximations. For a given initial
point x0 = x1,0, ..., xj,0, ..., x2n,0, physically represented
by certain positions of the holders on the plate, the closest
points in the direction j is xj = x1,0, ..., xj,0 + d, ..., x2n,0,
where d, is the distance between two consecutive nodes
(a mesh with square elements has been used, thus d is
constant). As a consequence, the generic component j of
the function ∇τ can be approximated as:

(∇τ)j ≈ τ(x0 + d îj ) − τ(x0)

d
(12)

where ı̂j is the versor of the space with direction j . The
computation of the approximate gradient allows detecting
the spatial directions where the discretized objective
function decreases more rapidly, i.e. the steepest-descent
(Haftka and Gürdal 2012). For an infinitely small size mesh,
this approach could be seen as a 1st order method for
the continuously differentiable (non-discretized) objective
function f (τ(x)).

Once the approximate gradient has been computed in x0,
the point x1 is detected by the closest-to-x0 nodal positions
in the direction of the gradient.

Differently from optimization problems where the
minima are expected to lay on constraints (e.g in structural
problems where the inequalities prescribe limits on sizes,
stresses, displacements, etc.), in the present investigation the
inequality constraints can be removed without altering the
solution. This means that constraint violations are watched
by using a projection of the box constraints in order to
keep the design parameters within the box (Boyd and
Vandenberghe 2004).

The initial point x0 has been chosen by using a global
polynomial approximation of the objective function. To this
aim, the f (τ) has been preliminarily computed in 36 and
78 random points for the 4 holder (8 design variables) and
6 holder (12 design variables) cases, respectively. In other
words, the objective function is evaluated in n(n + 1)/2
random points (where n is the number of design variables).
Thus, it is possible to obtain an acceptable polynomial
approximation of the objective function according, for
instance, to Haftka and Gürdal (2012). In this way, the
starting point of the optimization process can be safely
chosen far from local minima. This approach is particularly
suitable for the problem tackled in this work, where the
number of design variables is small and the computational
effort required by each single optimization cycle is limited

(up to two minutes on a desktop computer for the large
rectangular panels). The maxima are typically reached by
means of 10-20 iterations of the cycle above described
(calculation of the gradient in a certain design point and
move to the next design point).

A general overview of the hybrid finite element/statistical
energy methodology is given in the following sub-section.
The modal finite element analysis is involved in this
process, but it has been discussed previously.

4.1 Hybrid FEM/SEA acoustical analysis

The Statistical Energy Analysis (SEA) is a non-
deterministic energy based method whose development
started in the early 1960s (Lyon and DeJong 1995). The
statistical energy analysis is based on a system of linear
equations, each one representing the power balance of a
single subsystem of the entire system under investigation. If
two subsystems i and j exchange energy, the power balance
equation for the subsystem i is:

�i = �i
dis + �

ij
ex (13)

In (13) �i is the input power into the subsystem i, �i
dis is

the dissipated power in the same subsystem and �
ij
ex is the

energy exchanged with the subsystem j . It can be shown
(see Lyon and DeJong 1995) that �ij

ex is proportional to the
difference of the total time averaged energies of subsystems,
(Ei −Ej) and �i

dis is proportional to Ei . As a consequence,
the (13) becomes:

�i = ωcηiEi + ωcηij (Ei − Ej) (14)

where ωc is the angular frequency of the frequency band,
ηij is the coupling loss factor (CLF) and ηi and ηj are the
modal densities of the two subsystems.

For the computation of the transmission loss of a plate
placed between two acoustic cavities, the SEA approach
consists of solving the system of linear equations of the type
of (15):

[
�1
0
0

]
=

[
η1 + η1p + η12 −ηp1 −η21−η1p η2 + ηp1 + ηp2 −η2p−η12 −ηp3 η2 + η2p + η21

]

×
[

E1
E2
E3

]
(15)

In (15) the subscripts 1, 2 and p refer to the first, second
cavities and to the plate, respectively. The transmission loss
is then calculated as in (1), where the transmission factor is
τ = p2

2A2/p
2
1S and p1 and p2 are the pressure in the two

cavities, pi = ρic
2
i Ei/Vi . A2 is the equivalent absorption

area of cavity 2, A2 = 4ηiωcVi/ci . Finally, ρi , ci , Vi are the
density, the speed of sound and the volume of cavity i.
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Solving the basic equation of statistical energy analysis
is computationally an easy task and the method itself is fast.
However, the results provided by probabilistic methods are
global and no punctual information are produced such as
the energy distribution in these subsystems. Another critical
aspect of SEA is the estimation of the coupling factors
appearing in (14) and (15). To this aim, it is possible to use
a hybrid finite element method/statistical energy analysis
approach, where finite element modal information are used
to compute these factors (Stelzer et al. 2010; Maxit and
Guyader 2001a, b).

Under the assumption of white noise excitation, let Ni

and Nj be number of the the resonant modes of the subsys-
tems i and j , respectively, in the frequency band considered.
These resonant modes are chosen in a way to approximately
represent the dynamic behaviour of the coupled subsys-
tems in the frequency band considered. Every mode of each
subsystem is considered not to be coupled with modes of
the same subsystems but coupled with each mode of the
other subsystem. In this scenario the power flow exchanged
by two subsystems can be written as:

�
ij
ex =

Ni∑
p=1

Ni∑
q=1

�
ij
pq (16)

�
ij
pq is the power flow between two modes on the two

subsystems:

�
ij
pq = β

ij
pq(Ei

p − E
j
q ) (17)

In (17) Ei
p and E

j
q are the modal energies of the mode p

of the subsystem i and of the mode q of the subsystem j .
β

ij
pq are called intermodal coupling loss factor (ICFs) and

it can be extracted by means of modal analysis. In fact,
the ICFs can be expressed as a function of the interaction
modal work, the modal masses, the damping factors and the
eigenfrequencies of the p − th and q − th mode of the
subsytems i and j , as shown in Maxit and Guyader (2001b).
As a consequence, the coupling loss factors of the classical
statistical energy analysis can be calculated by assuming the
modal equipartition of energy, as follows:

ηij = 1

Niωc

Ni∑
p=1

Ni∑
q=1

β
ij
pq (18)

Finally, by using (18), the (15) or, generally, the (14) can be
solved.

5 Results of the optimization process

The results of the optimization process, including the trans-
mission loss curves of the optimized and standard con-
figurations, are presented in this section, which is divided

into 4 parts. In Figs. 6, 9 to 12 the positions of the holders
are expressed in form of relative coordinates, (xrel, yrel) =
(x/Lx, y/Ly), where x and y are the geometrical coordi-
nates of the center node of the generic holder in a coordinate
system centred at the left bottom of the panel; Lx , Ly are
the horizontal and vertical size of the panel, as shown in
Fig. 5. For each case examined, a sketch of the panel con-
figuration is also included, where red squares refer to the
holder positions of the standard configuration whilst green
ones indicate the holder positions of the optimized configu-
ration. A comparison between the TLav of the standard and
the optimized configurations is given in terms of percentage
variation, �TLav = (TLav−opt − TLav−std )/TLav−std .

5.1 Square panels: 20-300 Hz

In the cases treated in this subsection, all the panels are
square shaped and the very low-frequency range is in focus.
The results are shown in Fig. 6.

Preliminarily, it must be pointed out that, for this
type of partitions, a dip at the first resonant frequency
is typically exhibited, which heavily affects the acoustic
behaviour of the panel. This dip can exhibit negative values
(emitting panels) (see Fig. 6a and b). Among the standard
configurations, the worst overall acoustic performance is
exhibited in case of monolithic with 4 holders, Fig. 6a
(TLav = 28.2 dB). The standard laminated panel with
4 holders (Fig. 6c) exhibits an increase of 0.6 dB of the
TLav with the respect to the monolithic case. However, the
advantage of the laminated solutions is the smoothing of
the transmission loss curve, since the increased damping
results in reduction of the vibration amplitudes, thus in more
stable behaviour throughout the frequency spectrum. Higher
TLav values are exhibited by the standard configurations
with 6 holders, with values up to 30.3 dB in both cases and
typically less pronounced dips.

In the optimized configurations, the geometrical posi-
tions of the holders are moved towards the centre of the
panel.

For the 4 holder cases the trend of the transmission loss
is qualitatively similar to the one exhibited by the standard
case, especially for the monolithic panel (Fig. 6a) where the
frequencies of the first three dips are almost overlapping.
However, in the optimized configurations the mode shapes
undergo dramatic changes resulting in modal impedances
which positively affect the transmission loss. In fact, for the
monolithic 4 holder case, the increase of TLav , compared to
the standard cases, is +12.1%.

The optimized solution for the 4 holder laminated case
is characterized by the presence of a peak, following the
dip of the first resonance mode, which almost overlaps
the fall exhibited by the standard configuration. This
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Fig. 6 Standard and optimized configurations for square shaped panels in frequency range 20-300 Hz. Case numbers 1, 5, 3, 7 listed in Table 1

behaviour is definitely beneficial and the increase of TLav ,
in comparison with the standard case, is +14.6%.

The optimized solutions for the 6 holder cases (Fig. 6b
and d) show similar trends, where the dips exhibited by
the standard configuration in the 170-200 Hz range are not
present any more. Instead a wide, regular bump occurs,
ranging from 100 to 300 Hz. As expected, for the laminated
case (Fig. 6d) the curve is even smoother. The increase
of TLav is remarkable: +17.5% and +21.2% for the
monolithic and laminated cases, respectively.

As previously mentioned, positioning the holders
towards the center panel has significant effects on the vibro-
acoustic behaviour. In fact, in comparison with the standard
case, the modal analysis shows that the central area of the
optimized configurations, stiffened by the constraints, is
nearly unaffected by modal amplitudes at low frequencies.
Contrariwise, in the standard cases the whole area of the
panel has non-zero modal amplitudes and it is involved in
the sound transmission. This can be seen in Fig. 7a and b,
where the the first mode shape of the standard and optimized
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Standard

(a)

Op�mized 20-300 Hz

(b)

Op�mized 20-1000 Hz

(c)

(d) (e) (f)

Fig. 7 Examples of mode shapes for square panels with 4 holders.
Standard configuration in (a) and (d). Configuration optimized in 20-
300 Hz in (b) and (e). Configuration optimized in 20-1000 Hz in (c)
and (f). Details: a 1st Mode, 52 Hz; b 1st Mode, 48 Hz; c 1st Mode,
47 Hz; d 16th Mode, 368 Hz; e 16th Mode at 391 Hz; f 16th Mode at
358 Hz

configurations for very low-frequencies is shown. In the lat-
ter case, a wide lobe in the central part of the panel is visible,
while in the last case that lobe shaped mode is prevented by
the presence of the holders. As a consequence, in the sec-
ond case, the modal impedance of the first mode positively
influences the transmission loss.

The transmitted acoustic power is proportional to the
vibrating area but also to the average mean square velocity
over the area ( < v̄2 >= 1/S

∫
S
[1/T

∫ T

0 v2dt]ds, with S

panel area and T vibration period). < v̄2 > is related to the
interaction between the stationary structural waves (i.e. the
mode shapes) and the incident pressure field. As the mode
shapes of the optimized configurations have normalized
space-averaged amplitudes generally smaller than in case
of the analogous standard configuration, the values of the
space averaged velocity response is also reduced.

This aspect is supported and synthesized by the radiation
efficiency parameter, calculated through statistical energy
analysis. The radiation efficiency of a structure into a fluid
is defined by the equation � = ρcA < v̄2 >, where � is
the net power radiated into the fluid, ρ and c are the mass
density and speed of sound in the fluid respectively, A is the
structural area radiating into the fluid.

This parameter allows to highlight the response of the
structure to the incident acoustic power. The higher the
radiation efficiency, the higher the average mean square
velocity response over the area. This implies more sensitive
resonance phenomena produced by the interaction between
acoustic source and structural mode shapes. In Fig. 8 the
radiation efficiency is plotted for the optimized square
monolithic 4 holder case and for the analogous standard
case. The parameter is higher for the standard case than
for the optimized case and, in correspondence of the
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Fig. 8 Radiation efficiency for the standard and optimized panels.
Case number 1

positive picks of the radiation efficiency, the transmission
loss curve shows local minima (Fig 10). Above 300 Hz,
also the central part of the square cases at 300 Hz can
exhibit non-zero modal amplitudes and the beneficial effect,
caused by the stable central area, reduces. For this reason,
other optimization cases involve the low-frequency range
20-1000 Hz.

5.2 Square panels: 20-1000 Hz

The cases included in this sub-section are related to square
shaped panels in the low-frequency range. The results are
shown in Fig. 9.

The most significant improvement is given by the
optimized monolithic 6 holder panel (Fig. 9b), also
because the transmission loss of the corresponding standard
configuration shows a fairly scattered trend. By comparing
the cases with and without PVB (i.e. Fig. 9a with c
and b with d) it can be noticed that the presence of the
interlayer generally results in smoother transmission loss
trends, since the damping of the structure is increased. This
fact has been already pointed out for the 20-300 Hz cases,
but in the frequency range 20-1000 Hz it is even more
evident. The quasi absence of dips at mid-high frequency
is definitely an advantage for the laminated solutions,
since it avoids isolated tones to be transmitted through the
panel.

Differently from the configurations optimized in the range
20-300 Hz, the ones optimized in the range 20-1000 Hz do
not overcome the high transmissibility at low frequencies.
In Fig. 7c, the mode shapes at the first resonant frequency
for the configuration optimized in the range 20-1000 Hz
are plotted. Now the first mode is again lobe shaped, as in
case of standard configuration, which negatively affects the
modal impedance of this mode, thus the transmission loss.
Nevertheless, the modal displacements of the first mode in
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Support Rela�ve coordinates
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(a) Monolithic glass, square shape, 4 holders, 20-1000 Hz.
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(b) Monolithic glass, square shape, 6 holders, 20-1000 Hz.
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(c) Laminated glass, square shape, 4 holders, 20-1000 Hz.
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(d) Laminated glass, square shape, 6 holders, 20-1000 Hz.

Fig. 9 Standard and optimized configurations for square shaped panels in frequency range 20-1000 Hz. Case numbers 2, 6, 4, 8 listed in Table 1

the optimized configuration (Fig. 7c) are smoother than the
ones in the standard configuration (Fig. 7a).

On the other hand, constraints displaced peripherally
reduce the effect of higher order modes exhibited above
300 Hz, whose contribution becomes predominant when the
TLav is computed over the frequency range 20-1000 Hz.

This is visible in the modal shapes shown in Fig. 7d, e and
f, exhibited at the 16th mode by the standard configuration,
by the configuration optimized in the range 20-300 Hz and
by the one optimized in the range 20-1000 Hz. In the first
and third case the modal amplitudes affect the hole area of

the panels by means of a number of opposite lobes (bumps
and basins) which often result in minor acoustic effects. Ins-
tead, in the second case, a quasi lobed shaped mode is gener-
ated, since one single steep bump appears at the center of the
panel. As a consequence, the solution optimized in the range
20-300 Hz will possibly exhibit a dip of transmission loss at
this frequency. In general, this solution is more likely to ex-
hibit narrow band drops at frequencies higher than 300 Hz.

The condition of placing the holders peripherally is, by
definition, satisfied by the standard configurations, which
explains the reduced values of �TLav shown for the 4
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holder cases. However, for the 6 holder cases the optimized
solutions benefit from a wider range of configurations
explored by the optimizer and the performance is improved
up to +4.9%.

5.3 Rectangular panels: 20-300 Hz

Since the area of the rectangular panels is 2.24 times
larger than that of the square panels, the ratio between
the area of the holders and the panel area reduces. As
a consequence, the stiffness of the panels decreases and
the modal density increases. Moreover, as visible in the
sketches in Fig. 5, in case of rectangular panels the holders
are confined into restricted patches which do not cover
the whole area of the panel. For these two reasons, the

improvement of performance of the optimized solutions
is expected to be smaller than in case of square panels.
Figure 10 shows that the maximum increase of transmission
loss in the 20-300 Hz frequency range is exhibited by the
optimized 6 holder laminated panel (�TLav = +8.6%) and
the minimum increase by the optimized 4 holder monolithic
panel (�TLav = +4.3%). The reduced stiffness of the
structures is obviously more evident for the 4 holder cases.

By first analysing the monolithic 4 holder panels, the
first mode of the standard configuration and the one of
the solution optimized in the range 20-300 Hz occur at 8
and 10 Hz respectively. Naturally, having the first dip of
transmission loss below 20 Hz frequency is beneficial for
both the standard and the optimized configuration, since
the transmission of sound occurs in non audible range.
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(a) Monolithic glass, rectangular shape, 4 holders, 20-300 Hz.
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(b) Monolithic glass, rectangular shape, 6 holders, 20-300 Hz.
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(c) Laminated glass, rectangular shape, 4 holders, 20-300 Hz.
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(d) Laminated glass, rectangular shape, 6 holders, 20-300 Hz.

Fig. 10 Standard and optimized configurations for rectangular shaped panels in frequency range 20-300 Hz. Case numbers 9, 13, 11, 15 listed in
Table 1
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The optimized configuration has the holders placed in the
central part of the panel. This solution, similar to the one
obtained for square panels with 4 holders, results in redu-
ced modal amplitudes of the inner area at low frequencies.
This is shown in Fig. 11a and b, where the mode shapes
at 43 Hz and 58 Hz are depicted for the standard and
the optimized 4 holder monolithic configurations, respec-
tively. At these frequencies, TL minima occur but smaller
relative modal amplitudes are visible for the optimized case.

For the monolithic 6 holder case the 3rd mode of the
standard configuration and the one of the configuration
optimized in the range 20-300 Hz are shown in Fig. 11d and
e. Here, the optimized positions of the holders have, not only
the effect of reducing the amplitudes in the central area, but
also that of rising the natural frequencies. In fact, the 3rd

mode occurs at 42 Hz for standard configuration and at 59
Hz for the optimized one. In general, the number of dips in
transmission loss reduces in case of optimized rectangular
solution and the dips are shifted towards higher frequencies,
which is beneficial for the TLav .

Similar considerations still hold for the laminated
panels, where the �TLav is even higher, but the trend
of the objective function is similar and the configurations
proposed are backed by the same logic.

5.4 Rectangular panels: 20-1000 Hz

The results of the optimizations for rectangular panels in
the low frequency range are shown in Fig. 12. Here the
optimized solutions do not provide sensitive advantages
compared to the standard configurations, especially for the
6 holder cases. Moreover, 4 and 6 holder panels present
similar global acoustic perform, whilst in the previous
three sets of optimizations the TLav of the 6 holder panels

Standard

a)

Op�mized 20-300 Hz

b)

Op�mized 20-1000 Hz

c)

d) e) f)

Fig. 11 Examples of mode shape examples for rectangular monolithic
panels. Standard configurations in (a) and (d). Configurations
optimized in 20-300 Hz in (b) and (e). Configurations opimized in 20-
1000 Hz in (c) and (f). 4 holder cases in (a), (b), (c). 6 holder cases
in (d), (e), (f). Details: a 5rd mode, 43 Hz; b 6th mode, 58 Hz; c 4th

mode, 41 Hz; d 3rd mode, 42 Hz; e 6 holder case, 3th mode, 59 Hz; f
6 holder case, 3th mode, 41 Hz

was sensitively higher than that of the 4 holder panels.
However, it must be pointed out that the values of TLav

found for the configurations examined here (included the
standard ones) are among the highest found in all the cases
investigated.

The optimized and standard solutions show similar TLav ,
but the first ones present the undoubted advantage of
smoother transmission loss curves, with less frequent and
smaller dips. This trend is confirmed by the reduced relative
modal amplitudes shown in Fig. 11c and f by both the
optimized 4 and 6 holder monolithic configurations. The
maximum advantage, �TLav = +3.1%, is exhibited by the
second one.

6 Final remarks

As stated in Sigmund (2011), there is a limited number
of cases where topological optimization problems can be
efficiently tackled by using an approach based on genetic
algorithm (Majak et al. 2012).

However, this is probably not the case of the problem
addressed in this study. In fact, the authors have attempted to
use the genetic algorithm for some of the design cases,
Auriemma and Aiello (2018). It is evident that the gradient
based approach is computationally more efficient and pro-
vides way more refined solutions. In fact, the number of iter-
ations required by the method proposed in this paper is up to
one order magnitude less than in case of genetic algorithm.
Moreover, the minimum values found for the objective func-
tion f (τ(x)) are up to +40% higher and the transmission
loss curves are higher and smoother, with fewer dips.

The reader could also wonder about the behaviour of
the solutions optimized for 20-300 Hz when the impinging
sound has wider frequency content. It has been already
mentioned that these solutions can exhibit lobe shaped
modes at frequency higher than 300 Hz. For this reason,
tonal sound transmission must be definitely watched when
solutions, optimized for very low frequency range, are used
as noise barrier at frequencies higher than 300 Hz.

On the other hand, the overall behaviour of these panels
can be better understood by looking at the Fig. 13. Here,
the functions T Lav(20−f ) are plotted for the square panels,
representing the transmission loss averaged in the frequency
range 20 Hz - f , for f ∈ [20-1000 Hz]. The cases of
rectangular panels show similar trends, not reported here for
brevity. The black rectangle detects the frequencies f ∗up
to which the T Lav(20−f ∗) of the solutions optimized for
20-300 Hz (cases 1,3,5,7,9,11,13,15) is greater than the
T Lav(20−f ∗) of the solutions optimized for 20-1000 Hz
(cases 2,4,6,8,10,14,16). The graph can be read by saying
that the overall performance of the solutions optimized in
the 20-300 Hz overcomes that of the solutions optimized
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(a) Monolithic glass, rectangular shape, 4 holders, 20-1000 Hz.
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(b) Monolithic glass, rectangular shape, 6 holders, 20-1000 Hz.
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(c) Laminated glass, rectangular shape, 4 holders, 20-1000 Hz.
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(d) Laminated glass, rectangular shape, 6 holders, 20-1000 Hz.

Fig. 12 Standard and optimized configurations for rectangular shaped panels in frequency range 20-1000 Hz. Case numbers 10, 14, 12, 16 listed
in Table 1

for 20-1000 Hz up to f ∗=450 Hz in the best circumstance
(case 7, i.e. monolithic, square panel with 6 holders). On
the other hand, the difference in T Lav(20−1000) between the
two sets of solutions is generally less than 2 dB, thus quite
limited, whilst the advantage at very low frequencies of
solutions optimized in the range 20-300 Hz is remarkable.
As a consequence, even in environments with wider sound
frequency content, if the very low frequencies are of main
concern (as in most of the practical applications in room
acoustics), it is worth considering solutions optimized for
20-300 Hz.

Some of the results of the optimization procedure might
be aesthetically or functionally debatable. However, non
vibro-acoustic considerations elude the main purpose of this

investigation and they can be object of other studies. At
the same time, the procedure described in this work can be
easily applied to panels of suspended ceilings, even when
other materials are involved, as in case of gypsum boards
where the holders are typically hidden.

The suspended panels have been analysed here in baffled
configurations, where the panels are surrounded by a rigid
planar screen with no air gap. In this case, the motion
of the unconstrained points, along direction orthogonal
to the plane, is allowed. Often, in practical applications,
suspended panels are glued at the periphery or embedded in
structures which somehow limit the motion of the edges. As
a consequence, further studies are necessary to investigate
this type of boundary conditions.
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Fig. 13 Averaged cumulative transmission loss for square panels. Case
numbers as listed in Table 1

7 Conclusions

In this paper, the vibro-acoustic behaviour of suspended
monolithic and laminated glass panels has been studied
by means of a multidisciplinary approach. It has consisted
of a double step procedure. The first step has allowed
to extract the material parameters of the panels (Young’s
modulus and Poisson’s ratio) through comparison between
experimental and numerical-finite element modal data. The
second step has provided the optimized positions of the
panel holders which maximize the sound transmission loss
averaged at low- and very low- frequency ranges (20-300 Hz
and 20-1000 Hz, respectively). This goal has been achieved
by means of an optimization procedure based on finite
difference approximation of the gradient of the objective
function. The vibro-acoustic analyses have been carried out
bymeans of hybrid finite element/statistical energy analysis.

16 different configurations have been analysed, including
2 different shapes of the panels (square and rectangular),
2 constitutive materials (monolithic glass and laminated
glass with PVB interlayer), 2 holder arrangements (4 and 6
holders per panel) and the two frequency ranges above men-
tioned. The modal shapes, the radiation efficiency and the
averaged sound transmission loss provided by the optimized
and the standard configurations, where the holders are
placed peripherally, have been compared.

The greatest improvements have been obtained by the
solutions optimized in the range 20-300 Hz. In this case,
the trend is having holders located in the central part of
the panel and low values of the radiation efficiency are
exhibited. With comparison to the standard configurations,
the averaged transmission loss of the optimized solutions
increases up to +21.2% and +8.6% for square and
rectangular panels, respectively.

When the acoustic performance of the panels in the range
20-1000 Hz is of interest, the trend is moving the holders
peripherally and the improvement of the performance is less
sensitive. In comparison with the standard configurations,
the optimized ones present more sparse and less pronounced
dips in transmission loss and the problem of tonal sound
transmission is reduced.

The vibro-acoustic behaviour of the solutions optimized
for 20-300 Hz has been analysed also in the range 20-1000
Hz. It has been pointed out that the averaged transmission
loss above 300 Hz is still acceptable, but attention must be
paid to tonal transmissions which might occur above 300
Hz.

Acknowledgments This research was supported by: - Innovative
Manufacturing Engineering Systems Competence Centre (IMECC)
and Enterprise Estonia (EAS) and co-financed by European Union
Regional Development Fund project EU48685.

Estonian Centre of Excellence in Zero Energy and Resource Effi-
cient Smart Buildings and Districts, ZEBE, grant 2014-2020.4.01.15-
0016 funded by the European Regional Development Fund.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Auriemma F (2017) Acoustic performance of micro-grooved elements.
Appl Acoust 122:128–137. https://doi.org/10.1016/j.apacoust.2017.
02.019

Auriemma F, Aiello R (2018) Optimal holder configuration of
suspended glass panels. In: 25th international congress on sound
and vibration, 8-12, July 2018. Hiroshima, Japan

Belegundu AD, Salagame RR, Koopman GH (1994) A general opti-
mization strategy for sound power minimization. Struct Multidis-
cip Optim 8(2-3):113–119. https://doi.org/10.1007/BF01743306

Beranek LL, Work GA (1949) Sound transmission through multiple
structures containing flexible blankets. J Acoust Soc Amer
21:419–428. https://doi.org/10.1121/1.1906530

Bolton JS, Shiau NM, Kang YJ (1996) Sound transmission through
multi-panel structures lined with elastic porous materials. J Sound
Vibr 191(3):317–347. https://doi.org/10.1006/jsvi.1996.0125

Bös J (2006) Numerical optimization of the thickness distribu-
tion of three-dimensional structures with respect to their struc-
tural acoustic properties. Struct Multidiscip Optim 32(1):12–30.
https://doi.org/10.1007/s00158-005-0560-y

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge
University Press. ISBN 978-0-521-83378-3

Chavan AT, Manik DN (2010) Sensitivity analysis of vibro-acoustic
systems in statistical energy analysis framework. Struct Mul-
tidiscip Optim 40:283–306. https://doi.org/10.1007/s00158-009-
0362-8

Cremer L (1942) Theory of the sound blockage of thin walls in case of
oblique incidence. Akust Z 7:81–104

Edwins DJ (2003) Modal testing: theory, practice and application
(mechanical engineering research studies: engineering dynamics
series). Research Studies Press LTD, Baldock England ISBN-13:
978-0863802188

Esping B (1995) Design optimization as an engineering tool. Struct
Multidiscip Optim 10(3-4):137–152. https://doi.org/10.1007/
BF01742585

https://doi.org/10.1016/j.apacoust.2017.02.019
https://doi.org/10.1016/j.apacoust.2017.02.019
https://doi.org/10.1007/BF01743306
https://doi.org/10.1121/1.1906530
https://doi.org/10.1006/jsvi.1996.0125
https://doi.org/10.1007/s00158-005-0560-y
https://doi.org/10.1007/s00158-009-0362-8
https://doi.org/10.1007/s00158-009-0362-8
https://doi.org/10.1007/BF01742585
https://doi.org/10.1007/BF01742585


2268 R. Aiello, F. Auriemma

Fahy F (1985) Sound and structural vibration radiation, transmission
and response. Edition Academic Press. ISBN 9780123736338

Fahy FJ (2000) Foundations of engineering acoustics, 1st edn.
Academic Press San Diego, ISBN 0-12-247665-4
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