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1 Introduction

Large cable shovels (LCSs) are large-scale engineering
machine used to excavate the blasted material, such as the
stripping coal and the oil sands, and load the material
onto the mining dump truck for transportation in an
open pit mine. From the viewpoint of design, large cable
shovel is generally thought to be of high efficiency, wide
operating range, strong environmental adaptability, and low
maintenance cost. However, this is usually not the truth
during the practical mining, because the large size and
complex ore pile condition often lead to either low fill factor
(the fill factor is defined as the ratio of the actual loading
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volume of the dipper to the maximum loadable volume after
one excavation cycle) or overload and thus inefficient or
even risky excavation, though the LCS is manipulated by a
skilled operator. The inappropriate excavation then leads to
enormous economic loss, such as the extra electric energy
and the rapid wear of the dipper teeth. For this reason,
an intelligent excavation system and optimal trajectory
optimization are desired to ensure the excavation more
efficient and energy saving.

Currently, there is a significant amount of work that has
been performed for the intelligent excavation and/or design
optimization of the excavating process of cable shovels from
the viewpoint of structure optimization or optimal control
strategy.

For example, many literatures have focused on the
intelligent excavation of the LCS. Dunbabin and Corke
(2006) set up a laser mapping system on the cable shovel
to obtain the terrain mapping of the material surface and
adopt the crowd retract procedure to modify the excavating
trajectory to realize the intelligent excavation for cable
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shovel. The results showed that the system can run reliably.
Awuah-Offei and Frimpong (2006) developed the spatial
dynamics of the dipper geometry and modeled the loaded
material weight using the ordinary differential equations
for the intelligent cable shovel, finding that the model
can parameterize shovel excavation schemes for optimum
production performance. Frimpong et al. (2005) proposed
an intelligent shovel excavation technology by bringing in
both the linear and angular motions of dipper handle and
dipper and obtained better results in the high-efficiency
excavation for the cable shovel. Frimpong and Hu (2008)
then advanced this intelligent excavation technology by
addressing the dynamic requirements of the cable shovel
using the Newton-Euler techniques and found that this
method can successfully predict optimum path trajectories,
dynamic velocities and acceleration profiles.

For the design optimization of the excavating process of
cable shovels from the viewpoint of structure optimization
or optimal control strategy, Awuah-Offei and Frimpong
(2007, 2011) modeled the excavating process of the cable
shovel and took the dynamic payload into account to find
the optimal dipper handle and hoist rope speeds for given
initial conditions. Results show that the optimal operating
conditions yield a better efficiency than the non-optimal
conventional operation. Wei et al. (2011) proposed a new
medium-tool interaction model and built a new three-DOF
excavating mechanism for the cable shovel, finding that
the cable shovel with three-DOF excavating mechanism is
more flexible and efficient. Wei and Gao (2012) also studied
the optimal trajectory of the new three-DOF excavating
mechanism with two crowd driving systems (two dipper
handles) and one hoist driving system, which is different
from the two-DOF one with only one crowd driving
system but more energy-efficient. Stavropoulou et al. (2013)
simulated the excavating process by means of a kinematical
shovel model, a dynamic payload model, and a cutting
resistance model. Results showed that the specific energy
of cutting exhibits a size effect. Rasuli et al. (2014)
developed a detailed dynamic model of the cable shovel
and experimentally verified the model by showing precise
dynamic payload estimation. Denman et al. (2010) achieved
the near-minimum time control on the swing drive of an
electric mining shovel. Hua et al. (2012) put forward a
new constraints expression and handling based method to
perform the structural optimization of an excavator boom.
Patel and Prajapati (2013) optimized the structure and shape
of the backhoe excavator attachment using Finite Element
Analysis (FEA) approach by trial and error method. Özgen
et al. (2008) performed the shape optimization of excavator
booms automatically by using Genetic Algorithm method
that is embedded in developed computer software. Results
showed that the final weight had been decreased by 5%
and maximum stress had been improved by 10%. Sui et al.

(2012) established a multi-objective optimization model
to find the optimal structural parameters for the working
device of the LCS, finding that the LCS’s performance has
been greatly improved.

Although so much work has been done to improve
the performance of the cable shovel with respect to the
control and structure parameters, there are still some
inevitable challenges, for example the human errors, which
is the main reason leading to the inefficient excavating
trajectory. As investigated by Patnayak et al. (2008), 25%
variability in hoist power consumption and 50% variability
in productivity was noted between different operators.
Therefore, the demand of an advanced intelligent excavation
system and trajectory optimization technique, which makes
the LCS efficiently and economically excavate, is urgent.

The remaining of the paper is organized as follows.
Section 2 discusses the structural compositions and the
working mechanism of the intelligent LCS. Section 3
develops the excavating resistance model and builds the
dynamical model for the excavating process. Section 4
builds the optimal control and trajectory planing model
using the point to point method for the whole excavating
circle. In Section 5, the optimal control problem is
modeled, and the optimization results are obtained and
discussed. Section 6 simulates the actual working conditions
and conduct the numerical experiments for the trajectory
planning method of the intelligent LCS. Section 7 provides
the concluding remarks and future work.

2 Intelligent excavation system (IES)

As an extremely large and complex multidisciplinary
system, the LCS must coordinate the activities of every
sub-system and/or component concertedly while processing
the excavating tasks. The conventional LCS without the
intelligent excavation system, is usually composed of three
major parts, including the upper assembly, the lower
assembly, and the attachments, as illustrated in Fig. 1.
Among them, the attachments, including the dipper handle,
hoist ropes, dipper, boom point sheaves, etc., are the main
operating mechanism that directly contacts the material to
complete the excavating tasks. The upper assembly contains
an electromechanical system, which is composed of two
hoist motors and one crowd motor. For the lower assembly,
the most important functional component is the crawler. A
complete excavating cycle has four activities: propel, swing,
hoist and crowd/retract. The hoist mechanism and crowd
mechanism synergistically drive the dipper to excavate the
material from the bottom up. After loading up, the dipper
arrives the dumping height, swings to the top of the mining
truck, and then dumps the material down. Then, the LCS
swings to the next working point and lays the empty dipper
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Fig. 1 The scheme of the
intelligent LCS
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down to the bottom by the cooperative work of the hoist and
crowd mechanisms.

As can be seen, the final excavating trajectory is
deter-mined directly by the crowd and hoist, namely the
speeds of the crowd and hoist motors. However, the large
scale machine itself and the complex terrain as well as
the unpredictable excavating resistance make the optimal
excavating trajectory planning rather difficult, such that the
conventional LCS usually does not work under optimal
conditions, and 50% variability in productivity was noted
between different operators (Patnayak et al. 2008). To
reduce human’s uncertainty or undesirable influence and
make the best of LCS, an intelligent excavation system
(IES) installed on the carbody, is proposed in this work, as
illustrated in Figs. 1 and 2. The compositions of the IES
include a 3D scanner, a power sensor, a proximity detector,
a displacement detector, and a wireless transceiver, etc.,
which are connected wirelessly with the computing sys-
tem through wireless network. From Fig. 2, the numbers
from 1 to 11 denote the data flow orders for the arrows
between different devices. The data collected from different
detectors is first transmitted to the CPU and Storage device
for excavating planning, and then goes back to the Control
device for the actuator working. The detail processes are
presented in the following part.

Figure 3 illustrates the intelligent excavating process of
the LCS. At the beginning of the excavating process, the IES
receives excavating planning, such as the expected payload
volume. Then the 3D scanner starts to scan the ore pile
to pick up the surface information. Based on the surface
information and the pre-defined material properties, the
central process unit (CPU) performs the optimization of the
excavating trajectory using a set of mechanical and dynamic
equations. The output optimization results consist of two
aspects, the position when the LCS initially located and
the optimal excavating trajectory, respectively. The output

optimization results include the position when the LCS
should be located and the optimal excavating trajectory,
thus the proximity detector and the displacement detector
start to identify whether the LCS currently locates in the
appropriate position first. If not, the controller and lower
assembly execute the repositioning of the LCS. Then the
LCS starts the excavation from the right location and
feeds back some relevant information collected by the
sensors, such as the power sensor, the proximity detector,
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Fig. 2 IES installed on the body of the LCS
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Fig. 3 The flow chart of the intelligent excavating process

and the displacement detector, to the CPU for recording.
After each operation cycle, the IES identifies whether the
whole excavating planning has been completed. If not,
then go on excavating, otherwise, stop to prepare for the
next excavation planning. In addition to these intelligent
functions, the IES possesses the capacity of self-learning,
which makes it be able to accumulate the excavating
experience through mining the “big data” produced during a
long-term operation, and verify and amend the empirical or
analytical equations used a priori. In theory, the intelligent
excavation with IES can eliminate the empirical errors and
rapidly fulfill a task with minimum energy consumption as
long as the optimal excavating trajectory is obtained exactly.
So the rest of this paper mainly focuses on this issue to
find the optimal excavating trajectory, namely the optimal
control speeds of the crowd and hoist motors, to achieve the
optimal excavation for the intelligent LCS.

3Modeling of the LCS

3.1 Excavating resistance

To optimize the excavating trajectory, the accurate predic-
tion of excavating resistance is crucial. Due to the large size
of the LCS, many factors, such as the interactions between
the shovel dipper and the ore pile, the gravities of material
loaded into the dipper, and the self-weight of dipper handle
and the dipper, play non-negligible roles on the excavating
resistance.

Up to now, many empirical equations have been
developed to deal with the resistance prediction of the
complex excavating process (Dexter et al. 2007; Takahashi
et al. 1998). Nevertheless, most of these models assume or
simplify the dynamic excavation as steady process, and thus
cannot take into account the effect of time-varying dipper
penetration and excavating speed. In this work, a dynamic
prediction model of the excavating resistance based on
the method of trial wedges proposed by McKyes (1985)

is established for the LCS. Figure 4 shows the resistance
analysis of the dipper while excavating. F1 denotes the
tangential cutting resistance; F2 denotes the normal cutting
resistance; F3 is the friction caused by the normal cutting
resistance F2; and G denotes the gravity of the material
loaded in the dipper.

The tangential cutting resistance, F1, as formulated in
(1), can be further decomposed into three parts, including
the bottom resistance F11, the velocity induced resistance
F12, and the resistance caused by the extrusion from the two
sides of the dipper F13.

F1 = F11 + F12 + F13 (1)

For F11, it can be obtained as follows (McKyes 1985):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F11 = ω(γgd2Nγ + cdNc + γ υ2dNa)

Nγ = 0.5(cot β + cot ρ)/EN

Nc = [1 + cot ρ cot(ρ + ϕ)]/EN

Na = [tan ρ + cot(ρ + ϕ)]/[1 + tan ρ cot β/EN ]
EN = cos(β + δ) + sin(β + δ) cot(ρ + ϕ)

ρ = (π − ϕ)

(2)

where, ω is the dipper width, γ is the material density, d

is the excavating depth, c is the material cohesion, υ is the
speed of the dipper teeth, β is the excavating angle, ρ is the

Material

Trajectory
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G

Fig. 4 Force analysis of the excavating process
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dip angle of the slip surface, ϕ is the internal friction angle
of the material, and δ is the mechanical-soil friction angle.

F12 and F13 can be obtained through (3) (Wei et al. 2011)
and (4) (McKyes 1985):

F12 = ωdυ2γ [tan ρ sin(ρ + ϕ) + cos(ρ + ϕ)]
sin(β + δ + ρ + ϕ)(1 + tan ρ cot β)

(3)

F13 = 2d3γ (cot β + cot ρ) sin(β+δ)
√

cot2 ρ+cot β cot ρ

3ω sin(β + ρ + ϕ + δ)

(4)

The normal cutting force, F2, perpendicular to the speed
of the dipper teeth, is produced by the extrusion reaction
between the dipper and the material, so it can be derived
in terms of the corresponding material properties of the
dipper and material. As mentioned above, the cable shovel
is usually used to excavate the blasted material in the open
pit mine, so the normal cutting resistance F2 for the blasting
material can be obtained by (Wei et al. 2011)

F2 = F1 tan δ

1 − τ tan δ
(5)

where τ is the proportionality coefficient and usually among
0.3 ∼ 0.45, so F3 can be cast as (Wei et al. 2011)

F3 = μF2 (6)

where μ = tan δ.
It should be noted that the material loaded into the

dipper accumulates continuously all the time during the
dipper cutting through the ore pile, so the loaded material
mass, the rotational inertia, and the centroid of the dipper-
material system change continuously. It can be seen that an
accurate estimation of the loaded material mass comes to be
a crucial issue in the trajectory planning of the intelligent
LCS. An instantaneous excavating status is illustrated in
Fig. 5, where the material surface (ym) and the excavating
trajectory (yt ) are predefined. By assuming the material to

Dipper

Material

Loaded material

Trajectory

= ( , )

= ( , )

( , )

A
B

C
D

Material surface

Fig. 5 The instantaneous loading volume of the excavating process

be homogeneous, the current loaded volume of the material
can be described as the product of the dipper width and the
area of the quadrangle ̂ABCD, which is equal to the area of
̂OBC. So, at any time instant during a excavating process,
the current loaded volume, Vc, can be obtained using the
integral:

Vc(x) = ω ·
∫ x

xtin

(ym(x) − yt (x))dx (7)

where, xtin is the initial horizontal position when the dipper
cuts into the ore pile. Then the gravity of the material loaded
in the dipper, G, can be calculated as

G = γVc(x) (8)

Note that, the gravity of loaded material becomes constant
if dipper teeth overtops the material surface.

3.2 Dynamic analysis

The development of the IES requires kinematics and
dynamic models of the shovel operating modes to describe
the evolution of the excavator motion with time (Frimpong
and Hu 2008). As described in Section 2, the excavating
activities of the dipper are actuated simultaneously by the
hoist and crowd motors. In this paper, the speeds of the
crowd and hoist motors are set to be the two control param-
eters, based on which the dynamic analysis of the LCS
is performed as follows.

While excavating, there are two types of motions simul-
taneously carried out for the dipper handle, the rectilinear
motion in the direction parallel with the major axes of the
dipper handle and the circular motion around the axis of
the crowd gear, respectively. Based on the motion charac-
teristics, a polar coordinate system is established to describe
the dynamic system, as illustrated in Fig. 6, where the axis
of the crowd gear, O, is set to be the origin, the stretching

Major axes

Dipper handle

Fig. 6 The polar coordinate system built in the dynamic analysis
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length of the dipper handle is set to be the polar diameter
(r), and the angle between the vertical direction and the axes
of dipper handle is set to be the independent variable (ψ).
So the lagrange equation of this system can be written as
⎧
⎪⎪⎨

⎪⎪⎩

d

dt

∂E

∂ṙ
− ∂E

∂r
= Fh

d

dt

∂E

∂ψ̇
− ∂E

∂ψ
= Fψ

(9)

where E is the total kinetic energy of the system, including
the translational kinetic energy and the rotational kinetic
energy; Fh is the radial force, namely the force acting on
the dipper handle in the direction of the major axis; and Fψ

is the circumferential force. In this paper, the mass of the
dipper handle is set to follow the uniform distribution in the
axial direction and the dipper is simplified to be the regular
shape, then the dynamic equation can be obtained as (10)
and (11).

(mh+md +mm)r̈ = Fh+(mdg+mhg+mmg) cos ψ

−Fn−Fr cos 
 +mhψ̇
2r − 1

2
mhlhψ̇

2

+(md + mm)ψ̇2 + 1

2
(md + mm)ldψ̇2

(10)

[(

r2−lhr+ 1

3
l2
h

)

mh+
(

r2 + ld + 1

3
l2
d

)

(md +mm)

]

ψ̈

= Fhr sin 
 −Ft(ld +r)−(md +mm)g sin ψ

(
ld

2
+r

)

−mhg sin ψ

(

r − lh

2

)

(11)

where mh are the mass of the dipper handle; md is the mass
of the dipper; mm is the current mass of the loaded material
in the dipper; lh are the length of the dipper handle; ld is the
length of the dipper; Fr is the tensile force provided by the
hoist ropes; Fn is the normal excavating resistance acting on
the dipper teeth; Ft is the tangential excavating resistance
acting on the dipper teeth; and 
 is the angle between the
hoist ropes and the dipper handle. Then the speeds of the
hoist ropes and the dipper handle, namely the hoist motor
speed and the crowd motor speed, can be obtained from (12)
and (13):

vhandle = dhh

dt
(12)

vrope = dSrope

dt
(13)

where Srope is the length of the hoist rope.

4 Trajectory planning of the intelligent
excavating process

4.1 Trajectory planning using the point to point
method

Currently, many different trajectory optimization methods
corresponding to specific equipments, such as the mechani-
cal arm and the artificial earth satellite, have been proposed.
For example, Dong and Lee (2015) developed a numeri-
cal model of the levelluffing crane (LLC) to optimize the
loading/unloading trajectory, based on which the strength-
based deterministic optimization (DO) is used to minimize
the weight of a double rocker. Dufour et al. (2015) used the
pseudo-spectral approach to optimize the trajectory of a sub-
orbital spaceplane and then conducted a trajectory driven
multi-disciplinary design optimization (MDO) for a sub-
orbital spaceplane by taking into account the aerodynamics,
the structure, and the optimal control. Du et al. (2015) devel-
oped a single-layer optimization model to find the optimal
trajectory of the hatch door of the airliner ARJ21-700. Cur-
rently, the conventional S-curve trajectory planning method,
which is used to establish the trapezoidal control strategy, is
adopted for most of the engineering machines to complete
the functional motions. Nevertheless, the S-curve has not
been certified to be the optimal trajectory planning method,
so some other trajectory planning methods should inevitably
be proposed and the corresponding superiority should also
be certified. In this paper, the point to point (PTP) trajectory
planning, proposed by Huang et al. (2012), which has been
successfully applied to many practical engineering (Hsu
et al. 2014; Fung and Cheng 2014), is adopted. The PTP
trajectory is designed on the basis of a high-degree polyno-
mial, which is able to satisfy desired constraints of position,
velocity, and acceleration at the start and end points (Huang
et al. 2012).

In PTP method, the trajectory curve is set to be an
n-degree polynomial function

s(t) = ant
n +an−1t

n−1 +· · ·+a3t
3 +a2t

2 +a1t +a0 (14)

where an (n is the positive integer) denotes the polynomial
coefficient, and the coefficient of the highest degree is not
equal to 0. Subsequently, some essential constraints can
be deduced based on the initial and final conditions of
the optimal control problems. It should be noted that the
number of the constraints limits the highest degree n of the
polynomial.

The optimization objective of this paper is to find the opti-
mal excavating trajectory for the intelligent LCS to realize
the minimum energy consumption while rapid excavation.
Dipper handle and hoist rope speeds are the key measures
of operator practices (Awuah-Offei and Frimpong 2011). In
another word, it is to find the optimal speeds of the motors
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Fig. 7 The Cartesian coordinate system built to describe the
excavating trajectory

and the optimal trajectory of the dipper to achieve the min-
imum energy consumption while rapid excavation. In this
paper, two directional trajectories are defined to describe the
overall trajectory of the dipper: the x-axis directional trajec-
tory and the y-axis directional trajectory, respectively. The
corresponding Cartesian coordinate system is illustrated in
Fig. 7, where the origin is the bottom of the ore pile.
So the excavating trajectory of the intelligent LCS can be
calculated as (15):

{
sx(t) = axnt

n + axn−1 t
n−1 + · · · + ax2 t

2 + ax1 t + ax0

sy(t) = aynt
n + ayn−1 t

n−1 + · · · + ay2 t
2 + ay1 t + ay0

(15)

The initial and final states of the excavating activities
are illustrated in Table 1, where the sign “

⊙
” means the

value to be optimized. The hoist and crowd motors drive the
dipper to excavate the material from the bottom to the top
with both the initial and final speeds being zero (vix,y = 0,
vfx,y = 0). In order to ensure the excavation smooth and
stable, the initial and final accelerated speeds should also be
zero (aix,y = 0, afx,y = 0). For the initial location of the

Table 1 Initial and final states of the excavating activities

Direction Time variable (unite) Initial state Final state

x t (s) 0.00
⊙

sx(t) (s) 0.00
⊙

vx(t) (m/s) 0.00 0.00

ax(t) (m2)/s 0.00 0.00

y t (s) 0.00
⊙

sy(t) (s) 0.00
⊙

vy(t) (m/s) 0.00 0.00

ay(t) (m2)/s 0.00 0.00

The “
⊙

” sign means the value to be optimized

dipper teeth, it is set to be the origin of the coordinate system
as illustrated in Fig. 7. It should be noted that θi could
not be constant in order to guarantee a good result when
excavating different types of material, that is the distance
between the shovel carbody and the ore pile should be
varied. The final time instant tf and the final location of the
dipper teeth (sxf

, syf
) also vary and will be determined by

objective/constraint functions.
On the basis of the analysis above, the essential

constraints for the trajectory planning of the intelligent LCS
in this study can be described as
⎧
⎨

⎩

six = ⊙

vix = 0
aix = 0

(16)

⎧
⎨

⎩

siy = ⊙

viy = 0
aiy = 0

(17)

Combining (15)–(17), the following equations can be
obtained:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ax0 = 0
ax1 = 0
ax2 = 0

ax3 = 10sxf

t3
f

−t3
f ax6 −3t4

f ax7 −6t5
f ax8 −10t6

f ax9 − · · ·
−(0.5n2 − 4.5n + 10)t

(n−3)
f axn

ax4 = − 15sxf

t4
f

+3t2
f ax6 +8t3

f ax7 +15t4
f ax8 +24t5

f ax9 + · · ·
+(n2 − 8n + 15)t

(n−4)
f axn

ax5 = 6sxf

t5
f

−3tf ax6 −6t2
f ax7 −10t3

f ax8 −15t4
f ax9 − · · ·

−(0.5n2 − 3.5n + 6)t
(n−5)
f axn

(18)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ay0 = 0
ay1 = 0
ay2 = 0

ay3 = 10syf

t3
f

−t3
f ay6 −3t4

f ay7 −6t5
f ay8 −10t6

f ay9 − · · ·
−(0.5n2 − 4.5n + 10)t

(n−3)
f ayn

ay4 = − 15syf

t4
f

+3t2
f ay6 +8t3

f ay7 +15t4
f ay8 +24t5

f ay9 + · · ·
+(n2 − 8n + 15)t

(n−4)
f ayn

ay5 = 6syf

t5
f

−3tf ay6 −6t2
f ay7 −10t3

f ay8 −15t4
f ay9 − · · ·

−(0.5n2 − 3.5n + 6)t
(n−5)
f ayn

(19)

In the PTP trajectory planning method, the total time is
discretized into small segments or intervals such that

t0 = t1 < t2 < · · · < tn = tf (20)
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where, t0 is the initial time and tf is the final mission time.
Based this discretization, the speed and accelerated speed at
any instant can be cast. Thus, the optimal control problem is
transformed into a general nonlinear optimization problem
trying to find the optimal coefficients of the n-degree
polynomial and the final location of dipper teeth (sxf

, syf
).

4.2 Objective function

As mentioned in Section 4.1, this paper aims to find the
optimal speeds of the hoist and crowd motors and the
optimal trajectory of the dipper to achieve the minimum
energy consumption. Note that, the total energy consump-
tion of the intelligent LCS is directly determined by the fill
factor. The larger the fill factor is, the more energy will be
consumed by the intelligent LCS. So the pure energy con-
sumption is inappropriate to be set as the sole and ultimate
indicator for the LCS. In this paper, two demands, to min-
imize the energy consumption of a single excavating cycle
and to maximize the fill factor of the dipper, are combined
together as the sole objective function:

f = Etotal

Vp

(21)

where Etotal denotes the total energy consumption and Vp

denotes the actual dipper loading volume of material. The
total energy consumed by the LCS to excavate the material
is completely provided by three motors (two hoist motors
and one crowd motor), so the total energy consumption can
be formulated as (22):

Etotal = 2Er + Eh (22)

where, Er denotes the output energy of the hoist motors and
Eh denotes the output energy of the crowd motor. The total
energy consumed by any single motor can be obtained using
(23):

Esingle =
∫ tf

ti

F (t)v(t)dt (23)

where, F(t) denotes the force output from the single motor
and v(t) denotes the linear speed of the motor.

5 Numerical simulation and results

5.1 Optimizationmodel establishment

As analyzed in Section 4.1, searching the optimal s(t), v(t),
and a(t) of the dynamic system is equivalent to searching
the optimal n-degree polynomial coefficients, so ax6∼n

and
bx6∼n

are selected to be the design variables. In the practical
excavation, the initial angle θi , which determines the initial
distance between the LCS and the material pile, potentially

influence on the excavating performance of the LCS through
affecting the shape of the excavating trajectory. For the
excavating endpoint, the LCS should work together with
the mining truck to complete the dumping motion, so it
is essential to take into account the final location of the
dipper teeth (sxf

, syf
) in order to avoid the interference

between different devices. In addition, a smaller time
consumption means a higher excavating efficiency and
productivity, so the final time tf is also taken into account
in this PTP trajectory planning. Based on all above, the
dependent optimization variables in this paper are selected
as illustrated in (24)

x = [ax6 , ax7 , · · · , axn, ay6 , ay7, · · · , ayn, tf , sxf
, syf

, θi]
(24)

Usually, in the practical mining the LCS dumps the mate-
rial onto the mining trucks, which requires a lowest height
and a smallest horizontal distance for the final location
of the dipper teeth. Based on the practical engineering,
the lowest height and the smallest horizontal distance are
set to be 10 and 11 m, respectively. In addition, due to
the maximum length of the dipper handle and the maxi-
mum height of the boom, the upper boundaries of the final
location sxf

and syf
are both set to be 15 m. In order to

ensure the working efficiency of the LCS, the final time
instant tf should also be scheduled within reasonable range.
In this paper, the bound of tf is set to 5 ∼ 12 s. Based on
the physical characteristics and performance requirements
of the LCS, θi is set to be 15.00◦ ∼ 45.00◦. And the poly-
nomial coefficients are set to range from negative infinite to
positive infinite as listed in Table 2.

In addition, in order to avoid underload or overload, the
minimum and maximum fill factor for each cycle is set to be
90 and 110% of the nominal loading capacity, respectively,
which means that the loading volume Vp should be in the
range of 0.9Vmax ∼ 1.1Vmax (m3). The stretching length
of the dipper handle r should be less than the maximum
length of the dipper handle, namely r ≤ lh. In order to
make the control process stable and reliable, the control

Table 2 Upper and lower bounds of design variables

Design variable (unit) Lower bound Upper bound

ax6∼n
−∞ +∞

ay6∼n
−∞ +∞

tf (s) 5.00 12.00

sxf
(m) 10.00 15.00

syf
(m) 11.00 15.00

θi (◦, degree) 15.00 45.00
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(a) The characteristic curve of the hoist motor (b) The characteristic curve of the crowd motor

Fig. 8 The characteristic curves of the hoist and crowd motors

speeds of the dipper handle and the hoist ropes are limited
to be greater than 0, namely vh ≥ 0 and vr ≥ 0.
Given the motor dynamic characteristics, as an example
illustrated in Fig. 8a, the instantaneous power and/or torque
of any motor should be less than the maximum allowable
power and/or torque the corresponding motor can provide,
namely Ph,r ≤ Ph,rmax and/or Th,r ≤ Th,rmax , where P

and T continually vary with respect to the motor speeds
while excavating. Besides the physical and performance
constraints, some auxiliary constraints are also added to
insure a reasonable and practicable trajectory. For example
the final location of the dipper teeth should be above the
material surface, namely syf

> hmf
, where hmf

is the
corresponding material height at the final moment. To insure
that the dipper teeth excavate into the ore pile successfully,
the initial derivative of the excavating trajectory should be
less than the initial slope of the ore pile, namely

(
ds
dt

)

i
<

tan κ , where κ is the pile angle of the ore pile.
So the overall optimization formulation can be written as

follows:
⎧
⎪⎨

⎪⎩

find x
min f = Etotal

Vp

s.t. gi ≤ 0 (i = 1, 2, 3, 4, 5, 6, 7, 8, 9)

(25)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = r − lh
g2 = −vh

g3 = −vr

g4 = Ph − Phmax

g5 = Pr − Prmax

g6 = hmf
− syf

g7 = (
ds
dt

)

i
− tan κ

g8 = Vp − 1.1Vmax

g9 = 0.9Vmax − Vp

(26)

In this paper, the LCS with a dipper payload of 55 m3

is taken as a case. The rated power of the hoist motor is
2500 kW with the rated rotational speed being 650 r/min
and the rated power of the crowd motor is 950 kW with
the rated rotational speed being 600 r/min. The efficiency
of the motors are all 0.9 and the transmission ratios
of the hoist and crowd driving systems are 51.06 and
39.60, respectively. The corresponding characteristic curves
of the hoist and crowd motors are illustrated in Fig. 8,
where the motors are able to keep constant torque in the
low-speed region and constant power in the high-speed
region. The initial values of some important parameters
are listed in Table 3 and the corresponding explanations
are illustrated in Fig. 9. The Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al. 2002) is
implemented in this paper to perform the optimization, and
the sample size and the generations are set to be 100 and 60,
respectively.

Table 3 The initial values of some important parameters

Parameters (unite) Value Parameters (unite) Value

ω (m) 4.00 H (m) 10.10

lh (m) 11.50 EF (m) 3.19

ld (m) 4.78 PF (m) 2.78

B0 (◦, degree) 15.00 ED (m) 2.66

ρ (◦, degree) 28.65 ϕ (◦, degree) 42.00

γ (kg/m3) 1.70 × 103 δ (◦, degree) 40.00

c (kPa) 0.51 rw (m) 1.10

Lbi (m) 15.00 αb (◦, degree) 45.00

mh (kg) 61681.54 md (kg) 10256.50

Vmax (m3) 55.00 Phmax (kW) 0.50

Prmax (kW) 1.25 rg (m) 0.37
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Fig. 9 The corresponding structure explanation of the LCS

5.2 Determination of the optimal degree
of the polynomial

Theoretically, higher order polynomials contain all the
curve types that the lower order polynomials can present
and may lead to a better representation for the excavating
trajectory, however, this increasing order of the polynomials
may introduce more design variables into the optimization
process, which may cause expensive computation. In
addition, from our numerical experiments, the magnitude
orders of the optimal polynomial coefficients vary greatly
with the orders of polynomials used in the trajectory
planning. In this situation, the truncation errors may occur
more likely due to the limit of the search algorithm when
the orders of polynomials are higher. Thus, the obtained
excavating trajectory from the polynomials with a higher
order may be not necessarily better than that obtained
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from the polynomials with a lower order. It conforms to
the results and statement of Fung and Cheng (2014): a
higher degree of the polynomial will not necessarily show
significant energy-saving in the absolute input electrical
energy during the trajectory planning. So the comparisons
among 6 to 11 degrees of polynomials are performed to
find the optimal degree of the polynomial for the trajectory
optimization in this paper. In the comparison, the initial and
final locations are both set to be the same and the material
surface angle is uniformly set to be 40◦ for all the different
degrees of polynomials. The final optimal coefficients of
the polynomials with 6 to 11 degree in x and y directions
are listed in Table 4. It is observed that the magnitudes of
all the polynomial coefficients are very small, the reason of
which is that the nth power of the time is extremely large.
Figure 10 shows the comparisons of the optimal trajectories
among the 6 to 11 degree polynomials for the intelligent
LCS. It is obviously found that the optimal trajectories with

Table 4 The coefficients of polynomials with different degrees in two directions

Direction Degree a6 a7 a8 a9 a10 a11

x 6 −1.98 × 10−5 – – — – –
7 7.30 × 10−6 −0.52 × 10−6 – – – –
8 −1.26 × 10−6 −7.10 × 10−6 2.42 × 10−7 – – –
9 8.78 × 10−9 −1.14 × 10−8 −3.08 × 10−8 0.12 × 10−8 – –
10 −6.81 × 10−9 1.34 × 10−8 −9.87 × 10−9 −1.48 × 10−8 7.32 × 10−10 –
11 −4.77 × 10−10 2.15 × 10−10 8.02 × 10−10 1.71 × 10−10 −1.29 × 10−9 6.90 × 10−11

y 6 1.24 × 10−5 – – – – –
7 1.91 × 10−6 0.29 × 10−6 – – – –
8 2.98 × 10−6 −4.51 × 10−6 1.79 × 10−7 – – –
9 −2.11 × 10−9 −2.48 × 10−8 −8.72 × 10−8 4.57 × 10−9 – –
10 1.20 × 10−8 4.35 × 10−9 −9.07 × 10−9 −4.18 × 10−9 3.95 × 10−10 –
11 −2.52 × 10−10 3.08 × 10−10 −2.04 × 10−10 −4.18 × 10−11 −6.40 × 10−10 3.91 × 10−11
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6 degree to 11 degree have different tendencies. Detailedly,
there is a common intersection in the middle position for
the 6 trajectories and the vertical orders of the trajectories
are inverse in the left and right sides of the intersection.
The comparisons of the trajectory profiles among the 6 to
11 degree polynomials is illustrated in Fig. 11, from which
it can be seen that the control parameters and some critical
performance indicators also have different tendencies.

As defined the objective function to be the energy
consumption per volume of the material, it is also set to
be the selection metric for the optimal maximum degree

of the polynomial. Figure 12 shows the loading capacity
and energy consumption per volume of the 6 different
degrees of polynomials. It can be seen that the optimal
loading capacities of all the trajectories meet the minimum
requirement as 90% of the fill factor and achieve the
maximum value of 50 m3 as well. From Fig. 12b, the 6-
degree polynomial trajectory achieves the minimum energy
consumption per volume of 0.1615 kW/m3 with a relatively
large loading volume. Based on the analysis above, the
optimal maximum degree of the polynomial for the
trajectory planning of the intelligent LCS is selected to be 6.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(a) Control speed of the hoist motors

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(b) Control speed of the crowd motor

0 2 4 6 8 10 12 14
6

7

8

9

10

11

12

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(c) The length of the hoist ropes

0 2 4 6 8 10 12 14
8

10

12

14

16

18

20

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(d) The stretching length of the dipper handle

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4
× 10

6

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(e) The tensile force output by the hoist motors

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1
× 10

6

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(f) The thrust output by the crowd motor

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(g) The output power of the hoist motors

0 2 4 6 8 10 12 14
0

100

200

300

400

500

6 degree

7 degree

8 degree

9 degree

10 degree

11 degree

(h) The output power of crowd motor

Fig. 11 Comparisons of the optimal control regarding 6 to 11 degree polynomial trajectory planning methods
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5.3 Comparisons between the PTP and the S-curve
trajectory plannings

Currently, in the practical mining engineering the S-curve
is most widely used as the control curve of the hoist
and crowd motors for the manual LCS. As mentioned in
Section 1, the human errors are inevitable and irregular
for the conventional operation of the manual LCS, which
results in the fact that it’s meaningless to compare a non-
optimal S-curve with the proposed method. In this work,
we assume that an highly skillful operator is manipulating
the LCS, and thus the optimal S-curve can be obtained
for the comparison. If the proposed PTP method has a
better performance than the so-called S-curve method, it can
be concluded that the proposed 6-degree polynomial PTP
method is more practicable for the intelligent LCS than the
conventional S-curve method no matter if the LCS is manual
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Fig. 13 Comparisons of the optimal trajectories between the 6 degree
polynomial and S-curve planning methods

or intelligent. In this paper, the expression of the adopted
S-curve is (Wikipedia 2017):

s(t) = a1

a2 + a3ea4t+a5
(27)

where, ai’s are the parameters determining the shape of
S-curve.

By setting all the initial locations to be the same, the
comparison of the optimal excavating trajectories between
the 6-degree polynomial and S-curve methods are illus-
trated in Fig. 13. From Fig. 13, the excavating trajectory
of the 6-degree polynomial is smoother than the S-curve. It
is observed that the trajectory based on the 6-degree poly-
nomial performs a shallower cut through the ore pile than
that based on the S-curve. As listed in Table 5, for the opti-
mal energy consumption per volume of material driven by
the S-curve method is 0.1733 kW/m3, which is greater than
that (0.1615 kW/m3) driven by the 6-degree polynomial
trajectory planning method. In another word, the 6-degree
polynomial PTP trajectory planning method can save 6.81%
energy compared to the S-curve method under the same
working condition. This is also in agreement with the find-
ings of Patnayak et al. (2008): a deep cut through an ore
pile generally results in higher power consumption than a

Table 5 The comparison between the 6-degree polynomial and the
S-curve trajectory planning methods

Scenario Loading volume Time Energy consumption

(m3) (s) per volume (kW/m3)

S-curve 50.00 13.77 0.1733

6-degree polynomial 50.32 13.31 0.1615

Improvement – – 6.81%
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Fig. 14 Comparisons of the optimal control between the 6-degree polynomial and the S-curve trajectory planning methods

shallow cut. The main reason is that a shallow cut through
the ore pile can generate a relative small excavating resis-
tance and a slow gravity accumulation while excavating.
Figure 14 shows the comparisons of the trajectory profiles
between the 6-degree polynomial and the S-curve methods.

6 Numerical experiments on actual working
conditions

6.1 Performance comparison among different pile
angles

In order to verify the availability of the proposed method,
the optimized control strategy for various pile angles (35◦,
40◦, 45◦, and 50◦) is investigated. The optimization results
are shown in Table 6. It shows that the optimized loading
capacities of all the four scenarios do meet the requirement
of 90% fill factor. The energy consumption is reasonably

low and the excavating cycles can ensure the working
efficiency. It is found that larger tf and θi are of help
to save energy as the pile angle increases. For the final
location of the dipper teeth, it becomes closer to the

Table 6 The optimization results of the four types of excavating
scenarios with respect to different pile angles

Parameter (unite) Pile angle

35◦ 40◦ 45◦ 50◦

ax6 (10−5) − 4.79 − 3.60 − 3.12 − 0.35
ay6 (10−5) 2.12 0.86 0.65 0.91
sxf

(m) 12.43 11.66 10.26 10.00
syf

(m) 11.00 11.00 11.00 11.92
tf (s) 12.07 12.45 12.46 14.47
θi (◦, degree) 15.12 19.15 25.89 26.59
Energy consumption 0.1520 0.1458 0.1529 0.1612
per volume (kW/m3)

Load capacity (m3) 51.65 53.83 50.32 52.24
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machine body with the pile angle increasing. The detail
excavating processes are shown in Fig. 15, where the dash-
dotted lines denote the material surfaces, the solid lines
denote the optimal excavating trajectories, and the circles
denote the axes of crowd gears. For the dashed lines, they
describe the initial polar radius and θi . As shown from
Fig. 15, θi is very close to 15◦ when the pile angle is
35◦, which means that the LCS should stand much closer
to the ore pile while excavating the pile with a small
pile angle. On the contrary, it should stand farther while
excavating pile with a large pile angle. Figure 16 illustrates
the control parameters and some important performance
indicators during the excavation. The hoist motor and crowd
motor speeds are both 0 at the initial and the end moment,
which ensures the stability of the excavating process and
avoids the extra energy consumption. From Fig. 16b, it is
found that the maximum crowd motor speed will increase
when the pile angle increases. Figure 16c and d reflect that
the intelligent LCS should stretch out the dipper handle
longer when excavating the ore pile with a smaller pile
angle. In addition, the stretching length of the dipper handle
almost remains unchanged within the first and last few
seconds, namely doing the approximate circular motion,
especially in the situation with large pile angle. It can be
seen from Fig. 16e that the initial tension needed to start the
excavation becomes larger and the time when the tension
reaches the maximum value becomes later as the pile angle
increases. From Fig. 16f, the initial thrust needed to start
the excavating activity become smaller with the pile angle
increasing. For the power consumed by the intelligent LCS
as shown in Fig. 16g and h, the larger the pile angle is,
the later the maximum hoist power and crowd power will
appear. It is also observed that the maximum hoist powers
with respect to all the four pile angles reach the upper bound
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Fig. 15 The optimal trajectories of the excavating tasks with different
pile angles

of the hoist motor being 2250 kW, while none of the crowd
powers reaches the upper bound. Therefore, more powerful
hoist motor is desirable if a high performance of the LCS is
required.

6.2 Performance verification on actual working pile
surface

In the practical excavation, the slope of the ore piles
usually can not remain absolutely straight and smooth due
to the random distribution of ore blocks. From an overall
visual angle of the material pile, its slope usually presents
many different random forms, such as the concave, the
convex, and the wave-like shape, which are all macroscopic
fluctuations. Relatively, some small fluctuations which are
formed by the local aggregation of the material, defined
as the microscopic fluctuations, simultaneously exist on
the macroscopic fluctuations. So the actual terrain is very
complex as shown in Fig. 17, where the ore pile roughly
stacks along the theoretical pile angle from bottom to top
with many local ups and downs. Thus, both the macroscopic
and microscopic fluctuations are taken into account in this
paper to simulate a more realistic terrain to verify the
efficiency and reliability of the PTP trajectory planning
method for the LCS. At the first stage of the intelligent
excavation as mentioned in Section 2, the intelligent LCS
uses the 3D scanner to extract a series of coordinates for
constructing the mathematical models of the corresponding
pending surface. As illustrated in Fig. 17, the ith set of
coordinate points is obtained from the ith excavating task
and each set differs greatly from that of another, which
requires the intelligent LCS to recognize the terrains of
ore pile accurately and makes excavating decisions rapidly.
In this paper, in order to simulate the types of the actual
pile surface as many as possible, four different scenarios
with microscopic fluctuations are compared and analyzed:
the flat type, the concave type, the convex type, and the
concave-convex type, all of which stack along the same pile
angle being 40◦.

Figure 18 shows the excavating task of the ore pile
surface with different types of fluctuations. It is found
that the PTP trajectory planning method can find the best
trajectories for all of the scenarios. As the baseline scenario,
the excavating task of the ore pile surface with the flat
fluctuations is shown in Fig. 18a, where the optimal θi

is 18.02◦. Figure 18b shows the optimal trajectory of
the excavating task with respect to the concave type of
fluctuations. It is found that the trajectory of this scenario
cuts more deeply into the theoretical ore surface than that
of the flat type and θi is also small with the value being
15.00 ◦. That is to say that the LCS should be close to the ore
pile while excavating the ore pile with concave fluctuations
to ensure a high fill factor. The excavating task of the ore
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Fig. 16 Comparisons the four different excavating scenarios regarding different pile angles

surface with convex fluctuations is shown in Fig. 18c, where
the optimal trajectory cuts into the theoretical ore pile more
shallowly than that of the baseline and concave scenario.
In this convex scenario, θi is 21.01◦ meaning that the LCS
should keep a reasonable distance away from the ore pile to
avoid the overload. For the concave-convex type as shown
in Fig. 18d, the optimal trajectory is very similar to the
baseline scenario but with a bigger θi being 19.24◦, which
is the result of automatic optimization. For the concave
scenario, if the concavity of the pile surface continues to
increase as illustrated in Fig. 19, there will be no optimal
results for the excavating trajectory even with the smallest
θi . For this situation, two methods can be undertaken: i)

step forward toward the ore pile to insure the fill factor
requirement, and ii) crank down the fill factor requirement.

The history of the control parameters and some important
time-dependent parameters of the four scenarios are
illustrated in Figs. 20, 21, 22 and 23, where the subscript
“h” denotes the dipper handle and the subscript “r” denotes
the hoist ropes. From Figs. 20a, 21a, 22a and 23a, it is
observed that all the crowd speeds of the four scenarios
reach the maximum values the crowd motor can provide,
however, with different appearing time instants. The same
situation happens to the hoist speeds of the four scenarios.
As can be seen from Fig. 16e–h, the forces and powers
optimized and simulated using the ideally straight pile
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Fig. 17 The actual material surface with fluctuant terrains

surface are all smooth during the entire time domain of
excavation. Comparatively, it is observed from Figs. 20–
23 that the forces and powers present some saltations
when using the actual material surfaces with both the
macroscopic and microscopic fluctuations. As analyzed,
the macroscopic fluctuations, such as the flat scenario
and the concave scenario, influence the overall trend of
the forces and powers during the time domain. For the
saltations of the forces and powers, it is caused by the
microscopic fluctuations of the pile surfaces. Ultimately, the
reason of such trend and saltations of forces and powers
is the time-varying instantaneous excavating depth during
the excavating time domain. It is concluded that the forces
and powers simulated using the actual material surfaces are
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Fig. 19 The material surface with a large concavity

more real than that using the theoretical material surface by
showing some actual saltations. The amplitude and density
of the force and power saltations are determined by the
flatness of the material surface. Figures 20–23 also show
that the forces and powers needed by the four scenarios are
almost the same, the reason of which is the limitation of the
maximum allowable output power of the hoist and crowd
motors.

Table 7 shows the optimization results of the four
scenarios with respect to different types of fluctuations. It

Fig. 18 Comparisons the four
different excavating scenarios
with respect to different types of
fluctuations
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(a) The optimal trajectory of the flat scenario
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(b) The optimal trajectory of the concave scenario
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(c) The optimal trajectory of the convex scenario
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(d) The optimal trajectory of the concave-convex scenario
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(a) The history of the control speeds (b) The history of the forces (c) The history of the power

Fig. 20 The history of the speed, force, and power in the flat scenario

(a) The history of the control speeds (b) The history of the forces (c) The history of the power

Fig. 21 The history of the speed, force, and power in the concave scenario

(a) The history of the control speeds (b) The history of the forces (c) The history of the power

Fig. 22 The history of the speed, force, and power in the convex scenario

(a) The history of the control speeds (b) The history of the forces (c) The history of the power

Fig. 23 The history of the speed, force, and power in the concave-convex scenario
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Table 7 The optimization results of the four types of excavating
scenarios with respect to different types of fluctuations

Parameter (unite) Flat Concave Convex Concave-convex

ax6 (10−5) − 1.29 − 3.08 − 0.29 − 1.92
ay6 (10−5) 0.73 1.60 1.13 0.54
sxf

(m) 11.88 12.16 11.28 11.63
syf

(m) 11.00 11.13 11.00 11.00
tf (s) 13.99 12.84 14.00 13.71
θi (◦, degree) 18.02 15.00 21.01 19.24
Energy consumption 0.1457 0.1524 0.1530 0.1525

per volume (kW/m3)
Load capacity (m3) 50.04 50.54 50.08 50.20

is found that the smaller the dipper penetration is, the faster
the LCS can complete an excavating cycle and the flat type
of the ore surface consumes the lowest power to complete
the excavating task among all the scenarios. All the results
meet the requirements of the practical engineering, so
the PTP trajectory planning method performed for the
intelligent LCS is flexible and reliable in the practical
mining engineering.

7 Conclusion

A energy-minimum optimization through point to point
(PTP) trajectory planing of the intelligent excavating
process for Large Cable Shovel (LCS) was developed in
this paper. By building the excavating resistance model of
the excavating process, the force analysis of the dipper
was performed. The excavating activity of the LCS was
decomposed into two directions: the rectilinear motion
parallel with the major axes of dipper handle and the circular
motion perpendicular to the major axes of the dipper handle,
respectively. Then based on the force analysis, the dynamic
equations of the excavating process were established as
well. By comparing different degrees of the polynomial
trajectory planning methods, the 6-degree polynomial is
selected as the optimal PTP trajectory planning method.
Also, the 6-degree polynomial trajectory planning method
is demonstrated to be better than the conventional S-curve
method on the aspect of the excavating performance. To
explore some potential laws of the optimal control strategy
and excavating process, the comparisons between different
excavating scenarios with respect to different pile angles
were conducted. Results showed that the larger the pile
angle is, the later the maximum hoist power and crowd
power will appear. The actual pile surfaces with different
types of large scale and small scale fluctuations were taken
into account in the numerical experiments for the optimal
control of the intelligent excavating of the LCS. It was found
that the flat type needs the lowest power to complete the

excavating task among all the types. It can be seen that the
energy-minimum trajectory planning optimization model
built in this paper for the intelligent excavating process of
the LCS is flexible and available.

As a complex engineering machine, the LCS is composed
of many complex structural components, including the dip-
per handle, the boom, and the dipper. All the corresponding
structure parameters have great influences on the control
strategy and the machine performance. For the future work,
it is planed that the structure parameters will be also taken
into account and the optimization process should simulta-
neously deal with the control and structure parameters. In
addition, the power source of the cable shovel is provided
by the electric motors, the efficiency of which is set to be a
flat constant rate of 0.9 in this paper, but actually it is a func-
tion of input (electric) power and shaft speed (Guzzella et al.
2007). So the future work will also take this time-varying
motor efficiency into account.
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