
RESEARCH PAPER

Peng Hao1
& Shaojun Feng1

& Ke Zhang1
& Zheng Li1 & Bo Wang1

& Gang Li1

Received: 5 November 2017 /Revised: 11 March 2018 /Accepted: 5 April 2018 /Published online: 25 May 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Variable-stiffness panel is very promising for the cutout reinforcement of composite structures. However, due to the increase of
design variables, the optimization of variable-stiffness panels becomes very challenging, even if surrogate model is utilized,
because the fidelity of surrogate model is difficult to guarantee for high-dimensional problems. In this study, isogeometric
analysis method (IGA) is employed to predict the buckling load of variable-stiffness panels, which can produce accurate
prediction with less computational cost compared to traditional FEA, moreover, it can provide analytical sensitivity for optimi-
zation. On this basis, an adaptive gradient-enhanced kriging (GEK) model assisted by a novel multiple points infilling criterion is
constructed for the global optimization of variable-stiffness composite panels. The proposed method is compared with traditional
surrogate model, and results show that the proposedmethod can find a better optimum design in a more efficient manner. It can be
concluded that the proposed method is able to fully explore the advantages of IGA including exact modelling, analysis and
analytical sensitivity, which is particularly suitable for the design of variable-stiffness panels and other complex structures.

Keywords Variable-stiffnesspanels .Buckling .Fiberpath .Optimization .Adaptivegradient-enhancedkrigingmodel .Multiple
points infilling

1 Introduction

For aircraft and aerospace structures, composite material has
been increasingly used in the load-carrying components
(Wang et al. 2002; Zhu et al. 2016). Due to the limitation of
traditional manufacturing process, straight fiber paths are
commonly utilized in the practical design of aircraft and aero-
space structures, like fuselage, rocket interstage, fuel tank, etc.
Buckling is the main failure consideration for thin-walled
structures under axial or other combined loads (Bourada
et al. 2016; Hao et al. 2016b; Wang et al. 2014; Hao et al.
2017b). The buckling behavior is highly dependent on stack-

ing sequences for composite structures, and thus many studies
were devoted to the stacking sequence optimization for max-
imum buckling load. In general, due to the inherent feature of
multiple local optima, heuristic methods were employed to
find the global optimum (Le and Haftka 1993; Soremekun
et al. 2001; Liu et al. 2000; Karakaya and Soykasap 2009).
Blending constraint (Liu et al. 2011; Kristinsdottir et al. 2001),
patch constraint (Zehnder and Emanni 2006) and other
manufacturing constraints (Wang and Costin 1992; Sørensen
and Lund 2013) were considered for ease of manufacturing.
Because the buckling analysis of thin-walled structures is
time-consuming, surrogate model has been adopted in order
to release the high computational burden (Rikards et al. 2004;
Abouhamze and Shakeri 2007).

As a promising structural concept, variable-stiffness com-
posite panels with curvilinear fiber path can tailor the in-plane
stiffness for improving the loading path and stress distribution.
According to the previous studies (Van den Brink et al. 2012;
Gürdal et al. 2008), an improvement of buckling load ranging
from 35% to 67% can be achieved by using a variable-
stiffness design compared to traditional constant-stiffness de-
sign with straight fiber path, and this can be attributed to the
redistribution of in-plane loads from critical regions to
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relatively stiff regions. Due to this advantage, the design and
optimization of variable-stiffness panels have attracted much
attention in recent years (Madeo et al. 2017; Wu et al. 2015;
Peeters et al. 2015; Rouhi et al. 2017). To start with, several
representation functions of curvilinear fiber path were devel-
oped, including linear variation function (Gürdal et al. 2008),
quadratic and cubical functions (Muc and Ulatowska 2010),
trigonometric function (Blom et al. 2009), etc. For these
methods, a reference path is defined firstly, and then a shifting
criterion is specified, finally, the fiber angle in arbitrary region
can be expressed explicitly. In general, linear variation func-
tion is the simplest method to describe the fiber path, in which
only two design variables are involved, and thus it has been
extensively investigated in the previous studies. However, the
design space of variable-stiffness panels is also highly restrict-
ed for this rough representation. Besides, level set method was
also used to represent a series of continuous equally spaced
fiber paths, and an optimization for the minimal compliance
was performed to find the optimum fiber path (Brampton et al.
2015). In addition, a specific scalar function corresponding to
the cocurrent and equipotential lines in the flow field was used
to define a set of fiber angles within one ply (Niu et al. 2016),
and the fiber path can be guaranteed to be continuous and non-
intersect.Moreover, since a pair of cocurrent and equipotential
lines passing through arbitrary point are orthogonal to each
other, the other function can be determined if one is defined,
which means that the fiber paths of two adjacent plies can be
obtained simultaneously. Based on these representation
methods, the optimization of variable-stiffness panels can be
carried out. Obviously, for the design of variable-stiffness
panels, the total number of design variables would be very
large, even if linear variation function is used. Assuming that
nr is the number of design variables for each ply, the total
number of design variables would be Nt = nr × np, where np
is the number of independent ply. For high-dimension optimi-
zation problems, a multi-step framework was established by
Rouhi et al. (2017), and its basic idea is to narrow the design
space according to the optimum results in previous steps. Jing
et al. (2015) proposed a global shared-layer blending method
for solving the tailoring problem of tapered composite struc-
ture, which can successfully avoid delamination at ply-drop
location and generate manufacturable structures with
maximum blending property. Considering multiple
manufacturing constraints, Jing et al. (2016) further developed
a multi-level optimization framework based on a sequential
permutation table method, and a high design efficiency is
achieved compared to traditional methods. For curvilinear fi-
ber path, several specific manufacturing constraints were also
considered in the optimization process, such as curvature con-
straint, parallelism constraint (Lozano et al. 2016;Montemurro
and Catapano 2017).

As a type of promising numerical method for structural
analysis, IGA proposed by Hughes et al. (2005) can provide

exact modeling of structures with complex geometry and
boundary condition, by which CAD and CAE can be integrat-
ed together due to the utilization of smooth spline basis func-
tions. Compared to traditional FEA, IGA can produce accu-
rate solution with less computational cost, because only less
degree of freedom is required for the IGA to achieve similar
accuracy. More importantly, IGA can provide analytical sen-
sitivity expression, which is particularly suitable for the opti-
mization of variable-stiffness panels.

Due to the complex characteristic of curvilinear fiber
path, the optimization of variable-stiffness panels is still
very challenging, because the design space is highly non-
convex, which results in the fact that traditional gradient-
based optimization methods may trapped into local opti-
ma. In this case, heuristic methods can guarantee the
global optimization capacity but is computationally inef-
ficient. Surrogate model is a powerful tool for the global
optimization of complex problems with relatively small
computational cost (Hao et al. 2012, 2013). A detailed
comparison of different surrogate models was reported
by Nik et al. (2014) for the optimum design of variable-
stiffness composite panels. Due to the inherent multi-
local-optima feature, the fidelity of surrogate model is
difficult to ensure, even if a large number of training sam-
ples are used. In order to improve the prediction accuracy
of surrogate model, there have been plenty of related stud-
ies on the construction and dynamic updating of surrogate
model. It has been demonstrated that adding one single
point at a time may not be efficient when the main con-
cern is wall-clock time (rather than number of simula-
tions) and simulations can run in parallel (Viana et al.
2013). Thus, various multiple points infilling criterions
have been developed, and the most famous one is known
as Efficient Global Optimization (EGO) method (Jones
et al. 1998), where the expected improvement (EI) is used
to balance the prediction uncertainty and objective value.
Then, many improved algorithms were developed to bal-
ance the exploration and exploitation, including the
weighted EI (Sóbester et al. 2005), generalized EI
(Sasena et al. 2002), augmented EI (Huang et al. 2006),
modified EI (Rehman et al. 2014). The EGO method was
adopted in the optimization of stiffened composite panels
(Haftka et al. 2016), and a feasible optimal structure was
obtained with a low computational cost (Todoroki and
Sekishiro 2008). Recently, Li et al. (2016) proposed an
expected improvement and mutual information (EI&MI)
infilling criterion, which employs the entropy to precisely
quantify the uncertainty of surrogate model, and then bal-
ances the global exploration and local exploitation when
adding new samples.

For traditional surrogate model, only exact function values
of design points are used to establish the surrogate model, thus
plenty of sampling points must be calculated in the design of
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experiment to guarantee the approximation quality of surro-
gate model. However, additional information such as gradient/
sensitivity is not fully utilized (Han and Görtz 2012), whereas
it can be obtained analytically for the IGA. In order to improve
the prediction accuracy of surrogate model, and also reduce
the number of required sampling points, gradient-enhanced
Kriging (GEK) model was developed to incorporate gradient
or sensitivity information into the construction of surrogate
model (Chung and Alonso 2002; Yamazaki et al. 2010;
Yamazaki and Mavriplis 2013; Ulaganathan et al. 2015), in-
cluding direct GEK and indirect GEK, respectively (Chung
and Alonso 2002). For the direct GEK developed by Morris
et al. (1993), gradient/sensitivity information is directly used
to establish Kriging model by expanding the correlation
function and correlation vector. Laurent et al. (2013) com-
pared the direct GEK and Kriging model by mechanical func-
tions, and it is found that the direct GEK can lead to a signif-
icant decrease in the number of required sample points. This is
due to the fact that, additional points in the vicinity of real
sample points with small distance, are approximated by using
the gradient information. Unlike the direct GEK, the indirect
GEK employs the same correlation function as the one of
Kriging, and the samples include the real sample points and
additional points. According to the works by Laurenceau and
Sagaut (2008), the direct and indirect GEK show a same
fitting accuracy with identical parameters, when the step size
is small enough, though it is difficult to be determined.
Moreover, (Yamazaki et al. 2010; Yamazaki and Mavriplis
2013) developed a gradient/Hessian-enhanced Kriging
(HGEK) model using the second-order gradient information,
which is particularly suitable for high-dimensional complex
problems. It can be expected that once the GEK model is
combined with IGA, the optimization efficiency of variable-
stiffness panels would be improved significantly, because the
advantages of exact modelling, analysis and analytical sensi-
tivity can be fully explored.

In this study, an efficient optimization framework is devel-
oped for the design of variable-stiffness panels by combina-
tion of IGA method, GEK method and multiple points
infilling criterion. This paper is organized as follows. In
Section 2, the basic formulas of isogeometric buckling analy-
sis for variable-stiffness panels is introduced. In Section 3,
gradient-enhanced krigingmodel is presented, and a newmul-
tiple points infilling criterion is developed based on EI&MI,
i.e. expected improvement with Gauss distance (EIGD). In
Section 4, an optimization framework is proposed for the de-
sign of variable-stiffness panels based on GEK. In Section 5,
the proposed method is compared with several existing opti-
mization methods. Finally, conclusions are drawn, and results
show that the proposed method can find a better optimum
design in a more efficient manner, which can significantly
improve the computational efficiency of variable-stiffness
panels for aerospace industry.

2 Sensitivity derivation based
on isogeometric analysis

For the linear buckling analysis of variable-stiffness panels,
the governing equation can be expressed as

K−λKGð Þai ¼ 0 i ¼ 1; 2;…; r ð1Þ

where K is the global stiffness matrix, KG is the geometric
matrix. λ is the buckling factor, and the buckling load can be
obtained by multiplying the buckling factor with the
predefined load. ai is the ith buckling mode, and r is the total
number of degrees of freedom.

During the optimization process, the buckling factor λ
(usually defined as optimization objective) will change due
to the variation of design variables a, and the change of design
variables a is summed up to the sensitivity. The main process
of the sensitivity derivation is given herein. The derivative of
the objective function λ with respect to the design variable a
can be expressed as

∂λ
∂a

¼ 1

dTKGd
dT

∂K
∂a

d−λdT
∂KG

∂a
d

� �
ð2Þ

where d is the instability waveform.

As is evident from (2), ∂K∂a and
∂KG
∂a should be obtained. The

global stiffness matrix K can be expressed as

K ¼ ∑
numele

n¼1
kn ð3Þ

where kn is the element stiffness matrix, and numele repre-
sents the element number. The element stiffness matrix can be
calculated through the loop in Gaussian points

kn ¼ ∑
numgas

m¼1
BTQBw1w2 Jj j ð4Þ

where B is the strain matrix, w1 and w2 are two weighted

coefficients. |J| denotes the Jacobian matric, Q is the global
plane-stress stiffness, numgas represents the number of
Gaussian points. Similarly, the geometric stiffness matrix
can also be obtained through the loop in Gaussian points

kgn ¼ ∑
numgas

m¼1
GT σ½ �Ghw1w2 Jj j ð5Þ

where [σ] is the initial stress matrix,G is the derivative matrix
of shape function, and h is the lamination thickness.

∂kgn

∂a
¼ ∑

numgas

m¼1
GT ∂ σ½ �

∂a
Ghw1w2 Jj j ð6Þ
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where

σ ¼ DBue ð7Þ
in which D is the material elastic matrix, ue is the nodal
displacement. In this case, the derivation only needs to
concern about [σ]. According to the chain rule, ∂σ

∂a can
be rewritten as

∂σ
∂a

¼ ∂D
∂a

Bue þ DB
∂ue

∂a
ð8Þ

3 Gradient-enhanced kriging model assisted
by multiple points infilling criterion

3.1 Gradient-enhanced kriging model

In essence, the Krigingmodel is a statistical predictionmethod
containing two components

Y xð Þ ¼ β þ Z xð Þ ð9Þ
where β is the regression coefficient, Z(x) is the stochastic
process with a mean of zero and a variance of σ2.

Kriging model can predict the response values in arbitrary
design space by the following equation

ŷ̂ xð Þ ¼ β þ rTxð ÞR
−1 Y−βFð Þ ð10Þ

where Y is the column vector of response data of
known design samples, R is the matrix of correlation
function specified by user, r is the correlation vector,
F is the regression vector, which is a unit matrix for
constant regression.

For the indirect GEK (Liu and Batill 2002), gradient infor-
mation is used to calculate additional points by the first-order
Taylor approximation as

xiadd ¼ xi þΔx

y xiadd
� � ¼ y xi

� �þΔxT
∂y xið Þ
∂x

� � ð11Þ

In the direct GEK, the gradient information is used to es-
tablish the matrix of R. The matrix of samples and values are

S ¼ x1; x2;⋯; xn; x1⋯x1; x2⋯x2;⋯; xn⋯xn
� �T∈ℜ nþn�dimð Þ�dim

Y ¼ y x1
� �

⋯y xnð Þ; ∂y x1ð Þ
x11

⋯
∂y x1ð Þ
x1d

;⋯;
∂y xnð Þ
xn1

⋯
∂y xnð Þ
xndim

� �T
∈ℜnþn�dim

ð12Þ
where n denotes the number of samples, dim is the number of
dimensions. The detailed derivation process of R and r can be
found in the Appendix.

ŷ̂ xð Þ ¼ β þ rTxð ÞR
−1 Y−βFð Þ

β ¼ FTR−1F
� �−1

FTR−1Y
ð13Þ

It should be noted that there is no additional sample point,
thus the matrix calculation is much better. In this paper, the
direct GEK is utilized.

3.2 EI&MI multiple points infilling criterion

In order to fully explore the design space, some infilling
criterions are used to search for new samples and then
update the surrogate model, until convergence is
achieved. The infilling criterions can be divided into
single point criterion and multiple points criterion. As
an important improvement of EI criterion, a multiple
points infilling criterion named EI&MI was developed
by Li et al. (2016). The EI&MI adopts the entropy to
precisely measure the uncertainty of Kriging model, and
then balances the global exploration and local exploita-
tion of multiple points infilling sampling criteria. Only
the key process of EI&MI is introduced herein, and the
detail information can be found in Ref. (Li et al. 2016).

In any given step-loop, S ⊂Ω denotes the evaluated design
points. According to the principle of maximum entropy, the
global exploration of infilled samples should be achieved as
follows

H YXjYS ¼ Yð Þ
¼ −∫p YXjYS ¼ Yð Þln ∫p YXjYS ¼ Yð Þ� �

dYX ð14Þ

Table 1 Typical kernel functions
Function Expression

EXP exp(−αk|dk|)

GAUSS exp(−αk|dk|
2)

LIN max{0, 1 −αk|dk|}

SPLINE ς ξkð Þ ¼
1−15ξ2k þ 30ξ3k 0≤ξk ≤0:2
1:25 1−ξkð Þ3 0:2≤ξk ≤1; ξk ¼ αk dkj j

0 ξk ≥1

8<
:

Note that dk is the distance between two points
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For the parallel points added, in order to avoid the
high dimensional infilling criterion, we suggest to select
the infilled samples one by one. Assuming that the
number of selected infilled samples is k − 1, the kth
sample can be selected by

Find xk
Maximize H YXk jYS ¼ Yð Þ
Subject to : xk∈Ω

ð15Þ

where xk denotes the kth infilled sample. Here, we
would like to balance the two objectives in (15) into
one function. The new function should maintain the
good searching ability of the serial infilling criterion
such as EI. Thus, H YXk jYS ¼ Yð Þ is decomposed as

H YXk−1 jYS ¼ Yð Þ
þ H y xkð ÞjYS ¼ Yð Þ−MI YXk−1 ; y xkð ÞjYS ¼ Yð Þ ð16Þ

where MI is the mutual information. Consequently, the
multiple points infilling criterion of EI&MI is obtained

Find xk
Maximize EIMI xkð Þ ¼ E I xkð Þ½ �exp −ρMI YXk−1 ; y xkð ÞjYS ¼ Y½ �f g

⇒E I xkð Þ½ �Mρ xk ;Xk−1ð Þ
Subject to : xk∈Ω

ð17Þ
where

M xk;Xk−1ð Þ ¼ 1−R̂̂xkX k−1 R̂̂
−1

X k−1X k−1 R̂̂X k−1xk ð18Þ

The range of M is 0 ≤M(xk, Xk − 1) ≤ 1. M(xk, Xk − 1) = 0

when xk ∈Xk − 1, and M(xk, Xk − 1) = 1 when R̂xk ;Xk−1 ¼ 0. It
implies that when xk is close to any former point xi (i < k), M
is close to zero. Therefore, EI&MI will keep the infilled sam-
ples away from each other.

3.3 Multiple points infilling criterion: EIGD

As introduced in the last section, EI&MI was proposed to pre-
vent the distance among points to be too close by maximizing

(a) 3D surface (b) Contour map

Fig. 1 3D surface and contour
map for six-hump camel-back
function. a 3D surface b Contour
map

(a) GD function with ρ = 0.3 (b) GD function with α = 100 

Fig. 2 The influence of
parameters to GD function. a GD
function with ρ = 0.3 b GD
function with α = 100
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the entropy principle. However, the expression of M(xk,Xk − 1)
is so complicated that limits the applicability for engineering
problems. In order to simplify the implementation process, a
new multiple points infilling criterion named expected im-
provement with Gauss distance (EIGD) is developed in this
section. The EIGD adopts the Gauss function to balance the
distance among multiple points, and the implementation pro-
cess can be greatly simplified. In addition, other kernel func-
tions can also be used to keep the distance, as shown in Table 1.

In each updating loop, once surrogate model is established, EI
will be known at any design space. When the first infilling point
is obtained based on EI, the next point should be keep a distance
away from its location. In view of this point, Gauss function can
be adapted to describe the influence of the infilling points added.
Find xk

Maximize EIGD xkð Þ ¼ E I xkð Þ½ � ∏
k−1

i¼1
1−Gauss xk ; xi;αð Þð Þ

� �ρ
Subject to : xk∈Ω k ¼ 1; 2;⋯; n

ð19Þ
where xk is the kth infilling point, and k-1 points have been filled.

Herein, a benchmark mathematical problem (i.e. six-hump
camel-back function shown as Fig. 1) is adapted to demon-
strate the effectiveness of EIGD.

f xð Þ ¼ 4−2:1x21 þ
1

3
x41

� 	
x21 þ x1x2

þ 4x22−4
� �

x22; x1∈ −2; 2½ �; x2∈ −1; 1½ � ð20Þ

(a) First loop (b) Second loop
Fig. 3 Updating loops of six-hump camel-back function with infilling points added by EIGD. a First loop b Second loop

Perform the optimization using curvilinear fibers 

Variable: fiber orientation angle

Constraint: curvature and parallelism requirement

Design of Experiment

Calculate the response value and 

the gradient information by IGA

Establish the GEK model

Search the optimal value with 

multiple points infilling criterion

Calculate the response value and 

the gradient information by IGA

Infill the points

Converged?

Output the optimal value and the 

corresponding variable

Yes

No

Fig. 5 The proposed optimization framework of variable-stiffness panels
based on GEKFig. 4 Illustration of fiber parallelism
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For this benchmark example, 9 original sample points are
used to establish the GEK model, and two infilling points are
added to the training set in each loop. The Gauss distance can
be obtained when dimension is one as

GD ¼ 1−Gauss xk ; xi;αð Þð Þρ ¼ 1−exp −α dj j2

 �
 �ρ

ð21Þ
where d is the distance between xk and xi, α and ρ are two
parameters. In order to get the parameters rationally, the influ-
ences of α and ρ are investigated, as shown in Fig. 2. The value
of GD should nearly be zero when the two points are near, and
quickly to be one when the distance is large. As is evident from
Fig. 2a and b, the red line meets the requirements. When α is
more than 100 and ρ is less than 0.3, the GD function is steep.
Similarly, whenα is less than 100 and ρ is more than 0.3, the GD
function is so flat that the area affected is too large. Thus, we set
α = 100, ρ = 0.3 in this study. The updating loops of six-hump
camel-back function are shown in Fig. 3, in which the yellow
point is the first one to add, and the red point is the second one.
When the first point is to infill, EIGD equals to EI. When the
second point is to infill, EIGD around the infilled points will
times the coefficient of less than one, so the second point will
away from the infilled points by searching themaximal EIGD. In
this way, more than one peak can be found by EIGD criterion.

TheproposedEIGDcancontrol thedistanceamong the infilling
points in each loop,moreover, it ismore convenient for implemen-
tationcompared toEI&MI.AlthoughEI&MIorEIGDcanbeused
to addmultiple points to find not onlyone local optimum, the com-
putational cost ofEIGD ismuch cheaper than that ofEI&MI, espe-
ciallywhen the number of infilling points is large.

4 Surrogate-based optimization framework
of variable-stiffness panels considering
manufacturing constraints

As already mentioned in the abstract, the Automated Tape
Laying (ATL) and Automated Fiber Placement (AFP)

technology allow the designer to find more flexible fiber path,
which significantly increases the load-carrying potential and
design space of composite components (Hao et al. 2016a).
Also, it has been demonstrated that IGA can provide accuracy
prediction of buckling factor with less computational cost com-
pared to FEA method (Hao et al. 2017a). However, new types
of constraints may be raised in the manufacturing process of
variable-stiffness panels, and it should be considered in the de-
sign optimization to guarantee the manufacturability of the op-
timum design. In this section, two typical manufacturing con-
straints (Huang et al. 2016) are introduced for the AFP process,
including curvature constraint and parallelism constraint.

Once the curvature of an innermost tow of a course becomes
too severe, the compressed side would exhibit local buckling or
wrinkle modes (Kahya 2016). For variable-stiffness panels, the
curvature of fiber path at arbitrary point can be expressed as

cur x; yð Þ ¼ y″
�� ��

1þ y02
��� ���32 ð22Þ

(a) Definition of reference fiber path (b) Fiber path 

Fig. 6 Variable-stiffness panel
based on linear variation function.
(a) Definition of reference fiber
path (b) Fiber path

Fig. 7 Loading and boundary conditions of variable-stiffness panel

Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using Isogeometric analysis 7



where y′ is the derivative of y on x, and y″ is the derivative of y′
on x.

To eliminate the phenomenon of gaps and overlaps, the
fiber orientations along the normal should not change exces-
sively, as shown in Fig. 4. The parallelism constraint is de-
fined as

par x; yð Þ ¼ ∂θ
∂n

����
���� ð23Þ

A surrogate-based optimization framework is pro-
posed in Fig. 5, by which the advantages of IGA in-
cluding exact modelling, analysis and analytical sensi-
tivity can be fully utilized. Fiber orientation angles are

optimized with the objective of maximizing the buckling
load. In the framework, various functions can be uti-
lized to represent a family of curvilinear fiber path.
The optimization problem can be formulated as

Maximize : λ

Subject to :

cur x; yð Þ≤cm
par x; yð Þ≤pm

X l
i ≤X i≤X u

i ; i ¼ 1; 2;⋯; n
x; yð Þ∈Ω

8>><
>>:

ð24Þ

where λ is the buckling factor, Ω is the design domain
of the panel, cm and pm are the threshold values of fiber
curvature and parallelism, Xi is the ith design variable

to control the curvilinear fiber path, X l
i ≤X i≤X u

i ; i ¼ 1;

2; 3; 4 and X l
i ≤X i≤Xu

i ; i ¼ 1; 2; 3; 4 are the lower and
upper bounds of the ith design variable. A set of sample
points is generated in the process of design of experi-
ment (DOE) to establish the surrogate model, e.g.
Optimal Latin Hypercube Sample (OLHS). Due to the
inherent feature of multimodal search problems, evolu-
tionary algorithm (like Genetic Algorithm, GA) is used
to find the optimum stacking sequence. In each
updating loop, based on multiple infilling points criteri-
ons, several points that satisfy the constraints evaluated
by IGA are added in each updating loop. If the conver-
gence criterion is not satisfied, another new surrogate
model will be built. Herein, the convergence criterion
is set as: EI < 10−4 and no improvement in three loops.
For the proposed framework, both the global optimiza-
tion capacity and optimization efficiency can be
guaranteed.

Table 2 Optimum variable values of linear variation fiber path without manufacturing constraints

Type DOE GEK Kriging GA

EI&MI EIGD EI EI Straight Linear variation

T1
0 3.690 56.735 54.619 29.399 11.741 43.942 49.231

T1
1 47.790 47.317 47.185 53.149 50.923 43.975

T2
0 55.080 44.865 35.122 75.803 56.433 45.794 49.032

T2
1 42.210 44.115 44.957 40.719 43.972 44.828

T3
0 53.280 89.765 7.565 87.098 55.203 44.659 9.096

T3
1 44.100 47.340 51.251 44.759 47.425 51.392

T4
0 90.000 0.058 8.111 0.231 76.630 40.914 2.327

T4
1 53.280 56.458 49.595 55.690 42.469 51.445

T5
0 0.000 6.712 85.828 1.564 5.877 30.788 89.773

T5
1 14.670 55.434 42.379 56.759 49.977 40.947

λ 113.6 128.6 129.6 128.7 127.4 114.3 130.7

Iteration number – 8 8 17 35 56 60

Improvement % – 13.20 14.08 13.29 12.15 – 15.05

CPU time (h) – 21 20 18 17 65 70

0 10 20 30 40 50 60
80

90

100

110

120

130

Iterations

 Linear variation path by GEK with EI&MI:21h
 Linear variation path by GEK with EIGD:20h
 Linear variation path by GEK with EI:18h
 Linear variation path by Kriging with EI:17h
 Straight fiber path by GA:65h
 Linear variation path by GA:70h

Fig. 8 Iterations histories of buckling factor by different optimizations
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5 Optimization of variable-stiffness panels
with manufacturing constraints

5.1 Model description

For the linear variation path, the function of fiber orientation
angle is along the x axis, which is assumed to be centered
along the length l of the panel and can be defined as

θi xð Þ ¼ 2 Ti
1−T

i
0

� �
l

xj j þ Ti
0 ð25Þ

where Ti
0 is the fiber orientation angle at the panel center of

the ith layer, Ti
1 is the fiber orientation angle at the panel

boundary of the ith layer, θi(x) is the fiber orientation angle
of the ith layer. The reference fiber path is shown in Fig. 6.

In the following sections, a square panel with a length of
254 mm is investigated. A 20-ply balanced symmetric lami-
nate is used and the fiber angles of two adjacent plies are
opposite. The lamina properties are set as E1 = 181.0 GPa,
E2 = 10.27 GPa, G12 = G13 = 7.17 GPa, G23 = 3.78 GPa,
υ12 = 0.28, and the ply thickness is 0.15 mm.

5.2 Loading and boundary conditions

For aircraft panels, combined compression-shear load is a
common design condition. Because the combined loading
condition may cause complicated mode shapes with coupling
pattern, complex loading path is required to increase the

resistance to buckling. In this study, non-uniform loading is
considered, and the amplitude of axial compression is P =
sin(4πy/l + π/3), as shown in Fig. 7. This further highlights
the load-carrying gain of variable-stiffness panels, which can
tailor the in-plane stiffness by varying the fiber path. Besides,
the boundary condition has a substantial influence on the
buckling behavior and mode shape. A typical boundary con-
dition (i.e. four loading edges simply supported, SSSS) is
investigated in this study. The linear buckling analysis is per-
formed based on IGA, and quadratic NURBS elements are
used for IGA. Both the analysis procedure and sensitivity
derivation are programed in MATLAB.

5.3 Optimization results

The proposed framework is used to conduct the optimization
of variable-stiffness panels based on linear variation function,
and the optimization formulations in each step can be found in
Section 4. Due to the constraint of symmetric laminates, only
5 plies need to be designed. The involved design variables
include the fiber orientation angle at the panel center and
boundary. Therefore, a total number of 10 variables are in-
volved in the optimization. The ranges of each variable are
defined as follows

X i⋅ j ¼ Ti
j∈ 0°; 90°
� �

; i ¼ 1; 2;⋯; 5; j ¼ 1; 2 ð26Þ

We normalize the variables in the optimization, in order to
guarantee the convergence rate of surrogate-based

(a)Ply-1/2/19/20 (b)Ply-3/4/17/18 (c)Ply-5/6/15/16 (d)Ply-7/8/13/14 (e)Ply-9/10/11/12
Fig. 10 Optimum fiber paths without manufacturing constraints (GEK-EIGD). a Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/
10/11/12

(a)Ply-1/2/19/20 (b)Ply-3/4/17/18  (c)Ply-5/6/15/16  (d)Ply-7/8/13/14 (e)Ply-9/10/11/12
Fig. 9 Optimum fiber paths without manufacturing constraints (GEK-EI&MI). a Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/
10/11/12
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optimization. Then, the buckling optimization of variable-
stiffness panels is performed.

5.3.1 Optimization without manufacturing constraints

A set of 50 sample points is generated by the OLHS to estab-
lish the surrogate model firstly. In the updating process of
surrogate model, several infilling criterions are compared, in-
cluding EI&MI, EIGD and EI. For multiple infilling points
criterions, 4 points evaluated by IGA are added in each
updating loop. In the surrogate model method, genetic algo-
rithm (GA) is used to search the maximum of EI or other
infilling criterions. The algorithm parameters in GA are set
as: population size = 200, max generations = 1000, crossover
fraction = 0.8, mutation rate = 0.01, function tolerance =10−6.
The iteration history is also shown in Fig. 8. The optimum
values of design variables in each ply are listed in Table 2,
where the column of DOE means the best result in Design of
Experiment, and the row of improvement % means the per-
centage of improvement over DOE.

As is evident from Table 2, the number of required iterations
for GEK with EI is much fewer than the original Kriging with
EI. Moreover, the performance of optimum design by GEK is
better, which demonstrates that the GEKmethod including gra-
dient information is more efficient. Furthermore, comparing the
infilling criterions based on GEK method, the EI&MI and
EIGD criterions show higher computational efficiency than
EI. Due to the fact that parallel computing method can be used
in the multiple points infilling criterion, even if the number of

points is increased, the computational cost for infilling points
remains almost unchanged, thus the GEK with EIGD criterion
can be regarded as the most promising method.

To illustrate the computational efficiency and optimization
capacity of proposed method, GA is also used to perform the
global optimization directly (named as direct GA), and thus nu-
merous function calls are involved in the optimization process.
For this example, the total computational cost of direct GA is
about 70 h, using a work station with a CPU of 2.20 Hz and 32G
RAM, while the one is only 20 h for the optimization using
GEK. The time of calculating buckling factor for each sample
is about 20 s, and if the gradient information is required, the time
will increase to 108 s. For direct GA, each population should be
calculated by IGA, and about 20 s × 200 population × 60 iter ≈
70 h. For GEKmethod, only 50 + 4 × 10 iter = 90 points need to
be calculated by IGA, and the CPU time is about 90 × 108 s ÷ 4
parallel = 40 min. In each loop, the time to establish GEK is
24 min in average. And GA is used to search the maximum of
EIGD, the time of calculating EIGD for one sample is about
22 min, and the total time will be 40 min + 24 min × 10 iter
+22 min × 4 points × 10 iter ≈ 20 h, which is lower than the one
based on EI&MI. Similarly, for Krigingmethod, the time cost on
establishingmodel is 6 min in average, the time of calculating EI
for one sample is about 20 min and the total time is 6 min × 38
iter +20 min × 38 iter ≈ 17 h.

In addition, Figs. 9, 10, 11, and 12 show the optimum fiber
paths without manufacturing constraints for different methods.
As is evident, the phenomenon of fiber enrichment can be found,
and thus manufacturing constraints should be considered during

(a)Ply-1/2/19/20 (b)Ply-3/4/17/18 (c)Ply-5/6/15/16 (d)Ply-7/8/13/14 (e)Ply-9/10/11/12

(a)Ply-1/2/19/20  (b)Ply-3/4/17/18  (c)Ply-5/6/15/16  (d)Ply-7/8/13/14 (e)Ply-9/10/11/12
Fig. 11 Optimum fiber paths without manufacturing constraints (GEK-EI). a Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/10/
11/12

10 P. Hao

Fig. 12 Optimum fiber paths without manufacturing constraints (Kriging-EI). (a)Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/
10/11/12



the optimization process. After the optimization by GEK with
EIGD, the buckling factor λ of curvilinear fiber path without
manufacturing constraints increases from 113.6 to 129.6, with
an improvement of 14.08%.

5.3.2 Optimization considering manufacturing constraints

In the above optimization, it is found that the linear variation
fiber path is more flexible, and results indicate that the load-
carrying capacity of variable-stiffness panel can be remark-
ably improved. However, the phenomenon of fiber enrich-
ment can be found in the optimum design. For example, when
the fiber orientation angle at the panel center or at the bound-
ary of panel is close to π/2 or the change of local fiber angle is
too sharp, the phenomenon of fiber enrichment can be found,
as shown in Fig. 13, which greatly challenges the existing
manufacturing technologies such as ATL and AFP.

In order to satisfy the practical manufacturing require-
ments, the fiber curvature constraint and parallelism con-
straint are introduced as typical manufacturing constraints
during the optimization process (Huang et al. 2016). In

this study, the upper limit of fiber curvature cm is set to be
0.1, and the parallelism pm is set to be π/6 for Constraint
(1) and π/30 for Constraint (2), respectively. For the linear
variation function, the value of y coordination of the ith
layer can be calculated from the fiber path function.

yi xð Þ ¼ l
2 Ti

1−T
i
0

� � −ln cos Ti
0 þ

2 Ti
1−T

i
0

� �
l

xj j
� 	� �

þ ln cos Ti
0

� �� � �

ð27Þ

And the curvature function can be written as:

cur x; yi
� � ¼ yi

0 0�� ��
1þ yi02
�� ��32 ¼

2 Ti
1−T

i
0

� �
l

cos ϕi
x

� �����
����≤cm

⇒ cos ϕi
x

� ��� ��≤ l
2 Ti

1−T
i
0

� �
�����

�����cm
ð28Þ

where, ϕi
x ¼ Ti

0 þ
2 Ti

1−T
i
0ð Þ

l xj j is the fiber orientation angle of
the ith layer. For the linear variation path function, the curvature
constraint is usually satisfied, when the panel size is not too small.

Similarly, the parallelism function can be expressed as

par x; yi
� � ¼ ∂θ

∂n

����
���� ¼ ∂θ

∂x
n1 þ ∂θ

∂yi
n2

����
����

¼ 4 Ti
1−T

i
0

� �
l⋅cos ϕi

x

� �
tan 2ϕi

x

� �
�����

�����≤pm ð29Þ

Note that (29) achieves the maximal value when ϕi
x

is close to 0 or π/2, which means that the maximum par
can only appear at the center of the panel or the

Table 3 Optimum variable values of linear variation fiber path
considering/without manufacturing constraints

Type DOE Without
manufacturing
constraints

Considering
manufacturing constraints

pm – – π/6 π/30

T1
0 3.690 54.619 42.622 63.856

T1
1 47.790 47.185 46.612 42.182

T2
0 55.080 35.122 70.821 69.072

T2
1 42.210 44.957 47.195 47.358

T3
0 53.280 7.565 1.005 7.084

T3
1 44.100 51.251 49.562 56.572

T4
0 90.000 8.111 1.008 3.038

T4
1 53.280 49.595 53.022 55.414

T5
0 0.000 85.828 83.542 20.177

T5
1 14.670 42.379 41.591 48.662

λ 113.6 129.6 128.6 128.1

Iteration number – 8 9 9

Improvement % – 14.08 13.20 12.76

-2 0 2 4 6 8 10 12 14
112
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130
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 without constraints
 Constraint(1)
 Constraint(2)

Fig. 14 Iteration histories of buckling factor for linear variation fiber
paths by using GEK with EIGD

 Exceedingly large fiber curvature or fiber enrichment region 

Fig. 13 Optimum linear variation function path without manufacturing
constraints
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boundary of the panel. Therefore, an easy way to avoid
the condition of par(x, yi) > pm is to limit the range of
fiber variation. On this basis, the optimization of curvi-
linear fiber path is carried out based on GEK with
EIGD. Taking the SSSS boundary condition for exam-
ple, the iteration history of buckling factor λ is shown
in Fig. 14. The optimum values of design variables are
listed in Table 3, and the buckling modes are listed in
Table 4.

When the Constraint (1) is taken into account, the
buckling factor λ of curvilinear fiber path increases
from 113.6 to 128.6, with an improvement of 13.20%.
And for the Constraint (2), the constraint is tighter, and
thus the buckling factor λ only increases to 128.1, with
an improvement of 12.76%.

To further investigate the influence of manufacturing
constraints, the optimum fiber paths considering curva-
ture constraint and parallelism constraint are shown in

Figs. 15 and 16. As can be observed, the constraint is
not active for Constraint (1), thus the fiber enrichment
occurs. Instead, when the constraint is tightened for
Constraint (2), the fiber enrichment is well eliminated,
and the curvilinear fiber path becomes smooth. In gen-
eral, the arrangement of fiber satisfies the requirement
of stiffness distribution to avoid stress concentration.
This will allow for a better understanding of load redis-
tribution mechanism, which can be responsible for a
significantly increased buckling load. Moreover, the
AFP technology is adequate for manufacturing this type
of composite panels, and this can be attributed to the
curvature constraint and parallelism constraint.

Besides, in order to illustrate the excellent perfor-
mance of curve fiber, the optimization of straight fiber
is also compared. For straight fiber, the stacking se-
quence of initial design is [±0°, ±22.5°, ±45°, ±67.5°,
±90°, ±90°, ±67.5°, ±45°, ±22.5°, ±0°]s. After

(a)Ply-1/2/19/20 (b)Ply-3/4/17/18 (c)Ply-5/6/15/16 (c)Ply-7/8/13/14 (d)Ply-9/10/11/12
Fig. 15 Optimum fiber paths with manufacturing constraint (1) (GEK-EIGD). a Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/
10/11/12

Table 4 Buckling modes of different optimum designs based on straight and linear variation fiber paths

Mode 

order
Straight fiber path Linear variation fiber path

--- ---

Without 

manufacturing 

constraints

Constraint (1) Constraint (2)

λ =114.3 λ =129.6 λ =128.6 λ =128.1
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performing linear buckling analysis, the buckling factor
λ is obtained as 82.7 for the SSSS boundary condition.
Then, GA is adopted to perform the optimization. The
iteration history of buckling factor is shown in Fig. 8.
After 56 iterations, the optimum buckling factor λ of
panel is 114.3, with an improvement of 38.2%. By
comparing the optimum designs of straight fiber path
and curvilinear fiber path, the buckling factor increases
from 114.3 to 130.7 for the curvilinear fiber path, with
an improvement of 14.35%.

6 Conclusions

In this paper, an efficient optimization framework is devel-
oped for the design of variable-stiffness panels by combina-
tion of IGA method, GEK method and multiple points
infilling criterion, where IGA can provide analytical gradient
information and accuracy prediction of buckling factor with
less computational cost compared to FEA method, moreover,
GEK can use the gradient information to improve the accuracy
of surrogate model. These characteristics make the combina-
tion of IGA and GEK become an efficient method.
Furthermore, on the basis of EI&MI criterion, a new multiple
points infilling criterion named EIGD is developed, which can
enhance the global optimization capacity of GEK and simplify
the implementation of EI&MI.

A square panel with linear variation fiber path is served
as illustrative example. The performance of proposed
method is compared with original Kriging, GEK with EI,
GEK with EI&MI. The fiber paths and buckling modes as
well as buckling factors of the optimum designs are exam-
ined in detail. It can be found that the GEK exhibits better
performance than original Kriging method in terms of both
global optimization capacity and computational efficiency.
Moreover, using multiple points infilling criterion can fur-
ther increase the optimization efficiency of EI infilling

criterion, and the computing cost of EIGD in each iteration
is cheaper than EI&MI. Besides, the effects of manufactur-
ing constraints are investigated. It can be concluded that
the phenomenon of fiber enrichment can be well eliminat-
ed by an appropriate selection of curvature constraint and
parallelism constraint. In summary, the combination of
GEK, IGA and EIGD is a promising optimization frame-
work, which can significantly improve the load-carrying
efficiency of variable-stiffness panels for future aerospace
and aircraft industries.
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Appendix

The predicted function of GEK can be written as

ŷ̂ xð Þ ¼ ∑
n

i¼1
ωiyi þ ∑

n

i¼0
∑
d

j¼0
νij

∂y xið Þ
∂xij

ð30Þ

where ωi denotes the weight coefficient of the ith response
value, and νij denotes the weight coefficient the partial deriv-

ative of the jth dimensional design variable to the ith response
value. The regression function is defined as

Cov Z xi
� �

;Z x j� �� � ¼ σ2R xi; x j� �
Cov Z xi

� �
;
∂Z x jð Þ
∂xk

� 	
¼ σ2 ∂R xi; x jð Þ

∂x jk
¼ −Cov

∂Z xið Þ
∂xk

;Z x j� �� 	

Cov
∂Z xið Þ
∂xk

;
∂Z x jð Þ
∂xl

� 	
¼ σ2

∂2R xi; x jð Þ
∂xik∂x

j
l

ð31Þ

So far, the weight coefficients can be calculated by
solving the minimization problem about MSE(x) with

(a)Ply-1/2/19/20 (b)Ply-3/4/17/18 (c)Ply-5/6/15/16 (c)Ply-7/8/13/14 (d)Ply-9/10/11/12
Fig. 16 Optimum fiber paths with manufacturing constraint (2) (GEK-EIGD). a Ply-1/2/19/20 b Ply-3/4/17/18 c Ply-5/6/15/16 d Ply-7/8/13/14 e Ply-9/
10/11/12
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the Lagrange multiplier approach. It can be found as
follows

∑
n

j¼1
ω jCov Z xi

� �
; Z x j� �� �þ ∑

n

j¼1
ν j
i Cov Z xi

� �
;
∂Z x jð Þ
∂xk

� 	
þ μ

2
¼ Cov Z xi

� �
; Z xð Þ� �

; i ¼ 1; 2⋯; n

∑
n

j¼1
ω jCov

∂Z xið Þ
∂xk

; Z x j� �� 	
þ ∑

n

j¼1
ν j
i Cov

∂Z xið Þ
∂xk

;
∂Z x jð Þ
∂xl

� 	
¼ Cov

∂Z xið Þ
∂xk

; Z xð Þ
� 	

; i ¼ 1; 2⋯; n

∑
n

i¼0
ωi ¼ 1

8>>>>>>><
>>>>>>>:

ð32Þ

And μ is the Lagrange multipliers.
Also, (35) can be written as a matrix function

R F
FT 0

� �
ν
~μ

� �
¼ r xð Þ

1

� �
ð33Þ

where

~μ ¼ −
μ
2σ2

¼ FTR−1F
� �−1

FTR−1r xð Þ−1
� �

F ¼ 1;⋯; 1; 0; 0;⋯; 0½ �Tϵℜnþn�dim

ν ¼ ω1;⋯;ωn; ν
1
1; ν

1
2;⋯; νndim

� �T ¼ R−1 r xð Þ−F~μ

 �

The correlation vector and the correlation matrix can be
expressed as

r xð Þ ¼ R x; x1
� �

⋯R x; xnð Þ; ∂R x; x1ð Þ
∂x11

;
∂R x; x1ð Þ

∂x12
;⋯;

∂R x; x1ð Þ
∂x1dim

;⋯
∂R x; xnð Þ
∂xndim

� �T
∈ℜnþndim

R ¼

R x1; x1
� �

⋯ R x1; xn
� �

⋮ ⋱ ⋮
R xn; x1
� �

⋯ R xn; xnð Þ

∂R x1; x1ð Þ
∂x11

∂R x1; x1ð Þ
∂x12

⋯
∂R x1; xnð Þ

∂xndim
⋮ ⋮ ⋱ ⋮

∂R xn; x1ð Þ
∂x11

∂R xn; x1ð Þ
∂x12

⋯
∂R xn; xnð Þ

∂xndim
∂R x1; x1ð Þ

∂x11
⋯

∂R xn; x1ð Þ
∂x11

∂R x1; x1ð Þ
∂x12

⋯
∂R xn; x1ð Þ

∂x12
⋮

∂R x1; xnð Þ
∂xndim

⋱
⋯

⋮
∂R xn; xnð Þ

∂xndim

∂2R x1; x1ð Þ
∂x11∂x11

∂2R x1; x1ð Þ
∂x11∂x12

⋯
∂2R x1; xnð Þ
∂x11∂xndim

∂2R x1; x1ð Þ
∂x12∂x11

∂2R x1; x1ð Þ
∂x12∂x12

⋯
∂2R x1; xnð Þ
∂x12∂xndim

⋮ ⋮ ⋱ ⋮
∂2R x1; xnð Þ
∂xndim∂x11

∂2R x1; xnð Þ
∂xndim∂x12

⋯
∂2R xn; xnð Þ
∂xndim∂x

n
dim

2
66666666666666666664

3
77777777777777777775

∈ℜ nþndimð Þ� nþndimð Þ
ð34Þ

The predicted MSE of ŷ xð Þ is

s2xð Þ ¼ σ2


1

þ FTR−1F
� �−1

1−FTR−1r xð Þ
�
2−rTxð ÞR

−1r xð Þ

 �

ð35Þ

As both ŷ xð Þ and MSE are the functions of σ2 and θ, θ can
be calculated by the maximum likelihood estimation

approach. ŷ xð Þ follows the multidimensional normal distribu-
tion as
P Y xð Þjθ; σ2; ŷ̂ xð Þ� � ¼ L θ; σ2jŷ̂ xð Þ ¼ Y xð Þ� �

¼ 1

2πσ2ð Þn 1þdimð Þ
2 Rj j12

exp −
Y−βFð ÞTR−1 Y−βFð Þ

2σ2

" #

ln L θ;σ2; ŷ̂ xð ÞjY xð Þ� �� � ¼ −
n 1þ dimð Þ

2
ln 2πð Þ− n 1þ dimð Þ

2
ln σ2
� �

−
1

2
ln Rj j− Y−βFð ÞTR−1 Y−βFð Þ

2σ2

ð36Þ
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Take the partial derivative with respect to σ2 of this equa-
tion and let it zero, σ2 and β can be obtained as

σ2 ¼ 1

n 1þ dimð Þ Y−βFð ÞTR−1 Y−βFð Þ
β ¼ FTR−1F

� �−1
FTR−1Y

ð37Þ
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