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Abstract
In this paper, an improved two-stage framework is presented to handle the evidence-based design optimization (EBDO) problem
under epistemic uncertainty. The improvements include two aspects: (1) in the first stage, the equal areas method is employed to
transform evidence variables into random variables, which avoids the assumption that unknown evidence variables and param-
eters obey the normal distribution. Then, a reliability-based design optimization (RBDO) problem with random variables is
defined and solved by the sequential optimization and reliability assessment (SORA) method; (2) in the second stage, an
improved algorithm is presented, which can calculate the plausibility of constraint violation more efficiently by continuously
recording the minimum and maximum values of limit-state functions. The computational accuracy and efficiency of the im-
proved framework are tested by numerical and engineering examples.
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Reliability analysis

Nomenclature
RBDO Reliability-based design optimization
EBDO Evidence-based design optimization
FD Frame of discernment
BPA Basic probability assignment
Bel Belief
Pl Plausibility
SORA Sequential optimization and reliability assessment
HMV Hybrid mean value
MPTP Minimum performance target point
PDF Probability density function
RBF Radial basis functions
ND Normal distribution

1 Introduction

Uncertainties widely exist in practical engineering systems,
such as manufacturing tolerances, changing environmental
and operating conditions, and incomplete information.
Currently, reliability-based design optimization (RBDO)
gains great attentions in the field of design optimization under
uncertainty. Generally, the uncertainty can be classified into
two types: aleatory and epistemic (Oberkampf et al. 2001;
Kiureghian and Ditlevsen 2009; Zhang and Huang 2010).
Aleatory uncertainty is objective and irreducible, while episte-
mic uncertainty is subjective and reducible. Probability theory
is effective and usually employed to quantify the aleatory
uncertainty when sufficient data are available. So far, many
well-developed probability methods have been found in this
research field (Du and Chen 2004; Shan and Wang 2008;
Youn et al. 2008; Wang and Wang 2014; Meng et al. 2015a;
Huang et al. 2016). For epistemic uncertainty, due to insuffi-
cient data, incomplete information and lack of knowledge
about the design variables and parameters, it will be inappro-
priate that the epistemic uncertainty is simply treated as the
aleatory one with assumed and inaccurate probability distri-
butions (Yao et al. 2013). In this paper, the RBDO under
epistemic uncertainty is focused on.
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In RBDO, three important essentials need to be han-
dled: uncertainty quantification, reliability analysis and
optimization. Uncertainty quantification is the basis of
reliability analysis and optimization. Many theories have
been adopted to quantify epistemic uncertainty, such as
evidence theory (Shafer 1976; Yang et al. 2016), fuzzy
sets (Zadeh 1965; Huang and Zhang 2009; Li et al.
2015), convex models (Jiang et al. 2013a; Yang et al.
2015), and interval method (Moore 1966; Wu et al.
2013; Li et al. 2013). Among these theories, evidence
theory seems to be more flexible and of wider applicabil-
ity than the others in the quantification of epistemic un-
certainty (Oberkampf and Helton 2002). It employs belief
(Bel) and plausibility (Pl) to measure the likelihood of
events. Specifically, the Bel and Pl are lower and upper
bounds of the probability of an event. When they are
equal, equivalent descriptions can be provided by evi-
dence theory compared to the conventional probability
theory. In fact, probability theory can be considered as a
special case of evidence theory, and evidence theory can
be equivalent to fuzzy sets, convex models, and possibil-
ity theory under some other special circumstances (Bae
et al. 2004a).

Due to the above merits, evidence theory has been
extensively used for epistemic uncertainty analysis.
Oberkampf and Helton (2002) investigate the reliability
analysis by using evidence theory for epistemic uncer-
tainty. Bae et al. (2004a, 2004b) adopt evidence theory
to handle epistemic uncertainty analysis for engineering
structures. And a computational efficient method based
on multi-point approximation (MPA) is proposed to al-
leviate the computational effort. Agarwal et al. (2004)
utilize evidence theory to quantify epistemic uncertainty
in multidisciplinary systems analysis. Du (2006, 2008)
investigates the unified uncertainty analysis framework
to handle both aleatory and epistemic uncertainties by
probability and evidence theories. Additionally, if limit-
state functions are implicit or computationally expen-
sive, e.g., running computer-based simulations to obtain
system state responses, metamodels can be constructed
to replace the actual limit-state functions in reliability
analysis using evidence theory. Bai et al. (2012) utilize
quadratic polynomial without cross terms, radial basis
functions (RBF) and high-dimensional model represen-
tation combined with moving least square to replace the
implicit limit-state function in reliability analysis using
evidence theory. Jiang et al. (2013b) adopt a uniformity
approach to deal with the evidence variables, and then
the most probable focal element is searched for con-
structing the approximate model of the limit-state func-
tion. Zhang et al. (2014) develop a sequential method to
establish the response surface of the limit-state function
based on control points in uncertainty domain of

evidence variables, which have a significant contribution
to the accuracy of response surface. Zhang et al. (2015)
propose the first and second order approximate
reliability analysis methods based on the most probable
focal element using evidence theory. Xiao et al. (2015)
propose an efficient method for reliability analysis under
epistemic uncertainty based on evidence theory and
support vector regression. Yang et al. (2017) perform
the structural reliability analysis under evidence theory
using the active learning kriging model.

Meanwhile, evidence theory is also used in the reliability
optimization under epistemic uncertainty. The evidence-based
design optimization (EBDO) has attracted attentions. Alyanak
et al. (2008) propose an EBDO method based on the gradient
information of the limit-state function. The method assumes
that the gradient information can be determined by the finite
difference method, and realizes the optimization by calculat-
ing the sensitivity of the limit-state function. Salehghaffari
et al. (2013) utilize a response surface model to decrease the
computational cost in the EBDO of a circular tube structure
under axial impact load. Srivastava et al. (2013) propose a
bi-objective evolutionary algorithm based approach to per-
form EBDO and make the first attempt to combine evidence
theory with an evolutionary algorithm. Huang et al. (2013)
conduct a review of general topics about the possibility and
evidence-based reliability analysis and design optimization.
Based on the first-order approximate reliability analysis
method, Huang et al. (2017) propose a decoupling approach
for EBDO.

Besides, Mourelatos and Zhou (2006) propose a compu-
tationally efficient two-stage method for EBDO under epi-
stemic uncertainty. In the first stage of this method, RBDO
is implemented to quickly identify the vicinity of the EBDO
optimum with assuming that evidence variables and param-
eters obey the normal distribution. In the second stage, a
derivative-free optimizer, i.e., the DIRECT, is used to cal-
culate the EBDO optimum, starting from the obtained
RBDO optimum in the first stage. If the basic probability
assignments (BPA) of evidence variables and parameters
are similar to the hypothetical normal distributions, a
RBDO optimum in the vicinity of the final EBDO optimum
can be easily obtained in the first stage of the method. Then,
the EBDO optimum can be quickly found with few itera-
tions in the second stage. However, if the BPAs are obvi-
ously different from normal distributions, under the as-
sumption in the first stage, the obtained RBDO optimum
may be far away from the final EBDO optimum. Then, the
second stage still requires many iterations to search for the
EBDO optimum. It is noteworthy that the Pl of constraint
violation must be calculated every time when the optimizer
evaluates a constraint in the second stage. The increased
iterations in the second stage will incur more computational
cost. In practical engineering problems, the BPAs are
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complex and diverse, which are often different from the
normal distributions. Therefore, the assumption in the first
stage may make the two-stage EBDO method lose the ex-
pected computational efficiency.

To ensure a design point in the vicinity of the final EBDO
optimum for all cases of BPAs, it is necessary to get rid of the
assumption that unknown evidence variables and parameters
obey the normal distribution. Thus, the first stage of the
EBDO method proposed by Mourelatos and Zhou (2006) is
modified in this work. The equal areas method (Xiao et al.
2015) is utilized to transform evidence variables into random
variables. Then, a RBDO problem is defined and solved by
the well-known sequential optimization and reliability assess-
ment (SORA) method in the first stage.

On the other side, as mentioned above, the Pl of con-
straint violation must be calculated every time in the sec-
ond stage of the method in Mourelatos and Zhou (2006).
The efficiency of the corresponding algorithm used in their
method is focused on in this work. An improved algorithm
is presented, which can calculate the Pl of constraint vio-
lation more efficiently in the second stage by continuously
recording the minimum and maximum values of limit-state
functions.

Thus, based on the two-stage EBDOmethod inMourelatos
and Zhou (2006), the two above modifications are made in
this paper. Namely, an improved two-stage framework of
EBDO is presented. Numerical and engineering examples
are provided to test the improved two-stage framework of
EBDO. Results show that the improved framework can
eliminate the limitation of the aforementioned hypothetical
normal distribution and obtain a good EBDO optimum.
Meanwhile, the improved framework is computationally
more efficient, especially in terms of the reduction of eval-
uation times of limit-state functions during calculating the
Pl of failure.

2 Common concepts in evidence theory
and the EBDO model

In this section, evidence theory and reliability analysis
using evidence theory are introduced in Sections 2.1 and
2.2, respectively. Section 2.3 describes the EBDO mathe-
matical model.

2.1 Evidence theory

Evidence theory employs two measures to quantify the uncer-
tainty of one proposition: Bel and Pl, which can be regarded as
the lower and upper bounds of a probability measure and
together structure the true probability instead of assigning a
precise probability for a proposition (Yager et al. 1994). Some

significant concepts of evidence theory are afforded as
follows:

(1) Frame of discernment (FD): It is a set of mutually inde-
pendent and disjoint elementary propositions. If a FD
X = {x1, x2}, all the possible subsets of X will form a
power set Ω(X) = 2X = {Φ, {x1}, {x2}, {x1, x2}},
where Φ denotes the empty set. When X has n elements,
Ω(X) will contain 2n elements.

(2) Basic probability assignment (BPA): It is a mapping
function m :Ω(X)→ [0, 1]. Evidence theory assigns a
belief mass to each element in the Ω(X) by BPA, which
has to satisfy the following three conditions:

m Að Þ≥0 for any A ∈Ω Xð Þ ð1Þ

m Φð Þ ¼ 0 ð2Þ

∑m Að Þ ¼ 1 for any A ∈Ω Xð Þ ð3Þ

where A is the focal element in evidence theory and m (A) is
the BPA for the focal element A.

(3) Belief (Bel) and plausibility (Pl): The Bel of an event
refers to the sum of belief masses of all the propositions
that totally support the event. It can be evaluated by the
sum of BPAs of all the subsets of the event. The Pl of an
event refers to the sum of belief masses of the proposi-
tions that agree with the event totally and partially. It is
calculated by the sum of BPAs of all the sets which
intersect with the event. For an event A, the Bel(A) and
Pl(A) can be gained as

Bel Að Þ ¼ ∑
B⊆A

m Bð Þ ð4Þ

Pl Að Þ ¼ ∑
B∩A≠Φ

m Bð Þ ð5Þ

(4) Combination rules: If there are multiple evidence
sources to evaluate the Bel(A) and Pl(A), such as experts’
opinions and experimental data, these sources should be
combined by a certain rules. Dempster’s rule is most
popular rule for the combination (Sentz and Ferson
2002). For two events B and C with BPAs m1(B) and
m2(C), the BPA of the combined evidence can be com-
puted as

m Að Þ ¼
( 1

1−k
∑

B∩C¼A
m1 Bð Þm2 Cð Þ; for A≠Φ

0; for A ¼ Φ

ð6Þ

k ¼ ∑
B∩C¼Φ

m1 Bð Þm2 Cð Þ ð7Þ
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where k refers to the conflict between two independent evi-
dence sources. There are also other combination rules that can
be found in (Yager et al. 1994; Sentz and Ferson 2002).

2.2 Reliability analysis using evidence theory

Consider the reliability analysis of the following limit-state
function:

y ¼ g x1; x2ð Þ; x1∈X 1; x2∈X 2 ð8Þ
where x1 and x2 are two independent uncertain variables and g
is the limit-state function. Assume the failure region F is de-
fined as

F ¼ g : g x1; x2ð Þ < 0f g ð9Þ

According to the evidence theory, the failure probability pf
= P(g < 0) will be bracketed by Bel(F) and Pl(F).

Bel Fð Þ≤pf ¼ P g < 0ð Þ≤Pl Fð Þ ð10Þ

In this study, we assume that a combined BPA for each
variable and parameter is provided, and each focal element
is a closed interval. For two independent uncertain variables
x1 and x2, a joint BPA in evidence theory can be gained by
(11), which is similar to the joint probability in probability
theory.

m Cð Þ ¼ m Að Þ � m Bð Þ when C∈A� B ð11Þ
where A∈Ω(X1) and B∈Ω(X2), and C is a focal element of the
Cartesian product A × B, which is defined by:

A� B ¼ x ¼ x1; x2½ �; x1∈A; x2∈Bf g ð12Þ

Based on the joint BPA m(C), Bel(F) and Pl(F) can be
calculated by determining whether C ⊆ F or C∩ F ≠Φ. For
the failure region F, if the focal element C is wholly in the
domain g(x1, x2) < 0,C ⊆ F; if the focal elementC is entirely or
partially within the domain g(x1, x2) < 0, C∩ F ≠Φ. These
judgments can be made by calculating the extreme value of
the limit-state function g over each focal element, namely

gmin; gmax½ � ¼ min
X∈Ck

g Xð Þ;max
X∈Ck

g Xð Þ
� �

; k ¼ 1;…; n

ð13Þ
where Ck represents a focal element and n is the total number
of focal elements. gmin and gmax can be gained by the vertex
method or the gradient-based optimization method. Figure 1
schematically shows three types of focal elements for the cal-
culation of Bel(F) and Pl(F) (Mourelatos and Zhou 2006). For
type 1, gmin is negative and gmax are positive, the focal element
will only contribute toPl(F). For type 2, both gmin and gmax are
positive, the focal element will not contribute to Bel(F) or

Pl(F). For type 3, both gmin and gmax are negative, the focal
element will contribute to Bel(F) and Pl(F).

2.3 EBDO model

The mathematical model of the EBDO problem can be typi-
cally formulated as follows:

find : d; eX
min : f d; eX ; ePð Þ
s:t: Pl gi d;X ;Pð Þ < 0ð Þ≤p f i

; i ¼ 1; 2;⋯;N
dL≤d≤dU ; eLX ≤eX ≤e

U
X

ð14Þ

where f is the objective function, gi is the ith constraint, and N
is the number of constraints. d is the vector of deterministic
variables, X is the vector of evidence variables, P is the vector
of evidence parameters, eX and eP are the nominal value vec-
tors of evidence variables and parameters, respectively. Pl
denotes the plausibility of constraint violation. pf i

is an ac-

ceptable value of the plausibility of the ith constraint violation.
dL, dU, eLX , and eUX are the lower and upper bounds of deter-
ministic variables and evidence variables, respectively.

3 The improved two-stage framework
of EBDO

To solve the EBDO problem with epistemic uncertainty in
(14), Mourelatos and Zhou (2006) propose a two-stage meth-
od. In this method, an initial design point is moved to the
vicinity of the EBDO optimum in the first stage before calcu-
lating the Pl of constraint violation in the second stage. To
alleviate the computational effort in the first stage, the move-
ment of a hyperellipse which contains the FD is employed and
realized by solving a RBDO problem. The center of the
hyperellipse is an approximate design point. In their method,
it needs to be assumed that each dimension of the FD is equal
to some times the standard derivation of a hypothetical normal
distribution, such as six times. To avoid this assumption, the
equal areas method (Xiao et al. 2015) is introduced to trans-
form evidence variables into random variables. Then, a
RBDO problem is defined and solved by SORA in the first
stage. On the other hand, an improved algorithm for more
efficiently calculating the Pl of constraint violation in the sec-
ond stage is presented to decrease the evaluation times of the
limit-state function, therefore saving the computational cost.
The improved two-stage framework of EBDO will be elabo-
rated in the following sections.

3.1 The first stage of the improved EBDO framework

In the first stage of the improved two-stage framework, the
equal areas method is used to transform evidence variables
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into random variables. Using this method, the assumption is
avoided that each dimension of the FD is equal to some times
the standard derivation of a hypothetical normal distribution.
In the remainder of this section, we will briefly introduce the
key points involved in the first stage of the improved
framework.

3.1.1 Reliability analysis based on hybrid mean value

At the beginning, evidence variables are transformed into ran-
dom variables by the method based on equal areas (Xiao et al.
2015). As illustrated in Fig. 2, the probability density f(y = L1)
is set as follows:

f y ¼ L1ð Þ ¼ m A1ð Þ
2 U 1−L1ð Þ ð15Þ

where y denotes the non-normal random variable from the
transformation of the evidence variable x, L1 and U1 are the
lower and upper bounds of the interval A1. In Fig. 2, the area
SA11 of the domain A11 is equal to the area SA12 of the domain
A12. Then, the probability density f(y =U1) can be computed.
Equation (16) can be used to calculate the probability densities
f(y =Ui, i = 1, 2,…, 6). Thus, the random variable and its
probability density function (PDF) can be obtained.

f y ¼ Uið Þ ¼ 2m Aið Þ
Ui−Li

− f y ¼ Lið Þ; i ¼ 1; 2;…; 6 ð16Þ

For ease of calculation of the probability density and
cumulative probability density of a random variable

during reliability analysis, the metamodel is created to
replace the piecewise linear PDF of the random vari-
able. Each interval bound of the evidence variable and
its corresponding probability density can be viewed as
the sample data, i.e., the sample points Bi(i = 1, 2,…, 7)
in Fig. 2. Based on the sample data, the metamodel can
be constructed. In this study, the RBF metamodeling
technique is employed. RBF is originally developed to
implement the interpolation of scattered multivariate da-
ta by using the linear combination of radially symmetric
functions (Hardy 1971). The RBF metamodel used in
this paper is described as

y ¼ w0 þ ∑
n

i¼1
wiφ x−xik kð Þ ð17Þ

where w0 is a polynomial function and wi denotes the
coefficient determined by least squares estimation. xi is
a central point obtained from the sample data and φ is a
basis function which has multiple forms such as linear
function, multiquadric, inverse multiquadric, thin plate
spline and Gaussian. In this study, the linear basis func-
tion is employed and it takes the following form:

φ ¼ x−xik k ð18Þ

After the aforementioned transformation, the reliability
analysis can be conducted. Many methods have been devel-
oped for the reliability analysis with random variables, such as
the hybrid mean value (HMV; Youn et al. 2003), modified
chaos control (Meng et al. 2015b), step length adjustment
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Fig. 1 Contribution of a focal
element to Bel and Pl

BPA

1A 2A
3A 4A 5A 6A

11AS

12AS

x y
1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( )m A m A m A m A m A m A

( )f y
Evidence variable Random variable

1L
2L 3L 4L 5L

6L
1U 2U 3U 4U 5U 6U

B1

B2

B3

B4

B5

B6

B7

Fig. 2 Transformation of an
evidence variable into a random
variable
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Step 1: Set PF={FD} and TF={0} and counter m=1.

Step 2: Calculate the min

rg and max

rg of PF, and record their locations min

rX and max

rX .

Step 3: Consider all sets :k k kD D PF or D PF .

Set counter n=0.

Set PF={0}.

For k=1 to m
Partition kD into 

1

kD and 
2

kD .

For t=1 to 2

If min

rX is in the 
t
kD then

min min( )t r
kg D g .

Else
Calculate min ( )t

kg D and update min

rg , i.e., min min ( )r t
kg g D .

End If (the loop of min

rX in the 
t
kD )

If min ( ) 0t
kg D then

If max

rX is in the 
t
kD then

max max( )t r
kg D g .

Else
Calculate max ( )t

kg D and update max

rg , i.e., max max ( )r t
kg g D .

End If (the loop max

rX in the 
t
kD )

If max ( ) 0t
kg D then

t
kPF PF D and n = n+1.

Else
t
kTF TF D .

End If (the loop of max ( ) 0t
kg D )

End If (the loop of min ( ) 0t
kg D )

End For (the loop of t=1 to 2)

End For (the loop of k= 1 to m)

Set counter m=n.

If PF can be partitioned, go to Step 3.

If PF cannot be partitioned, stop and calculate the Pl of failure.

Fig. 3 The pseudocode of the
improved algorithm
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Fig. 4 Illustration of the
improved algorithm for
calculating the Pl of failure
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(Yi and Zhu 2016), and enhanced chaos control (ECC; Hao
et al. 2017) methods. In this research, the traditional HMV

method is used. Using this method, the minimum performance
target point of the reliability analysis with random variables
can be obtained by solving the optimization problem as be-
low:

min : G Uð Þ
s:t: ‖U ‖ ¼ βt ð19Þ

where G(U) denotes the limit-state function, U is the vector of
the standard normal random variables, and βt is the reliability
index vector of G(U) at the MPTP. In this paper, the non-
normal random variables are converted into the standard nor-
mal random variables by the Rosenblatt transformation meth-
od (Rosenblatt 1952).

3.1.2 Searching for the RBDO optimum based on SORA

After the reliability analysis with transformed random vari-
ables, in this paper, the SORA method (Du and Chen 2004)
is employed to solve the RBDO problem. In SORA, the solv-
ing process of RBDO is a sequential work of deterministic
optimization and reliability analysis. As seen in (20), the prob-
abilistic optimization is transformed into a deterministic opti-
mization by shifting the limit-state function to the feasible
region based on the offset vector and the minimum perfor-
mance target point (MPTP) obtained by the reliability analysis
in Section 3.1.1.

find : d; eX
min : f d; eX ; ePð Þ
s:t: gi d; eX−s

kþ1ð Þ
i ;PiMPTP

kð Þ
� �

≥0; i ¼ 1; 2;⋯;N

s kþ1ð Þ
i ¼ e kð Þ

X −X iMPTP
kð Þ

dL≤d≤dU ; eLX ≤eX ≤e
U
X

ð20Þ

where d is the vector of deterministic variables, X and
P are the vectors of random variables and parameters
after the transformation. eX and eP are the nominal val-
ue vectors of random variables and parameters, respec-

tively. s kþ1ð Þ
i is the offset vector of the ith constraint at

the (k + 1)th iteration of SORA. e kð Þ
X is the optimum of

the deterministic optimization at the kth iteration.

X kð Þ
iMPTP and P kð Þ

iMPTP are the MPTPs of the reliability
analysis with random variables and parameters for the
ith constraint at the kth iteration of SORA, respectively.

3.2 An improved algorithm for calculating the Pl
of failure in the second stage

In the second stage of the improved two-stage frame-
work, the Pl of failure needs to be calculated every time
the optimizer evaluates a constraint. Therefore, the effi-
ciency of calculating the Pl of failure has a crucial

Fig. 5 Flowchart of the improved two-stage framework of EBDO

Initial design pointFrame of
discernment

The first stage

Feasible
region

Objective
reduces

The second stage

1 1 2( , ) 0g x x

2 1 2( , ) 0g x x

1x

2x

RBDO optimum
EBDO optimum

Fig. 6 Movements of FD under the improved two-stage framework of
EBDO
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effect on the efficiency of EBDO. Based on the algo-
rithm in Mourelatos and Zhou (2006) for calculating the
Pl of failure, an improved algorithm that records the
minimum and maximum values of limit-state functions
during optimization iterations is presented in this paper.
Using this improved algorithm, the evaluation times of
limit-state functions or constraints are reduced and the
computational cost is saved. The pseudocode of the im-
proved algorithm is shown in Fig. 3.

As shown in Fig. 3, a set PF is initially equal to the
entire frame of discernment (FD). The minimum and
maximum values of the limit-state function g(X) in the
set PF are evaluated and recorded as grmin and grmax.
Their corresponding locations in the set PF are recorded
as X r

min and X r
max. At the first iteration, the PF is

partitioned into sets Dt (t = 1 and 2). If X r
min locates in

the set Dt, the recorded value grmin will be assigned to
the minimum value of g(X) in this set, i.e.,
gmin Dtð Þ ¼ grmin. Similarly, if X r

max locates in the region
Dt, gmax Dtð Þ ¼ grmax. If X

r
min or X r

max locates outside the

set Dt, gmin(D
t) or gmax(D

t) will be calculated. Then,
grmin, grmax and their corresponding locations X r

min and
X r

max in the set Dt are updated and recorded. If gmin

(Dt) < 0 and gmax(D
t) > 0, Dt will be placed in the set

PF. If gmin Dt
k

� �
< 0 and gmax Dt

k

� �
≤0, Dt will be

placed in the set TF. Otherwise, Dt will be eliminated
and not considered further. Then, the second iteration
begins. The above iteration process will not be stopped
until the set PF cannot be partitioned. Finally, the Pl of
failure can be computed by (21).

Pl g < 0ð Þ ¼ ∑
E1∈PF

m E1ð Þ þ ∑
E2∈TF

m E2ð Þ ð21Þ

where the sets PF and TF are used to storage the focal
elements with types 1 and 3 in Fig. 1, respectively. E1

and E2 denote the focal elements in the sets PF and TF,
respectively.

In the above algorithm, if gmin(D
t) or gmax(D

t) cannot
be directly assigned the recorded values, they can be
calculated by the vertex method or the gradient-based

Table 1 BPA structures for x1 and x2

x1 x2

Interval BPA (%) Interval BPA (%)

[ex1 –0.9, ex1 –0.6] 10 [ex2 –0.9, ex2 –0.6] 5

[ex1 –0.6, ex1 –0.3] 20 [ex2 –0.6, ex2 –0.3] 20

[ex1 –0.3, ex1 ] 25 [ex2 –0.3, ex2 ] 25

[ex1 , ex1 + 0.3] 20 [ex2 , ex2 + 0.3] 20

[ex1 + 0.3, ex1 + 0.6] 15 [ex2 + 0.3, ex2 + 0.6] 15

[ex1 + 0.6, ex1 + 0.9] 10 [ex2 + 0.6, ex2 + 0.9] 15

1x 2x

(a) 
1xe =5 (b)

2xe =5

Fig. 7 BPA structures and the
corresponding PDFs after
transformation
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optimization method. Compared with the gradient-based
optimization method, the vertex method is more effi-
cient because it does not require the optimization solv-
ing process to search for the minimum and maximum
values of a limit-state function. In the whole design
space, the limit-state function may be nonlinear and
non-monotonic. But in practical engineering problems,
the range of FD is usually small. The nonlinearity of
the limit-state function is not high in this small range
and the limit-state function can be considered as mono-
tonic. Then the vertex method can be employed.
Additionally, for a FD composed of n evidence vari-
ables and parameters, an n-dimensional hyperrectangle
can be used to represent this FD. The following parti-
tion scheme for the n-dimensional hyperrectangle is
employed in the above improved algorithm. At the jth
iteration (j = 1,…,n), the hyperrectangle is partitioned
into two parts by an (n-1)-dimensional hyperplane per-
pendicular to the jth dimension. Assuming that the evi-
dence variable or parameter in the jth dimension has p
focal elements, if p is an even number, the (n-1)-dimen-
sional hyperplane will be located in between the (p/2)th
and (p/2 + 1)th focal elements; if p is an odd number,
the (n-1)-dimensional hyperplane will be located in be-
tween the (p/2–0.5)th and (p/2 + 0.5) focal elements. For
the case that the hyperrectangle cannot be partitioned by
the hyperplane perpendicular to the jth dimension, if j <
n, the (j + 1)th dimension will be chosen; if j = n, the 1st
dimension will be selected. After the nth dimension is
chosen, the new dimension cycle in sequence will be-
gin. The partition process will be terminated when the
types of all focal elements are identified.

A limit state function with two disjoint failure do-
mains is used to explain the developed algorithm. The
FD and the limit-state function g = 0 are shown in
Fig. 4. Each rectangle block in the FD denotes a focal
element. The FD contains the total of 20 focal elements
denoted by Fi, i = 1, 2, …, 20. The red dots and blue
triangles in Fig. 4 denote the minimum and maximum
values (i.e., grmin and grmax ) in each set, respectively. At
the first iteration, grmin and grmax in the FD are calculated
and recorded. Simultaneously, their locations X r

min and
X r

max are recorded. Then, the FD is partitioned into

two sets by the red vertical line, including D1
1 ¼ ∪Fi;

i ¼ 1; 2; 6; 7; 11; 12; 16; 17, and D2
1 ¼ ∪Fi; i ¼ 3; 4; 5; 8;

9; 10; 13; 14; 15; 18; 19; 20. It can be observed that X r
min

and X r
max locates in D1

1 and D2
1, respectively. Thus, for

D1
1, it can be determined that gmin D1

1

� � ¼ grmin; while

gmax D1
1

� �
needs to be ca lcu la ted, i . e . , gmax D1

1

� �
¼ maxg Xð Þ;X∈D1

1. Similarly, for D2
1, it can be judged that

gmax D2
1

� � ¼ grmax; while gmin D2
1

� �
needs to be calculated, i.e.,
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gmin D2
1

� � ¼ ming Xð Þ;X∈D2
1. Because gmin D1

1

� �
< 0 and

gmax D1
1

� �
> 0, D1

1 is placed in the PF. Similarly, gmin D2
1

� �
<

0 and gmax D2
1

� �
> 0,D2

1 is also placed in the PF. Then, the first
iteration is finished.
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(c) Comparison of the RBDO and EBDO optimums

Fig. 8 Movements of FD under the improved two-stage framework of EBDO and pf = 0.01 in example 1

Table 3 Comparison of efficiency for calculating Pl of failure in example 1

pf The vertex method The gradient-based method

Algorithms of calculating Pl of failure Number of each constraint
function calls

Algorithms of calculating Pl of failure Number of optimizer calls for
each constraint

g1 g2 g3 g1 g2 g3

0.01 Algorithm involving all focal elements 144 144 144 Algorithm without records 12 15 2

The improved algorithm 12 14 6 The improved algorithm 9 11 2

0.1 Algorithm involving all focal elements 144 144 144 Algorithm without records 41 28 2

The improved algorithm 28 20 6 The improved algorithm 26 17 2

0.2 Algorithm involving all focal elements 144 144 144 Algorithm without records 54 36 2

The improved algorithm 34 24 6 The improved algorithm 32 21 2
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At the second iteration, D1
1 is partitioned into D

11
1 ¼ ∪Fi; i

¼ 11; 12; 16; 17 a n d D12
1 ¼ ∪Fi; i ¼ 1; 2; 6; 7. D2

1 i s

partitioned into D21
1 ¼ ∪Fi; i ¼ 13; 14; 15; 18; 19; 20 and

D22
1 ¼ ∪Fi; i ¼ 3; 4; 5; 8; 9; 10. After the judgment, D11

1 ,

D21
1 and D22

1 are placed in PF and D12
1 is discarded. At the

third iteration, D11
1 is partitioned into D111

1 ¼ ∪Fi; i ¼ 11; 16

and D112
1 ¼ ∪Fi; i ¼ 12; 17. D21

1 is partitioned into D211
1 ¼

∪Fi; i ¼ 13; 18, D212
1 ¼ ∪Fi; i ¼ 14; 15; 19; 20. D22

1 i s

partitioned into D221
1 ¼ ∪Fi; i ¼ 3; 8, D222

1 ¼ ∪Fi; i ¼ 4; 5;

9; 10. After the judgment, D111
1 , D112

1 , D212
1 and D222

1 are

placed in PF, and D211
1 and D221

1 are discarded. After five
iterations, the partition of the whole FD is finished. Finally,
TF = {F5, F10, F16} and PF = {F4, F9, F11, F12, F14, F15, F17}.
The sum of BPA of all focal elements in PF and TF can be
calculated and considered as the Pl of failure.

3.3 Flowchart of the improved two-stage framework

Figure 5 shows the flowchart of the improved two-stage
framework of EBDO. The explanations of variables and
parameters in this figure have been given after (14) and
(20). In the first stage, evidence variables are trans-
formed into random variables during the reliability anal-
ysis. Then the reliability analysis with random variables
is conducted by the HMV method. The RBDO problem
with random variables is solved by SORA. The gained

RBDO optimum is viewed as the vicinity of the EBDO
optimum. In the second stage, the EBDO problem is
solved, in which the Pl of constraint violation is calcu-
lated and the RBDO optimum is considered as the ini-
tial design point. Generally, a derivative-free optimizer
is required to solve the EBDO problem due to the dis-
continuous nature of the combined BPA structure
(Mourelatos and Zhou 2006). In this research, the
derivative-free global optimizer, i.e., the DIvisions of
RECTangles (DIRECT), is used. DIRECT is a modifi-
cation of the standard Lipschitzian approach that elimi-
nates the need to specify a Lipschitz constant (Jones
et al. 1993; Mourelatos and Zhou 2006). Evolutionary
algorithms can be also utilized as the global optimizer,
but large initial sample points are required.

The improved two-stage framework of EBDO is il-
lustrated by a two-dimensional example in Fig. 6. The
grid represents the FD, in which each block denotes one
focal element. The red dot in the grid is an evidence
design point.

4 Test examples

In this section, three numerical examples and an engineering
example are presented to test the improved two-stage frame-
work of EBDO.

4.1 A mathematical example

This example is modified from (Youn et al. 2005). The
mathematical model of the EBDO problem is shown in
(22). ex1 and ex2 denote the nominal values of evidence
variables x1 and x2, respectively. To test the advantage
of the improved method without the assumption that
unknown evidence variables and parameters obey the
normal distribution, the BPA structures for x1 and x2

Y

Zt

w
L = 100in

Fig. 9 Cantilever beam example

Table 4 BPA structures for Z, y, Y
and E Z y (×103) Y E (×106)

Interval BPA (%) Interval BPA (%) Interval BPA (%) Interval BPA (%)

[200, 300] 5 [35, 37] 5 [700, 800] 10 [26.5, 27.5] 10

[300, 400] 5 [37, 38] 5 [800, 900] 10 [27.5, 28.5] 10

[400, 450] 10 [38, 39] 10 [900, 1000] 30 [28.5, 29] 30

[450, 500] 30 [39, 40] 30 [1000, 1100] 30 [29, 29.5] 30

[500, 550] 30 [40, 41] 30 [1100, 1200] 10 [29.5, 30.5] 10

[550, 600] 10 [41, 42] 10 [1200, 1300] 10 [30.5, 31.5] 10

[600, 700] 5 [42, 43] 5

[700, 800] 5 [43, 45] 5

An improved two-stage framework of evidence-based design optimization 1683



are set to distinguish them from those with normal dis-
tribution (seen in Table 1).

find : ex1 ; ex2

min : f ex1 ; ex2ð Þ ¼ −
ex1 þ ex2−10ð Þ2

30
−

ex1−ex2 þ 10ð Þ2
120

s:t: Pl gi x1; x2ð Þ < 0f g≤p f ; i ¼ 1; 2; 3

g1 ¼
x21x2
20

−1

g2 ¼ 1− Y−6ð Þ2 þ Y−6ð Þ3−0:6 Y−6ð Þ4 þ Z

g3 ¼
80

x21 þ 8x2 þ 5
−1

Y ¼ 0:9063x1 þ 0:4226x2

Z ¼ 0:4226x1−0:9063x2

0≤ ex1 ≤10; 0≤ex2 ≤10

ð22Þ

According to the improved two-stage framework of
EBDO, in the first stage, firstly, evidence variables are con-
verted into random variables using the equal areas method.
Taking the design point (ex1 = 5, ex2 = 5) as an example,
Fig. 7 illustrates the BPA structures and their corresponding
PDFs after transformation. For the sake of convenience in
calculating the probability and cumulative densities of a ran-
dom variable, the RBF metamodel is constructed and used to
replace the piecewise linear PDF of the random variable.
Then, the reliability analysis is conducted by HMV and the
RBDO problem with random variables is solved by SORA. In
the second stage, the improved algorithm in Section 3.2 is
used for calculating the Pl of constraint violation. In this work,
the vertex method is employed to calculate the values of gmin

(Dt) and gmax(D
t) when they cannot be assigned the recorded

values directly. Finally, the EBDO optimum in (22) is obtain-
ed by using the DIRECT.

Comparatively, the EBDO problem in this example is di-
rectly solved by using DIRECT without searching for the
RBDO optimum, which is termed as one-stage EBDO in this
study. In addition, the two-stage EBDO method with the hy-
pothetical normal distribution (ND; Mourelatos and Zhou
2006), called as two-stage EBDO with ND in this study, is
also adopted to solve the problem in this example. For both of
the two-stage methods, the number of maximum iterations is
set to 5 for the optimization in the second stage. To make a fair
comparison, the number of maximum iterations for the one-
stage method is also set to 5. Besides, the improved algorithm
for calculating the Pl of failure is employed in the one-stage
method. Comparative results obtained by the three methods
under different values of pf are provided in Table 2. To dem-
onstrate the accuracy of these methods, genetic algorithmTa
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(GA) is applied to search for the relatively accurate EBDO
optimum. In GA, the population size is set to 100, and it stops
if the average relative change of the best fitness function value
is less than 10−6. For the cases with pf = 0.01, 0.1, and 0.2, the
final EBDO optimums obtained by GA are −1.6426, −1.8199,
and −1.95267 under 116, 87, and 85 generations, respectively.

As shown in Table 2, compared with the two-stage method
with ND, the RBDO optimum obtained by the improved two-
stage method is closer to its EBDO optimum under each case.
Therefore, the improvement in the first stage of the two-stage
EBDO method is beneficial. To take an example, Fig. 8a, b
show the RBDO and EBDO optimums obtained by the im-
proved two-stage method under pf = 0.01, respectively. The
failure focal elements in FDs are represented by green rectan-
gle blocks in Fig. 8a, b. The relative location of the RBDO and
EBDO optimums is illustrated in Fig. 8c. It can be observed

that they are very close, which will be helpful for obtaining the
EBDO optimum in the second stage.

To check the efficiency of the improved two-stage method,
the total call number of the objective and constraint functions
in each stage during the whole EBDO solving process is sum-
marized in Table 2. As shown in Table 2, compared with the
two-stage methods, the total number of function calls in the
one-stage method is the least under cases with the number of
maximum iterations 5. However, the EBDO optimums obtain-
ed by the one-stage method under these cases are the most
conservative. We try to increase the number of maximum
iterations in the one-stage method. When it arrives at 50, the
less conservative optimum can be obtained. However, much
more function calls are required. Compared with the two-stage
method with ND, the improved method needs fewer function
calls except the case of pf = 0.01. On the other side, the EBDO

Fig. 10 Limit-state surfaces of g1 = 0 at the RBDO and EBDO optimums under pf = 0.01 in example 2
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optimums obtained by these two methods are close.
Therefore, the improved two-stage framework of EBDO is
computationally more efficient to some extent.

On the other hand, the efficiency of the improved algorithm
for calculating the Pl of failure is checked. As mentioned in
Section 3.2, gmin(D

t) and gmax(D
t) can be calculated by the

vertex method or the gradient-based method. In this example,
for the vertex method, the Pl of failure at the EBDO optimum
is calculated by the improved algorithm and the traditional
algorithm involving all focal elements, respectively. Table 3
lists the number of each constraint function calls during the
calculation. Compared with the traditional algorithm, the im-
proved algorithm needs much fewer calls for each constraint
function under each case of pf. For the gradient-based method,
we compare the improved algorithm and the original algo-
rithm without records (Mourelatos and Zhou 2006). From
Table 3, it can be found that the improved algorithm needs
less number of optimizer calls than the algorithm without re-
cords for constraints g1 and g2. For constraint g3, the same
number of optimizer calls is needed in the two algorithms.
This is because no type 1 focal elements in Fig. 1 exist in
the FD. Thus, it is demonstrated that the improved algorithm
has a high efficiency on calculating the Pl of failure.

4.2 A cantilever beam example

A cantilever beam in vertical and lateral bending (Mourelatos
and Zhou 2006) is presented and used to test the improved
two-stage framework of EBDO. Figure 9 shows the cantilever
beam. The vertical and lateral loads Y and Z are applied to the
tip of the cantilever beam. The length L of the beam is 100 in.
The width w and thickness t of the cross section of the beam
are deterministic design variables. Assuming the material den-
sity and the beam length are constant, the objective is to min-
imize the weight of the beam, which can be transformed into
the minimization of f =w × t. Two non-linear failure modes
are considered: yielding at the fixed end of the beam and the

tip displacement. The allowable value of the tip displacement
is D0 = 2.5 in. The EBDO problem is shown as:

find : w; t
min : f ¼ w� t
s:t: Pl gi d;Pð Þ < 0f g≤p f ; i ¼ 1; 2

g1 y; Z; Y ;w; tð Þ ¼ y−
600

wt2
� Y þ 600

w2t
� Z

� �

g2 E; Z; Y ;w; tð Þ ¼ D0−
4L3

Ewt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
t2

� �2

þ Z

w2

� �2
s

0≤w; t≤5

ð23Þ

where g1 and g2 are the limit state functions. The determin-
istic design variables d = [w, t]. In this example, in order to
test the advantage of the improved method without the as-
sumption that unknown evidence variables and parameters
obey the normal distribution, the BPA structures of evi-
dence parameters P = [Z, y, Y, E] are modified to distinguish
them from those with normal distribution. E denotes the
Young modulus, and y is the yield strength. The BPA struc-
tures are listed in Table 4.

Similar to example 1, the EBDO problem of the cantile-
ver beam is solved by three EBDO methods. For both of the
two-stage methods, the number of maximum iterations is set

Table 6 Comparison of efficiency for calculating Pl of failure in example 2

pf The vertex method The gradient-based method

Algorithms of calculating Pl of failure Number of each constraint
function calls

Algorithms of calculating Pl of failure Number of optimizer calls for
each constraint

g1 g2 g1 g2

0.01 Algorithm involving all focal elements 3072 2304 Algorithm without records 135 2

The improved algorithm 168 12 The improved algorithm 81 2

0.1 Algorithm involving all focal elements 3072 2304 Algorithm without records 398 197

The improved algorithm 444 256 The improved algorithm 220 108

0.2 Algorithm involving all focal elements 3072 2304 Algorithm without records 517 239

The improved algorithm 564 344 The improved algorithm 280 124

RR R R

R

t

L

Fig. 11 Thin-walled pressure vessel
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to 10 for the optimization in the second stage. The number
of maximum iterations for the one-stage method is also set
to 10. The improved algorithm for calculating the Pl of
failure is employed in the one-stage method. Comparative
results under different values of pf are presented in Table 5.
In order to validate the accuracy of these methods, GA is
employed to search for the relatively accurate EBDO opti-
mums. For the cases with pf = 0.01, 0.1, and 0.2, the final
EBDO optimums gained by GA are 9.6852, 8.8444, and
8.5267 under 169, 130, and 121 generations, respectively.

As shown in Table 5, compared with the two-stage
method with ND, the RBDO optimum obtained by the
improved two-stage method is closer to its EBDO opti-
mum under almost each case. This proves that the im-
provement in the first stage of the two-stage EBDO
method is beneficial. To take an example, Fig. 10a, b
illustrate the limit-state surfaces of g1 at the RBDO and
EBDO optimums obtained by the improved two-stage
method under pf = 0.01. Because no evidence variables
exist in this example, the RBDO and EBDO optimums
of the deterministic design variables w and t can be
adopted to define different limit-state surfaces with re-
spect to evidence parameters. In Fig. 10a, the green
plane denotes the limit-state surface g1(y, Z, Y, 2.46,
4.013) = 0 at the RBDO optimum. In Fig. 10b, the yel-
low plane denotes the limit-state surface g1(y, Z, Y,
2.526, 3.835) = 0 at the EBDO optimum. The red cubes
in Fig. 10a, b represent the failure focal elements. The
relative location of the two limit-state surfaces at the
RBDO and EBDO optimums is displayed in Fig. 10c.
It can be observed that the two planes are very close.

From Table 5, with the number of maximum itera-
tions 10, the total number of function calls in the one-
stage method is the least under pf = 0.1 and 0.2. When
its number of maximum iterations is increased to 30,
less conservative optimums are obtained. However,
much more function calls are required. Compared with
the two-stage method with ND, the improved method
needs fewer function calls under all cases. On the other
hand, the EBDO optimums obtained by these two

methods are close. Therefore, it is verified that the im-
proved two-stage framework of EBDO is more efficient.

After calculating the Pl of failure at the EBDO opti-
mum by different algorithms, Table 6 lists the number
of each constraint function calls during the calculation
in the vertex method and the number of optimizer calls
for each constraint function in the gradient-based meth-
od. As seen in Table 6, compared to the traditional
algorithm, the improved algorithm needs much fewer
calls of each constraint function under all cases for the
vertex method. For the gradient-based method, the num-
ber of optimizer calls for each constraint in the im-
proved algorithm is not more than those in the algo-
rithm without records under all cases. Accordingly, it
is verified that the improved algorithm has a high effi-
ciency on calculating the Pl of failure.

4.3 A pressure vessel example

A thin-walled pressure vessel (Mourelatos and Zhou
2006) is provided and employed to test the proposed
two-stage framework of EBDO. As shown in Fig. 11,
the pressure vessel has hemispherical ends and the de-
sign variables are the radius R, the length L, and the
thickness t. The objective is to maximize the volume of
the vessel. The vessel is to withstand a specified inter-
nal pressure P. The yielding of the material in both the

Table 7 BPA structures for R, L
and t R L t

Interval BPA (%) Interval BPA (%) Interval BPA (%)

[eR–6.0, eR4.5] 1 [eL–12, eL–9] 2 [et–0.4, et–0.3] 5

[eR–4.5, eR–3.0] 19 [eL–9, eL–6] 20 [et–0.3, et–0.2] 15

[eR–3.0, eR] 30 [eL–6, eL] 28 [et–0.2, et] 30

[eR, eR + 3.0] 30 [eL, eL + 6] 28 [et, et–0.2] 30

[eR + 3.0, eR + 4.5] 19 [eL + 6, eL + 9] 20 [et–0.2, et–0.3] 15

[eR + 4.5, eR + 6.0] 1 [eL + 9, eL + 12] 2 [et–0.3, et–0.4] 5

Table 8 BPA structures for P and Y

P Y (×105)

Interval BPA (%) Interval BPA (%)

[800, 850] 1 [2.08, 2.21] 5

[850, 900] 20 [2.21, 2.34] 20

[900, 1000] 30 [2.34, 2.6] 30

[1000, 1100] 30 [2.6, 2.86] 25

[1100, 1150] 18 [2.86, 2.99] 10

[1150, 1200] 1 [2.99, 3.12] 10
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circumferential and radial directions should be avoided.
Some geometric constraints are also taken into consid-
eration. The material yield strength is Y. The safety fac-
tor SF is set to 2. The EBDO problem in this example
is shown as:

find : eR; eL; et

max : f ¼ 4

3
πe3R þ πe2ReL

s:t: Pl gi R; L; t;P; Yð Þ < 0f g≤p f ; i ¼ 1;…; 5

g1 ¼ 1:0−
P Rþ 0:5tð ÞSF

2tY

g2 ¼ 1:0−
P 2R2 þ 2Rt þ t2
� �

SF
2Rt þ t2ð ÞY

g3 ¼ 1:0−
Lþ 2Rþ 2t

60

g4 ¼ 1:0−
Rþ t
12

g5 ¼ 1:0−
5t
R

0:4≤et ≤2:0
6:0≤eR≤24
12≤eL≤48

ð24Þ

Different from the former two examples, this example
has both epistemic uncertainty variables (i.e., R, L and
t) and epistemic uncertainty parameters (i.e., P and Y).
To test the improved method without assuming that un-
known evidence variables and parameters obey the nor-
mal distribution, the BPA structures of evidence vari-
ables and parameters are modified to distinguish them
from those with normal distribution. The BPA structures
are provided in Tables 7 and 8.

Similar to example 1, the EBDO problem of the
pressure vessel is solved by three EBDO methods. For
both of the two-stage methods, the number of maximum
iterations is set to 5 for the optimization in the second
stage. The number of maximum iterations for the one-
stage method is also set to 5. The improved algorithm
for calculating the Pl of failure is employed in the one-
stage method. Comparative results under different values
of pf are presented in Table 9. Moreover, GA is used to
search for the relatively accurate EBDO optimums to
check the accuracy of these three methods. The final
EBDO optimums from GA are 6238.04 and 9665.26
for the cases with pf = 0.15 and 0.3 under 174 and
138 generations, respectively.

As shown in Table 9, with the number of maximum itera-
tions 5, the two-stage method with ND cannot obtain an
EBDO optimum. However, the RBDO optimum obtained by
the improved two-stage method is very close to its EBDO
optimum under each case. Thus, the improvement in the first
stage of the two-stage EBDOmethod is important and helpful.
Moreover, under pf = 0.3, the improved two-stage method re-
quires fewer function calls than the two-stage method with
ND. Therefore, the improved method is more efficient
for quickly obtaining an EBDO optimum. Considering
the maximization problem in (24), the EBDO optimums
of the improved two-stage method are less conservative
than those of the one-stage method.

During calculating the Pl of failure at the EBDO opti-
mum, Table 10 gives the number of each constraint function
calls in the vertex method and the number of optimizer calls
for each constraint function in the gradient-based method.
As seen in Table 10, for the vertex method, the number of

Fig. 12 Awearable smart watch

Table 11 BPA structures for P1,
P2, P3, P4 and P5

P1 (×10
2 Mpa) P2 (×10

2 Mpa) P3 (×10 Mpa) P4 (W) P5 (W) BPA (%)

[104, 106] [218, 222] [218, 228] [0.09, 0.11] [0.09, 0.11] 10

[106, 108] [222, 226] [228, 238] [0.11, 0.13] [0.11, 0.13] 10

[108, 110] [226, 230] [238, 248] [0.13, 0.15] [0.13, 0.15] 30

[110, 112] [230, 234] [248, 258] [0.15, 0.17] [0.15, 0.17] 30

[112, 114] [234, 238] [258, 268] [0.17, 0.19] [0.17, 0.19] 10

[114, 116] [238, 242] [268, 298] [0.19, 0.21] [0.19, 0.21] 10
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each constraint function calls in the improved algorithm is
much less than that in the traditional algorithm under all
cases. For the gradient-based method, compared with the
algorithm without records, the improved algorithm needs
fewer optimizer calls under all cases. Hence, it is demon-
strated that the improved algorithm can efficiently calculate
the Pl of failure.

4.4 Engineering example: Electronic packaging design
for a smart watch

In this section, the improved two-stage framework is applied to
an electronic packaging design for a smart watch as shown in
Fig. 12 (Huang et al. 2016). The optimization objective is to
obtain an optimal thickness of the watch to satisfy the wearing
comfort. Some extreme conditions with hard impact and high
temperature should be considered to keep watch working reli-
ably. For this purpose, three points on the screen are considered
as experiment points to hit against with three identical steel balls.

The material stress in each point, ΓN
i for i = 1, 2, 3, should

be less than the corresponding yield strength ΓDisplay. In
order to ensure the normal operation of the watch, the max-
imum temperatures of two chips T1 and T2 are required to be
less than allowable value TChip when the operating temper-
ature of device is set to 50 °C. Moreover, the maximum
stress ΓH of the solder should not be higher than the allow-
able value ΓSolder. The thicknesses of the device, main
board, bracket, display, and lens are chosen as design vari-
ables, which are denoted by Xi for i = 1, 2,…,5. The Young
Modulus of the main board, display and lens are selected as
evidence parameters, which are denoted by Pi for i = 1, 2, 3.
The power dissipations of two chips are also treated as ev-
idence parameters, which are denoted by P4 and P5. The
BPA structures of evidence parameters are provided in
Table 11. There are six constraints and each of their target
failure probabilities is 0.1. The EBDO problem is formulat-
ed as follows:

find : X i; i ¼ 1; 2; …; 5
min : f ¼ X 1 þ X 2 þ X 3 þ X 4 þ X 5

s:t: Pl gi X ;Pð Þ < 0f g≤p f ; i ¼ 1;…; 6

g1 ¼ ΓDisplay−ΓN
1 X ;Pð Þ

g2 ¼ ΓDisplay−ΓN
2 X ;Pð Þ

g3 ¼ ΓDisplay−ΓN
3 X ;Pð Þ

g4 ¼ Γ Solser−ΓH X ;Pð Þ
g5 ¼ TChip−T 1 X ;Pð Þ
g6 ¼ TChip−T 2 X ;Pð Þ

ΓDisplay ¼ 82:0Mpa; Γ Solser ¼ 62:8Mpa; TChip ¼ 95∘C
1:0mm≤X 1≤2:0mm; 0:8mm≤X 2≤1:6mm; 0:6mm≤X 3≤2:2mm
1:2mm≤X 4≤2:4mm; 1:2mm≤X 5≤2:4mm

ð25Þ

In order to improve the optimization efficiency, a
quadratic response surface function is established for
each constraint utilizing 65 FEM samples. The expres-
sions of constructed response surface functions can be

found in Huang et al. (2016). Similar to mathematical
examples, the EBDO problem of the smart watch is
solved by three EBDO methods. For both of the two-
stage methods, the number of maximum iterations is set
to 10 for the optimization in the second stage. The
number of maximum iterations for the one-stage method
is also set to 10. The improved algorithm for calculating
the Pl of failure is employed in the one-stage method.
Comparative results under pf = 0.1 are presented in
Table 12. In addition, the EBDO optimum obtained by
GA is 6.8046 under 164 generations.

As shown in Table 12, with the number of maximum
iterations 10, the two-stage method with ND and one-
stage method cannot obtain an EBDO optimum.
However, the RBDO optimum obtained by the im-
proved two-stage method is close to its EBDO opti-
mum. So it is demonstrated that the improvement in the first
stage of the two-stage method is helpful and beneficial.
Furthermore, compared with the two-stage method with ND,
fewer function calls are required by the improved two-stage
method. Hence, the improved method is more efficient for
quickly finding an EBDO optimum.

During calculating the Pl of failure at the EBDO opti-
mum, Table 13 gives the number of each constraint function
calls in the vertex method and the number of optimizer calls
for each constraint function in the gradient-based method.
As seen in Table 13, for the vertex method, the number of
each constraint function calls in the improved algorithm is
much less than that in the traditional algorithm. For the
gradient-based method, compared with the algorithm with-
out records, the improved algorithm needs the same calls of
the optimizer, because focal elements with types 1 and 3 do
not exist in the FDs for all constraints.

4.5 Analysis and discussion

As illustration of the improved algorithm for calculating the
Pl of failure in Fig. 4, it can be found that the focal elements
with type 3, which intersect with the limit-state curves or
surfaces, will have a large influence on the computational
efficiency. As the number of focal elements with type 3 in-
creases, the number of limit-state function calls and the com-
putational cost will raise. Generally, the EBDO optimum is
close to the limit-state curves or surfaces. For the one-stage
EBDOmethod, the initial search region is often far from the
limit-state curves or surfaces. During its initial optimization
iterations, a few focal elements with type 3 exist and the
number of limit-state function calls is small. With the in-
creasing of iterations, the number of limit-state function calls
will increase rapidly. On the other hand, for the two-stage
EBDO method, the RBDO optimum obtained in the first
stage is in the vicinity of the EBDOoptimum and considered
as the initial design point in the second stage. To obtain an
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EBDO optimum, usually only few iterations (such as 5–10
iterations) are required in the second stage. Because its initial
design point is close to the limit-state curves or surfaces, the
second stagewill needmore function calls than the one-stage
method when the same few iterations are set (such as the
number of maximum iterations 5 and 10). This can be veri-
fied by the statistical data in Tables 2, 5, 9 and 12.

Additionally, to obtain a relatively accurate EBDO opti-
mum, the number of maximum iterations needs to be in-
creased for the one-stage method. From the statistical data in
Tables 2, 5, 9 and 12, it can be found that much more function
calls are required for the one-stage method, although the rel-
atively accurate EBDO optimums can be obtained.

For the two-stage method with ND, it is assumed that each
dimension of the FD is equal to some times the standard

derivation of a hypothetical normal distribution. Therefore,
the RBDO optimums obtained by the two-stage method with
NDmay be farther from the limit-state curves or surfaces than
those obtained by the improved method. As shown in
Tables 2, 5, 9 and 12, compared with the two-stage method
with ND, the RBDO optimum obtained by the improved
method is closer to its EBDO optimum under each case.
This proves that the improvement in the first stage is beneficial.
On the other hand, as shown in Tables 3, 6, 10 and 13, it is
demonstrated that the improved algorithm has a higher efficien-
cy on calculating the Pl of constraint failure than the existing
algorithm in Mourelatos and Zhou (2006). Also, the improved
method requires fewer function calls in the second stage than
the two-stage method with ND under all cases. This proves that
the improvement in the second stage is also beneficial.

Table 12 Comparative results
under pf = 0.1 in example 4 EBDO methods One-stage Two-stage with ND Improved two-stage

Max. iterations 10 30 10 10

RBDO optimum X1 / / 1.000 1.609

X2 / / 0.800 0.872

X3 / / 1.896 2.200

X4 / / 1.200 1.200

X5 / / 1.255 1.200

EBDO optimum X1 / 1.778 / 1.431

X2 / 0.889 / 0.810

X3 / 2.111 / 2.191

X4 / 1.201 / 1.201

X5 / 1.201 / 1.201

Pl of failure Pl1 / 0 / 0

Pl2 / 0 / 0

Pl3 / 0 / 0

Pl4 / 0 / 0

Pl5 / 0 / 0

Pl6 / 0 / 0

EBDO objective / 7.181 / 6.833

Total number of function calls in each stage 4581 33,536 3931 + 11,775 3442 + 4726

Table 13 Comparison of efficiency for calculating Pl of failure in example 4

The vertex method The gradient-based method

Algorithms of calculating Pl
of failure

Number of each constraint function
calls

Algorithms of calculating Pl
of failure

Number of optimizer calls for each
constraint

g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

Algorithm involving all focal elements 144 144 144 12 144 144 Algorithm without records 2 2 2 2 2 2

The proposed algorithm 6 6 6 3 6 6 The proposed algorithm 2 2 2 2 2 2
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Meanwhile, as shown in Tables 2, 5, 9 and 12, with the
same iterations in the second stage, the improved two-stage
method can search for the EBDO optimums in all examples;
while the two-stage method with ND fails in the pressure
vessel and smart watch examples. Moreover, in the mathemat-
ical and beam examples, it can be seen that compared with the
two-stage methodwith ND, the improvedmethod needs fewer
total function calls except the only one case of the mathemat-
ical example with pf = 0.01. In these two examples, the im-
proved method obtains less conservative EBDO optimums
than the two-stage method with ND. Nevertheless, the
EBDO optimums obtained by the improved method are the
closest to those obtained by GA, which are used as the refer-
ence values to check the accuracy of all the methods. Overall,
the improved two-stage method is more efficient and the ac-
curacy of its solutions can be ensured.

5 Conclusions and further work

This paper makes two improvements on the original two-
stage framework of EBDO in Mourelatos and Zhou
(2006): (1) the first stage is improved to get rid of the
assumption that unknown evidence variables and parame-
ters obey the normal distribution. Specifically, the equal
areas method is employed to convert evidence variables
into random variables. Then, a RBDO problem with ran-
dom variables is defined and solved by SORA; (2) in the
second stage, the original algorithm for the calculation of
the Pl of constraint violation is improved by continuously
recording the minimum and maximum values of limit-
state functions to achieve higher computational efficiency.
Numerical and engineering examples are given to test the
advantages of the improved two-stage framework of
EBDO. Results show that the RBDO optimum obtained
in the first stage by the improved framework is very close
to its EBDO optimum in the second stage. The improve-
ment in the first stage is proved to be beneficial to quickly
obtain the EBDO optimum. Meanwhile, the higher effi-
ciency of the improved algorithm for calculating the Pl of
constraint failure is demonstrated. Overall, the improved
two-stage framework is more efficient for obtaining an
accurate EBDO optimum.

For multimodal function optimization problems, the
RBDO solution of the first stage may not be in the vicin-
ity of the actual EBDO optimum. As a global optimizer,
DIRECT has a potential to find the actual EBDO opti-
mum if the initial search region is not in its vicinity.
However, large computational cost may be needed. On
the other hand, the SORA method and the DIRECT opti-
mizer used in the improved two-stage method cannot
solve multi-objective problems. Thus, the improved two-
stage framework of EBDO is not suitable for multimodal

or multi-objective optimization problems under epistemic
uncertainty.

Additionally, although the computational efficiency of
the two-stage framework is improved significantly, the
number of objective and constraint functions calls is still
large. As discussed in Section 4.5, the number of focal ele-
ments which intersect with the limit-state curves or surfaces
has a large influence on the number of limit-state function
calls. Generally, the total number of function calls will in-
crease as the increasing of the number of evidence variables
and parameters. For high-dimensional problems involving
many evidence variables and parameters (such as 102–103),
huge computational cost will be taken. In practical engi-
neering applications, metamodeling techniques need to be
used to replace computer-based simulations in the improved
two-stage framework.

As part of further work, some other approaches for design
under uncertainty can be taken into account in the two-stage
framework, such as partially converged simulations, fusion
with experimental data, and epistemic uncertainty in computer
models.
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