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Abstract
Multi-fidelity surrogates (MFS) have become a popular way to combine small number of expensive high-fidelity (HF) samples
andmany cheap low-fidelity (LF) samples. In some situations LF samples can come frommultiple sources and sometimes the HF
samples alone can obtain a more accurate surrogate than the combination (HF&LF). Therefore this paper considers using
maximum likelihood (ML) and cross validation (CV) to select the dataset leading to best surrogate accuracy, when multiple
sample sources are available. The kriging and co-kriging techniques were employed to build surrogates. Unlike conventional
model selection, the multi-fidelity datasets selection by ML and CV has to compare the surrogate accuracy of different true
functions. The effectiveness of ML and CV is examined through a two-variable turbine problem, where samples can come from
one HF and two LFmodels. The indicators were used to select between using only HF samples or combining themwith one set of
LF samples or the other. The best selection proved to depend on the design of experiments (DOE), and so datasets were generated
for a large number of DOEs. It was found the CVandMLworked relatively well in selection between two LF sample sources for
MFS.When selecting between only HF and HF&LF, theML, which is frequently used in co-kriging hyper-parameter estimation,
failed in detecting when the surrogate accuracy of only HFwas better than HF&LF. The CVwas successful only part of the time.
The reasons behind the poor performance are analyzed with the help of a 1D example.

Keywords Multi-fidelity dataset selection . Insufficient data . Kriging/co-kriging . Cross validation . Maximum likelihood .

Turbine problem

Nomenclature
R Correlation matrix
x Design variable
y Function values
ρ Scaling factor between high- and low-function models
σ2 Variance

Subscript
d discrepancy
H High fidelity
L Low fidelity

Abbreviations
CV Cross Validation
DF Discrepancy Function
HF High Fidelity
LF Low Fidelity
LHS Latin Hypercube Sampling
Loo-CV Leave-one-out Cross Validation
MFS Multi-Fidelity Surrogate
ML Maximum Likelihood
RMSE Root Mean Squared Error
TT Transient Rotor Blade model with Time

Transformation
Transient Full Transient model

1 Introduction

Surrogate approximations are frequently used in engineering
design (Forrester and Keane 2009), in order to reduce compu-
tational cost compared to direct simulations such as in com-
putational fluid dynamics (CFD). However, to ensure the ac-
curacy of the surrogate, many samples are required. Usually,

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00158-018-2001-8) contains supplementary
material, which is available to authorized users.

* Raphael T. Haftka
haftka@ufl.edu

1 Xi’an Jiaotong University, No.28, Xianning West Road,
Xi’an 710049, China

2 Department of Mechanical and Aerospace Engineering, University
of Florida, Gainesville, FL 32611-6250, USA

Structural and Multidisciplinary Optimization (2018) 57:2127–2142
https://doi.org/10.1007/s00158-018-2001-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-2001-8&domain=pdf
http://orcid.org/0000-0003-0417-6911
https://doi.org/10.1007/s00158-018-2001-8
mailto:haftka@ufl.edu


only few samples of direct expensive high-fidelity (HF) sim-
ulations are available within limited time budget (Shan and
Wang 2010; Liu et al. 2018a). Therefore, one may resort to
augmenting a small number of HF simulations with a large
number of low-fidelity (LF) but cheap samples to fit the sur-
rogate. This technique is usually referred to as multi-fidelity
surrogates (MFS), and has been demonstrated to be an effi-
cient tool in many cases (Forrester et al. 2007; Kennedy and
O'Hagan 2000; Fernández-Godino et al. 2016; Park et al.
2017; Liu et al. 2018b).

The LF function is selected beforehand and is fixed in
most of the conventional work related to MFS. However,
as recently reported in a strength prediction problem, un-
expectedly the surrogate built by only 4 or more HF sam-
ples was found having better accuracy than an MFS with
the same 4 samples, aided by 12 LF simulations in a two-
dimensional problem (Zhang et al. 2017). The reason was
eventually traced to the mismatch of the signs of small
curvature between the HF and LF functions. This high-
lights the following dilemma: The number and positions
of the HF and LF samples are often selected with only
minimal information on the shape of the two functions
but good information on the cost. However, the utility of
combining them does not only depend on the two func-
tions, but also on the lucky placement of the samples.
Once samples are available, there is the task of deciding
whether an MFS is more or less accurate than the HF sur-
rogate. When samples from multiple LF models are avail-
able, there is the additional task of choosing between them.

In conventional model selection, three kinds of indica-
tors are frequently used: (1) Indicators of true accuracy at
additional testing points such as the root mean squared error
(RMSE) or R2 (Myers and Montgomery 2002; Martin and
Simpson 2005);(2) Indicators using only the given samples
and not making any statistical assumptions, such as cross
validation (CV) (Viana et al. 2009; Arlot and Alain 2010);
(3) Indicators using only the given samples but with as-
sumed probability distributions such as maximum likeli-
hood (ML) (Namura et al. 2017), Akaike information crite-
rion and Bayesian information criterion (Myung and Mark
1997; Neath and Joseph 2012). Provided that plenty of extra
samples are available, indicators of type (1) can intuitively
measure the lack of fit of the approximation. In this paper
we wish to use all the samples for fitting the surrogates, so
we use extra points only to measure the effectiveness of
indicators of types (2) and (3). Also note that the classic
indicators of (2) and (3) were developed for choosing
among surrogates that fit the same samples in the same true
function space. However, as will be seen in following sec-
tions, the true function space is different for samples coming
from different information sources. Thereby the objective of
this paper is to ask whether CVandMLwould still be able to
choose between such multi-fidelity datasets.

The investigation was conducted based on the surrogate
accuracy of loss function of alternative datasets for a turbine
stage. The paper is organized as follows: The surrogates,
which are kriging and co-kriging are introduced in
Section 2. The classic indicators are discussed in Section 3.
Then, by using the flow models introduced in Section 4,
dataset selection is carried out for a two-variable turbine prob-
lem in Section 5. Then, the typical failures of dataset selection
in the turbine problem are illustrated with the help of 1D toy
problem in Section 6. Finally, some conclusions are drawn in
Section 7.

2 Overview of kriging and co-kriging

2.1 Kriging

Kriging is one of the most popular surrogate techniques. The
kriging prediction Y at unknown site x is built as a trend func-
tion f(x) plus a normal random process Z(x) as:

Y xð Þ ¼ f xð Þ þ Z xð Þ ð1Þ
where, f(x) is usually a constant, linear or quadratic polyno-
mial, and the constant is most widely used (Namura et al.
2017; Lophaven et al. 2002). Z(x) describes the local features
of Y around the n sample points X = {x(1),⋯x(n)}, which has
zero mean and a covariance function, which usually of the
form:

cov Z xð Þ; Z x ið Þ
� �h i

¼ σ2exp − ∑
k

h¼1
θh xh−x

ið Þ
h

��� ���2� �
ð2Þ

where, k denotes the number of variables, σ2 is the process
variance of samples. And θh represents the curve roughness
hyper-parameter, which determines how quickly the function
value changes as xmoves away from a local site x (i), a high θh
indicates high frequency function along dimension h. More
details can be found in (Lophaven et al. 2002).

2.2 Co-kriging

2.2.1 Co-kriging and estimation of hyper-parameters

Co-kriging is often used to build a surrogate based on data that
come from multi-fidelity sources, particularly when only few
expensive HF samples are available, while plenty of cheap LF
samples can be obtained (Forrester et al. 2007). When the LF
model is given, the HF prediction of co-kriging is built as the
LF approximation multiplied by a scaling factor ρ plus a
Gaussian process Zd(⋅) called the discrepancy function (DF),
which represents the difference between ρyL(⋅) and yH(⋅):

ŷH xð Þ ¼ ρyL x;θLð Þ þ Zd ρ; x;θdð Þ ð3Þ
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where, both yL(⋅) and Zd(⋅) are usually approximated by
kriging, θL and θd are the curve roughness hyper-parameters.
When ρ = 0, co-kriging degenerates to kriging built by only
HF samples.

Usually, yL(⋅) can be accurately fitted to its original function
with sufficient LF samples, so in order to simplify the inves-
tigation, we assume there is no approximation error in the LF
function. The focus then is on ρ and Zd(⋅) (Forrester et al.
2007). Once the LF model is determined, the hyper-
parameters of DF including ρ and θd are estimated by maxi-
mizing the log-likelihood as:

f ρ;θdð Þ ¼ max ln Lnjdð Þ

¼ max −
nH
2
ln 2πσ2d
� �

−
1

2
ln Rd x;θð Þj j

	 

ð4Þ

where, Ln denotes the likelihood function, d is the vector of
DF samples. nH is the number of HF samples, and ∣Rd(⋅)∣ is
the determinant of correlation matrix. In this paper, (4) is used
for the multi-fidelity dataset selection process based onML, as
kriging and co-kriging are built based on (4). For explaining
the behavior of the ML indicator later on, it is worth noting
that the first of the two terms in the right-hand-side of (4) will
increase with amplitude of the variability or the range of the
fluctuations of the function expressed in σ2

d . The second term,
on the other hand can be shown to increase with the waviness
of the function. More details can be found in (Forrester and
Keane 2009; Forrester et al. 2007).

For our work, the kriging and co-kriging were imple-
mented with an in-house code (Park et al. 2017). For the
tuning of kriging/co-kriging hyper-parameters, the Hooke
& Jeeves’s pattern search algorithm and numerical tech-
niques including data normalization, Cholesky factoriza-
tion that are used in DACE toolbox (Lophaven et al. 2002)
were employed. Meanwhile, to avoid too bumpy curves,
bounds were given to the Gaussian correlation function as

0:6≤exp −θh x ið Þ
h −x jð Þ

h

��� ����
2
minÞ ≤1, where x ið Þ

h −x jð Þ
h

��� ��� 2
min de-

notes the minimum distance between samples along dimen-
sion h. In addition, the constant trend function was used for
the kriging/co-kriging modeling, as the kriging/co-kriging
with constant trend function usually have close and even
better accuracy than those by using more complex trend
functions (e.g. linear, quadratic and etc.) (Forrester and
Keane 2009). Last but most importantly, to obtain the best
hyper-parameters of kriging and co-kriging as much as pos-
sible, a multi-start strategy was employed in the hyper-
parameter tuning process.

Figure 1 shows a 1D example where both HF and LF sam-
ples can be obtained. By solving (4) in combination of HF and
LF samples, the best ρ is equal to 2, resulting in a perfectly
linear DF, and therefore DF is predicted very accurately with
the small number of HF samples (seen in Fig. 1a).
Consequently, the multi-fidelity surrogate can perfectly fit
the HF function as shown in Fig. 1 (b).

The motivation behind co-kriging is clearly seen as: With
the aid of LF models to capture the HF function trend, the
original HF curve is modified to be a simpler function (DF)
that is likely to be easily fitted by a limited number of HF
samples. With different LF models we can expect different
DF to fit, so CV and ML need to choose between fitting dif-
ferent true functions, not only different surrogates for a single
function.

3 Indicators for multi-fidelity dataset
selection

3.1 The challenge of multi-fidelity dataset selection

In conventional model selection, the samples often come from
a single source, and the task is to select functional forms (e.g.

(a) Curves of HF, LF and DF functions and samples (b) HF and LF expressions and Surrogates 
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Fig. 1 Surrogates fit by kriging and co-kriging, HF and LF samples are xH = {0.0007, 0.3638, 0.5862, 0.8198} and xL = {0.0007, 0.1548, 0.3638,
0.4934, 0.5862, 0.7148, 0.8198, 0.9932}
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linear/quadratic and etc.) or surrogates (e.g. kriging/radial ba-
sis function and etc.) that can best fit to the true objective
function. When multi-fidelity sample sources are available,
e.g., both HF and LF sample sources are given; there is the
additional task of deciding whether a MFS is more or less
accurate than the surrogate built by only HF samples.
Further, when multiple LF models (e.g. LF1 and LF2 and
etc.) are available, there is one more task of choosing between
them to combine with HF samples. We refer to these tasks as
dataset selection, which is the focus of this paper.

The classic indicators were tried to tackle with the dataset
selection problem, and one challenge is addressed before the
selecting process. The classic indicators of cross validation
(CV) and maximum likelihood (ML) have been developed
for comparing different models with same samples to fit to
the same true function (i.e., the situation with samples from a
single source). If we want to apply them to compare MFS to a
surrogate based on only HF samples, we run into issues be-
cause of difference in the number of data. There are probably
other ways of addressing this challenge, but here we opt for a
simple approach. As plenty of cheap LF samples can be easily
obtained, we assume the LF approximation can perfectly fit to
its original function; thereby the only source of error comes
from the poor fitting of small number of HF samples. So for
CV, only the HF samples are perturbed, and for ML, only the
likelihood of the discrepancy function (DF) is compared to the
ML of the HF alone. This is also consistent with viewing the
HF surrogate alone as a special case of the DF for ρ = 0.

3.2 Maximum likelihood (ML)

As introduced in Section 2, the ML of DF as (4) is employed
by Forrester et al. (2007) in hyper-parameter estimation of co-
kriging. During the hyper-parameter estimation by (4), ρvaries
from 0 to a certain positive number, where ρ = 0 corresponds
to the surrogate using only HF samples. It means, the ML of
DF has considered the selection between (a) only HF samples
(ρ = 0) and (b) the combination of HF and LF samples (ρ > 0).
Actually, the ML of DF can also be used in selection between
multiple LF samples sources. Its availability can be derived
through the Bayesian posterior probability; more details can
be found in Appendix 1. The ML of DF will be called ML in
the following sections.

3.3 Cross validation (CV)

The basic idea of CV is: leave out one or several samples, and
use the rest of the samples to build the surrogate, and then
measure the error at the removed samples. This process is then
repeated by leaving out other samples. In the leave-one-out
CV (Loo-CV), with m samples this repeats m times and thus
makes full use of the samples. In this work, the Loo-CV is
used for the dataset selection for multi-fidelity surrogate, and

it will not be used to estimate hyper-parameters. Actually, the
hyper-parameters of kriging and co-kriging are well estimated
beforehand by using (4), and the hyper-parameters are kept
constant during dataset selection process by Loo-CV.

The overall accuracy by CVestimation is calculated by the
RMSE at CV points as in (5), where n is the number of sam-

ples, ŷ−i x
ið Þ� �

denotes the function prediction at x(i) by the
surrogate that is built with x(i) being removed.

CV RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
y x ið Þð Þ−ŷ−i x ið Þð Þð Þ2=n

s
ð5Þ

4 Flow models and problem description
of a turbine stage

Three models are available for the flow analysis of a turbine
stage. We assume that these were sampled, and the question is
which of the datasets to use for fitting a surrogate. As the main
concern of the paper is to examine the performance of CVand
ML in dataset selection, so the three models are briefly
introduced.

4.1 Design objective of a turbine stage and design
variables

The models simulate the flow of a low pressure turbine stage
at a flight cruise condition. Figure 2 shows the schematic
model of the turbine stage, which consists of one stator vane
and one rotor blade. The rotor blade is based on the profile of
the popular researched blade, Pak B (Suzen and Huang 2005).
A stator vane was designed by referring to E3 (short for
Energy Efficient Engine) turbine stages (Cherry et al. 1982),
which can also be replaced by the moving bars for simplicity
as the focus is on the flow in the rotor blade (Hodson and
Howell 2005). Table 1 shows the specifications of the rotor
blade and the stator vane as well, where the left column shows

Fig. 2 Turbine geometry and design variables
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the definition of the parameters by using rotor blade as an
example, the same definition is also suitable for the stator.

The size of the trailing edge of the stator vane (x1) and the
distance between stator and rotor (x2) will greatly influence
the loss and efficiency of the stage (Hodson and Howell
2005). Therefore these two parameters are selected as vari-
ables as shown in Fig. 2, and their variable ranges are listed
in Table 1. The stage loss, defined as one minus the isentropic
efficiency (ηis), is chosen as the objective function ((6)), where
Tt and Pt denote the total temperature and total pressure, re-
spectively. The subscript 1 and 2 denote the stage inlet and
outlet, respectively. γ is the isentropic exponent; more details
are available in (Dixon and Cesare 2013).

Loss ¼ 1‐ηis ¼ 1− Tt
2=T

t
1−1

� �
= Pt

2=P
t
1

� � γ−1ð Þ
γ −1

� �
ð6Þ

4.2 Numerical models and validation

4.2.1 Difference between the three models

Two unsteady Reynolds-averaged Navier-Stokes (RANS)
equation solvers including (1) the full transient model (abbre-
viated as Transient) and (2) the transient rotor blade model
with time transformation (abbreviated as TT), and (3) one
steady RANS solver (abbreviated as Steady) are used for the
performance evaluation (ANSYS CFX-Solver Modeling
Guide 2011). The main difference between Steady and
Transient is their settings of the interface between stator and
rotor (see Fig. 2). The interface technique of frozen rotor is
used by the Steady solver, which averages the flow informa-
tion before it is transported into downstream rotor blade, and
hence it cannot consider the transient influence of upstream

wake flow on the downstream rotor blade (Hodson and
Howell 2005; ANSYS CFX-Solver Modeling Guide 2011).
Thereby the loss prediction of Steady solver would be biased.
On the contrary, the interface technique of transient rotor sta-
tor enables the Transient solver to track the wake blade inter-
actions at periodical instants, so the Transient is expected to
have better prediction accuracy than the Steady model.

The difference between TT and Transient is the turbulence
model, which plays an important role in simulation accuracy.
The Shear Stress Transportation (SST) coupled by r − Reθ
transitionmodel is commonly believed to have better accuracy
than the SST of fully turbulence model in predicting the sep-
aration flow of Pak B (Suzen and Huang 2005). However, the
SSTcoupled by r −Reθ transition is not available in TT; there-
fore the accuracy of TT would be poorer than that of the
Transient. More technical details of Transient, TT and
Steady can be found in (ANSYS CFX-Solver Modeling
Guide 2011).

For testing purpose in Section 5, the Transient is regarded
as the HFmodel. Because the TTand Steady have deficiencies
in either interface handling between stator/rotor or the turbu-
lence model, they are treated as LF models.

In addition, Table 2 shows the cost of single run of different
flowmodels by using the commercial software CFX 14.5, and
each run was implemented on a micro-server by using 8CPUs
(2.6GHz). One may argue that the cost of HF model as

Table 1 Geometrical specifications of a turbine stage and design variables

Sketch map of Blade Parameters Stator Rotor

Blade count 77 77

Blade height (H) 95.00mm 100.00mm

Root diameter 350.00mm 350.00mm

Chord length (C) 48.27mm 33.10mm

Axial chord length (Cax) 34.99mm 30.00mm

Blade pitch (P) 32.61mm 32.64mm

Aspect ratio (H/C) 2.91 3.06

Pitch chord ratio (P/C) 0.68 0.986

Blade inlet angle 0 35

Blade outlet angle 70.11 60

Rotational speed 0 4500 r/min

Design Variables
1x 10.3 1.0mm x mm

2x 25 15mm x mm

C

P

Cax

Inlet angle

Outlet angle

x

Normalized Design Variables
1x

2x
1 10

0

x

2 1x

Table 2 Computational cost of different flow models

Computational cost of single run

Transient 20 h

TT 20 h

Steady 1 h
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Fig. 4 The loss contours of the flow models over design space
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Transient and one LF model as TT are the same. However,
while it may not be reasonable to use TT for solving an actual
design problem, it does provide an additional LF model for
testing the ability of CVand ML for choosing the most accu-
rate one.

4.2.2 Mesh parameters and boundary conditions

The settings such as the mesh and boundary conditions
are the same for Transient, TT and Steady. Figure 3 shows
the mesh grids in the blade to blade view. The H-O-H
type grid is employed to ensure grids of high quality. A
grid template is adopted to ensure that grids of different
designs in space have the same topology, and thus similar
grid quality can be guaranteed. To take care of the bound-
ary effects, the first cell to the wall is set to 0.003 mm,
correspondingly, the dimensionless distance of the first
cell to the wall (ANSYS CFX-Solver Modeling Guide
2011), which is often denoted by y+, is less than 2.8,
i.e., y+ < 2.8. The total number of grid cells is about
760,000.

To simulate the flight cruise condition, the flow condi-
tions were set by referring to E3 (short for Energy
Efficient Engine) turbine stages (Cherry et al. 1982).
Specifically, the real gas law is applied. A uniform total
pressure and total temperature is imposed at the stator
inlet as 106.5 kPa and 873.15 K, respectively. An aver-
aged pressure of 75.86 kPa was set at the rotor outlet. The
interface between adjacent stators and rotors are set as
rotational periodicity. For the steady flow solver of
Steady, the residual error of performance indicators (e.g.
the loss in (6)) is set less than 10−6 and 300 iteration steps
are imposed to ensure convergence. For the transient flow
solver as TT and Transient, the same residual error thresh-
old is imposed. Meanwhile, the minimum physical time
step is set as 42 in one period that one rotor blade can

pass a pitch of the stator blade. 20 periods were calculated
to ensure the iteration convergence.

5 Dataset selection for a turbine stage

The multi-fidelity dataset selection was conducted based upon
the surrogate accuracy of the turbine stage loss.

5.1 Design space of flow models and accuracy
criterion

As described in Section 4, the radius of the stator trailing
edge (x1) and the distance between rotor and stator (x2)
are selected as variables (see Fig. 2 and Table 1). The
differences between the loss contours (6) predictions of
Transient, TT and Steady are first analyzed. The loss
function proved to be somewhat noisy, so for the purpose
of this study the response was smoothed by fitting a cubic
polynomial to 36 samples from a 6 × 6 grid over the two-
dimensional design spaces. One obvious benefit of the
data smoothing is that it helps turn this black-box problem
to an analytical example, which anybody can try without
needing to deal with turbine stage analysis. More details
of the cubic regression such as data and regression coef-
ficients are given in Appendix 2. Figure 4 shows the loss
contours based on the polynomial fit.

In turbine design, an increment of 0.1% in efficiency (or the
decrement of 0.1% loss) is significant (Luo et al. 2015); there-
by the accuracy criterion for a reliable approximation is set as
the RMSE should be less than 0.1. In Fig. 5, the discrepancy
errors of TT and Steady w.r.t. Transient are large, the related
RMSE of TT and Steady are 0.2722 and 0.5416, respectively,
so they cannot be independently used as alternatives instead of
the Transient model.

Number of HF Samples
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Figure 4a, b and c compare the three models based on
surrogate fit to 36 points using the same scale. However this
uniform scale obscures the consistency in trend between
Transient and TT, which can be observed with a modified
range shown in Fig. 4d. Actually, as seen in Fig. 5, the differ-
ences at 36 sites of TT vary in a smaller range ([−0.89,-0.26])
than that of Steady ([−0.44, 0.61]). In addition, the Pearson
correlation coefficients between Steady and Transient and that
between TT and Transient are 0.9367 and 0.9769, respective-
ly. These confirm that the TT has a better trend consistency
than Steady with Transient.

5.2 Settings of kriging and co-kriging models

For MFS, the 36 LF samples will be used, and the number of
HF samples will be varied from 4 to 12. Both sets of samples
come from the smoothed cubic polynomial. To generate rea-
sonable HF sample distributions as a subset of LF samples, the
following criteria were imposed: (i) The HF samples should
be evenly distributed over space; (ii) The HF samples should
not miss any of the 6 different values of each design variable
unless the number of HF samples is smaller than 6; (iii) The
distance of each HF sample to its nearest neighbors should be

(a) Between Steady &Transient and TT &Transient (b) Between Transient and Steady &Transient

(c) Between Transient and TT &Transient (d) Between the three datasets 
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Fig. 7 The approximation
accuracy of the dataset selected
by CVand ML

Table 3 The rates of best surrogate accuracy of different datasets

4HF 6HF 8HF 10HF 12HF

Between the Three Transient 0/20 3/20 3/20 12/20 19/20

Steady & Transient 0/20 0/20 3/20 0/20 1/20

TT &Transient 20/20 17/20 14/20 8/20 0/20

Steady &Transient and TT &Transient Steady & Transient 0/20 1/20 3/20 0/20 11/20

TT &Transient 20/20 19/20 17/20 20/20 9/20

TT &Transient and Transient Transient 0/20 4/20 5/20 12/20 20/20

TT &Transient 20/20 16/20 15/20 8/20 0/20

Steady &Transient and Transient Transient 15/20 17/20 14/20 17/20 19/20

Steady &Transient 5/20 3/20 6/20 3/20 1/20
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larger than the minimum distance between LF samples.
Appendix 3 provides additional details on HF sampling.

The constant trend function is used for kriging and co-
kriging. Data normalizations are conducted based upon the
function values of the HF samples. A total of 20 sets of HF
samples or DOEs were generated for each prescribed number
of HF samples (i.e., 4, 6, 8, 10 and 12) for a total of 100 DOEs.

5.3 Trapezoidal integration-based RMSE for checking
performance of CV and ML

The RMSE measures the lack of fit of surrogate by the inte-
gration of prediction errors over space. For our case, we col-
lect testing points on a 6 × 6 grid (see Fig. 4) and use trape-
zoidal integration to calculate the RMSE. This leads to the
contributions of each vertex and the edge point to the integral
are 1/4 and 1/2, respectively of the contribution of an inner
point. This was shown to be a reasonable estimation of RMSE
by comparing to the results of a dense grid of 101 × 101
points. More details are given in Appendix 4.

5.4 Selection success and its dependence on the DOE
and the number of HF samples

Figure 6 shows the actual error, i.e., the trapezoidal
integration-based RMSE at the 6 × 6 grid. Table 3 summarizes
the rates of best surrogate accuracy of different datasets. The
RMSE of TT& Transient MFS is less than 0.1 for all the sets,
even when the 36 TT samples are combined with only 4 HF
samples. On the contrary, the RMSEs of Steady & Transient
can be higher than 0.1 evenwith 10HF samples. This is owing
to the better trend consistency between TT and Transient than
that between Steady and Transient, though the absolute

discrepancy errors between TT and Transient are larger than
that between Steady and Transient, as shown in Figs. 4 and 5.

The surrogate of best accuracy is actually DOE-dependent,
as shown in Table 3. Though the accuracy of Steady &
Transient MFS is usually worse than that of Transient surro-
gate, it has better accuracy in 18 cases of the 100DoEs shown
in Table 3 (see last row of Table 3). With the increase of HF
samples, the dataset of best surrogate accuracy changes grad-
ually fromTT&Transient to Transient and Steady&Transient
as well. For instance, with 12 HF samples, the accuracy of
Steady & Transient MFS are shown to be even better than that
of TT & Transient for more than half of the cases, in contrast
to the situations with 4 to 10 HF samples, where the TT &
Transient MFS are often more accurate. So indicators are
needed to select dataset of best surrogate accuracy.

Figure 7 compares the accuracy of the datasets selected by
CVand ML and that of the real best. Take Fig. 7b for example
to illustrate, when selecting between Steady & Transient and
Transient with 6 and 8 HF samples in Fig. 7b, the RMSE of the
real best meets the accuracy criterion (RMSE<0.1), but the
RMSE of the CV- and ML-selected dataset can be much
worse. Similar failure situations are also observed in in Fig.
7a, c and d.

The effectiveness of the indicators to select the right
datasets is shown in Tables 4 and 5, where the success rate
is defined as: Out of the 20 DOEs tested with a given number
of HF samples, how many times the datasets of best surrogate
accuracy were selected. In 100 sets of DOEs with HF samples
changing from 4 to 10, the ML and CV did a relatively good
job in selection between the two LF sample sources to com-
bine with HF samples (i.e. Steady & Transient versus TT &
Transient). In selection between Transient and Steady &
Transient, the performance of ML is poor for all the sets.

Table 4 Success rates in selection
of the best accuracy by CV Steady &Transient

and TT &Transient
TT &Transient
and Transient

Steady &Transient
and Transient

Between the Three

4HF 17/20 17/20 3/20 15/20

6HF 12/20 13/20 6/20 8/20

8HF 16/20 9/20 10/20 8/20

10HF 20/20 6/20 14/20 6/20

12HF 12/20 19/20 18/20 17/20

Table 5 Success rates in selection
of the best accuracy by ML Steady &Transient

and TT &Transient
TT &Transient
and Transient

Steady &Transient
and Transient

Between the Three

4HF 19/20 20/20 5/20 19/20

6HF 17/20 16/20 3/20 13/20

8HF 16/20 15/20 7/20 14/20

10HF 20/20 8/20 4/20 8/20

12HF 9/20 0/20 1/20 0/20
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Further, Table 6 provides a summary of the success rate in
identifying the best surrogate for the different selection op-
tions when we combine all the sets with different number of
samples to obtain 100 DOEs. For example, for the case when
all three surrogates are in competition, Transient is best 37
times, Steady &Transient is best 4 times, and TT &Transient
is best 59 times. The first row of results in the table shows that
CV chose Transient 20 of the 37 times it was best, andML did
not vote for it even once when it was best. It is clear from the
table that CV has difficulties in identifying the cases where HF
is the best, while ML is a total failure for these cases. When
selecting between Steady &Transient and TT &Transient,
both indicators showed a clear bias towards TT &Transient.
This has only a small effect on the overall rate of success,
because in most cases TT and Transient are more accurate.
However, out of the 15 cases where Steady &Transient should
have been chosen, CV chose it 6 times andML not even once!

Recalling Section 3.2, the ML in hyper-parameter estima-
tion of co-kriging has considered the selection between only
HF samples (ρ = 0) and HF & LF (ρ > 0). The above large
percentage of failures indicates that, the ML had difficulty in
detecting when the HF alone (ρ = 0) had the best surrogate
accuracy (see Table 6). This is unexpected, as the ML is

generally believed to be effective in hyper-parameter estima-
tion (Forrester et al. 2007; Kennedy and O'Hagan 2000;
Fernández-Godino et al. 2016; Park et al. 2017; Liu et al.
2018b). The performance of CV is also surprising in selection
between TT & Transient and Transient. It worked well with
small number of HF samples (e.g. 4, 6) but became poor with
HF samples in medium size (e.g. 8 and 10). This is opposite to
the conventional impression that CV works better with large
number of samples. Some insights into the reasons for these
failures are provided in the next section with the aid of a 1D
toy problem.

6 Analysis of typical selection failures of CV
and ML

One-dimensional examples are presented to facilitate under-
standing of the issues regarding dataset selection of the two-
variable turbine problem; the focus is the selection failures
between only HF and HF&LF, the characteristics of CV and
ML are analyzed. Then, the cause of selection failures of CV
and ML in the turbine problem is discussed.

6.1 Multi-fidelity dataset selection in 1D toy problems

Figure 8 shows the HF function and the LF function with
samples chosen for exploring the nature of the selection
difficulties to choose the HF surrogate when it is more
accurate than the MFS. We selected the examples to have
two features: (i) the fluctuation range of the discrepancy
function is much smaller than the range of fluctuations of
the HF function (which is usually the case); (ii) the LF
function trend is not in excellent agreement with that of
HF function (which happens for the turbine LF models),
and thus the discrepancy function can be even bumpier
than HF function and more difficult to fit with limited
samples. We assume that the LF functions are perfectly
fit to their original function with sufficient LF samples.
The second feature means that the HF surrogate can often

Table 6 Summary of success
rates in choosing between
Transient, Steady &Transient and
TT &Transient

CV ML

Between the Three Transient 20/37 0/37

Steady & Transient 0/4 0/4

TT & Transient 34/59 54/59

Steady &Transient and
TT &Transient

Steady & Transient 6/15 0/15

TT & Transient 71/85 81/85

TT &Transient and Transient Transient 22/41 0/41

TT & Transient 42/59 59/59

Steady &Transient and
Transient

Transient 45/82 3/82

Steady & Transient 6/18 17/18
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Fig. 8 The HF, LF function of 1D toy problem, the LF samples are at
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have better accuracy than the MFS, while the first feature
helps mislead the indicators. The dataset selection by CV
and ML with 4 and 6 HF samples are discussed separately
for CV and ML.

6.1.1 Dataset selection by CV

The failure of CV with small number of samples is not
unusual, because then CV tends to overestimate the error
estimate, and this is illustrated in Fig. 9. Figure 9a shows
that with 4 HF samples the surrogate fits well the func-
tion. However, when one sample is removed, the cross
validation errors are large. On the other hand, Fig. 9b
shows that with the LF function available, the surrogate
errors are confined to the discrepancy function, whose
fluctuation range is about 3.6 times smaller than the fluc-
tuation range of the HF function, so the cross validation
errors are also smaller by about that factor (see Table 7).
Consequently, CV fails to recognize that the HF surrogate
is more accurate than the MFS.

For the turbine Steady LF this type of failure was ob-
served beginning with small number of samples, because
the steady LF trend is not in excellent agreement with
transient HF. The TT LF (see Fig. 5) had excellent corre-
lation with the HF; the TT &Transient MFS was more
accurate than the HF surrogate for small number of sam-
ples, so this problem did not arise much. However, when

the number of HF samples increases, the error in the HF
surrogate plummeted to the point where this phenomenon
appeared. This is because for a two-dimensional function
8 or 10 points is still sparse enough so that cross valida-
tion can produce large errors.

When the number of samples becomes sufficient, this
difficulty goes away, as shown in Fig. 10 for the CV
selection with 6HF samples. Unlike the situation with 4
HF samples, the HF surrogate with leave-one-out samples
(CV curves) also fits well the HF function, the CV curves
overlapped with the HF surrogate, so they are not present-
ed in Fig. 10a. In contrast, the wavier DF of HF&LF is
not fit very well by 5HF samples (when one of the six is
left out), and the related CV curve is visually different
from the DF function in Fig. 10b. The values of the
RMSE errors are shown in Table 7. Similar situation are
also observed in Table 4 for the turbine problem, with 12
HF samples, the success rates of CV becomes significant-
ly higher when selecting between Transient and Steady &
Transient (or TT & Transient).

6.1.2 Dataset selection by ML

To understand the ML results, it is worthwhile to recall the
discussion of the two components of ML in (4), as −
ln |Rd(x, θ)|/2 and −nH ln 2πσ2d

� �
=2. The |Rd(x, θ)| is high

(a) Only HF (b) HF & LF

Fig. 9 Surrogate of HF alone, HF
& LF and example of CV curve,
the HF samples are at
{0.05,0.3,0.7,1.0}

Table 7 RMSE and CV results of only HF and HF & LF MFS

RMSE CV_RMSE CV Errors

4HF Only HF 0.11 13.50 {‐15.00, 7.12, ‐8.70, 19.21}

HF & LF 1.03 1.08 {‐1.25, 0.19, 1.26, ‐1.02}

6HF Only HF 0.000 0.1126 {‐0.24, 0.049, ‐0.029, 0.033, ‐0.048, 0.11}

HF & LF 0.43 0.90 {‐1.85, 0.038, 0.57, ‐0.84, 0.60, ‐0.26}
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when the function has short wave length, and the σ2
d is high

when the amplitude of the function fluctuations is high.
Table 8 shows the ML and its components for the toy

problem with 4 and 6 HF samples. It is seen that the waviness
term − ln |Rd(x,θ)|/2 is more favorable (more positive) for the
less wavy HF. However, the variability term, −nH ln 2πσ2d

� �
=2, is more favorable for the MFS and it dominates in both
cases. Figure 11 explains these results, showing the fluctua-
tions of DF by subtracting from it the mean function value.
For both 4HF and 6HF samples, the fluctuation ranges of DF
of HF&LF are much smaller than that of HF alone (ρ = 0, its
DF is equal to HF function).

This phenomenon of the discrepancy function having a
much smaller range of fluctuation than the HF function is
not unusual, and so this type of failure of the MF indicator
to select the HF cannot be expected to be rare. Recalling
Table 6, when selecting between Steady &Transient and
Transient, the ML had 3 successes out of 82 total cases when
the accuracy of Transient surrogate was better than Steady
&Transient MFS.

Note that this analysis also may explain the failure of CV
and ML to select Steady &Transient for the turbine problem
when this MFS was more accurate than the TT &Transient
MFS. As was seen in Fig. 5, the range of differences between

(a) HF alone(CV curve overlapped with HF surrogate) (b) HF &LF

Fig. 10 Surrogate of HF alone,
HF & LF and example of CV
curve, the HF samples are at
{0.0,0.2,0.4,0.6,0.85,0.95}

Table 8 RMSE and ML results of HF alone and HF & LF MFS

ML − ln |Rd(x,θ)|/2 −nH ln 2πσ2d
� �

=2

4HF Only HF −1.81 1.84 −3.65
HF & LF 0.66 0.40 0.26

6HF Only HF −0.66 6.78 −7.44
HF & LF 0.46 −0.095 0.55

(a) 4HF (b) 6HF

Fig. 11 The fluctuations of DF
function
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Steady and Transient was much larger than the range of dif-
ferences between TT and Transient. So the range of the fluc-
tuations of DF for Steady& Transient must be higher than for
the DF of TT& Transient. On the one hand, this is responsible
for the superior performance of TT& Transient for most cases.
However, this larger range misleads the two indicators for the
few cases when Steady & Transient was more accurate. In
addition, another suggested version of CV, the CV-based
pseudo-likelihood (Rasmussen and Williams 2006), has also
been tried, but it has similar poor performance as ML, so the
related results are not discussed.

7 Conclusions

The performance of cross validation (CV) and maximum like-
lihood (ML) in multi-fidelity dataset selection was examined
through a two-variable problem of a turbine stage. For that
problem the indicators were tasked with selecting between a
high-fidelity (HF) dataset for constructing a surrogate based
only on this dataset, or combining it with one of two low-
fidelity (LF) datasets, LF1 and LF2, for constructing multi-
fidelity surrogate (MFS). For the MFS, the main fitting chal-
lenge is to fit a discrepancy function (DF) to the difference
between the HF function and an optimally scaled LF function.
Because the DF is different for LF1 and LF2, CVandML have
to compare the accuracy of approximations that fit different true
functions. This is different from conventional model selection
that considers alternatives for fitting the same true function.

Tests were conducted for 100 DOEs with the number of HF
samples ranging from 4 to 12. The most accurate surrogate
was found to depend on the DOE. The percentage of DOEs
for which the HF surrogate was most accurate increased, as
expected, with the number of samples. The MFS using LF2
was more accurate than the MFS using LF1 for most of the
DOEs, but not all. It was found the CVandML did a relatively
good job in selection between LF1 and LF2 when LF2 was
most accurate (the majority of the time), but they have sub-
stantial trouble finding when LF1 led to the best accurate
MFS. Similarly, the indicators were relatively successful find-
ing when the MFS was more accurate than the HF surrogate.
However, CVoften had trouble selecting HF when its surro-
gate was most accurate, and ML never identified such cases.

To understand the selection failures in the turbine problem
we constructed a 1D toy problem that shared with the turbine
problem the property that the LF function trend was not in
excellent agreement with the HF function. The analysis of
the 1D problem established that ML is biased towards
selecting the function with the smaller fluctuation range.
This biases it in favor of the DF that has a smaller fluctuation
range than the HF function, even if the HF surrogate is more
accurate. CV can have a similar problemwith small number of
samples. Similarly, LF2 had a smaller range of DF

fluctuations than LF1, which made its MFS more accurate
most of the time. However, the smaller range appears to have
biased the indicators to select it even when it was not the most
accurate. The results raise concerns that may justify further
research into the problem of selecting the dataset that will
yield the most accurate surrogate.
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Appendix 1: ML criterion for choosing
between datasets

The ML of DF in Forrester’s version (Forrester et al. 2007) is
the case when the LF function is given. Actually, it can also be
used in selection of samples from alternative LF sources,
when fitting a surrogate to the limited HF samples. For such
case, the LF sources is treated as another hyper-parameter as
DL, i.e., we have to chooseDL in addition to ρ and θd in fitting
the co-kriging by (4). The corresponding Bayesian posterior
probability is formulated as:

P DL; ρ;θdjyHð Þ

¼ Likelihood yH j~DL; ~ρ; ~θd

� �
⋅Prior DL; ρ;θdð Þ=m yHð Þ

ðA:1Þ
where, m(yH) is the marginal distribution of the dataset yH,
Prior(DL, ρ, θd) is the prior probability of the hyper-

parameters DL, ρand θd, the Likelihood yHF j~DL; ~ρ; ~θd
� �

is

the likelihood of the co-kriging when ~DL; ~ρ; ~θd are given,
which is actually equal to the formulation of (4). The term
m(yH) is a constant w.r.t. the variation of hyper-parameters
DL, ρ, θd, thus for the purpose of selection with fixed HF
samples, m(yH) can be discarded. Meanwhile, we do not have
prior knowledge of the hyper-parameters, so it is defensible to

Table 9 Data smoothing by using cubic polynomial regressions

Transient TT Steady

Function range [7.90, 10.23] [8.40,10.86] [7.85,10.27]

Adjusted R2 0.9606 0.9870 0.9585

RMSE 0.0930 0.0578 0.1236

Mean Error 0.0765 0.0428 0.0939

σ 0.1095 0.0678 0.1414

Relative error 4.70% 2.76% 5.84%

Analysis of dataset selection for multi-fidelity surrogates for a turbine problem 2139

http://www2.mae.ufl.edu/mdo/


simplify the justification by using the non-informative prior as
Prior(DL, ρ,θd) = 1 (Neath and Joseph 2012). Hence, the ML
of DF in (4) may be still useful for the selection between LF
samples coming from alternative LF sources.

Appendix 2: Polynomial smoothing of turbine
data

As kriging and co-kriging are sensitive to the data noise,
which will also influence the selection of CV and ML, and
hence make complicate the problem. Therefore, polynomial
regression is employed to smooth the data sets. The RMSE,
adjusted R2 (see B.1), and the mean absolute error and the
standard deviation (denoted by σ) of polynomial regression
(Myers and Montgomery 2002) as well are calculated to in-
spect the goodness of the dataset.

adjusted R2 ¼ 1− ∑
n

i¼1
yi−ŷið Þ2= n−pð Þ

	 

= ∑

n

i¼1
yi−yi

� �2
= n−1ð Þ

	 

ðB:1Þ

where, n is the number of samples, p is the number of poly-
nomial coefficients, yi and ŷi are the true and estimated func-
tion value of the ith sample, respectively. yi is the mean func-
tion value of the samples. In addition, the relative errors of
polynomial regressions are also calculated, as dividing the σ
by related function range. Table 9 shows the results of cubic
polynomials, and Table 10 provides the regression coefficients
of cubic polynomials for different flowmodels. Obviously, the

cubic regression can well predict the function trend of differ-
ent flow models, as the data noises is small.

Appendix 3: HF Sampling strategy

The HF sampling strategy was devised to prevent poor design
of experiments for the turbine problem. It is not intended to
serve as a general approach, as it is tailored to the specifics of
this 2D problem, where samples were available on a grid. The
HF sampling is based on the strategy of nearest neighbor
sampling (NNS) (Park et al. 2017). The basic idea of NNS is
shown in the lower left of Fig. 12a: First, m HF samples are
generated independently by using Latin hypercube sampling
(abbreviated as LHS). Second, each LHS sample (circles) is
moved to its nearest LF site (squares). When the number of
HF samples is smaller or equal to the number of LF values in
each dimension (e.g. 4 or 6 HF samples), the NNS strategy is
directly used.

When the number of HF samples is larger, they are gener-
ated as follows: First, the HF samples are sequentially gener-
ated by NNS in the four shaded subspaces of Fig. 12; Second,
some local samples may not meet the criterion of d > 0.2 (seen
in Fig. 12b), the violated samples will be moved to its adjacent
LF sample location shown by arrows. The objective is to
maximize the distance to its neighboring HF samples as
max{d1 + d2 +⋯} will be imposed to optimize the sample
locations. Similar fine tuning strategy is also implemented in

Table 10 Regression coefficients of the cubic polynomials of turbine stage efficiency (100%-Loss) for different flowmodels with normalized design variables

constant x1 x2 x21 x1x2 x22 x31 x21x2 x1x22 x32

Transient 89.7690 2.9245 0.1566 −6.8921 0.1197 −0.0119 2.8428 0.0633 −0.0148 0.0008

TT 90.5742 0.0250 −0.0640 −1.3642 −0.0236 0.0115 −0.0867 0.0536 −0.0045 0.0000

Steady 88.9969 −2.1275 0.7212 1.4796 −0.0636 −0.0620 0.6834 −0.3760 0.0249 0.0017

(a) Generation based on NNS (b) fine tuning (c) Final HF samples

Fig. 12 HF sampling strategy in case of large number of HF samples
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the case of small number of HF samples when the distance
criterion is violated.

When the number of samples is a multiple of 4, e.g.8, the
samples can be evenly distributed in the four subspaces.When
the number of samples is not a multiple of 4, e.g. 10, we
should have 2 in two subspaces and 4 in other two. The spe-
cific number in each subspace is determined randomly.

Appendix 4: Accuracy of trapezoidal
integration

Tables 11 and 12 shows the comparison results of the
Trapezoidal integration-based RMSE. It is calculated by a
dense testing grid of 101 × 101points. The latter can be
regarded as accurate enough RMSE owing to sufficient test-
ing samples. Table 11 shows that, the RMSE values estimat-
ed by Trapezoidal integration are reasonably close to those
of 101 × 101 points. Further, Table 12 shows the changing
rate of accuracy order by using Trapezoidal integration-
based RMSE; clearly the accuracy order estimated by
Trapezoidal integration-based RMSE are in well consistent
with that of 101 × 101 points, in other words, The
Trapezoidal Integration-based RMSE is accurate enough

to judge the selection success of CV and ML in multi-
fidelity dataset selection.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.
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