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Abstract
The hypervolume indicator has been proved as an outstanding metric for the distribution of Pareto points, and the derived
hypervolume based expected improvement (HVEI) has received a particular attention in the multi-objective efficient global
optimization (EGO) method. However, the high computational cost has become the bottle neck which limits the application of
HVEI on many objective optimization. Aiming at this problem, a modified version of HVEI (MHVEI) is proposed in this paper,
which is easier to implement, maintains all the desired properties, and has a much lower computational cost. The theoretical study
shows that the new criterion can be considered as a weighted integral form of HVEI, and it prefers the new point with a higher
uncertainty compared with HVEI. The numerical tests show that theMHVEI performs similar as HVEI on the lower dimensional
problem, and the advantage of MHVEI becomes more obvious as the dimension grows.
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Nomenclature
≺ Pareto dominance. a ≺ b⟺ ∀ 1 ≤ i ≤M : ai ≤ bi ∧ ∃

1 ≤ i ≤M : ai < bi, where a and b denotes two design
points.

≺≺ Strong Pareto dominance. a ≺ ≺ b⟺ ∀ 1 ≤ i ≤M :
ai < bi.

[l,u] The region of a hyper box which takes l and u as the
lower and upper limits. If l ⊀ u, [l,u]=∅.

V(A) The hyper volume of the region A. Note V(A) = 0
when A =∅

P Pareto points
Ptrue True pareto frontier
r Reference point

U Local upper bounds
M Number of sub-objectives
d Number of design variables
n Number of points in P
m Number of points in U

1 Introduction

Modern engineering optimization problems usually adopt
time-consuming numerical simulations to evaluate the objec-
tives or constraints. For example, a post-buckling analysis of
complex aerospace shells usually needs more than two hours
(Hao et al. 2012; Hao et al. 2017). Therefore it is desired to
limit the number of function evaluations. This requirement has
popularized surrogate-based optimization method (Keshtegar
et al. 2017; Hao et al. 2015), which uses the cheap mathemat-
ical approximation to replace the expensive true objective in
the design process. In this area, the Gaussian process models,
such as the Kriging surrogate (Krige 1951) and the statistical
radial basis functions (Sóbester et al. 2005), have received a
great attention, since they not only capture the unknown func-
tions but also provide the probability estimation. With this
merit, the efficient global optimization (EGO) methods adopt
the statistical infill criteria to select the optima candidate, such
as expected improvement (EI) (Jones et al. 1998; Jones 2001)
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and generalized EI (GEI) (Schonlau 1998; Sasena et al. 2002),
which are able to avoid missing the global optimum to a large
extent. Therefore, the EGOmethods have been widely used in
the modern engineering.

The real-world design problem usually involves more than
one sub-objectives which conflict with on another, and this
kind of problem is usually mentioned as the multi-objective
optimization (MOO) problem. For the case that there is a lack
of knowledge about design requirement, it is desired to pres-
ent the designer multiple diversiform and competitive Pareto
designs (also mentioned as Pareto solutions, Pareto frontier,
and Pareto points) to decide the most appropriate one. The
Pareto designs are defined as the points for which no other
point is better in all sub-objectives. The optimization aiming at
obtaining the Pareto designs is called Pareto optimization
here. In earlier times, there are two main kinds of Pareto op-
timization approaches.

The first kind of Pareto optimization approach is men-
tioned as the single objective based approach in this paper,
which transforms the MOO problem into different single ob-
jective ones and each of them leads to a Pareto point. For
example, the weighted sum method (Messac et al. 2000) and
the physical programing method (Messac et al. 2004) balance
the multiple sub-objectives into one single objective function
in a linear or non-linear way. The normal boundary intersec-
tion method (Das and Dennis 2006) and normal constraint
method (Messac 2003) utilize a group of evenly distributed
points on the utopia plane (formed by the optimal solutions of
all sub-objectives) to produce different equality or inequality
constraints in single objective problems.

The other kind of Pareto optimization approach is the heu-
ristic intelligence algorithms, such as the genetic algorithm
(GA) and particle swarming optimization (PSO), etc. The heu-
ristic algorithms have received a great attention in this area,
since they are naturally suitable for obtaining Pareto solutions.
Some successful algorithms, such as the non-dominated
sorting GA (Deb et al. 2002) and strength Pareto evolutionary
algorithm (Kim et al. 2004), have been widely used. However,
this kind of approaches typically require a massive amount of
objective evaluations. Therefore, some researchers used the
surrogate model to substitute a part of real simulations to save
computational cost. For example, Goel et al. (2007) performed
the multi-objective GA on the response surfaces of all the sub-
objectives to obtain approximated Pareto frontier. Li et al.
(2006) adopted Kriging model to replace a part of true objec-
tives in the GA, and Kriging predicted error was employed to
decide whether the prediction or the actual simulation should
be performed to evaluate the design points. Jeong and
Obayashi (2008) calculated the EI functions as the fitness
values in the GA to find non-dominated solutions, and part
of them were evaluated to update the Kriging model. Jie et al.
(2016) developed the Kriging assisted PSO approach, in
which the Kriging prediction took place of true objective

and a normalized summation of EI values was used to
determine the most promising designs to be evaluated by
actual simulations.

In last two decades, the EGOmethod has also been extend-
ed for the Pareto optimization, and the study mainly focused
on the statistical infill criteria for obtaining Pareto solutions.
The ParEGO method was developed by Knowles (2006)
whose basic idea is using the augmented Tchebycheff func-
tions with different random vectors to balance the multiple
sub-objectives into different single objectives. For each single
objective, the Kriging surrogate is established, and the EI
function is used to obtain new design point. Similar strategy
has been adopted in a heuristic algorithm named MOEA/D by
Liu et al. (2007) and Zhang et al. (2010).They established the
Kriging surrogate for each sub-objective, and further derived
the EI function of the balanced single objective based on the
multivariate distribution. The balanced single objective could
be a weighted sum function (Liu et al. 2007) or the augmented
Tchebycheff function (Zhang et al. 2010). The Euclidean dis-
tance based EI (EI-ELU) was developed by Keane (2006), in
which the expected central point of the probability distribution
(provided by Kriging) in the non-dominated region is calcu-
lated. Then, the minimum distance between this central point
and the obtain Pareto points is maximized. Zhan et al. (2017)
defined the EI values rather than all the obtained Pareto points
as the EI-Matrix. Then, based on this matrix, three infill
criteria which are based on the summation distance, maximum
distance and hypervolume were developed respectively.

One kind of statistical infill criterion is developed based on
the hypervolume indicator which was firstly proposed by
Zitzler and Thiele (1998) and has been proved as an outstand-
ing metric for the quality of Pareto points distribution
(Knowles et al. 2003; Emmerich et al. 2005). This indicator
is defined as the volume of the dominated region of the Pareto
points and bounded by a reference point. With this definition,
the statistical infill criterion hypervolume based EI (HVEI)
(Emmerich et al. 2011) selects the point with the maximum
expected value of hypervolume growth as the new point.
Wagner et al. (2010) compared several Pareto optimization
infill criteria (before 2010) on a list of necessary and desired
properties, and it is found that the HVEI has the best perfor-
mance in terms of most properties but with a high computa-
tional cost. The computational complexity of HVEI mainly
comes from the irregular geometry of the integration (non-
dominated) region, and it is approximated with Monte Carlo
method in earlier times. Emmerich et al. (2011) described a
formula for calculating HVEI, in which the integration region
is divided into a number of cells, and the integration in HVEI
is performed in each one of them. However, the number of
cells increases exponentially with the number of objectives.
Couckuyt et al. (2014) developed a fast algorithm for HVEI,
which allows a much lower number of integration cells, but no
computational complexity was provided. As a rough
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approximation of HVEI, the lower confidence bound (LCB)
(Emmerich et al. 2006) is defined as the hypervolume im-
provement of a lower confidence point. Since there is no need
for the integral, the LCB has a much lower computational cost
than HVEI. However, even the runtime of simply calculating
the hypervolume still grows exponentially with the number of
objectives (Beumea and Emmerich 2007). Zhan et al. (2017)
estimated that the infill criterion function could be called for
two millions times in the whole optimization process. If one
time evaluation of the infill criterion costs one second, the
total evaluating time will be twenty three days which might
be even longer than the true simulations. Therefore, although
the HVEI shows great potential abilities on generating well
distributed Pareto points, the high computational complexity
limits its application on many objective problems.

In this paper, a modified HVEI (MHVEI) function is de-
veloped, which can be considered as a weighted integral form
of HVEI. Compared with the original HVEI, this new statis-
tical criterion is easier to implement, maintains all the desired
properties, and has a much lower computational cost. This
paper is organized as follows. In Section 2, some basic knowl-
edge about the EGO method and HVEI are introduced. In
Section 3, the MHVEI is developed and studied theoretically
by comparing it with HVEI on a list of desired properties. In
Section 4, the performance of MHVEI is investigated with
some mathematical test functions.

2 Related works

In this section, the classic EGO method for the single objec-
tive problem and the original HVEI function will be
introduced.

2.1 Efficient global optimization

2.1.1 Ordinary kriging (OK) surrogate

The OK surrogate is a widely used Gaussian process model.
Considering the objective function y(x) is meant to be mini-

mized where x∈X denotes the design variables and X⊂ℝd de-
notes the design variable space. The OK surrogate assumes that
the unknown y(x) meets the normal distribution for any x∈X

y xð Þ∼N β;σ2
� � ð1Þ

where β and σ2 are the assumed values of mean and variance.
For any two points xi∈X and x j∈X,

cov y xið Þ; y x j
� �� � ¼ σ2r xi; x j;θ

� � ¼ σ2exp ∑d
k¼1−θk xi;k−x j;k

� �2h i
ð2Þ

where r denotes a given correlation model function, and
θ = {θi| 1 ≤ i ≤ d} denotes the correlation parameters on

different dimensions. In (2) the Gaussian correlation model is
adopted.

The OK surrogate is established based on a group of eval-
uated design variables S¼ SijSi∈X; 1≤ i≤Nf g with their ob-
jective values of Y = y(S). In this paper, S and Y will be men-
tioned as the training data of OK surrogate, and N denotes the
number of training data. If the (1) and (2) are considered as the
priori hypotheses, and Y = y(S) is taken as the known event,
the conditional probability distribution of y(x) for any x∈X
will be derived based on the Bayes theory that

y xð Þjy Sð Þ ¼ Y½ �j∼N ŷ xð Þ; σ̂ xð Þ2
h i

ð3Þ

where ŷ xð Þ and σ̂ xð Þ2 are the predicted mean and variance
functions of OK surrogate separately that

ŷ xð Þ ¼ 1TR−1Y

1TR−11
þ r xð ÞTR−1 Y−

1TR−1Y

1TR−11
1

� �
ð4Þ

σ̂ xð Þ2 ¼ σ2 1þ 1−1TR−1r xð Þ� �2
1TR−11

−r xð ÞTR−1r xð Þ
( )

ð5Þ

where r(x) = {r(x, S1, θ), r(x, S2, θ),⋯r(x, Sn, θ)}
T denotes

the correlation vector between x and S, 1 denotes the vector
with n components of 1, and R=[r(Si, Sj,θ)]i, j denotes corre-
lation matrix of S. Based on (3), the probability distribution
function (PDF) provided by OK surrogate can be written as

p y xð Þ½ � ¼ ϕ
y xð Þ−ŷ xð Þ

σ̂ xð Þ

" #
ð6Þ

where ϕ denotes the probability density function of standard
normal distribution.

The parameters of OK model including β, σ2 and θ are
usually estimated by maximizing the likelihood function that

maxβ;σ2;θ;p y Sð Þ ¼ Y½ � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn Rj j

p exp
−1
2σ2

Y−β1ð ÞTR−1 Y−β1ð Þ
	 


ð7Þ

More details about the derivation of OK surrogate can be
found in the literature (Ginsbourger et al. 2010) which will not
be further introduced.

2.1.2 Generalized EI function

During the EGO process, the best obtained objective design is
selected from the training data that Ymin =min{Y}. Then, for
any unevaluated design x, the improvement rather than Ymin
is defined as

I xð Þ ¼ max 0; Ymin−y xð Þf g ð8Þ
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The probability distribution of I(x) can be obtained from
(6). Then, the EI method takes the design with the maximal
expected value of I(x) as the infilled point

EI y xð Þ; Ymin½ � ¼ E I xð Þ½ � ¼ ∫∞0 Ip Ið ÞdI ¼ u xð ÞΦ u xð Þ
σ̂ xð Þ

" #
þ σ xð Þϕ u xð Þ

σ̂ xð Þ

" #

ð9Þ
where u xð Þ ¼ Ymin−ŷ xð Þ and Φ denotes the cumulative dis-
tribution function of standard normal distribution.

Note that σ̂2 is the expected difference between y and ŷ that

σ̂
2
¼ E y−ŷ

� �2
	 


ð10Þ

therefore σ̂ xð Þ is also mentioned as uncertainty, and used to
estimate the accuracy of ŷ xð Þ. The EI function prefers to select
the point with a higher σ̂ or a lower ŷ. The former preference is
usually mentioned as global exploration which is meant to
improve the accuracy of the surrogate, and the latter one is
named as local exploitation which is meant to search the op-
timum of the surrogate. These two searching preferences can
avoid missing the global optimum to a large extent, and they
can be further balanced in the GEI function (Schonlau 1998;
Sasena et al. 2002) as

E Ig xð Þ½ � ¼ ∫∞0 I
gp Ið ÞdI ¼ ∫∞0 I

g−1Ip Ið ÞI ð11Þ

where the positive integer g is used to control the balance. If the
I g − 1 is considered as the integral weight coefficient of the
improvement, one can observe that there is a trade-off in choos-
ing between small improvement with large probability (local
exploitation) versus large improvement with small probability
(global exploration) (Schonlau 1998). As g grows, the balance
will incline to global exploration which is more suitable when
the unknown objective is poorly approximated (Sasena et al.
2002), otherwise it will incline to local exploitation.

2.2 Hypervolume based expected improvement

Considering there are M objectives y(x) = {y1(x), y2(x),
⋯yM(x)} to be minimized, and all the sub-objectives can be
evaluated by one time simulation. In most cases, the depen-
dency between different sub-objective functions is not avail-
able, therefore a standard assumption is usually made that all
the sub-objectives are independent to one another (Emmerich
et al. 2006). One can use the Kriging surrogate to estimate the
probability distribution of each sub-objective separately, and
the PDF of y(x) is expressed as

p y xð Þ½ � ¼ ∏M
i¼1ϕ

yi xð Þ−ŷi xð Þ
σ̂i xð Þ

" #
ð12Þ

In each iteration of the EGO process for MOO, the current
Pareto points P ={Pi| 1 ≤ i ≤ n} are selected from the training
data Y. The hypervolume indicator is an outstanding metric
for the quality of Pareto points distribution, which is defined
as the volume of the region dominated by P and bounded by a
reference point r ∈ℝM. It can be mathematically expressed as

H Pð Þ ¼ ∫a≺r∧∃Pi∈P:Pi≺ada ð13Þ

The reference point r should be set with a relative large value
to ensure that it is dominated by any true Pareto point. A higher
value of hypervolume indicator means a better distribution of
Pareto points, therefore the problem of Pareto optimization can
be transformed to maximizing H(P). Then, for a given point
y ∈Ω, when it is added to the training data, the hypervolume
improvement is defined as the growth of H(P) that

Ihv yð Þ ¼ H P∪yð Þ−H Pð Þ ð14Þ
Note that Ihv(y)≥ 0, and Ihv(y)>0 when and only when y is not
strongly dominated by any Pareto point in P. As shown in
Fig. 1, Ihv(y) is the area of the shaded part. Similar to the classic
EI, the HVEI method takes the point with the maximum ex-
pected value of Ihv(y) as the new point that

EIhv xð Þ ¼ E Ihv y xð Þð Þ½ � ¼ ∫y∈ΩIhv yð Þp yð Þdy ð15Þ

where Ω denotes the non-dominated region

Ω¼ a∈ℝM ja≺r∧∄Pi∈P:Pi≺a
 � ð16Þ

The HVEI is monotonically increasing with increasing σ̂i

(i = 1, 2,⋯M), therefore it preserves the global exploration of
EI method to improve the accuracy of surrogate. And when
the accuracy of the surrogate is high (which means σ̂i is low),

Fig. 1 Reference point, Pareto points and hypervolume improvement
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the EIhv(x) will regress to Ihv(y) which is directly defined to
maximize the hypervolume. Therefore, HVEI is a very effec-
tive statistical infill criterion for producing well-distributed
Pareto points.

Unfortunately, because of the irregular shape ofΩ, there is a
lack of direct calculating formula of both Ihv(y) and EIhv(x)
when M > 2 (a formula of HVEI for bi-objective problem is
developed in Section 3.2), and the high computational com-
plexity of HVEI (which will be further introduced in Section
3.4) has limited its application on the many objective problems.

3 Modified hypervolume based expected
improvement

In this section, a new statistical criterion for Pareto optimization
will be developed. In order to make it clear, the related concepts
are given first in Section 3.1. In Section 3.2, a modified version
of hyper volume improvement is proposed and compared with
the original one, and then the MHVEI is derived and the whole
optimization process is introduced in Section 3.3. In Section
3.4, the properties of MHVEI will be discussed theoretically.

3.1 Related concepts

& Local upper bounds (LUBs) U: U ⊂ℝM denotes a set of
points which cannot be dominated by one another that
∀Ui ∈U, ∀Uj ∈U⇒Ui ⊀Uj. And it can be used to define
the non-dominated region that

Ω¼ a∈ℝM j∃Ui∈U:a≺≺Ui
 � ð17Þ

& Grid cells: Using the jth component of each Pi to divide the
jth dimension ofℝ

M into n + 1 intervals, then all the intervals
on different dimensions will form (n + 1)M hyper boxes. All
the hyper boxes whose lower bounds are inside Ω are de-
fined as the grid cells. In this paper, li = (li, 1, li, 2,⋯li, M) and
ui = (ui, 1, ui, 2,⋯ui, M) are used to denote the lower and
upper bounds of the ith grid cell, where li, j and ui, j denote
the bounds corresponding to the jth sub-objective function.

More details of the LUBs can be found in the work of
Klamroth et al. (2015) which will not be further introduced.
The grid cells have been adopted by Emmerich et al. (2011) to
calculate HVEI. Figure 2 shows the relationship between P
andU, and the grid cells are denoted by the dotted lines. Note,
every LUB is the upper limit of a grid cell.

3.2 Modified hypervolume improvement function

In EGO method, the improvement function should be defined
based on the design purpose. For example, maximizing I(x) is

the same to minimizing the single objective function, and maxi-
mizing Ihv is the same to maximizing the hypervolume. In other
words, the improvement function for theMOOproblem should be
able to produce well distributed Pareto points, when it is used as
the single objective function balancing the multiple sub-objectives
(like the methods weighted sum and physical programming, see
Section 1). Three desired properties of the improvement function
for Pareto optimization are listed as follows:

Porperty 1. The improvement function should be monotoni-
cally decreasing with increasing yj(j = 1, 2,⋯M).

Porperty 2. When P ⊂ Ptrue, the improvement function
should prefer the point which mostly augments
the current Pareto frontier.

Porperty 3. A simple and integrable formula of the improve-
ment function is desired.

Among these properties, Property 1 can ensure the maxi-
mum point of improvement function will always locate on
Ptrue, Property 2 relates to the quality of the Pareto points dis-
tribution, and Property 3 is meant to ensure that the direct cal-
culating formula of the statistical infill criterion exists.

BecausemaxIhv(y)⟺maxH(P ∪ y), the Ihv satisfies the first
two properties perfectly but fails on the last one. By adopting the
concept of the LUBs, the Ihv(y) can be written in the form of

Ihv yð Þ ¼ ∑m
i¼1V y;Ui½ �ð Þ−Voverlap yð Þ ð18Þ

where the first term has considered the volume of the whole
region dominated by y, and the Voverlap denotes the volume of
the overlapped part in the first item. Note, for a givenUi ∈U, if y
⊀Ui, [y,Ui] =∅ and V([y,Ui]) = 0. As shown in Fig. 2, the area
with different shaded lines denotes the region of different [y,Ui]
in the first term, and the overlapped shaded area relates to the

Fig. 2 LUBs, grid cells and modified hypervolume improvement
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value of Voverlap.
For the bi-objective problem, every Pareto point dominates

two LUBs, then Voverlap(y) can be calculated as

Voverlap yð Þ ¼ ∑n
i¼1V y;Pi½ �ð Þ ð19Þ

Substituting (18) and (19) into (15), the formula of HVEI
can be written as

EIhv xð Þ ¼ ∑m
i¼1 ∏M

j¼1EI y j;Ui; j

� �h i
−∑n

i¼1 ∏M
j¼1EI y j;Pi; j

� �h i

ð20Þ

Unfortunately, (19) dose not hold true when M > 2, there-
fore the HVEI still lacks a calculating formula. However, if we
defined the first term of (18) as an improvement function, it
will preserve all the three properties above. This new function
is named as the modified version of hypervolume improve-
ment which is given as

Imodhv yð Þ ¼ ∑m
i¼1V y;Ui½ �ð Þ ð21Þ

and the three properties of Imodhv will be discussed in the
following.

Obviously, Imodhv satisfies Property 1 and Property 3
based on its definition, see (21). In order to discuss

Property 2 of Imodhv , the difference between Ihv and Imodhv
will be first analyzed by adopting the concept of grid
cells. In the ith grid cell, the part dominated by y can be
expressed as

y; ui½ �⋂ li; ui½ � ¼ max y; lif g; ui½ � ð22Þ
where max{y, li} = (max{y1, li , 1}, max{y2, li, 2}, ⋯
max {yM, li, M}). Then Ihv(y) can be expressed as the
summation of dominated region in all the grid cells

Ihv yð Þ ¼ ∑iV
�
max y; lif g; ui½ � ð23Þ

The intersection of [y,Uj] and the ith grid cell can be written
as

y;U j
� �

⋂ li; ui½ � ¼ max y; lif g; ui½ �; if li≺≺U j

∅ ; else

�
ð24Þ

then similar to (23), Imodhv yð Þ can be rewritten as

Imodhv yð Þ ¼ ∑m
j¼1V y;U j

� �� �

¼ ∑m
j¼1∑

li≺≺U j
i V

�
max y; lif g; ui½ �

¼ ∑i giV
�
max y; lif g; ui½ � ð25Þ

where gi denotes the number of LUBs strongly dominated by li.
By comparing (23) and (25), we can get that when y dominates

more LUBs, the difference between Ihv(y) and Imodhv yð Þ will be-
come more obvious. In the contrary, if y dominates only one

LUB, Ihv yð Þ ¼ Imodhv yð Þ. It implies that Ihv(y) and Imodhv yð Þ will
have a more similar landscape when y is closer to the LUBs.

When P ⊂ Ptrue, all the LUBs will be close to Ptrue, then

Imodhv yð Þ will have a similar ability of augmenting Pareto fron-
tier as Ihv(y) because of the similar landscape. Note, when P ⊂
Ptrue andM = 2, any point y ∈ Ptrue can strongly dominate only

one (at most) LUB, therefore Ihv yð Þ ¼ Imodhv yð Þ.It means that

Imodhv will work the same as Ihv on augmenting the Pareto fron-
tier for the bi-objective case.

Generally speaking, Imodhv shows better than Ihv on Property
3. And based on the discussion above, Imodhv can also produce
well distributed Pareto points (Property 1 and Property 2). The

quality of Pareto points obtained by Imodhv and Ihv will be com-
pared with numerical tests in Section 4.1.

3.3 Optimization with MHVEI

Based on (17) and (21), Imodhv yð Þ≥0, and Imodhv yð Þ > 0 when
and only when y ∈Ω. Then similar to the HVEI, the expected

value of Imodhv yð Þ is defined as the MHVEI that

EImodhv xð Þ ¼ E Imodhv y xð Þð Þ� � ¼ ∑m
i¼1E V y;Ui½ �ð Þ½ � ¼ ∑m

i¼1 ∏M
j¼1EI y j;Ui; j

� �h i

ð26Þ
where EI(yj,Ui, j) is the EI function, see (9).

The optimizationwith theMHVEI follows a typical process of
EGOmethod as shown in Fig. 3. At the very beginning, the initial
training data is usually generated with Latin Hypercube method

Fig. 3 Optimization process with MHVEI
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(Mckay et al. 1979). Before the optimization, the initial LUBs are
obtained based on initial P and r, and they will be updated with
new design y(x∗) in each iteration. An efficient algorithms for
generating and updating the LUBs has been proposed by
Przybylski et al. (2010), and further improved by Klamroth et
al. (2015). In their tests, updating the LUBs with one new point
takes no more than 10−5 second when m = 10000 and M = 6,
therefore the computational cost can be ignored. TheMatlab code
of Przybylski’s approach can be found in the Appendix 1.

3.4 Properties of MHVEI

In the following, the performance of MHVEI will be discussed
on several desired properties of Pareto infill criterion. All these
properties are summarized from the work ofWagner et al. (2010)

& Global exploration and local exploitation

The statistical infill criterion should be monotonically de-
creasingwith increasing ŷi, andmonotonically increasingwith

increasing σ̂i (i = 1, 2,⋯M). Obviously this property has been
preserved in MHVEI, since it is monotonically increasing
with increasing EI(yj,Ui, j).

In addition, the balance between global exploration and
local exploration is the main difference between HVEI and
MHVEI. If we substituting (23) and (25) into (15) and (26)
separately, we will get

EIhv xð Þ ¼ ∫y∈Ω ∑iV
�
max y; lif g; ui½ �

h i
p yð Þdy

¼ ∑i∫y∈ΩV max y; lif g; ui½ �ð Þp yð Þdy ð27Þ

EImodhv xð Þ ¼ ∫y∈Ω ∑igiV
�
max y; lif g; ui½ �

h i
p yð Þdy

¼ ∑igi∫y∈ΩV max y; lif g; ui½ �ð Þp yð Þdy ð28Þ

If gi is considered as the weight coefficient, EImodhv will be the
weighted integral form of EIhv, and EImodhv will prefer the re-
gion which dominates more LUBs comparing with EIhv.
Usually, if y dominates more LUBs, it will have a higher
Ihv(y) but with a smaller probability of p(y). Then, based on

Fig. 4 Fitness landscape on bi-
objective case
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the discussion above, we can conclude that comparing with
HVEI, MHVEI prefers the design point with a higher im-
provement Ihv(y) but a smaller probability of p(y). This differ-
ence is similar to the one between GEI functions (Schonlau
1998) with different orders, see Section 2.1. Therefore, we can
also conclude that the balance (between the global exploration
and local exploitation) in MHVEI more inclines to the global
exploration than HVEI.

& Improving the Pareto set distribution when σ̂ is small

The HVEI shows outstanding advantage on this property,
because it is defined to directly maximize the hypervolume.
When σ̂ is small, the statistical infill criterion will regress to

the improvement function. As discussed in Section 3.2, the Imodhv
has a very similar ability of producing well distributed Pareto
points as Ihv, therefore MHVEI can show a similar performance
as HVEI on improving the Pareto set distribution. In order to
demonstrate this, the approach of Wagner et al. (2010) is
adopted. Note, both MHVEI and HVEI are functions with re-
spect to ŷ and σ̂. The ability of statistical infill criterion on
improving the distribution depends on the fitness landscapes
with respect to varied ŷ. Therefore the functions of both criteria

Table 1 Comparison on computational complexity

M = 2 M = 3 M > 3

HVEI O(n) O[nlog(n)] O(M ∗ n2⌊M/2⌋)

MHVEI O(n) O(n) O(M ∗ n⌊M/2⌋)

Fig. 5 Comparison of improvement functions
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with respect to varied ŷ and constant σ̂ (σ̂ ¼ 0; 0:1 and 0.2) on
bi-objective case are compared in Fig. 4. For each σ̂, a group of
Pareto points with both convex and concave shapes are gener-
ated. It can be observed that, although the two criteria refer to
very different scale, they have very similar fitness landscapes.

& Easy to search

The infill criterion should be continuous, differentiable and
the plateaus of its fitness landscape should be avoided, then the
direct optimizer (especially the gradient based methods) can
easily reach the local optima of the infill criterion. Clearly the
MHVEI is continuous and differentiable since it has an analyt-
ical expression. According to Wagner et al. (2010), HVEI

shows strong gradients to their local optima by checking its
fitness landscapes, therefore the comparison in Fig. 4 also im-
plies that the MHVEI preserves this property as well as HVEI.

& Easy to implement and efficient to calculate

The MHVEI is easy to implement, since the direct cal-
culating formula has been given in (26). By observing
(26), the computing amount of MHVEI is proportional
to M ∗ m. Clearly, m = n + 1 for the bi-objective case,
and m is tightly upper bounded by O(n⌊M/2⌋) when M > 2
(Klamroth et al. 2015). Therefore it can be got that the
MHVEI has a computational complexity of O(M ∗ n⌊M/2⌋)
in the worst case.

Fig. 6 Hypervolume difference
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In Kriging model, predicting σ̂i involves a matrix-vector
multiply operation, and the computational complexity is
O(N2) where N denotes the number of training data. Since
P ⊂Y, n ≤N. Therefore MHVEI has the same computational
complexity as the Kriging model when M ≤ 5 (the computa-
tional complexity is O(n2) when M = 5).

The computational complexity of MHVEI are compared
with the fastest algorithms (as far as we know) of HVEI in
Table 1, where the algorithm for bi-objective case has been
developed in Section 3.2, see (20). The algorithms of HVEI
for the problem when M = 3 and M > 3 were developed by
Yang et al. (2017) and Couckuyt et al. (2014) separately.
Note, Couckuyt et al. (2014) have not provided the computa-
tional complexity in their work, but it can be estimated as O(M
∗ q2) based on their calculating formula, where q denotes the
number of multiple disjoint cells covering the whole region of
Ω. Based on (17), it can be deduced that m is the smallest
number of cells which can cover the whole Ω, therefore q ≥

m, and the computational complexity will be O(M ∗ n2⌊M/2⌋) in
the best case.

Generally speaking, the Table 1 shows that MHVEI has an
obvious advantage on the computational complexity compar-
ing with HVEI when M is large, but it is still more time-
consuming than the other infill criteria which is not developed
based on the hypervolume indicator.

4 Numerical tests

The performance ofMHVEIwill be investigatedwithmathemat-
ical test functions. The hypervolume indicator is used to measure
the obtained Pareto solutions, see (13). All the programs used in
this paper are coded with Matlab. The Kriging model is
established with DACE tool box (Nielsen et al. 2002). The
new design point is obtained by a hybrid strategy of PSO algo-
rithm and gradient basedmethod. To be specific, the PSO is used
first to obtain a solution, and then this solution and all the current
Pareto designs are used as the initial guesses in the “fmincon”
function provided by Matlab. The HSO algorithm (While et al.
2005) is adopted to calculate the hypervolume indicator.

Six test functions from previous literatures are used in this
paper. For the bi-objective case, the test functions of ZDT1,
ZDT2 and ZDT3 are adopted, which have different shape of
Pareto frontier, (convex, concave and discontinue). For the
higher M, the test functions of DTLZ1, DTLZ2 and DTLZ7
(Deb et al. 2001) are adopted, whose Pareto frontier are linear,
concave and discontinue. The mathematical expression of the
test functions can be found in Appendix 2. Note, all the test
functions with the same d have the same design variable space
ofX ¼ xj0≤xi≤1; i ¼ 1; 2;⋯df g. In order to average out the
randomness caused by the initial samples, fifty groups of
Latin Hypercube Samples are generated for each X, and the
number of initial samples always equals10*d. For all the test
functions, it is set that d = M + 1.

4.1 Comparison between improvement functions

The definitions of improvement function are important for the
Pareto statistical infill criteria, and three desire properties have
been proposed in Section 3.2. In order to further investigate
the first two properties (generating well distributed Pareto

points) of Imodhv yð Þ, Imodhv yð Þ and Ihv(y) will be compared on
the DTLZ test functions (M = 3 and 4) in Section 4.1. To be
specific, both the improvement functions are directly used to
obtain the infill design point that

maxx Imodhv y xð Þ½ � ð29Þ

and

maxx Ihv y xð Þ½ � ð30Þ

Fig. 7 Comparison on ZDT functions
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where y(x) denotes the true objective functions. Note, the (29)
and (30) can be understood as the MHVEI function and HVEI
functionwith setting ŷ ¼ y and σ̂ ¼ 0. The obtained values of
hypervolume are compared in Fig. 5, and the Fig. 6 shows the
difference (the hypervolume obtained by Ihv minus the one

obtained by Imodhv ).
The results show that the Ihv is able to achieve a higher

hypervolume than Imodhv . This is understandable, since

maximizing Ihv is exactly the same to maximizing the
hypervolume. However, the two curves shown in Fig. 5 basi-
cally overlap with each other, and the advantage of Ihv shown
in Fig. 6 can be almost ignored. This comparison proves that

Imodhv can produce Pareto points distributed as well as Ihv, and it
also implies that the MHVEI works similar as HVEI in the
absence of uncertainty.

Fig. 8 Comparison on DTLZ functions with M = 3 and d = 4
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In addition, Ihv lacks a calculating formula when M >
3, and the computational complexity also grows expo-

nentially with M. Therefore the Imodhv can be used to
replace the Ihv in the heuristic intelligence algorithms
such as the SMS-EMOA (Beumea and Emmerich
2007), when the computational cost becomes a matter
of concern.

4.2 Comparison with other infill criteria

In this section, the MHVEI is compared with three existing
infill criteria including HVEI, EI-ELU and LCB. The EI-
ELU is developed by Keane (2006) and defined as

EIelu xð Þ ¼ P Ihv yð Þ > 0½ �min y*−Pi
�� ��j1≤ i≤n � ð31Þ

Fig. 9 Comparison on DTLZ functions with M = 3 and d = 5
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where P[Ihv(y) > 0] denotes multiple objective probability
improvement, and y∗ is the expected centroid point of y in
Ω. The LCB can be understood as the hypervolume im-
provement of a lower confidence point that Ihv ŷ−wσ̂ð Þ
where w is the gain factor. In this work, w is set with the
value suggested by Emmerich et al. (2006). All these
criteria can be easy to implement with a low computational
cost on the bi-objective problem, but the computational
complexity of both EI-ELU and LCB also grows exponen-
tially withM. With the consideration of computational cost,

the MHVEI will be compared with all the three criteria on
the ZDT functions (M = 2), and it will be compared with
only HVEI on the DTLZ functions (M = 3, 4).

4.2.1 Comparison on ZDT functions

The averaged hypervolume obtained by MHVEI, HVEI,
EI-ELU and LCB are compared in Fig. 7, and the results
can be discussed with the desired properties mentioned in
Section 3.3.

Fig. 10 Comparison on DTLZ functions with M = 4 and d = 5

A modified hypervolume based expected improvement for multi-objective efficient global optimization method 1973



The EI-ELU performs worst among all the four
criteria in most cases, which can be attributed to that
the EI-ELU is not monotonically decreasing with in-
creasing ŷi. Comparing with HVEI and MHVEI, the
LCB can achieve a similar hypervolume at the end of
the optimization, but the hypervolume grows slower
during the process. Note, the LCB balances the global
exploration and local exploitation roughly in a linear
way in the purpose of reducing the computational cost
(the LCB can be faster calculate than the HVEI).

However the two searching preferences have a strong
effect on both the convergence rate and global searching
ability of the statistical infill criterion.

The HVEI and MHVEI perform similar on the ZDT func-
tions, and they will be further compared below.

4.2.2 Comparison on DTLZ functions

Four groups of DTLZ functions with different number of
sub-objectives and design variables are adopted. The

Fig. 11 Comparison on DTLZ functions with M = 4 and d = 6
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averaged hypervolume and the relative variance are
shown and compared in Figs. 8, 9, 10 and 11. Generally
speaking, MHVEI performs no worse than HVEI in all the
cases, and the advantage of MHVEI is quite obvious on
the DTLZ1 and DTLZ2 with d > 4. The reason can be
explained by the difference between the two infill criteria.
When d is larger, the unknown sub-objectives will be
more difficult to approximate by the Kriging model. As
demonstrated in Section 3.4, comparing with HVEI,
MHVEI prefers the point with higher σ̂, and it is more
helpful to improve the accuracy of the surrogate.

4.3 Investigation on Higher Number of Objectives

Figure 12 shows the Pareto points obtained by MHVEI
during the optimization process with the first (of fifty)

group of initial samples. It can be observed that the
Pareto points keep exploring Ptrue as the optimization
continues. However, one can image that when M is larger,
much more Pareto points will be needed to cover the
higher dimensional space (the dimension of Ptrue is M −
1 in our tests).

In this section, the performance of MHVEI on many
objective problem (M ≥ 3) will be investigated. In order to
eliminate the effects of dimension on the hypervolume
indicator, the normalized hypervolume defined as H(P)/
H(Ptrue) is used as the metric to measure Pareto points
distribution. Only the test functions of DTLZ1 and
DTLZ2 are adopted here, because the H(Ptrue) can be
calculated analytically with arbitrary value of M. The op-
timization process in the first 200 iterations with M = 3,
4,⋯ 7 and d =M+ 1 are compared.

Fig. 12 Pareto points obtained by MHVEI in the first 200 iterations

A modified hypervolume based expected improvement for multi-objective efficient global optimization method 1975



Note that H(P)/H(Ptrue) ≤ 1, and H(P)/H(Ptrue) = 1
when and only when P = Ptrue. Figure 13 shows that the
algorithm works well at the end of optimization when M
is small (M ≤ 4 for DTLZ1, and M ≤ 6 for DTLZ2), but the
hypervolume grows slower as M increases. It means that
for the higher dimensional (both the design variable space
and objective space) problem, more iterations will be
needed to improve the distribution of the Pareto points.
However, the computational cost might be unacceptable
in the real application because of the time consuming
evaluation. We believe that the parallel EGO methods
(Haftka et al. 2016), which generate multiple new points
in one iteration, are more desired for the Pareto optimiza-
tion rather than the single objective problem.

5 Conclusion

The HVEI function has been proved as an outstanding
statistical infill criterion for the multi-objective EGO

method. However, the high computational cost has be-
come the bottle neck to limit its application on the many
objective optimization. Aiming at this problem, a new
statistical infill criterion named MHVEI has been devel-
oped. The theoretical study shows that the MHVEI main-
tains all the desired properties of HVEI, but has a much
lower computational complexity. The difference between
HVEI and MHVEI is also studied theoretically, and it
shows that compared with HVEI, the MHVEI more in-
clines to the global exploration. The new criterion is com-
pared with several existing ones on Mathematical func-
tions. The results show that the MHVEI and HVEI per-
form better than the other criteria on bi-objective problem,
and MHVEI performs no worse than HVEI on lower di-
mensional (design variable space) problems but better on
the higher dimensional ones.

The results in Section 4.1 show that maximizing the

Imodhv can produce as well distributed Pareto points as
directly maximizing the hypervolume. Therefore we be-

lieve the Imodhv can be used in the heuristic intelligence
algorithms for MOO, such as the SMS-EMOA, when
the computational cost becomes a matter of concern.
In addition, the MHVEI is a statistical infill criterion
which is based on the probability estimated by the
Kriging surrogate in this work. In theory, this approach
can be extended with other Gaussian process models,
such as the stochastic radial basis functions.

Some problems have also been observed in our method.
Because of the curse of dimension, when the number of
design variables is higher, the surrogate will need more
training data to properly approximate the objectives. And
even if the accuracy of the surrogate is high enough, it still
will need more points to explore the higher dimensional true
Pareto frontier. Therefore, we believe that the multiple points
infill criteria for the parallel computation is desired in the
future. However, one question needs to be considered first
that should the multiple points explore the multi modal of
the infill criterion (like the approach for the single objective
problem), or should they try to augment the obtained Pareto
solutions on different region? In addition, although the
MHVEI has a much lower computational complexity than
the existing algorithms of HVEI, it is still more time-
consuming than the other criteria which are not developed
directly to improve the hypervolume. Therefore more effi-
cient algorithms are still expected.
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Appendix 1: Code for obtaining and updating
LUBs

Code for updating LUBs

The algorithm first delete the invalid old LUBs on line
12, and then append the new LUBs which are selected
from a group of candidates on line 22. The invalid
LUBs are the points strongly dominated by p and de-
noted by SDU in the code, see line 9. Part candidates
of the new LUBs are the projection points of p on the
boundary of the region bounded by each SDU point,
these candidates are denoted by C in the code, see line
15–19. The other part candidates are the old LUBs
which are dominated by p but not strongly, and these
LUBs are denoted by WDU in the code, see line 10.
The new LUBs are the upper bounds of these candi-
dates, which can be understood as the Pareto points
selected from the candidates when all the sub-objective
are meant to be maximized. The “ParetoSet” on line 21
denotes the function of selecting the Pareto points. For
example, the in the EGO process, the Pareto points P

a r e s e l e c t ed f rom the t r a i n i ng da t a Y, t h en
P=ParetoSet(Y). The code of “ParetoSet” will not be
further introduced.

The code for generating LUBs

When there is no Pareto point, the reference point will
be the only LUB, see line7. Then the whole LUBs can
be obtained by updating with the Pareto point one by
one, see line 9–12.

Appendix 2: Test functions

ZDT functions

ZDT1 :

miny1 ¼ x1
miny2 ¼ g 1−

ffiffiffiffiffiffiffiffiffi
y1=g

p� �
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð32Þ

ZDT2 :

miny1 ¼ x1
miny2 ¼ g 1− y1=gð Þ2

h i
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð33Þ

ZDT3 :

miny1 ¼ x1
miny2 ¼ g 1−

ffiffiffiffiffiffiffiffiffi
y1=g

p
− y1=gð Þsin 10πy1ð Þ

h i
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð34Þ

where g ¼ 1þ 9∑d
i¼1xi= d−1ð Þ in all the three ZDT functions.
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DTLZ functions

DTLZ1 :

miny1 ¼ 0:5gM∏
M−1
i¼1 xi

miny2 ¼ 0:5gM 1−xM−1ð Þ∏M−2
i¼1 xi

⋮
minyM−1 ¼ 0:5gMx1 1−x2ð Þ
minyM ¼ 0:5gM 1−x2ð Þ
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð35Þ

DTLZ2 :

miny1 ¼ gM∏
M−1
i¼1 cos 0:5πxið Þ

miny2 ¼ gM sin 0:5πxM−1ð Þ∏M−2
i¼1 xicos 0:5πxið Þ

miny3 ¼ gM sin 0:5πxM−2ð Þ∏M−3
i¼1 xicos 0:5πxið Þ

⋮
minyM−1 ¼ gM sin 0:5πx2ð Þcos 0:5πx1ð Þ
minyM−1 ¼ gM sin 0:5πx1ð Þ
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð36Þ
where gM ¼ 1þ ∑d

j¼M xj−0:5
� �

2 in DTLZ1 and DTLZ2
functions. Note that the original DTLZ1 has an extremely
large number of local Pareto frontier, which cannot be approx-
imated by the surrogate, therefore, the DTLZ1 function has
been modified in (35)

DTLZ7 :

miny1 ¼ x1
miny2 ¼ x1

⋮
minyM−1 ¼ xM−1

minyM ¼ gM M−∑M−1
j¼1 y1 1þ sin 3πyið Þ=gMð Þ

h i
s:t:0≤xi≤1; i ¼ 1; 2;⋯d

ð37Þ
wh e r e gM ¼ 2þ 9 ∑d

j¼Mxj
� �

= d−M þ 1ð Þ i n D T L Z 7
function.
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