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Abstract
For energy absorbing structures made up of ductile materials, the plastic strain accumulation often leads to early material
damage and failure, which can deteriorate the overall structural performance. The goal of this work is to limit this damage in
elastoplastic designs using the density-based topology optimization framework such that the optimized structures can absorb
energy in a more controllable manner. To this end, an implicit nonlocal coupled elastoplastic damage model is considered
for simulating the material damage and softening behavior. The nonlocal effect from the void elements is removed by
introducing a scaling scheme for the nonlocal parameters. Path-dependent sensitivity is derived analytically using an adjoint
method whose accuracy is further verified by the central difference method. The effectiveness of the proposed method is
demonstrated through several numerical examples. It is shown that the load-carrying capacity, ductility, as well as ultimate
plastic work dissipation capacity of the optimized design, can be considerably improved by the proposed method.

Keywords Topology optimization · Nonlocal elastoplastic damage · Adjoint sensitivity analysis · Plastic work ·
Damage constraints

1 Introduction

Topology optimization is an advanced design method that
has been applied to numerous applications (Bendsøe and
Sigmund 2003). Past studies have also investigated the
utilization of topology optimization method to design
elastoplastic energy absorbing structures (Maute et al. 1998;
Schwarz et al. 2001; Nakshatrala and Tortorelli 2015;
Kato et al. 2015; Wallin et al. 2016; Li and Khandelwal
2017; Li et al. 2017a, b; Alberdi and Khandelwal 2017;
Zhang et al. 2017). In ductile materials, the elastoplastic
behavior is usually accompanied by material damage that
leads to the deterioration of material properties, which is
further reflected as the gradual loss of the load-carrying
capacity. For instance, the damage in structural steels is due
to the nucleation, growth and coalescence of microvoids
that finally results in material fracture and failure (Kiran
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and Khandelwal 2013, 2014a, b, 2015). This multiscale
fracture process is controlled by the plastic strains and
applied loading conditions. Thus, when enhancing plastic
work dissipation capacity in topology optimization, it is
also important to control the damage evolution such that
optimized topologies can have large ductility and can
dissipate sufficient plastic work before failure.

To date, the majority of damage-resistant topology
optimization work has focused on limiting the local yield
stresses in the optimized structures. The basic idea of the
so-called stress-based topology optimization is to keep the
structure within the linear elastic regime so that the potential
damage due to inelastic behavior can be excluded (Duysinx
and Bendsøe 1998). Despite the developments in addressing
the inherent difficulties, i.e. stress singularity issues (Bruggi
2008; Cheng and Guo 1997), numerous local constraints
(Duysinx and Bendsøe 1998; Yang and Chen 1996; Le
et al. 2010; Parı́s et al. 2009) and highly nonlinear stress
constraints (Duysinx and Bendsøe 1998; Svanberg and
Werme 2007), stress-based topology optimization cannot
be applied to energy absorbing structural designs, since it
lacks the description of plastic energy dissipation. Another
category is the damage-based topology optimization, in
which the damage mechanics is explicitly considered in
the topology optimization formulation. The early work
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in this category can be traced back to Bendsøe and
Diaz (1998), in which the optimized layout was obtained
by constraining the damage from an approximate elastic
damage model. A level-set based topology optimization
method for brittle elastic fracture resistant designs was
proposed by Challis et al. (2008), wherein the energy
release rate of crack propagation was used as the fracture
measure. Amir and Sigmund (2013) and Amir (2013) used
elastic damage model to simulate the behavior of concrete
structures, and the optimal placement of reinforcement
bars and shape of concrete structures were sought using
the topology optimization. James and Waisman (2014)
proposed a damage mitigation topology optimization
method by constraining the aggregated maximum elastic-
damage. Jansen et al. (2014) incorporated a simplified
local failure model into topology optimization formulation
to achieve the more robust design. Recently, Noël et
al. (2017) combined nonlocal elastic-damage model with
level-set based topology optimization method, and the
stiffest structure is sought by accounting for the material
stiffness loss introduced by the damage model. All of
the aforementioned damage-based topology optimization
studies were focused on the elastic damage models, which
can only represent the damage in brittle materials. To
account for the plastic energy dissipation in the design
of energy absorbing ductile structures, the physics of
elastoplastic dissipation should be further considered.

In recent studies, the authors have proposed two
strategies to address the issue of damage in elastoplastic
topology optimization. In the first strategy, the uncoupled
fracture models – which describe the critical conditions for
fracture initiation in terms of stress-states and accumulated
plastic strain – were used (Alberdi and Khandelwal
2017; Li and Khandelwal 2017). In particular, additional
material pointwise fracture constraints were incorporated
in the optimization process using the p-norm constraint
aggregation method. While this strategy is able to yield
optimal topologies with robust performance, the actual
material failure is only approximately considered using
the uncoupled fracture models. In the second strategy, a
coupled elastoplastic damage model was directly employed
in topology optimization to describe the physics of
underlying material damage (Li et al. 2017b), and the
damage constraints were enforced on the internal damage
variable. An important issue when considering coupled
elastoplastic damage models in topology optimization is
that the numerical solution obtained from the finite element
analysis employing local damage models, where a local
description of damage is used for modeling material
softening, reveals pathological dependence on the size and
orientation of the underlying finite element (FE) mesh (De
Borst et al. 1993; Lasry and Belytschko 1988; Bažant
et al. 1984). Accordingly, upon FE mesh refinement no

convergence to a physically meaningful solution exists.
This mesh-dependence is the direct consequence of the ill-
posedness of the underlying mathematical formulation, i.e.
the boundary value problem loses ellipticity for the quasi-
static case. This change allows discontinuities in the strain
distribution to appear, and deformation tends to localize
into a zone of zero width, which in turn influence the
energy dissipation capacity. In the past, many enhanced
physical and phenomenological models have been proposed
to overcome this deficiency, and an overview of these
methods can be found in Refs (Belytschko et al. 2013;
de Borst et al. 2012). Thus, in order to more accurately
consider the damage and failure in elastoplastic topology
optimization it is important to include these enhanced
physical models in topology optimization. Although the
nonlocal formulations of material damage/softening models
have already been considered in various papers on topology
or shape optimizations (Amir 2013, Amir and Sigmund
2013, James and Waisman 2014, Kato et al. 2008, Kato
and Ramm 2010), all of them have focused on the elastic-
brittle damage. Topology optimization of failure resistant
structures accounting for the nonlocal elastoplastic-damage
has not yet been explored in the literature to the authors’
best knowledge.

In this study, a density-based topology optimization
method to design damage-resistant energy absorbing
structures is proposed. In order to capture the softening
behavior caused by material damage, a second-order
implicit coupled elastoplastic damage model is considered.
This model is capable of simulating the transition from
hardening to softening behavior due to the initiation
and evolution of ductile damage while simultaneously
addressing the underlying FE mesh dependent issues by
introducing a nonlocal plastic strain field. A novel SIMP-
like material interpolation scheme is introduced to represent
the mechanical behavior of intermediate density elements in
a physically consistent manner, while a scaling scheme for
nonlocal model parameters is used to eliminate the nonlocal
effects from the void elements. As a result, accurate physics
of nonlocal damage can be captured in both the finite
element analyses and the topology optimization process.
The goal of the optimizations is to design minimum volume
topologies that can dissipate the prescribed amount of
energy via plastic work while simultaneously constraining
the material damage within acceptable limits. Numerically
accurate and consistent path-dependent design sensitivities
are derived analytically using the adjoint method, which
is verified by the central difference method before being
utilized in topology optimization. Various numerical studies
are presented to demonstrate the effectiveness of the
proposed methods. Note that the problems formulated
in this study are restricted to quasi-static conditions,
where strain rate and inertial effects are ignored. The
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corresponding applications can be found in earthquake
engineering, such as metallic yielding dampers, shear links,
etc. (Soong and Spencer 2002), in which the components
dissipate energy via inelastic deformations.

The remainder of this paper is organized as follows:
Section 2 describes the implicit nonlocal coupled elasto-
plastic damage model and its finite element formulation
is given in Section 3. Section 4 discusses the design
parametrization scheme as well as the problem formulation
of the proposed topology optimization method. The detailed
derivation of the path-dependent sensitivity analysis via the
adjoint method for the coupled nonlocal damage model is
presented in Section 5. Section 6 reports the sensitivity ver-
ification results and investigates three numerical examples
with different configurations using the proposed method.
Finally, concluding remarks are provided in Section 7.

2 Nonlocal damagemodel for ductile
materials

Among the various methods proposed to handle the FE
mesh dependency issues, the nonlocal integral-based and
gradient enhanced damage models are effective from both
the physical and computational points of view (Peerlings
et al. 2001). An important feature of these models is
the incorporation of an intrinsic length-scale, which can
be related to the material microstructure and associated
failure mechanisms. The nonlocal integral-based theories
consider a nonlocal variable, which is calculated as the
weighted average value of the corresponding local variable.
The state of the stress then depends on this nonlocal
variable so that the model can represent the spread of
the strain softening effect from one material point to its
neighboring material points. The nonlocal gradient models,
on the other hand, consider higher-order gradient terms
of the desired local variable in the constitutive model
(Engelen et al. 2003). Essentially, a gradient model can
be seen as the approximation of nonlocal integral-based
model upon Taylor expansion (Engelen 2005). Two types
of gradient approximations – explicit and implicit gradient
approximations — have been proposed. Studies have shown
that the implicit gradient approximation is superior to the
explicit approximation, as it is able to model the complete
failure while the explicit approximation cannot (Engelen et
al. 2003). Besides, implicit approximation gives a closer
approximation to a nonlocal integral-based formulation as
compared to explicit model when the same order of gradient
terms are considered (Askes et al. 2000). Accordingly, an
implicit coupled elastoplastic damage model is considered
in this work for simulation of damage and softening
behavior in ductile materials. Specifically, the implicit
nonlocal damage model for ductile materials developed by

Engelen et al. (2003) is utilized. In this section, the brief
description of the strong form governing equations and
constitutive relations of the damage model are presented.
The detailed description of the model can be found
elsewhere (Engelen et al. 2003; Engelen 2005).

2.1 Governing equations

Consider a solid body occupying a bounded domain � as
shown in Fig. 1. Its boundary ∂� is partitioned into two
segments: ∂� = ∂�u ∪ ∂�σ and ∂�u ∩ ∂�σ = ∅. The
body � is subjected to body forces b, surface tractions
t are imposed on ∂�σ while the prescribed displacement
u are applied on ∂�u. Restricting attention to quasi-static
problems and small deformation case, the strong form of the
governing equations is expressed as{∇.σ + b = 0

α − �2∇2α = α
in � (1)

with boundary conditions

u = u on ∂�u

σ .n = t on ∂�σ

∇α.n = 0 on ∂�

(2)

where ∇ is the divergence operator and σ denotes the
Cauchy stress tensor; α and α are the local and nonlocal
equivalent plastic strains, respectively, and � denotes the
length-scale parameter. For the boundary conditions, u and
t are the prescribed displacements and tractions on ∂�u

and ∂�σ , respectively, where n is the unit outward normal
vector field on ∂�. Only the Neumann boundary conditions,
i.e. ∇α.n = 0 on ∂�, is considred for the nonlocal
field α (Engelen 2005). It is noted that the parameter �

determines the length-scale of the zone in which the damage
is approximately smeared out and can be related to the
microstructure of the considered material.

2.2 Constitutive relations

The constitutive relations determine the coupling between
both PDEs in (1). In the context of small deformation
assumption, the strain field is calculated by ε = ∇su,
where ∇su denotes the symmetric gradient operator. The

Ω∂Ωu

∂Ω

∂Ωu

Fig. 1 Schematic illustration of a solid body � and its boundary ∂�
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total strain is additively decomposed into an elastic strain εe

and a plastic strain εp as

ε = εe + εp (3)

Assuming the isotropic elasticity, the Cauchy stress
tensor σ is computed by

σ = C
e : εe (4)

where C
e � 3κPvol + 2μPs

dev is the isotropic elasticity
tensor, and κ and μ are the bulk and shear moduli, respec-
tively. The fourth order volumetric Pvol and symmetric
deviatoric P

s
dev projectors are given by Pvol � 1

3I ⊗ I and
P

s
dev � I

s
4 − Pvol where [Is4]ijkl � 1

2 (δikδjl + δilδjk) and I

is the second order identity tensor. To model the progression
of damage, the von Mises yield criterion is coupled with a
nonlocal damage function, d(κ), as follows

φ(σ , α, κ) = ‖s‖ −
√

2

3
(1 − d(κ))

(
σy + ζ(α)

)
with
ζ(α) = Khα

κ(t) = max{α(τ) | 0 ≤ τ ≤ t}

(5)

where s denotes the deviatoric part of the stress tensor σ ,
σy is the initial yield stress and ζ(α) is the linear isotropic
hardening function defined in terms of the local equivalent
plastic strain α and hardening modulus Kh. In (5), d(κ)

serves as the ductile damage variable that is defined in terms
of the maximum nonlocal strain measure κ and τ is the
time-like loading parameter. It is noted that the softening
and degradation of the material are described by the damage
variable d in this model. In (5), the term (1 − d(κ)) reduces
the yield strength at a material point, and depends on the
ductile damage variable d ∈ [0, 1], where d = 1 represents
complete loss of material strength. An exponential function
is employed to describe the dependence of d on the nonlocal
strain measure κ as follows

d(κ) =
(

1 − e−β(κ−κth)
)

(κ) (6)

where β is a material parameter that controls the speed
of damage evolution, κth is the threshold parameter that
triggers the damage initiation and (κ) is a smooth thresh-
old function. The threshold function (κ) is introduced to
enable smooth transition from undamaged material state to
damaged material state (Li et al. 2017b) which is given by

(κ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 κ ≤ κth(
κ−κth

�κ

)2 (
3−2

κ−κth

�κ

)
κth <κ <κth + �κ

1 κ ≥ κth+�κ

(7)

where �κ denotes the bandwidth for the threshold function
to reach unity. By using this damage evolution, the damage

is initiated only when κ > κth, and κth can be considered
as the effective plastic strain at damage initiation. The
relationship between d and κ in (6) and (7) is illustrated
in Fig. 2 with different model parameters. It can be seen
that a smooth and monotonically increasing relationship
between d and κ is obtained, which is differentiable
for sensitivity analysis in optimization process. Moreover,
while κth determines when the damage starts to initiate, β

defines how fast the damage develops and �κ controls the
bandwidth of the threshold function (Fig. 2).

The flow rules for the evolution of plastic strain and
internal variables are given by

ε̇p = γ
∂φ

∂σ
= γ

s

‖s‖ = γn (8)

α̇ =
√

2

3
‖ε̇p‖ =

√
2

3
γ (9)

κ(t) = max{α(τ) | 0 ≤ τ ≤ t} (10)

where γ is the plastic multiplier that represents the amount
of plastic flow, and n is a unit vector defines the normal
to the yield surface. To complete the constitutive model,
the Karush-Kuhn-Tucker and consistency conditions are
introduced to describe the plastic loading and unloading
processes as follows

γ ≥ 0, φ ≤ 0, γ φ = 0 (KKT conditions)

γ φ̇ = 0 (Consistency condition)

(11)

The nonlocal damage model mentioned above is imple-
mented in the strain-driven finite element framework,
and the implicit backward Euler scheme is adopted to
discretize the evolution equations. The standard elastic
predictor/return-mapping algorithm is employed to solve
the local nonlinear problem (de Souza Neto et al. 2011). The
elastic predictor/return-mapping algorithm and the associ-
ated consistent algorithmic tangent moduli are provided in
Appendix A.

Fig. 2 The smooth and monotonic increasing threshold functions for
damage evolution, with different damage parameters
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3 Finite element implementation

This section presents the finite element implementation
of the nonlocal damage model discussed in Section 2. It
lays down the foundation for the optimization problem
formulation presented in Section 4 and adjoint sensitivity
analysis shown in Section 5.

3.1Weak form

For the purpose of finite element implementation, the weak
form of the problem is obtained from the strong form
following the principle of virtual work: find u ∈ U = {u :
� → R

3 | u = u on ∂�u} and α ∈ V = {α : � → R}
such that∫

�

∇sδu : σdv=
∫

�

δu.bdv +
∫

∂�σ

δu.tds, ∀δu ∈ Û∫
�

δα · αdv+
∫

�

�2∇δα.∇αdv=
∫

�

δα · αdv, ∀δα ∈ V

(12)

where δu ∈ Û = {u : � → R
3 | u = 0 on ∂�u}

and δα ∈ V represent the virtual displacement and virtual
nonlocal strain fields, respectively.

3.2 Finite element discretization

The presented implicit gradient-enhanced formulation
for elastoplasticity based on ductile damage permits a
straightforward C0-continuous discretization within a finite
element framework. In this study, plane strain condition
is assumed and an 8-node quadrilateral (Q8) element
with reduced integration (4 integration points) is utilized
to interpolate the displacement field u, while a 4-node
quadrilateral (Q4) element is used to interpolate the
nonlocal plastic strain field α, as shown in Fig. 3. This
element is referred to as Q8/4 element.

Substituting the displacement and nonlocal strain
approximations and ignoring the body forces, the finite
element discretized form can be derived as

R =
nele

A
e=1

Re = 0 with Re =
[

F e
int,u − F e

ext,u

F e
int,α

]
(13)

Q4 element nodes

Q8 element nodes

Gauss points

Fig. 3 Nodes and integration points within a Q8/4 element

where A is the standard finite element assembly operator,
nele is the total number of elements in the design domain.
The corresponding element internal forces, F e

int,u and
F e

int,α , and the external force, F e
ext,u, read

F e
int,u =

∫
�e

BT
u σdv

F e
int,α =

∫
�e

(
NT

α Nααe + �2BT
α Bααe − NT

α α
)

dv

F e
ext,u =

∫
∂�e

σ

NT
u tds

(14)

where Nu and Bu are the shape function and shape function
derivative matrices for Q8 element, respectively; Nα and
Bα are the shape function and shape function derivative
matrices for Q4 element, respectively; αe is the element
nodal vector of the nonlocal quantities, while α is the local
field defined at each integration point.

In this study, the discrete nonlinear global system in
(12) is solved in an incremental manner based on the
displacement control strategy. For each incremental step
k, Newton-Raphson (NR) method is employed to seek the
equilibrium state U k = [

uk; αk
]
. Specifically, given the

solution field predictor U k
0 at step k, the displacement at step

k is iteratively (r = 1, 2, 3, ...) updated through

�U k
r = −K−1

T R(U k
r−1)

U k
r = U k

r−1 + �U k
r

(15)

in which KT � ∂R
∂U

|U=U k
r−1

is the tangent stiffness matrix

obtained as

KT =
nele

A
e=1

Ke
T (16)

with

Ke
T =

∫
�e

⎡
⎢⎢⎣

BT
u

[
∂σ

∂ε

]
Bu BT

u

[
∂σ

∂α

]
Nα

−NT
α

[
∂α

∂ε

]
Bu NT

α Nα + �2BT
α Bα−NT

α

∂α

∂α
Nα

⎤
⎥⎥⎦ dv

(17)

where the terms ∂σ
∂ε

, ∂σ
∂α

, ∂α
∂ε

and ∂α
∂α

are given in the
calculation of CT which is the algorithmic consistent
tangent modulus provided in Appendix A. The symbol [�]
denotes an appropriate matrix-vector form of the tensor
�. The NR iteration is terminated once the global energy
residual abs(R(U k

r )
T �U k

r ) ≤ 10−12 is reached. This
tolerance is quadratically achieved using the consistent
tangent operator used in this study. Typically, 3 to 6
NR iterations are needed for finding the solution at each
displacement step.
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Fig. 4 Portal frame
configuration and finite element
discretization (unit: mm)

(a) Model configuration (b) Discretization scheme

55 55

35

25

5 5

u

nely

nelx

4 Damage constrained topology
optimization

This section presents the damage constrained topology
optimization formulation with elastoplasticity and material
nonlocal damage behaviors. In particular, density-based
method (Bendsøe 1989) is used in this study as it
provides an efficient and accurate connection between
nonlinear FEA and optimization process via explicit design
parametrization.

4.1 Material interpolation

In density-based topology optimization method, the design
domain � is discretized by means of nele finite elements
and the structure is parametrized by assigning a density
variable ρe to each element (Bendsøe and Sigmund 2003).
Here, ρe = 0 means void element and ρe = 1 indicates
solid element. The goal is to find the optimal solution
for ρe that amplifies desired structural performance while
satisfying certain constraints. However, seeking the discrete
values of ρe ∈ {0, 1} leads to an integer programming
problem which is challenging to solve. Thus, the density
variable is usually allowed to vary continuously between
void and solid, i.e., 0 ≤ ρe ≤ 1, which enables the
update by efficient gradient-based algorithms (Christensen

Fig. 5 Mesh convergence study for the portal frame using Q8/4
elements with reduced integration

3.3 Mesh convergence study

A two-dimensional portal frame with unit thickness as
shown in Fig. 4a is considered for mesh convergence study
to illustrate the mesh-independent behavior. The frame
has a sharp corner where a damage zone can develop. A
displacement of u = 1 mm is prescribed over 5 mm at the
center of the top surface. The material model has a Young’s
modulus E = 20 GPa, Poisson’s ratio ν = 0.3, initial yield
stress σy = 20 MPa, hardening modulus Kh = 2 GPa,
damage parameters β = 75, κth= 0, �κ = 0 and length
scale parameter � = 1.5 mm. Note that a relatively large β

value has been used in order to show the material softening
behavior even with a small applied displacement (u = 1
mm). More realistic damage parameter values have to be
calibrated to fit the actual material behavior, which is out of
the scope of this study. Due to the irregular geometry of the
model, the domain is discretized into nely×nelx mesh with
non-uniformly sized elements as illustrated in Fig. 4b. Mesh
convergence studies are performed using different meshes
24 × 48, 48 × 96 and 96 × 192.

The load-displacement curves from different meshes are
plotted in Fig. 5, in which typical elastoplastic hardening
and softening phenomena can be observed. Figure 5 also
shows satisfactory convergence is achieved with the mesh
96 × 192. All the meshes exhibit very similar responses,
implying the mesh independency achieved by the nonlocal
damage formulation. This nonlocal effect can be also
observed in Fig. 6, where the contours of local equivalent
plastic strain α and nonlocal damage d in 48 × 96 and
96 × 192 meshes are plotted. A strong mesh dependency
of local equivalent plastic strain α can be observed in the
left column of Fig. 6. The maximum value and distribution
of α are both changing with the mesh refinement. On the
contrary, the contours and peak values of nonlocal damage
d are almost identical in these two meshes, as shown in
the right column of Fig. 6. This mesh independent property
eventually results in similar force-displacement curves for
different meshes as shown in Fig. 5.
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Fig. 6 Contours of local
equivalent plastic strain α (left
column) and nonlocal damage d

(right column) in 48 × 96 and
96 × 192 FE mesh

(a) Mesh 48 96

(b) Mesh 96 192

and Klarbring 2008). In this problem setting with relaxed
design space, the intermediate density elements (0 < ρe <

1) usually lack physical interpretation and should be avoided
in the final designs. In the well-known SIMP method for
elastic materials (Bendsøe 1989; Zhou and Rozvany 1991),
this is achieved by assigning an inferior mechanical property
to the intermediate density elements using a penalized
material interpolation scheme. In this way, the intermediate
density elements become inefficient so that they can be
successively removed during the optimization process.

Unlike the elastic material in which only one material
parameter, i.e. Young’s modulus E, is interpolated, the
nonlocal coupled elastoplastic damage model considered
in this study involves five material parameters, namely,
Young’s modulus E, initial yield stress σy , hardening
modulus Kh, damage initiation threshold κth and damage
parameter β, that need to be appropriately interpolated.
Each material parameter characterizes specific material
behavior as illustrated in the stress-strain relation (black
line) in Fig. 7. It can be seen that increase of the values

strain

stress damage initiation

Fig. 7 Stress-strain relations of nonlocal damage model for solid
element (in black) and intermediate density element (in blue)

of E, σy , Kh and κth has positive effect in increasing the
plastic work dissipation (approximately the area enveloped
by the stress-strain curve), while increase of β value has
a negative effect in increasing the plastic work dissipation.
Therefore, to properly mimic the behavior of element with
various densities, a SIMP-like material interpolation scheme
is utilized to interpolate the four material parameters Ee,
σye , Kh

e and κthe for an element e with density ρe as
follows

Ee = Emin + (E − Emin)ρ
p1
e (18)

σye
= σymin

+ (σy − σymin
)ρ

p2
e (19)

Kh
e = Kh

min +
(
Kh − Kh

min

)
ρ

p3
e (20)

κthe = κthmin
+ (

κth − κthmin

)
ρ

p4
e (21)

where E, σy , Kh and κth are material parameters for solid
elements while Emin, σymin

, Kh
min and κthmin

are the ones for
void elements; p1 to p4 are the penalization coefficients for
each material parameters. Similar interpolations for these
material parameters were also used in the studies by Maute
et al. (1998), Bogomolny and Amir (2012) and Kato et al.
(2015). Similar to the power-law interpolation for softening
parameters used in (Kato et al. 2008), the damage parameter
βe for element e is interpolated in an opposite way as
follows

βe = βv − (βv − β)ρ
p5
e (22)

in which β and βv are the damage parameters for solid
element and void element, respectively and p5 is the
corresponding penalization parameter. By adopting the
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Fig. 8 Uniaxial test of a single
Q8/4 element with various
densities: a problem
configuration; and b
strain-stress curves

u

1 mm

1 mm

1

2

(a) (b) 

above-mentioned material interpolation scheme, the stress-
strain relation for an intermediate density element (i.e.
ρe < 1) is illustrated in blue line in Fig. 7. Using this
scheme, it can be observed that the intermediate density
element is inefficient in dissipating plastic work and easier
to be damaged than the solid element (ρe = 1), which is
physically plausible.

Special attention should be drawn to the fact that even if
the proposed material interpolation scheme is able to scale
down the plastic work dissipated by the intermediate density
elements in a physically consistent manner, the equivalent
plastic strain α is not necessarily low in these elements since
their yield stress is also scaled down by the densities. The
high value of α may cause convergence difficulties for NR
method in the nonlinear FEA, which eventually interrupts
the optimization process. In many previous studies (Maute
et al. 1998; Wallin et al. 2016; Amir 2017), this issue was
addressed by setting a smaller p2 and p3 values than p1

value, which postpones the intermediate density elements
from reaching their yield limits. In our previous studies
(Li et al. 2017b; Li and Khandelwal 2017), the same p1,
p2 and p3 values were utilized without encountering any
problem by using an adaptive step size strategy in the global
NR solver (de Borst et al. 2012). However, as the nonlocal
damage is influenced by local α, and β and κth values, in
this study, the penalization parameter setting of p1 = 3,
p2 = p3 = 2.5 and p4 = p5 = 2 is employed. The
smaller p4 and p5 values are considered to stabilize the NR
process when large intermediate densities exist. Meanwhile,
the material parameters for void elements are set as Emin =
10−8E, σymin

= 10−4σy and Kh
min = 10−4Kh to increase

the yield stress and stiffness for void elements. The value
for κthmin

= 0.001 and βv = 50 are used in the topology
optimization studies.

A simple example is considered to show the stress-strain
behavior based on the aforementioned material interpolation
scheme. To this end, a uniaxial tensile test is carried out on
a Q8/4 element with the boundary conditions illustrated in

Fig. 8a. The reference material has Young’s modulus E =
20 GPa, Poisson’s ratio ν = 0.3, initial yield stress σy = 20
MPa, hardening modulus Kh = 2 GPa, damage parameters
β = 15, κth = 0.01 and �κ = 0.002, which are the same
as the ones used in Section 6. Figure 8b reports the stress-
strain (σ11 vs. ε11) curves for various element densities
up to the applied displacement u = 0.12 mm. It can be
observed that the plastic work dissipation capacity decreases
with the decrease in density, i.e. intermediate densities are
less effective. Furthermore, at very small densities stress-
strain behavior is linear as a higher lower bound for yield
stress (σymin

= 10−4σy) is used. This helps to avoid
excessive plastic deformation in low-density elements, and
thus stabilizes the NR solution process.

4.2 Scaling of nonlocal parameters

In the density-based material interpolation scheme, the
void or low-density elements are considered in both the
FEA analyses and optimization process. However, as
discussed above, these elements are modeled with very
low stiffness and strength so that they have insignificant
effect on FEA response. This approach is also termed as
fictitious domain approach. As the finite element mesh
is fixed throughout the topology optimization process,
this approach saves significant computational effort as
the remeshing is avoided. It is worth pointing out that
although the adopted material interpolation scheme is
able to characterize the mechanical behavior for single
element, the nonlocal PDE in (1)2 still accounts for the
plastic strains contributed by the void/low-density elements.
However, these “artificial” elements are padded with weak
material and are excluded in the final designs. Therefore,
these low-density elements should not affect the nonlocal
plastic-strain and damage distribution in the solid elements.
To this end, for an accurate implementation based on
the fictitious domain approach while getting accurate
structural softening response, the nonlocal effect of the
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Fig. 9 C-shaped cantilever with
low density elements inside: a
design domain (unit: mm); b
damage contour with
conforming mesh; c damage
contour without the nonlocal
parameters scaling; and d
damage contour with the
nonlocal parameters scaling

50

u

100

25 50

25

Ωlow

(a)

(c) 0.663 (d) 0.672

(b) 0.672

void/low-density elements is suppressed by scaling the
length scale parameter �e of element e as

�e = ρ
p6
e � (23)

where � is the length scale parameter for solid ele-
ment, ρe is the element density and p6 is the scaling
exponent. Through (23), nonlocal plastic strains in the
void/low-density elements will not be influenced by the
neighboring solid elements. This idea was also used in our
previous study (Li et al. 2017c) in which the length scale
parameter for gradient elastic material was scaled in a sim-
ilar way. In addition, the local equivalent plastic strain α of
the void/low-density elements in the nonlocal equation is
also suppressed and (1)2 is modified as

α − �2
e∇2α = p

p7
e α (24)

where p7 is the corresponding scaling exponent. By
scaling α on the right hand side of (24), the nonlocal
equivalent plastic strain α as well as the nonlocal damage
in solid element will not account for the artificial α in
the surrounding void/low-density elements. For all the
considered examples, the exponent values of p6 = p7 = 3
are used.

To show the necessity of scaling the nonlocal parameters,
a C-shaped cantilever is investigated as illustrated in Fig. 9a.
The cantilever has a hollow region �low in the middle and
is fixed at the left edge. An upward displacement of u = 5
mm is applied over 5 mm at the right bottom as shown. The
material parameters considered here are E = 20 GPa, ν =
0.3, Kh = 2 GPa, β = 75, βv = 100, κth = 0.005, �κ =
0.002 and � = 7.5 mm. The simulations are performed using
a conforming mesh with 3750 square elements, wherein

the �low is excluded from the analyses and only the solid
region is meshed, as well as using a density-based fictitious
domain approach using a fixed 100 × 50 mesh with 5000
elements. For the latter case, a small density ρe = 10−6

is prescribed to the elements in the region of �low, while
the solid elements have density ρe = 1. The damage map
in the C-shaped cantilever with conforming mesh is shown
in Fig. 9b. It is observed that the damage is located across
the left side of horizontal arm and the maximum damage
is dmax = 0.672. When fictitious domain approach is
used without scaling the nonlocal parameters, the damage
contours shown in Fig. 9c are significantly different from
the true one in Fig. 9b. This is primarily due to the fact
that the fictitious elements in �low help to nonlocalize
the damage from their neighboring solid elements. As a
result, the damage inside the solid elements is decreased, i.e.
dmax = 0.663, while the damage inside the void element
increases, as shown in Fig. 9c. Using the proposed scaling
scheme given in (23) and (24), the damage contours shown
in Fig. 9d can accurately capture the damage occurrence
locations as well as the peak damage value with dmax =
0.672.

The load-displacement curve for the C-shaped cantilever
using conforming mesh, fictitious domain approach with
and without the proposed scaling scheme are also plotted
in Fig. 10. One can see that although the curves are
nearly identical in the elastic and early plastic hardening
stages, fictitious domain approach without using the scaling
scheme (blue-dot line) deviates from the correct response
(red line) once the softening starts at about 2.6 mm. This
discrepancy gradually grows and eventually leads to a
significant difference at the design displacement of 5 mm.
With the proposed scaling scheme, the FEA is capable
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Fig. 10 Load-displacement relations of the C-shaped cantilever using
different schemes

of generating the result (black-hollow line) that is close
to the one from conforming mesh, and the discrepancy is
negligible as shown in Fig. 10.

4.3 Density filter

Density filter (Bruns and Tortorelli 2001; Bourdin 2001)
is further utilized in this work to avoid the checkerboard
issue and to ensure the mesh independency for the optimized
design. It can be expressed in a matrix form as

ρ = Wx (25)

where ρ and x are the vectors collecting all the density and
design variables, respectively; W is the filtering matrix with
the following components

Wej = wejVj∑nele

j=1 wejVj

(26)

where Vj is the volume of element j and wej is the distance
weighting coefficient defined as

wej = max
{
rmin − ‖Xe − Xj‖2, 0

}
(27)

in which Xe denotes the centroid coordinate of element e

and rmin is the prescribed density filter radius. The matrix
W only needs to be calculated once prior to the optimization
process, and the stored information can be reused within
each optimization iteration.

4.4 Problem formulation

The objective of topology optimization is to minimize the
material volume fraction while satisfying the constraints
of target minimum plastic work dissipation together with
material damage constraints. The aim is to find the design
with high plastic work dissipation capacity per unit material
volume while limiting amount of the damage to achieve

robust designs. To this end, the optimization problem is
formulated as

min
0≤x≤1

f0(x) = 1

V0

(
nele∑
e=1

Veρe(x)

)

s.t. f1(x) = 1 − Wp(x)

W
p ≤ 0

f2(x) = Dmax(x) − D ≤ 0

with Rk(U k, U k−1, vk, vk−1, ρ(x)) = 0

H k(U k, U k−1, vk, vk−1, ρ(x)) = 0

k = 1, 2, ..., n

(28)

In (28), x ∈ R
nele is the vector of design variables

that is updated by the optimizer. The volume fraction
objective function f0(x) is the summation of multiplication
of element volume Ve and density ρe over nele elements,
divided by the total volume of the design domain V0. f1(x)

is the plastic work constraint, requiring that the plastic
work Wp(x) should be larger than a prescribed value W

p
.

The plastic work, Wp, is expressed in discrete form using
trapezoidal rule as

Wp(x)=
n∑

k=1

(
nele∑
e=1

(nipt∑
r=1

1

2
(σ k

er
+σ k−1

er
) : (ε

pk

er
−ε

pk−1

er
)wr

))
(29)

where nipt = 4 is the number of integration point within
one finite element.

The damage constraint is enforced using the constraint
function f2(x). According to the material interpolation
scheme shown in Section 4.1, the damage values in low-
density elements can be high, which would keep the
topology from a clear 0/1 design. To allow the optimizer
to freely remove material from low-density regions while
still being able to satisfy the damage constraints, a relaxed
measure of damage is introduced as follows

Der = ρ
q
e dn

er
(30)

where dn
er

is the final step (k = n) nonlocal damage at the
rth integration point in element e, ρe is the element density,
and q is the relaxation parameter. A value of q = 3 is
used in this study and a similar relaxation scheme has also
been considered in James and Waisman (2014). By using
the relaxed nonlocal damage Der at each integration point,
the global maximum damage measure Dmax is constructed
using p-norm function to approximate the actual maximum
damage dmax as follows

Dmax =
(

nele∑
e=1

[nipt∑
r=1

(Der )
pa

]) 1
pa

≈ max{Der } = dmax

(31)
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where pa is the aggregation parameter. It is worth noting
that the p-norm function shown in (31) approaches the
true maximum value dmax from above as pa increases.
This means that the true maximum damage inside the
design domain (dmax) is always lower than the aggregated
value (Dmax), and therefore, by constraining Dmax under
a prescribed limit D ((28)3) always leads to a conservative
design. To better control the local damage, a regional
aggregation method can be used (Parı́s et al. 2009; Le et
al. 2010; Holmberg et al. 2013). However, in this study a
high value of pa is used to provide a good approximation
of the maximum damage. On the other hand, a very
large value of pa makes the global constraint function
highly non-convex. To have a balance between these two
contradictory features, pa = 20 is used throughout this
study.

Finally, Rk = 0 is the global equilibrium equation that
should be satisfied at each load step k, while H k = 0
represents the extra constraints from constitutive equations
at step k. Also, n is the total number of analyses steps used
in the FEA, U k is the global solution vector at step k while
vk are the auxiliary variables used to describe the constraints
H k at step k. The definitions of H k and vk will be further
elaborated in Section 5. Using the nested solution approach
(Christensen and Klarbring 2008), only the plastic work
constraint f1(x) ≤ 0, damage constraint f2(x) ≤ 0 and the
box constraints 0 ≤ x ≤ 1 are enforced by the gradient-
based optimizer, while the constraints Rk = 0 and H k =
0 are directly enforced during the finite element solution
process. It is also noted that a purely plastic topology
optimization formulation can be conveniently recovered
from (28) by using a large damage initiation threshold κth,
zero penalty factor for the damage threshold p4, and by
ignoring the information of constraint f2 in the optimization
process. To recover the purely plastic design, κth = 1000
and p4 = 0 are used in this study. The topology designs
from this purely plastic topology optimization formulation
are used as reference designs for comparison purposes in
Section 6.

5 Path-dependent sensitivity analysis

Since the nonlocal coupled elastoplastic damage model
is path-dependent, the design sensitivities for updating
the optimization problem (28) should account for the
history information of each converged incremental step. The
adjoint method is preferred than the direct differentiation
method for sensitivity analysis (Strang 2007) in topology
optimization problems, as the number of design variables far
exceeds the number of objective and constraint functions.
In this section, the detailed derivation of path-dependent
sensitivities is provided, which is based on the adjoint

method framework for transient nonlinear coupled systems
(Michaleris et al. 1994).

Consider a generalized target function F in terms of
solution variable U k , auxiliary variables vk and density
variable ρ. An augmented function F̂ is first constructed as

F̂ = F(Un, ...,U1, vn, ..., v1, ρ)

+
n∑

k=1

λkT

Rk(U k, U k−1, vk, vk−1, ρ)

+
n∑

k=1

μkT

H k(U k, U k−1, vk, vk−1, ρ)

(32)

where λk and μk are the adjoint variables associated with
the residual constraints Rk = 0 and H k = 0, respectively.
Since Rk = 0 and H k = 0 are satisfied for each step k,
F = F̂ and dF/dρ = dF̂ /dρ. Taking derivative of F̂ with
respect to ρ and eliminating all the coefficients that contain
the implicit derivative terms dU k/dρ and dvk/dρ yield

dF

dρ
= dF̂

dρ
= ∂F

∂ρ
+

n∑
k=1

(
λkT ∂Rk

∂ρ
+ μkT ∂H k

∂ρ

)
(33)

where the adjoint variables λk and μk are calculated in a
backward manner from the last step k = n to the first step
k = 1 using the following adjoint systems

step n :

⎧⎪⎨
⎪⎩

∂F

∂Un + λnT ∂Rn

∂Un + μnT ∂H n

∂Un = 0

∂F

∂vn
+ λnT ∂Rn

∂vn
+ μnT ∂H n

∂vn
= 0

step k :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂U k
+ λk+1T ∂Rk+1

∂U k
+ μk+1T ∂H k+1

∂U k

+ λkT ∂Rk

∂U k
+ μkT ∂H k

∂U k
= 0

∂F

∂vk
+ λk+1T ∂Rk+1

∂vk
+ μk+1T ∂H k+1

∂vk

+ λkT ∂Rk

∂vk
+ μkT ∂H k

∂vk
= 0

k = n − 1, ..., 2, 1

(34)

Considering the additional density filter ρ = Wx given
in (25), the design sensitivities is calculated using the chain
rule as

dF

dx
= dF

dρ

dρ

dx
= dF

dρ
W (35)

Note that F can be any function of interest such as the
functions f0, f1 and f2 in (28). By inspecting (32) to (34),
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the following explicit derivatives are needed to complete the
adjoint sensitivity analysis

For F : ∂F

∂ρ
,

∂F

∂U k
,

∂F

∂vk

For Rk : ∂Rk

∂ρ
,
∂Rk

∂U k
,

∂Rk

∂U k−1
,
∂Rk

∂vk
,

∂Rk

∂vk−1

For H k : ∂H k

∂ρ
,
∂H k

∂U k
,

∂H k

∂U k−1
,
∂H k

∂vk
,

∂H k

∂vk−1

(36)

The definitions of F , Rk and U k are usually fixed
by the optimization problem formulation and underlying
nonlinear system. Therefore, the definitions of H k and vk

will determine the final expressions for the required explicit
derivatives listed above. As discussed in Section 3.2, the
global solution variable U k at current step k includes both
displacement field uk and the nonlocal equivalent plastic
strain field αk , which is arranged as

U k =
[

uk

αk

]
(37)

Since displacement control strategy is used (t = 0) and
body forces are ignored (b = 0), with the scaling scheme
for nonlocal parameters in (23) and (24), the global residual
Rk can be reformulated as

Rk =
nele

A
e=1

Rek = 0 with

Rek =
⎡
⎣Rek

u

Rek

α

⎤
⎦ =

⎡
⎢⎢⎣

nipt∑
r=1

BT
ur

σ k
er

wr

nipt∑
r=1

(
NT

αr
Nαr α

k
e +(ρ

p6
e �)2BT

αr
Bαr α

k
e −ρ

p7
e NT

αr
αk

e

)
wr

⎤
⎥⎥⎦

(38)

Unlike U k and Rk , local residual H k and auxiliary
variables vk are defined at each integration point. The
auxiliary variable vk is defined as a collection of Cauchy
stress σ k , plastic strain εpk

, equivalent plastic strain αk ,
plastic multiplier increment �γ k and nonlocal damage
measure κk , which are arranged in a vector form as

vk =
⎡
⎢⎣

vk
1
...

vk
nele

⎤
⎥⎦ with vk

e =

⎡
⎢⎢⎢⎢⎢⎣

vk
e1

vk
e2

vk
e3

vk
e4

⎤
⎥⎥⎥⎥⎥⎦ and vk

er
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ k
er

ε
pk

er

αk
er

�γ k
er

κk
er

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

The local residual H k = 0 is defined as

H k =
⎡
⎢⎣

H k
1

...
H k

nele

⎤
⎥⎦with H k

e =

⎡
⎢⎢⎢⎢⎢⎣

H k
e1

H k
e2

H k
e3

H k
e4

⎤
⎥⎥⎥⎥⎥⎦ and H k

er
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hk
er1

hk
er2

hk
er3

hk
er4

hk
er5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

where H k
er

is different from elastic step to plastic step. For
elastic step, it is

H k
er

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk
er1

= σ k
er

− C
e :
(
εk

er
− ε

pk

er

)
= 0

hk
er2

= ε
pk

er
− ε

pk−1

er
= 0

hk
er3

= αk
er

− αk−1
er

= 0

hk
er4

= �γ k
er

= 0

hk
er5

= κk
er

− max{κk−1
er

, Nαr α
e} = 0

(41)

while for plastic step, it is

H k
er

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk
er1

=σ k
er

− C
e :
(
εk

er
− ε

pk

er

)
= 0

hk
er2

=ε
pk

er
− ε

pk−1

er
− �γ k

er
nk

er
= 0

hk
er3

=αk
er

− αk−1
er

−
√

2

3
�γ k

er
= 0

hk
er4

=‖sk
er

‖−
√

2

3
(1−d(κk

er
))
(
σyer

+ζ(αk
er

)
) = 0

hk
er5

=κk
er

− max{κk−1
er

, Nαr α
e} = 0

(42)

It can be seen that H k
er

is constructed by the discrete
constitutive relations at an integration point. Specifically,
hk

er1
denotes the stress-strain relation; hk

er2
and hk

er3
are

the updates for plastic strain and equivalent plastic strain,
respectively; hk

er4
represents the yield criterion and hk

er5

indicates the update of nonlocal damage measure. The
detailed expressions for the explicit derivatives in (36) are
given in Appendix B.

6 Numerical examples

Numerical examples are presented in this section to investigate
the effectiveness of the proposed elastoplastic nonlocal-
damage constrained topology optimization method on
different problem configurations. In all the examples, plane
strain condition with unit thickness is assumed, and the
design domains are discretized by Q8/4 elements with
4 point reduced integration, as discussed in Section 3.2.
The reference elastoplastic material for solid elements has
Young’s modulus E = 20 GPa, Poisson’s ratio ν = 0.3,
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(a) (b) (c)

uNo. 1 ~ 48

No. 49 ~ 576

0.157

Fig. 11 Half portal frame model for sensitivity verification: a design domain and element numbering; b non-homogenous density distribution;
and c damage distribution

initial yield stress σy = 20 MPa and hardening modulus
Kh = 2 GPa. The damage parameters for the candidate
material are set as β = 15, κth = 0.01 and �κ = 0.002
with the nonlocal length scale parameter � = 2 mm, unless
otherwise stated. Note that � is a material property and can
be calibrated to experimental results. The selected � value
is used to demonstrate the idea of the proposed method.
For further details about the nonlocal parameter calibration,
readers are referred to the study by Le Bellégo et al. (2003).

In the nonlinear FEA, an adaptive step size strategy is
employed to ensure the convergence of NR method within
each incremental step (de Borst et al. 2012). In general, 25

to 30 number of increments are needed to finish the FEA.
The optimization problems are updated using the method
of moving asymptotes (MMA) (Svanberg 1987; Li and
Khandelwal 2014) with default parameter settings. All the
optimizations are initiated with homogenous solid designs
(i.e. xe = 1), and terminated after 400 iterations unless
otherwise stated. The FEA, adjoint sensitivity analyses
and optimizations are performed on a 64-bit dual Intel�

quadcore machine with 3.06 GHz processors and 24GB
RAM, utilizing Matlab� based in-house finite element
library CPSSL-FEA developed at the University of Notre
Dame.

(a) (c)

(b) (d)

Fig. 12 Sensitivity comparison between adjoint method and central difference method: a dWp/dρe; b relative error of dWp/dρe; c dDmax/dρe;
and d relative error of dDmax/dρe
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50

u

100

Fig. 13 Design domain of the cantilever beam (unit: mm)

6.1 Sensitivity verification

A preliminary study is performed to assess the accuracy
of the adjoint sensitivity analysis derived in Section 5.

For this purpose, left half of the portal frame shown
in Fig. 4a is utilized as the verification model, whose
boundary conditions are depicted in Fig. 11a. The design
domain is discretized by 576 (nelx × nely = 24 × 24)
elements. A downward displacement of u = 3 mm is
applied over 3 nodes on the right top surface. For an
element-wise sensitivity comparison, the finite elements
are numbered in the order from the left to the right,
and from the bottom to the top. The first 1 to 48
uniformly sized square elements are numbered within the
left rectangular region, while the rest 49 to 576 non-
uniformly sized elements are numbered within the right
wedge region, as indicated in Fig. 11a. To verify the
sensitivity under a more realistic optimization condition, the
non-homogeneous density distribution shown in Fig. 11b is

Fig. 14 Optimized cantilever
beams and corresponding
damage distributions with
different damage constraints: a
plastic design; b linear design; c
D = 0.2 design; d D = 0.1
design; and e D = 0.0.075
design. (Note that scales of
damage plots are varying)

(b) 0.451

(c) 0.179

(d) 0.090

(e) 0.067

32.4

6.3 mm

6.3 mm

29.37.8 mm

7.8 mm

16.29.5 mm

9.5 mm

15.59.9 mm

10.2 mm

(a) 0.368

32.1
6.1 mm

6.1 mm
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Fig. 15 Convergence histories
for the optimized cantilever
beam in the case of Fig. 14(e): a
objective function and
intermediate designs; and b
constraint functions

(a) 

(b) 

is correctly implemented and can be safely used in the
proposed topology optimization method.

It is important to note that the existence of sensitivities
is not guaranteed at the transitions from elastic behavior to
plastic behavior, as well as due to the use of other non-
differentiable operators. Thus, the design sensitivity can be
theoretically discontinuous. However, such discontinuities
have negligible impact on the numerical accuracy of overall
design sensitivities, as these discontinuities are encountered
locally at integration points and a limited number of such
discontinuities does not cause a huge loss of accuracy.
Moreover, in numerical simulations, it is rare to exactly
hit the discontinuous point due to the finite numerical
precision. As has been shown in previous studies (Li and

Fig. 16 Load-displacement curves of the optimized cantilever beams
up to the failure points

checked. The corresponding damage distribution with above
problem settings is given in Fig. 11c. It can be seen that the
damage has initiated at the locations where the displacement
is applied, where the portal frame is supported as well as
the reentrant corner. The maximum damage dmax = 0.157
indicates the sensitivities to be verified next has already
accounted for the plasticity and damage initiations.

According to (28), the sensitivities of plastic work (Wp)
and relaxed aggregated maximum damage (Dmax) with
respect to density variable (ρe) are of particular interest
to verify. To this end, sensitivities computed from adjoint
method are compared with the ones obtained from central
difference method. A perturbation value of 10−6 is used
in the central difference method. It took 62.5 sec for the
adjoint method to obtain all the sensitivities while the
time is 34892.2 sec for the central difference method.
Obviously, the adjoint sensitivity analyses are indispensable
in this case. The element-wise comparisons of dWp/dρe

and dDmax/dρe between these two methods are plotted in
Fig. 12a and c, respectively. It can be observed that the
sensitivity curves of both quantities are practical identical
and overlap with each other. The relative errors between
the sensitivity values from the two methods are plotted
in Fig. 12b and d, respectively. The plots show that the
maximum relative errors for dWp/dρe and dDmax/dρe

are 6.83 × 10−4 and 2.05 × 10−6, respectively. Thus,
the adjoint sensitivity results match the central difference
results with high accuracy. Based on this verification study,
it can be concluded that the adjoint sensitivity analysis
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(a) Plastic design

(c) 0.2 design (d) 0.1 design (e) 0.075 design

(b) Linear design

Fig. 17 Damage distributions of the optimized cantilever beams at the failure points

Khandelwal 2017; Li et al. 2017a, b; Zhang et al. 2017;
Zhang and Der Kiureghian 1993; Michaleris et al. 1994) as
well as the sensitivity verification results presented above,
high accuracy is preserved during the adjoint sensitivity
analysis.

6.2 Example 1: cantilever beam

As the first topology optimization example, the proposed
method is applied to design a cantilever beam as illustrated
in Fig. 13. The rectangular design domain is discretized into
144 × 72 equally sized square Q8/4 elements. A downward
design displacement of u = 5 mm is applied over 13 nodes
on the right bottom surface. The minimum plastic work to
be dissipated is specified as W

p = 750 J and the density
filter radius is set to rmin = 2 mm.

For the sake of comparison, the von Mises plastic result
without considering the coupled damage is first generated.
Figure 14a presents the optimized plastic design and the
corresponding damage distribution reanalyzed using the
nonlocal damage model under the design displacement u =
5 mm. Note that only the elements with ρe ≥ 0.5 are
presented in the damage distributions throughout the paper.
It is observed that the damage in plastic design is located
at the regions where the cantilever is supported and the
displacement is applied, with the maximum damage value
dmax = 0.368.

Another linear elastic reference design is also generated
for this cantilever example. Since linear elastic model
does not have the plastic energy measure, the minimum
compliance formulation with volume fraction constraint
the same as the optimized one from plastic design (i.e.,
Vf = 0.4302), is used to generate the linear design for
comparison. As shown in Fig. 14b, a different design is

achieved in the linear case, but with higher maximum
damage value (dmax = 0.451) compared to the plastic
design. In order to mitigate the damage, the designs from
damage constrained formulation enforcing three constraint
thresholds D = 0.2, 0.1 and 0.075 are generated and
depicted in Fig. 14c to e, respectively, together with
their damage contour plots. Different material layouts are
obtained as compared to the plastic and linear designs
in order to satisfy the additional damage constraint. For
example, thicker horizontal members are present at the
supports in order to reduce the damage, and the thickness
increases from approximately 6.3 mm to 10.2 mm, as
measured in Fig. 14. Meanwhile, the right cantilever tip
member becomes more vertical to mitigate the damage at
the load application region, and the vertical angle changes
from 32.4◦ to 15.5◦. This vertical member also offers a
better force transition path through the entire structure to the
supports. These features become more prominent with more

60

40

40 60

u

Fig. 18 Design domain of the L-shaped bracket (unit: mm)
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(a)

(b)

0.713

0.173

0.063

(c)

Fig. 19 Optimized L-shaped brackets and corresponding damage
distributions with different damage constraints: a plastic design; b
D = 0.2 design; and c D = 0.075 design (Note that scales of damage
plots are different)

restricted damage constraint thresholds, say D = 0.075 as
shown Fig. 14e.

It is worth pointing out that although the damage
constrained designs are all feasible in terms of the
aggregated damage constraints Dmax , as confirmed by the
fifth column in Table 1, the actual maximum damage
dmax in the design is smaller than the prescribed damage
thresholds. This is due to the fact that the p-norm

Table 1 Performance comparison of the optimized cantilever beam designs

Figure No. Problem � (mm) Volume fraction (Vf ) Dmax dmax Maximum load (N) Ductility (mm) W
p
ult (J)

14a Plastic design 2 0.4302 0.4092 0.368 289.5 7.92 1829.5

14b Linear design 2 0.4302 0.5039 0.451 260.0 6.41 1339.1

14c D = 0.2 2 0.4351 0.2000 0.179 358.9 13.10 3646.5

14d D = 0.1 2 0.4541 0.1000 0.090 378.8 15.47 4853.4

14e D = 0.075 2 0.4626 0.0750 0.067 385.7 16.44 5001.0

approximation overestimates the actual maximum damage,
as discussed in Section 4.4.

Figure 15 presents the objective and constraint functions
convergence histories of the damage constrained design
with D = 0.075 in Fig. 14e together with several
intermediate results. Only first 200 iterations of the
constraint function histories are plotted for the sake of
clarity as the major convergence of the constraint functions
occurs within the first 50 iterations. It can be seen in
Fig. 15b that damage constraint is infeasible in the initial
homogenous design while the plastic work constraint is
inactive. With the reduction of material volume fraction
and material redistribution, the damage constraint feasibility
is gradually fulfilled and the plastic work dissipation
decreases to the prescribed value (W

p
). Convergence

oscillations take place mostly during the first 20 iterations,
indicating the layout adjustment in the intermediate designs.
Smooth convergences are obtained after 50 iterations and
all the constraints are feasible and active in the final
design.

To investigate the ultimate performance of the optimized
cantilever designs, the finite element analysis on each
optimized design up to the failure point, i.e., dmax =
1, is carried out. Figure 16 shows the load-displacement
curves for each design wherein the typical elastoplastic
hardening and softening behavior is captured in the
structural responses. It can be observed that although the
performance in terms of load-displacement behavior of each
design is similar up to the design displacement u = 5
mm, the damage distributions are significantly different (see
Table 1) which in turn lead to significant differences in
ultimate load carrying capacities. In general, by limiting
the damage development at the design displacement, the
optimized design has higher load-carrying capacity, better
ductility together with postponed failure point compared
with the plastic and linear designs. Figure 17 exhibits
the damage distributions for cantilever beam designs at
their failure points. One can see that the ultimate failure
location switches from design to design due to the different
optimized material layout. Moreover, the designs with more
restricted damage constraints of D = 0.1 and 0.075 have
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Fig. 20 Convergence histories
for the optimized L-shaped
bracket in the case of Fig. 19c: a
objective function and
intermediate designs; and b
constraint functions

(a) 

(b) 

a much widely spread out damage at the failure points
(Fig. 17d and e) compared to other three designs, indicating
a better material utilization.

Table 1 summarizes the optimized material volume
fraction and ultimate performance of each cantilever beam
shown in Fig. 14. One can see that the purely plastic
design requires the least amount of material with volume
fraction of 0.4302 to dissipate the prescribed amount of
plastic work. If the maximum damage is constrained to
be smaller than 0.2, more material (Vf = 0.4351) is
needed to satisfy the damage constraint. However, with only
1.14% more material, the damage constrained design is
able to achieve 23.97% increase in maximum load capacity
and 65.40% increase ductility. Here, ductility is defined
as the displacement at the maximum load point. More
importantly, 3646.5 J plastic work can be dissipated before
the complete failure, which is 99.32% more than the plastic
design (1829.5 J). This trade-off is more prominent if more
restricted damage constraint is considered, as indicated by
the fourth and fifth row in Table 1. It can be observed
that the minimum compliance design performs worst in
terms of all indexes. This is expected since it is designed
for minimum compliance instead of energy dissipation and
damage mitigation.

6.3 Example 2: L-shaped bracket

The second example has L-shaped design domain as shown
in Fig. 18. The design domain is discretized by 9216 (120×
48+72×48) uniform square Q8/4 elements and a downward

displacement u = 10 mm is applied over 13 nodes on
the right top tip to relax the stress concentration at the
loading points. The minimum plastic work to be dissipated
is specified as W

p = 1000 J while the density filter radius
is set to rmin = 2 mm.

Solving the purely plastic formulation with no damage
constraint yields the optimized design shown in Fig. 19a.
The corresponding damage distribution in this plastic
design, obtained by reanalyzing this design with elasto-
plastic damage model, exhibits a damage at the location
where the displacements are applied, and the maximum
damage value reaches dmax = 0.713. Next, by constrain-
ing the maximum damage below D = 0.2 in the damage
constrained formulation, the optimized design and damage
map are reported in Fig. 19b. This design features a vertical
supporting member under the location where displacement
is applied to provide a better load transition path. As a result,

u

8 ele

4 ele

Fig. 21 Elements in black are linear elastic and are excluded from
optimization
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0.248

0.160

(a)

(b)

0.063

(c)

Fig. 22 Optimized L-shaped brackets with element exclusion strategy,
and corresponding damage distributions with different damage
constraints: a plastic design; b D = 0.2 design; and c D = 0.075
design (Note that scales of damage plots are different)

the damage concentration is significantly relieved, together
with a more uniformly distributed damage. The maximum
damage inside the domain is successfully constrained to
dmax = 0.173, which is below D = 0.2. Additional damage
constrained design with a more restricted damage thresh-
old D = 0.075 is shown in Fig. 19c. Besides the vertical
supporting member, topology with an additional inclined
branching member and thicker inner vertical member is
obtained to constrain the maximum damage to dmax =

Table 2 Performance comparison of the optimized L-shaped bracket designs

Figure No. Problem � (mm) Volume fraction (Vf ) Dmax dmax Maximum load (N) Ductility (mm) W
p
ult (J)

19a Plastic design 2 0.3424 0.7891 0.713 163.1 11.64 1771.7

19b D = 0.2 2 0.3580 0.2000 0.173 219.2 21.18 3519.5

19c D = 0.075 2 0.3915 0.0750 0.063 249.3 27.74 4900.3

22a Plastic design 2 0.3149 0.2787 0.248 208.7 16.18 2779.7

22b D = 0.2 2 0.3175 0.2000 0.160 234.0 21.29 3424.3

22c D = 0.075 2 0.3419 0.0750 0.063 248.3 22.86 4030.8

0.063. It is also observed that the damage is much more
uniformly distributed in the design domain.

The iteration histories of objective and constraint
functions of the damage constrained design with D =
0.075 in Fig. 19c are plotted in Fig. 20, together with
selected intermediate results. Additional 300 iterations are
executed on this case, as there were some gray area after
400 iterations. Again, the constraint functions convergence
histories are plotted for 200 iterations, as no obvious
oscillation occurs after 50 iterations. It is found that the
objective function value decreases steadily and smoothly
after 50 iterations, and the constraints are feasible and active
when optimization is finished.

The load-displacement curves of the optimized L-shaped
brackets are plotted in Fig. 23a until final failure to show
the ultimate behavior. Representative response curves with
softening behavior are again obtained for each case. One
can see that the response diverges after the elastic phase
in order to satisfy the damage constraints under the design
displacement. The damage in plastic design evolves quickly,
and this design reaches limit load and failure point right
after the design displacement of u = 10 mm due to the
high concentrated damage. On the contrary, the damage-
constrained designs have a much more postponed softening
behaviors and final failure points. The reason for this
behavior can be deduced from the damage maps of the
designs at their failure points as presented in left column of
Fig. 24. The damage distribution and failure inside plastic
design shown in left column of Fig. 24a is localized and
the material is not fully utilized. Meanwhile, the failure
locations are changing in other two damaged constrained
designs with more evenly distributed damage and better
material utilization (left column of Fig. 24b and c). This
finally results in a better performance in both the overall
load-carrying capacity and ductility, as shown in Fig. 23a.

Although the damage concentration in the vicinity of the
applied displacements can be alleviated by distributing the
displacements over multiple element nodes, it can be seen
from Fig. 19a that the damage is still mostly accumulated
around this region. The damage-constrained formulation
tried to reconfigure this region into a vertical member to
decrease the damage, as can be seen in Fig. 19b and c;
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Fig. 23 Load-displacement
curves of the optimized
L-shaped brackets up to the
failure points (� = 2 mm): a
without element exclusion
strategy; and b with element
exclusion strategy

(a) (b)

however, the damage concentration is still present at the
location where displacements are prescribed. To alleviate
local strain concentrations, an additional exercise is carried
out in which a selected group of elements are considered to
be elastic and are excluded from the optimization process

(a) Plastic design

(b) 0.2 design

(c) 0.075 design

Fig. 24 Damage distributions of the optimized L-shaped brackets at
the failure points: (left column) without element exclusion strategy;
and (right column) with element exclusion strategy

(Fig. 21). Similar element exclusion strategy has been used
by Holmberg et al. (2013) in stress constrained topology
optimization. In this study, an “8 × 4” block of elements at
the upper right corner are excluded, as shown in Fig. 21.

The optimized L-shaped brackets with the element
exclusion strategy are shown in Fig. 22. It can be seen
from Fig. 22a that the damage in the plastic design is no
longer concentrated at the displacement-applied location
and the maximum damage under the design displacement
is significantly decreased to dmax = 0.248. This indicates
a better load transferring path achieved by the element
exclusion strategy. Moreover, much less material is needed
(Vf = 0.3149 in Table 2) in this case as the damage
is more evenly distributed. Different topologies are also
obtained for the cases of D = 0.2 and 0.075 with less
material consumption (Table 2) as reported in Fig. 22b and
c, compared with the ones without the element exclusion
strategy in Fig. 19b and c. To show the ultimate behavior,
the load-displacement curves of the optimized L-shaped
brackets with the element exclusion strategy until the failure
points is plotted in Fig. 23b. It can be again concluded that
the damage constrained designs have better performance
over the plastic design in terms of the overall load-carrying
capacity and ductility. The right column of Fig. 24 shows
the damage distributions at the failure points for this case.

The first 3 rows in Table 2 shows the performance com-
parison of the optimized L-shaped brackets without element
exclusion strategy. As expected, the enforcement of the
damage constraint comes at the cost of increased amount
of material being used, as indicated by the third column
of Table 2. Compared to the material volume fraction of
0.3424 needed for plastic design, 4.56% and 14.34% more
material is required by the damaged constrained designs
with D = 0.2 and D = 0.075, respectively. How-
ever, this slight increase in material usage results in much
more mechanical benefits, i.e. 34.40% and 52.85% higher
load carrying capacities, 81.96% and 138.32% better duc-
tilities, 98.65% and 176.59% more ultimate plastic work
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Fig. 25 Optimized L-shaped
brackets and corresponding
damage distributions with
different length scale parameters
(D = 0.2): a � = 1 mm; b
� = 0.5 mm; and c � = 0.2 mm

(a) = 0.3684 (b) = 0.3784 (c) = 0.3900

W
p
ult , are gained as the trade-offs, as shown in first 3

rows in Table 2. When using the element exclusion strat-
egy, the performance comparison of the optimized L-shaped
brackets is summarized in last 3 rows in Table 2. Simi-
lar trend can be seen in this case. For example, compared
to the material volume fraction of 0.3149 needed for plas-
tic design, 0.83% and 8.57% more material is required
by the damaged constrained designs with D = 0.2 and
D = 0.075, respectively. However, this slight increase
in material usage results in much more mechanical bene-
fits, i.e. 12.12% and 18.97% higher load carrying capac-
ities, 31.58% and 41.29% better ductilities, 23.19% and
45.01% more ultimate plastic work W

p
ult , are gained as the

trade-offs.
An additional study is carried out to investigate the

influence of the length scale parameter l on the optimized
designs. To this end, three different parameter values, i.e.
� = 1, 0.5 and 0.2 mm are tested on the L-shaped
bracket problem with damage constraint D = 0.2 and
without element exclusion strategy, while other parameters
are kept unchanged. When � decreases, the nonlocal
effect becomes weaker such that the peak damage in the
design domain increases. The increased damage might
cause convergence issues in the NR method, especially
during the early optimization iterations. To avoid this
numerical issue, a continuation scheme on � is used in this
additional study, i.e. the optimization starts with � = 2
mm which gradually decreases by 0.1 every 10 iterations,
and 200 more iterations are executed once the target �

value is reached. Figure 25 reports the optimized designs
and the corresponding damage contours for each case. In

comparison to the design in Fig. 19b, the designs with
smaller � have more concentrated damage at the reentrant
corner, along with higher damage values due to the weaker
nonlocal effect. This eventually leads to more material
volume cost and reconfiguration of the design in order to
suppress the increased damage. The contour plots of the
designs in Fig. 25a and c are shown in Fig. 26, in which
a clearer comparison can be observed for the design with
different �.

6.4 Example 3: portal frame

The last example concerns the design of a portal frame as
shown in Fig. 4. The design domain is discretized by a

Fig. 26 Contour comparison of L-shaped bracket designs with � = 1
mm and � = 0.2 mm (D = 0.2)
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Fig. 27 Optimized portal frames
and corresponding damage
distributions with different
damage constraints: a plastic
design; b D = 0.2 design; c
D = 0.1 design; and d
D = 0.075 design

(d) 

(c) 

0.178

0.221

(b) 

(a) 

0.091

0.067

mesh with 18432 (nelx × nely = 192 × 96) non-uniformly
sized Q8/4 elements. The design displacement u = 3 mm
is applied over 17 nodes at the center of top surface. The
topology optimization is solved with a minimum plastic

work dissipation target W
p = 600 J with the density filter

radius rmin = 1.5 mm.
Figure 27a reports the purely plastic design using von

Mises model along with the damage map obtained by

Fig. 28 Convergence histories
for the optimized portal frame in
the case of Fig. 27d: a objective
function and intermediate
designs; and b constraint
functions

(a) 

(b) 
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Fig. 29 Load-displacement curves of the optimized portal frames up
to the failure points

reanalyzing this design using the elastoplastic nonlocal-
damage model. It can be seen that under the design
displacement, the plastic design has a maximum damage
dmax = 0.221 concentrated at the corner and support
locations. Figure 27b to d present the optimized designs
and the relevant damage fields from the damage constrained
formulation with D = 0.2, 0.1 and 0.075, respectively. It
can be observed that if the damage constraints are enforced,
the designs are reconfigured and equipped with more
members to limit the damage within the design domain,
especially at the entrant corner and frame support locations.
All of the maximum damages dmax are successfully limited
within the allowable thresholds. The converge history of
the volume fraction and selected intermediate designs
in the case of D = 0.075 (Fig. 27d) are plotted in
Fig. 28 together with the first 200 iteration convergence
histories of the constraints. Smooth convergence is obtained
after 50 iterations in Fig. 28a and feasible solution is
achieved as indicated in Fig. 28b. It is worth noting
that the topologies shown in Fig. 27b–d still preserve
corners, which may induce the plastic strain concentrations.
However, the influence of such concentrations on the final
damage is not significant in the optimized topologies.
The damage is alleviated by increasing the material

volume fraction, and reconfiguring and resizing members
instead of rounding out the corner location. Therefore,
the suggested topologies in Fig. 27b–d are safe when
considering the nonlocal elastoplastic-coupled damage
model.

The load-displacement curves for the optimized portal
frame designs up to the failure points are plotted in Fig. 29.
Similar performance improvement, as observed in previous
two examples, is obtained in this case by constraining
the damage. The failure points are postponed with higher
maximum load carrying capacities and better ductilities.
Figure 30 shows the damage contour of each design at
its failure point, indicated by the cross in Fig. 29. One
can see from Fig. 30a that the plastic design fails due to
the damage localization at the support locations. The rest
material is not fully utilized, as the damage is small in these
regions. The damage constrained design with D = 0.2 fails
at the reentrant corner with a better material utilization,
as shown in Fig. 30b. As presented in Fig. 30c and d,
the failure locations for the damage constrained cases with
D = 0.1 and 0.075 are in the lower chord and leg of the
frame with much better distributions of damage and material
utilizations.

The detailed performance comparison of the four
optimized portal frames is summarized in Table 3. Once
again, more material is needed in order to satisfy the
more restricted damage constraint while dissipating the
prescribed amount of plastic work, as indicated by the third
column of Table 3. However, comparing the plastic design
with the damaged constrained design with D = 0.075, a
4.31% increase in material volume fraction leads to 18.03%
increase in maximum load-bearing capacity, 48.38% better
ductility and 47.74% more ultimate plastic work dissipation.
The ultimate performance of the optimized design with
less restricted damage constraint D = 0.2 and 0.1 can
be compared from the second and third rows of Table 3,
respectively. The in-between tradeoffs are obtained in
these two cases as expected. As previously discussed,
these tradeoffs are worthwhile for the sake of structural
performance and safety.

(a) Plastic design (b) 0.2 design (c) 0.1 design (d) 0.075 design

Fig. 30 Damage distributions of the optimized portal frames at the failure points
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7 Conclusions

This work proposes a topology optimization method
to design energy absorbing structures that are subject
to maximum damage constraint. An implicit nonlocal
coupled elastoplastic model was incorporated with density-
based topology optimization for the mesh independent
description of the elastoplastic-damage softening behavior.
The SIMP method was extended to interpolate five main
material parameters introduced by the considered nonlocal
damage model. Moreover, a special scaling scheme for
nonlocal parameters was proposed that can capture the
accurate structural response based on the fictitious domain
approach. The path-dependent sensitivities were calculated
analytically using the adjoint method for nonlinear coupled
transient systems, whose accuracy was further verified
numerically via the central difference method on a portal
frame example.

The topology optimization problem was formulated
to minimize the material volume fraction subject to the
minimum plastic work constraint and the constraint on
maximum damage. The damage relaxation was considered
to relax the damage in low-density elements, and maximum
damage was approximated by the p-norm function. Three
numerical examples were used to demonstrate that the
proposed method is capable of finding satisfactory and
feasible solutions under the design displacement with
smooth convergences. More importantly, the proposed
method is able to generate optimized designs with higher
load-carrying capacities, enhanced ductilities and much
larger ultimate plastic work dissipation capacity with
superior material utilization before complete failure. The
trade-off is only a small increase in material volume.
This trade-off becomes more worthwhile if more restricted
damage constraints are enforced. Finally, to capture
the full nature of energy absorbing process, this work
can be extended to include finite strain plasticity, rate
dependence and inertia effects. These important issues will
be investigated in our future works.

Acknowledgements The presented work is supported in part by the
US National Science Foundation through Grant CMMI-1055314. Any
opinions, findings, conclusions, and recommendations expressed in

this paper are those of the authors and do not necessarily reflect the
views of the sponsors.

Appendix A: Return-mapping algorithm
and consistent tangent modulus

In this appendix, numerical implementation of the nonlocal
damage elastoplasticity model given in Section 2 is
presented. In the context of the strain-driven finite element
formulation, given data at an integration point: ε

p
m, αm

and κm at previous step m, and ε and α at current step
m + 1, the goal is to find the unknown variables: ε

p

m+1,
αm+1 and the consistent tangent moduli at the current step.
Note that the subscript m + 1 of the variables at current
step is omitted for the sake of clarity, also the step index
is put at subscript instead of superscript, and the element
number, integration point number are removed for clarity.
An elastic predictor/return-mapping algorithm is used to
solve the constitutive model as follows.

Step 1: Elastic trial step

Given : εptr = ε
p
m, αtr = αm

Evaluate :
σ tr = C

e : (ε − εptr
), str = P

s
dev : σ tr

κ = max{κm, α}, ζ tr = Khαtr

φtr (σ tr , αtr , κ) = ‖str‖ −
√

2

3
(1 − d(κ))(σy + ζ tr )

(43)

where C
e is the fourth-order elasticity tensor and P

s
dev

denotes the fourth-order deviatoric projection tensor; α is
the nonlocal equivalent plastic strain at the integration point.

If φtr ≤ 0, then the current step is an elastic step and the
following elastic updates are made

εp = εptr

, α = αtr and σ = σ tr (44)

and the consistent algorithmic tangent modulus CT is given
by

∂σ

∂ε
= C

e,
∂σ

∂α
= 0,

∂α

∂ε
= 0,

∂α

∂α
= 0 (45)

Table 3 Performance comparison of the optimized portal frame designs

Figure No. Problem � (mm) Volume fraction (Vf ) Dmax dmax Maximum load (N) Ductility (mm) W
p
ult (J)

27a Plastic design 2 0.3917 0.2451 0.221 226.2 6.47 2701.5

27b D = 0.2 2 0.3927 0.2000 0.178 240.8 7.47 2989.3

27c D = 0.1 2 0.4050 0.1000 0.091 265.0 9.31 3743.5

27a D = 0.075 2 0.4086 0.0750 0.067 267.0 9.60 3991.3
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CT =
⎡
⎣ ∂σ

∂ε
∂σ
∂α

∂α
∂ε

∂α
∂α

⎤
⎦ =

[
C

e 0

0 0

]
(46)

Else if φtr > 0, then there is a plastic flow in this step
and the algorithm proceeds to Step 2.

Step 2: Plastic returnmapping

In this step, the plastic flow is nonzero (i.e., γ > 0). Using
backward Euler method, the flow rules in (8) and (9) are
discretized as

εp = ε
p
m + �γn α = αm +

√
2

3
�γ (47)

σ = σ tr − 2μ�γn and s = str − 2μ�γn (48)

in which (48)2 further leads to

‖s‖ = ‖str‖ − 2μ�γ and n = ntr = str

‖str‖ (49)

The yield function can be then expressed as

φ = ‖str‖ − 2μ�γ −
√

2

3
(1 − d(κ))

(
σy + ζ(α)

)
(50)

The NR method can then be used for solving (50) for �γ

where the Jacobian is given by

∂φ

∂�γ
= −2μ − 2

3
(1 − d(κ))

∂ζ

∂α
(51)

After obtaining �γ , the internal state variables εp and
α can be calculated through (47) while the stress tensor σ

can be obtained through (48)1. Next, to calculate the tangent
moduli ∂σ/∂ε, ∂σ/∂α, ∂α/∂ε and ∂α/∂α, some results due
to tensor algebra have to be derived, which are

∂‖str‖
∂ε

= 2μntr

B = ∂n

∂ε
= 2μ

‖str‖ (Ps
dev − ntr ⊗ ntr )

∂d

∂ε
= 0,

∂‖str‖
∂α

= 0

(52)

As a result of consistency condition, the total differential
of the yield equation gives

dφ = ∂φ

∂ε
: dε + ∂φ

∂α
dα = 0 (53)

with

∂φ

∂ε
= ∂‖str‖

∂ε
− 2μ

∂(�γ )

∂ε
− 2

3
(1 − d)Kh ∂(�γ )

∂ε
(54)

∂φ

∂α
= ∂‖str‖

∂α
− 2μ

∂(�γ )

∂α
+
√

2

3

∂d

∂κ

∂κ

∂α
(σy + ζ(�γ ))

−2

3
(1 − d)Kh ∂(�γ )

∂α
(55)

Due to the independency of dε and dα, we further have
∂φ/∂ε = 0 and ∂φ/∂α = 0, which lead to

∂(�γ )

∂ε
= c1n

tr with c1 = 2μ

2μ + 2
3 (1 − d)Kh

(56)

∂(�γ )

∂α
=
⎧⎨
⎩

√
2
3 (σy+ζ(�γ ))

2μ+ 2
3 (1−d)Kh

∂d
∂κ

if κ = α

0 otherwise
(57)

With the derivations in (52), (56) and (57), the consistent
algorithmic tangent modulus CT can be calculated as

∂σ

∂ε
= C

e − 2μ�γB − 2μc1n
tr ⊗ ntr

∂σ

∂α
= −2μ

∂(�γ )

∂α
ntr

∂α

∂ε
=
√

2

3
c1n

tr ,
∂α

∂α
=
√

2

3

∂�γ

∂α

(58)

CT =
⎡
⎣ ∂σ

∂ε
∂σ
∂α

∂α
∂ε

∂α
∂α

⎤
⎦

=
[
C

e − 2μ�γB − 2μc1n
tr ⊗ ntr −2μ

∂(�γ )
∂α

ntr√
2
3c1n

tr
√

2
3

∂�γ
∂α

]

(59)

The above consistent evaluation of the tangent operator
CT ensures the quadratic convergence of the global NR
solver.

Appendix B: Explicit derivatives
for the adjoint sensitivity analysis

This Appendix presents the complete derivations of the
explicit derivatives of F , Rk and H k needed in (36).

Derivatives of objective and constraint functions

According to (28), three target functions (f0, f1 and f2)
need sensitivity calculation. The sensitivity of the volume
fraction objective function f0 is straightforward to calculate
and is given as

df0

dρ
= 1

V0
V (60)

where V is the element volume vector that collects all the
element volume Ve.

For the plastic work constraint F = f1 defined in (28)2,
since Wp only depends on vk and vk−1 as indicated by (29),
it implies

∂f1

∂ρ
= 0,

∂f1

∂U k
= 0 (61)
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The only non-zero derivatives ∂f1/∂vk are arranged as

∂f1

∂vk
=
[

∂f1

∂vk
1

∂f1

∂vk
2

. . .
∂f1

∂vk
nele

]
with

∂f1

∂vk
e

=
[

∂f1

∂vk
e1

∂f1

∂vk
e2

∂f1

∂vk
e3

∂f1

∂vk
e4

] (62)

while the expression of term ∂f1/∂vk
er

is distinguished from
k = n and k �= n, which reads

∂f1
∂vn

er
= − 1

W
p

[
1
2

(
ε

pn

er
− ε

pn−1

er

)
wr

1
2

(
σ n

er
+ σ n−1

er

)
wr 0 0 0

]
∂f1
∂vk

er

= − 1
W

p

[
1
2

(
ε

pk+1

er
− ε

pk−1

er

)
wr

1
2

(
σ k−1

er
− σ k+1

er

)
wr 0 0 0

]
(63)

For the damage constraint F = f2 defined in (28)3, since
Dmax(x) only depends on ρ and vk as indicated by (30)
and (31), implies ∂f2/∂U k = 0. The non-zero derivative
∂f2/∂ρ is arranged as

∂f2

∂ρ
=
[
∂f2

∂ρ1

∂f2

∂ρ2
. . .

∂f2

∂ρnele

]
with

∂f2

∂ρe

=
(

nele∑
e=1

(nipt∑
r=1

(
ρ

q
e dn

er

)pa

)) 1
pa

−1

×
nipt∑
r=1

(
(ρ

q
e dn

er
)pa−1

(
qρ

q−1
e dn

er
+ ρ

q
e

∂dn
er

∂ρe

))
(64)

where ∂dn
er

/∂ρe can be derived based on (6) using chain
rule, which reads

∂dn
er

∂ρe

= ∂dn
er

∂κthe

∂κthe

∂ρe

+ ∂dn
er

∂

∂

∂κthe

∂κthe

∂ρe

+ ∂dn
er

∂βe

∂βe

∂ρe

(65)

in which the derivatives ∂dn
er

/∂κthe , ∂dn
er

/∂, ∂/∂κthe

and ∂dn
er

/∂βe can be straightforwardly obtained from (6)
and (7), and are omitted here. The derivatives of damage
parameters ∂κthe/∂ρe and ∂βe/∂ρe can be calculated by the
material interpolation shown in (21) and (22) as

∂κthe

∂ρe

= p4(κth − κthmin
)ρ

(p4−1)
e

∂βe

∂ρe

= −p5(βv − β)ρ
(p5−1)
e

(66)

The other non-zero derivative ∂f2/∂vk is given by

∂f2

∂vk
=
[

∂f2

∂vk
1

∂f2

∂vk
2

. . .
∂f2

∂vk
nele

]
with

∂f2

∂vk
e

=
[

∂f2

∂vk
e1

∂f2

∂vk
e2

∂f2

∂vk
e3

∂f2

∂vk
e4

] (67)

where the term ∂f2/∂vk
er

is distinguished from k = n and
k �= n, which is expressed as

∂f2

∂vk
er

= ρ
qpa
e

(
dk
er

)pa−1
(

nele∑
e=1

(nipt∑
r=1

(
ρ

q
e dk

er

)pa

)) 1
pa

−1

×
[
0 0 0 0

∂dk
er

∂κk
er

]
(k = n)

∂f2

∂vk
er

= 0 (k �= n)

(68)

Based on (6), the following derivative is obtained

∂dk
er

∂κk
er

=βee
−βe

(
κk
er

−κthe

)

(
κk
er

)
+
(

1−e−βe(κ
k
er

−κthe )
) ∂

∂κ
|κ=κk

er

(69)

where ∂/∂κ can be obtained from (7).

Derivatives of Rk

According to (38), the derivative of Rk with respect to the
solution variable U k reads

∂Rk

∂U k
=

nele

A
e=1

(
∂Rek

∂U k
e

)
(70)

with

∂Rk

∂U k
e

=

⎡
⎢⎢⎢⎣

∂Rek

u

∂uk
e

∂Rek

u

∂αk
e

∂Rek

α

∂uk
e

∂Rek

α

∂αk
e

⎤
⎥⎥⎥⎦

=
⎡
⎣ 0 0

0
nipt∑
r=1

(
NT

αr
Nαr + (ρ

p6
e �)2BT

αr
Bαr

)
wr

⎤
⎦

(71)
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while the derivative ∂Rk/∂U k−1 = 0. The derivative of Rk

with respect to the auxiliary variable vk is calculated as

∂Rk

∂vk
=

nele

A
e=1

(
∂Rk

e

∂vk

)
with

∂Rek

∂vk
=
[

∂Rek

∂vk
1

. . .
∂Rek

∂vk
nele

] (72)

where the derivatives ∂Rek
/∂vk

j = 0 for j �= e. The only

non-zero derivative ∂Rek
/∂vk

e is calculated as

∂Rek

∂vk
e

=
[

∂Rek

∂vk
e1

∂Rek

∂vk
e2

∂Rek

∂vk
e3

∂Rek

∂vk
e4

]
with

∂Rek

∂vk
er

=
[

∂Rek

∂σ k
er

∂Rek

∂ε
pk

er

∂Rek

∂αk
er

∂Rek

∂�γ k
er

∂Rek

∂κk
er

]

=
[

wrB
T
ur

0 0 0 0
0 0 −wrρ

p7
e NT

αr
0 0

]
(73)

while the derivative of Rk with respect to vk−1 is zero, i.e.,
∂Rk/∂vk−1 = 0. Finally, the derivative of Rk with respect
to ρ is arranged as

∂Rk

∂ρ
=

nele

A
e=1

(
∂Rek

∂ρe

)
with

∂Rek

∂ρe

=
⎡
⎣ 0

2p6�
2ρ

2p6−1
e

nipt∑
r=1

wrB
T
αr

Bαr α
k
e − p7ρ

p7−1
e

nipt∑
r=1

wrN
T
αr

αk
er

⎤
⎦

(74)

Derivatives ofHk

As indicated by (41) and (42), H k only depends on the
solution field U k at current step. Thus, ∂H k/∂U k−1 = 0
and the expressions for non-zero derivatives ∂H k/∂U k are
the same for elastic and plastic steps, which can be written
as

∂H k

∂U k
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂H k
1

∂U k

...

∂H k
nele

∂U k

⎤
⎥⎥⎥⎥⎥⎥⎦

with
∂H k

j

∂U k
=

nele

A
e=1

(
∂H k

j

∂U k
e

)
(75)

It can be seen that ∂H k
j /∂U k

e = 0 for j �= e, so the

non-zero term ∂H k
e/∂U k

e is calculated as

∂H k
e

∂U k
e

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
e1

∂U k
e

∂H k
e2

∂U k
e

∂H k
e3

∂U k
e

∂H k
e4

∂U k
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
e1

∂uk
e

∂H k
e1

∂αk
e

∂H k
e2

∂uk
e

∂H k
e2

∂αk
e

∂H k
e3

∂uk
e

∂H k
e3

∂αk
e

∂H k
e4

∂uk
e

∂H k
e4

∂αk
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

∂H k
er

∂uk
e

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ce : ∂εk
er

∂uk
e

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and
∂H k

er

∂αk
e

=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
z1

⎤
⎥⎥⎥⎥⎦

where z1 =
{
0, if κk−1

er
> Nαr α

e

−Nαr , otherwise

(76)

For the derivatives ∂H k/∂vk and ∂H k/∂vk−1, the
structures of the derivative matrices are

∂H k

∂vk
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
1

∂vk
1

0 . . . 0

0
∂H k

2

∂vk
2

. . . 0

...
...

. . .
...

0 0 . . .
∂H k

nele

∂vk
nele

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂H k

∂vk−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
1

∂vk−1
1

0 . . . 0

0
∂H k

2

∂vk−1
2

. . . 0

...
...

. . .
...

0 0 . . .
∂H k

nele

∂vk−1
nele

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(77)

This is because vk
i and vk

j are independent and H k
i and

H k
j are uncoupled given i �= j . As a result, only submatrices
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lying on the diagonal are non-zeros. Moreover, the non-zero
submatrices share the same structure as

∂H k
e

∂vk
e

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
e1

∂vk
e1

0 0 0

0
∂H k

e2

∂vk
e2

0 0

0 0
∂H k

e3

∂vk
e3

0

0 0 0
∂H k

e4

∂vk
e4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂H k
e

∂vk−1
e

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
e1

∂vk−1
e1

0 0 0

0
∂H k

e2

∂vk−1
e2

0 0

0 0
∂H k

e3

∂vk−1
e3

0

0 0 0
∂H k

e4

∂vk−1
e4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(78)

For ∂H k
e/∂vk−1

e , both elastic step and plastic step give

∂H k
er

∂vk−1
er

=

⎡
⎢⎢⎢⎢⎣
0 0 0 0 0
0 −I

s
4 0 0 0

0 0 −1 0 0
0 0 0 0 0
0 0 0 0 z2

⎤
⎥⎥⎥⎥⎦ with

z2 =
{−1, if κk−1

er
> Nαr α

e

0, otherwise

(79)

while for ∂H k
e/∂vk

e , elastic step and plastic step have to be
distinguished. For elastic step, it is

∂H k
er

∂vk
er

=

⎡
⎢⎢⎢⎢⎣
I
s
4 C

e 0 0 0
0 I

s
4 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (80)

while for plastic step it is

∂H k
er

∂vk
er

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
s
4 C

e 0 0 0
−�γ k

er
A I

s
4 0 −nk

er
0

0 0 1 −
√

2

3
0

nk
er

0 −
√

2

3
(1− dk

er
)Kh

e 0
√

2
3 (σye +ζ k

er
)

∂dk
er

∂κk
er

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(81)

where ∂dk
er

/∂κk
er

can be calculated using (69) and

A = ∂nk
er

∂σ k
er

= 1

‖sk
er

‖ (Ps
dev − nk

er
⊗ nk

er
) (82)

Finally, since H k
e only depends on ρe, the derivative

∂H k/∂ρ is calculated as

∂H k

∂ρ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
1

∂ρ1
0 . . . 0

0
∂H k

2

∂ρ2
. . . 0

...
...

. . .
...

0 0 . . .
∂H k

nele

∂ρnele

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with
∂H k

e

∂ρe

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H k
e1

∂ρe

∂H k
e2

∂ρe

∂H k
e3

∂ρe

∂H k
e4

∂ρe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(83)

where the calculation of the term ∂H k
er

/∂ρe is different for
elastic and plastic steps. For elastic step, it is

∂H k
er

∂ρe

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−∂Ce

∂ρe

: εek

er

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(84)

while for plastic step, it is

∂H k
er

∂ρe

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂Ce

∂ρe

: εek

er

0

0

−
√

2

3
(1−dk

er
)

(
∂σye

∂ρe

+ ∂ζ k
er

∂ρe

)
+
√

2

3

∂dk
er

∂ρe

(σye +ζ k
er

)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(85)

Here ∂dk
er

/∂ρe can be again calculated by (69). With the
material parameters interpolation presented in Section 4.1,
following derivatives complete the calculations shown in
(85)

∂Ce

∂ρe

= p1(E − Emin)ρ
(p1−1)
e C0

∂σye

∂ρe

= p2(σy − σymin
)ρ

(p2−1)
e

∂ζ k
er

∂ρe

= αk
er

p3(K
h − Kh

min)ρ
(p3−1)
e

(86)

where C0 is the isotropic elasticity tensor evaluated with
E = 1.
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