
Structural and Multidisciplinary Optimization (2018) 58:1537–1557
https://doi.org/10.1007/s00158-018-1981-8

RESEARCH PAPER

A classification approach to efficient global optimization in presence
of non-computable domains

Matthieu Sacher1 · Régis Duvigneau2 ·Olivier LeMaı̂tre3 ·MathieuDurand4,5,6 · Élisa Berrini2,7 · Frédéric Hauville1 ·
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Abstract
Gaussian-Process based optimization methods have become very popular in recent years for the global optimization of
complex systems with high computational costs. These methods rely on the sequential construction of a statistical surrogate
model, using a training set of computed objective function values, which is refined according to a prescribed infilling
strategy. However, this sequential optimization procedure can stop prematurely if the objective function cannot be computed
at a proposed point. Such a situation can occur when the search space encompasses design points corresponding to an
unphysical configuration, an ill-posed problem, or a non-computable problem due to the limitation of numerical solvers. To
avoid such a premature stop in the optimization procedure, we propose to use a classification model to learn non-computable
areas and to adapt the infilling strategy accordingly. Specifically, the proposed method splits the training set into two subsets
composed of computable and non-computable points. A surrogate model for the objective function is built using the training
set of computable points, only, whereas a probabilistic classification model is built using the union of the computable and
non-computable training sets. The classifier is then incorporated in the surrogate-based optimization procedure to avoid
proposing new points in the non-computable domain while improving the classification uncertainty if needed. The method
has the advantage to automatically adapt both the surrogate of the objective function and the classifier during the iterative
optimization process. Therefore, non-computable areas do not need to be a priori known. The proposed method is applied to
several analytical problems presenting different types of difficulty, and to the optimization of a fully nonlinear fluid-structure
interaction system. The latter problem concerns the drag minimization of a flexible hydrofoil with cavitation constraints. The
efficiency of the proposed method compared favorably to a reference evolutionary algorithm, except for situations where
the feasible domain is a small portion of the design space.
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1 Introduction

The use of surrogate models is a classical approach to
reduce the computational burden related to the optimization
of complex systems (Simpson et al. 2001). Polynomial
models were first used as surrogates, thanks to their ease of
construction. More recently, sophisticated surrogate models
such as Gaussian processes (GP) (Kleijnen 2009) or Sup-
port Vector Machines (SVM) (Vapnik 1995) have emerged.
Gaussian Process (GP) modeling is a statistical method to
approximate functions from a finite set of observations,
possibly noisy, at arbitrary points. Using the observations, it
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explicitly updates the prior mean and covariance functions
into their posterior counterparts, minimizing the mean-
squared-error of the estimator. In the case of Gaussian obser-
vation noise, the estimator corresponds to the optimal Bayesian
posterior. Contrary to alternative regression-type approaches,
GP modeling does not require to prescribe explicitly a basis for
the approximation space. GP surrogates have been applied to
several problems such as uncertainty quantification (Marrel
et al. 2009; Wang et al. 2013), binary classification (Nick-
isch and Rasmussen 2008), multi-levels system (Liu
et al. 2016), multi-fidelity surrogate (Park et al. 2017) or
clustering-based space exploration (Dong et al. 2017).

GP models have also been found especially appealing
for optimization, in the framework of the Efficient Global
Optimization (EGO) (Jones et al. 1998) method, because
their statistical nature allows to provide both a prediction
of the objective function, in terms of model mean, and an
error estimate, in terms of model variance. EGO strategies
have been used in several engineering applications, such
as aerodynamic drag reduction of transonic wings (Liu
et al. 2017), vibration reduction for rotating aircrafts (Glaz
et al. 2008; 2009), optimization of FSI problems (Aghajari
and Schäfer 2015) and sail trimming optimization (Sacher
et al. 2017). The EGO efficiency has been demonstrated for
the optimization of complex systems with costly objective
function evaluations (Simpson et al. 2001).

In all these problems, a statistical criterion accounting
for the Expected Improvement (EI) (Picheny et al. 2013),
usually referred to as merit function, is used to select a new
(or multiple (Li et al. 2016)) design point, at which the
objective function should be evaluated. This new evaluation
is used to improve the accuracy of the surrogate. However,
in some situations, the analysis may not be possible for the
newly selected design point. In the context of simulation-
based optimization, such situations can be related for
instance to the existence of unphysical configurations,
ill-posed problems, or the lack of numerical robustness
(weak convergence of the solvers, non-convergence to a
steady solution, unstable computation, poor mesh quality
for extreme configuration, etc). The origin of such failures
is dependent on the application domain and an example
will be provided below in the context of hydrodynamic
design. Note that the automatic detection of non-computable
points is a real issue in practical applications. Indeed, the
origins of the failures can be very diverse and their detection
is therefore not obvious. In some cases, the failure can
be relatively easy to detect by monitoring the evolution
of residuals or any variable of interest (e.g. forces). In
other cases, the computational time might be a way to
identify the simulations that are not converging. The use
of clustering approaches (Jain et al. 1999) may also be
an alternative to detect such computational failures. All
these situations will be referred generically as cases of

non-computable design points. The occurrence of such non-
computable points is critical to sequential EGO method
because it leads to a premature halt of the optimization
process, due to the impossibility to update the surrogate
model. A possible way to overcome this problem would
be to interpolate/extrapolate the non-computable objective
function values, using directly the current GP model or
more sophisticated methods (Zhang et al. 2017). However,
the accuracy of these values and their impact on the
convergence of the optimization procedure are questionable.
Moreover, such methods are not always satisfactory since
we may not be interested in non-computable points that
correspond to unphysical designs.

Unphysical or ill-posed situations typically arise from
the definition of the design space that is too large and
includes non-feasible situations. Similarly, the presence of
design points that are not computable because of numerical
issues should be traced back to a design space that is too
rich and contains extreme situations that should not be con-
sidered as potential candidates for the optimum. Otherwise,
it implies that the numerical solvers considered for the eval-
uation of the objective function are simply not suitable for
the optimization task. However, even though the numeri-
cally critical areas of the design space may not be close to
the sought optimum, the EGO eventually visit them because
of the infilling strategy. A naive fix to the encounter of a
non-computable point consists in associating to it a pre-
scribed high (resp. low) value for the objective function
to be minimized (resp. maximized). This avoids halting
the EGO procedure and prevents the future exploration of
the non-computable point neighborhood. Unfortunately, the
selection of an appropriate value for the non-computable
points is not a trivial task with, in practice, detrimental
consequences such as a significant loss of accuracy on the
whole GP model approximating the objective function and
a possibly strong deterioration of the EGO convergence.
Alternative remedies are a better definition of the design
space, to explicitly remove design points leading to unphys-
ical or ill-posed problems, and the improvement of the
numerical robustness through, e.g., the tuning of solvers
parameters. Unfortunately, depending on the situation these
two tasks can be extremely cumbersome, if possible at all.

In this work, we propose to combine a classical EGO
method and a classification approach in order to deal with
the possible existence of non-computable design areas. In
this approach, the subset of the design space corresponding
to computable points is progressively determined, by
the Least-Squares Support Vector Machine (LS-SVM)
classification method (Suykens and Vandewalle 1999),
on the basis of previously classified computable / non-
computable points. The SVM classification method was
first proposed in the EGO context by Basudhar et al. (2012)
for the treatment of discontinuous or binary constraints.
We extend this idea to the case of non-computable design
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areas, with the suggestion of using LS-SVM instead of SVM
models. Indeed, LS-SVMs are computable at a lower cost
than SVMs since the SVM formulates the classifier as a
quadratic programming problem while LS-SVM deals with
a set of linear equations. Specifically, each iteration step
in the iterative method for solving the SVM consists of a
linear system to be solved which has the same complexity as
one single LS-SVM. Moreover, benchmarks in van Gestel
et al. (2004) have shown that LS-SVMs are performing
consistently very well in comparison with many other
methods. The LS-SVM classifier provides a probability that
a new point is computable. We incorporate this probabilistic
information in the definition of the merit function when
selecting the new design point to be analyzed. The merit
function also involves a classical EI criterion, based on
the GP model of the objective function constructed on
the subset of computable design points. Therefore, the key
advantages of the proposed method, called EGO-LS-SVM
hereafter, are the following: it does not halt when a non-
computable point is proposed; it does not require an
explicit definition of the computable domain, but rather
it constructs it; the GP model of the objective function
uses only computable values and so is not polluted by
arbitrary values at non-computable points. Finally, the
EGO-LS-SVM method can handle optimization problems
with inequality constraints and non-computable points, in a
unified fashion employing the same classification strategy.

The present paper is organized as follows. The
EGO-LS-SVM method is progressively introduced in
Section 2, starting with the classical EGO method, pre-
senting next the LS-SVM classification method to handle
non-computable domains and inequality constraints, and
finally deriving several merit functions. The efficiency of
the EGO-LS-SVM method is first assessed on a series
of analytical optimization problems in Section 3. A com-
parison with the reference evolutionary algorithm CMA-
ES (Hansen 2006) is also provided. The optimization of
a fully nonlinear Fluid-Structure Interaction (FSI) system
involving non-computable domains is subsequently consid-
ered in Section 4. It consists in the minimization of the
hydrodynamic drag of a two-dimensional flexible hydrofoil,
with non-cavitation constraints, for a 5-dimensional design
space defining the unloaded geometry and mechanical prop-
erties of the hydrofoil. Finally, the conclusions of the work
are proposed in Section 5.

2 GP-based constrained optimization

Our objective is to estimate the solution xopt of the following
generic optimization problem

xopt = arg min
x∈�

f (x), s.t. Q(x) ≥ 0, (1)

where x is the vector of design parameters, � ⊂ R
d

is the optimization domain, f : � �→ R the objective
function and Q : x �→ R

m is the vector of (non-linear)
constraints. Even in the unconstrained case, m = 0, finding
the global optimum of f can be very costly, in particular
when its evaluation is numerically expensive. The use of
surrogate models in place of f is then a classical approach to
reduce the computational burden related to the optimization
of complex systems (Simpson et al. 2001). In this work,
we consider the use of Gaussian processes (GP) (Kleijnen
2009) which, owing to their statistical nature, provide both
a prediction of the objective function and a measure of the
uncertainty (variance) in the prediction. These features are
appealing in optimization, as they can be used to derive
rigorous optimization strategies based on the maximization
of the Expected Improvement (EI) criterion. These methods
are globally referred to as the Efficient Global Optimization
(EGO) (Jones et al. 1998) methods. A summary of the
construction of the GP model for f is provided in
Section 2.1, as well as the resulting optimization strategy
in the unconstrained case. The classification approach to
account for constraints and non-computable subsets of
points is considered in Section 2.2.

2.1 Unconstrained EGO using GP

Consider a set of n training inputs points Xn = {x1, . . . , xn},
each associated to a noisy observation yi of the objective
function f . It is assumed that yi = f (xi ) + εi , where the
εi are Gaussian measurement noises, assumed for simplicity
independent and identically distributed with variance σε

2.
The GP construction considers that f (x) is a realization of
a zero-mean multivariate Gaussian process with covariance
function Cf . In this work, we consider the multidimensional
squared exponential covariance functions defined by

Cf (x, x′; �)
.= θ1

d∏

i=1

exp

(
−(xi − x′

i )
2

2l2
i

)
+ θ2, (2)

where � = {θ1, θ2, l1, l2, . . . , ld} is a vector of hyper-
parameters to be inferred from the observations. Denoting
C(�) ∈ R

n×n the covariance matrix with entries Ci,j (�)
.=

Cf (xi , xj ; �), 1 ≤ i, j ≤ n, the joint Gaussian distribution
of the noisy observation vector, Yn = (y1, . . . , yn)

T, and
the predicted observation y(x) is given by

(
Yn

y(x)

)
∼ N

(
0,

[
C + σε

2I k(x)
kT(x) κ(x) + σε

2

])
. (3)

In (3) we have denoted κ(x) .= Cf (x, x; �), k(x) .=(
Cf (x, x1; �) · · · Cf (x, xn; �)

)T and I the identity matrix
of R

n. From the conditional rules of joint Gaussian
distributions (Rasmussen and Williams 2006), the best
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prediction f̂ (x) of f (x), i.e. the mean of y, and the
prediction variance σ̂ 2

f (x) are given by

f̂ (x) = kT(x)
(
C(�) + σε

2I
)−1

Yn, (4)

σ̂ 2
f (x) = κ(x) + σε

2 − kT(x)
(
C(�) + σε

2I
)−1

k(x). (5)

The hyper-parameters � and noise variance σε
2 can

be determined by maximizing the log-marginal likeli-
hood (Rasmussen and Williams 2006) using the “Covari-
ance Matrix Adaptation Evolution Strategies” (CMA-ES)
algorithm (Hansen 2006). This powerful evolutionary based
optimizer is an improvement of the original (μ/ρ

+
,
λ)-ES

variants (Hansen et al. 2015), thanks to the covariance
matrix adaptation property. Indeed, the CMA-ES allows
generations of new individuals that are possibly not dis-
tributed along the principal axis of the covariance matrix. In
the present work, we apply this evolutionary algorithm by
using the recommended parameters values (step-size σ =
0.5, population size λ = 4+
3 log d�, number of parents for
recombination μ = λ

2 , etc.) of Hansen (2006). A complete
tutorial of the CMA-ES algorithm, including a source code
and best uses, is available in Hansen (2016). More details
on GP meta-models can also be found in Rasmussen and
Williams (2006).

Let x̂n be the optimum of f̂ (x). It is expected that
x̂n ≈ xopt if the approximation error f̂ − f is small
enough. The advantage of minimizing f̂ instead of f

is that GP models are usually inexpensive to evaluate
compared to the original objective function. To control the
error in the approximation, one proceeds sequentially by
adding progressively new points in the area of interest.
A deterministic optimization procedure would choose the
next point xn+1 as the optimal point of f̂ . However, the
GP model provides probabilistic information that can be
exploited to propose more robust strategies based on merit
functions, which combine the prediction and its variance. In
this work, we use the Augmented Expected Improvement
(AEI) merit function (Huang et al. 2006), which estimates
the expected progress in the cost, taking into account the
noise in the observed values and the prediction variance:

AEI (x) = EI (x)

⎛

⎜⎝1 − σε√
σ̂ 2

f (x) + σε
2

⎞

⎟⎠ , (6)

where the Expected Improvement EI (x) is defined by

EI (x) = σ̂f (x) [u(x)� (u(x)) + φ (u(x))] , (7)

u(x) = f̂ (x∗,n) − f̂ (x)
σ̂f (x)

, (8)

with � and φ the cumulative and density functions of
the standard Gaussian distribution, and x∗,n ∈ Xn is the
current effective best solution (see Huang et al. (2006)).

The optimum xn+1 of the AEI is added to Xn, and f is
evaluated at the new point providing yn+1. Setting n ←
n + 1, a new iteration can start updating the GP model.
Overall, each iteration requires one computation of the
cost and the resolution of two optimization problems: a
first one for the hyper-parameters of the GP model, and
a second one to find the AEI optimum. The iterations of
the GP-based optimization problem are continued until a
stopping criterion is satisfied or the resources allocated to
the optimization have been exhausted. Obviously, if f is not
computable for the proposed xn+1, the optimization process
is stopped prematurely, because xn+1 and yn+1 cannot be
added to Xn and Yn.

2.2 Classificationmethod

As underlined in the introduction, the proposed approach
based on a classification method is closely related to
the handling of inequality constraints in the optimization
problem (1). Indeed, the non-computable simulations are
usually located in some specific regions of the design space.
Therefore, the presence of non-computable points can be
managed as inequality constraints if these regions of failures
can be identified thanks to a probabilistic formulation. In
this framework, a failure probability would be used within
the optimization process to avoid the non-computable
simulations.

EGO methods with inequality constraints were consid-
ered by Schonlau (1997). The key idea followed in this
reference is to rely on m additional surrogates to estimate
the constraints Qi(x). For Gaussian Process models, one
can easily determine the probability Pi(Qi ≥ 0|x) that the
constraint Qi is satisfied at x. Assuming the independence
of the constraints probability, the consolidated probability
P(Q ≥ 0|x) = m

i=1Pi(Qi ≥ 0|x) is obtained. This proba-
bility is used to modify the unconstrained AEI criterion and
favor regions feasible with a probability:

AEIQ(x) = AEI (x)P (Q ≥ 0|x). (9)

Although effective in many problems, this GP modeling of
the constraints faces several limits. First, its computational
cost increases with the number m of constraints and
can be an issue for problems with large m. Second,
the approximation by GP models assumes a sufficient
smoothness of the Qi . This rules out the case of binary
constraints (feasible/infeasible). Another situation, non-
amenable to the GP approximations of the constraints, is
when the search domain � possesses a sub-domain over
which f is non-computable, i.e. undefined, but there is
no explicit expression or a priori knowledge of this sub-
domain. As a result, cannot be expressed in terms of
inequality constraints.
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Classification methods recently proposed by Basudhar
et al. (2012) are better suited to deal with discontinuous and
binary constraints in GP-based optimization procedures.
Therefore, we aim at using this approach to define a
unique framework to deal with inequality constraints and
non-explicit feasible domain definition in presence of a
non-computable domain . In essence, classification
is based on the reformulation of problem (1) into the
unconstrained form

where �Q := {x ∈ �,Qi=1,...,m(x) ≥ 0} is the subset of
� satisfying the inequality constraints. As the admissible
set �adm has no explicit form, in general, we rely on a
binary classifier with two classes C+ and C− over �,
corresponding to the admissible (x satisfies all constraints
and f (x) is computable) and non-admissible (x does not
satisfy all constraints or f (x) is not computable) domains
respectively. To construct this classifier, each xi of Xn

is equipped with a value zi = ±1 depending on its
membership C±. To predict the class of a new point x
we introduce a classification function h : x ∈ � → R,
such that z(x) = signh(x). A Least-Squares Support Vector
Machine (LS-SVM) (Suykens and Vandewalle 1999) is used
to construct h. The LS-SVM method extends the original
Support Vector Machine (SVM) classifier (Vapnik 1995)
to quadratic penalization, resulting in a linear (but non-
sparse) system to be solved (see below). Further details and
discussion on SVM and LS-SVM methods can be found
in Cawley (2006).

The LS-SVM method (Suykens and Vandewalle 1999) is
a linear classifier, for C+ and C−, in a feature space induced
by the transformation φ : � → F :

h(x) = wTφ(x) + b. (11)

Here, w and φ(x) are the weights and features vectors, while
b ∈ R is a constant. The feature space F is generated by
a reproducing kernel r : � × � → R representing the
inner product between images in F of vectors: r(x, x′) =
φ(x) · φ(x′). We use the classical Gaussian kernel,

r(x, x′) = exp

(
−‖x − x′‖2

2λ2

)
, (12)

with scale factor λ ∈ R to be adjusted. The LS-
SVM parameters (w, b) satisfy the primal constrained
optimization problem

minw,b,e
1

2
‖w‖2 + γ

1

2

n∑

i=1

e2
i ,

s.t. zi = wTφ(xi ) + b + ei, i = 1, . . . , n,

(13)

with trade-off parameter γ ∈ R
+ (to be fixed) and

relaxation variables ei allowing for miss-classification. The
Lagrangian of this optimal problem is

L (w, b, αn, e) = 1

2
‖w‖2 + γ

1

2

n∑

i=1

e2
i −

n∑

i=1

αi

(
wTφ(xi )

+ b + ei − zi

)
, (14)

where the αi ∈ R are the Lagrange multipliers of the
constraints. Denoting Zn = (z1 · · · zn)

T, the optimality
conditions of the Lagrangian (15)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 −→ w = ∑n
i=1 αiφ(xi ),

∂L
∂b

= 0 −→ ∑n
i=1 αi = 0,

∂L
∂αn

= 0 −→ αi = γ ei, i = 1, . . . , n,

∂L
∂e

= 0 −→ wTφ(xi ) + b + ei − zi = 0, i = 1,. . ., n,

(15)

are used to derive a linear system for the dual model
parameters b and αn = (α1 · · · αn)

T,
[
R + γ −1I 1

1T 0

][
αn

b

]
=

[
Zn

0

]
, (16)

where R ∈ R
n×n is the kernel matrix with Ri,j = r(xi , xj ).

This system is solved via a Cholesky factorization (Cawley
2006), and h in (11) is expressed in terms of dual model
parameters to obtain

h (x) =
n∑

i=1

αir(xi , x) + b. (17)

The LS-SVM classifier depends on two parameters, γ

and λ, to be determined when solving (16). This step
is called model selection and it is usually performed
with cross-validation approaches (Stone 1974). The most
common method is the k-fold cross-validation, in which the
training set is split into k disjoint subsets. Then, the LS-
SVM model is sequentially trained on k − 1 subsets and
the remaining subset is used to evaluate the classification
efficiency by computing the error rate. The global k-fold
estimate of the error rate is the average of the k error rates.
The extreme case where k = n is called the Leave-One-Out
(LOO) cross-validation and it allows an almost unbiased
estimate of the error rate (Vapnik and Vapnik 1998).
Unfortunately, the LOO computation is too expensive to
be applied on common training sets. However, in the
specific case of LS-SVM classifiers, it was shown (Cawley
and Talbot 2003, 2004, 2007) that exact LOO can be
performed in only O(n) operations. In this work, we rely
on this efficient LOO procedure to determine γ and λ that



1542 M. Sacher et al.

minimize the Predicted Residual Sum-of-Squares (PRESS)
criterion (Allen 1974),

PRESS =
n∑

i=1

(
zi − ẑi

(−i)
)2

, (18)

where ẑi
(−i) is the predicted output z(xi ) of the LS-SVM,

when the i-th training point (xi , zi) is disregarded from
the construction of the classifier. A simple expression for
the predicted residuals is proposed in Cawley and Talbot
(2007),

zi − ẑi
(−i) = αi

D−1
ii

, i = 1, . . . , n, (19)

where the D−1
ii are the diagonal entries of the inverse of

D, the matrix of system (16). An explicit expression is
also provided in Cawley and Talbot (2007) to compute
D−1

ii during the factorization of D. The minimization of the
PRESS (18) for λ and γ is performed with the CMA-ES
algorithm (Hansen 2006) in all the examples presented
below.

The LS-SVM binary classifier is finally extended
to a probabilistic classification, relating h in (17) to
the probability of the class C+, denoted P(C+|x). A
comparison of several probability models for the LS-SVM
classification is provided in Van Calster et al. (2007). We
use the sigmoid function (Platt 1999) and expressing the
probability of C+ as

P
(
C+|x) = 1

1 + exp (Ah (x) + B)
. (20)

The parameters A and B of the sigmoid are determined
by minimizing the probability of misclassification, see Platt
(1999) and Lin et al. (2007). In practice, the probability P

goes to 1 (resp. 0) as the classifier is certain that x ∈ �adm

and belongs to C+ (x /∈ �adm and belongs to C−), while
a value of P = 1/2 denotes a complete uncertainty in
the classification. This can occur when x is far from any
observations in Xn or close to the interface between the two
classes.

2.3 EGO-LS-SVMmethod

2.3.1 Extendedmerit functions

We now return to the optimization problem and introduce
the EGO-based method that we call EGO-LS-SVM for it
is based on the LS-SVM classifier. The EGO-LS-SVM
method uses the probability P

(
C+|x) to derive a merit

function from the AEI, in order to select a new point
xn+1 ∈ �. Following (Schonlau 1997; Basudhar et al.
2012), the selected point should present high expected
improvement (relatively to another point) of the objective
function value and a high probability of belonging to �adm.

These considerations lead us to propose the following
sequential infilling strategy, selecting alternatively one of
the following definitions for xn+1 in the EGO-LS-SVM
method:

xn+1 = arg max
x∈�

AEI (x)P (C+|x), (21)

xn+1 = arg max
x∈�

AEI (x) s.t. P(C+|x) ≥ ρ, (22)

xn+1 = arg min
x∈�

f̂ (x) s.t. P(C+|x) ≥ ρ, (23)

xn+1 = arg max
x∈�

[
AEI (x)P (C+|x) (1 − P(C+|x))] . (24)

The first definition in (21) corresponds to the extension
of the AEI favoring points with high chance of feasibility.
The second expression (22) maximizes the original AEI
definition by enforcing a minimal probability ρ of
feasibility; we use ρ = 0.5 in all subsequent computations.
In (23), the predicted objective function is directly
minimized over the approximated feasible domain defined
by {x ∈ �,P (C+|x) > ρ)}. Finally (24) combines the two
classes probabilities to favor areas where the classification
is the most uncertain (P ∼ 0.5), to improve the exploration
along the estimated feasible domain boundaries.

Finally the new points xn+1 are determined using
CMA-ES algorithms without (Hansen 2006) or with
constraints (Arnold and Hansen 2012), depending on the
considered definition. Whence the new point has been
selected, the constraints Qi and the objective function f

are evaluated at the selected point. If , that is
f (xn+1) is computable we add f (xn+1) to the training set
and update the GP model of f . Otherwise the new point
is simply considered as a missing data and disregarded in
the subsequent constructions of the GP model of f . In
any cases, we set zn+1 = +1 if f (xn+1) is computable
and Q(xn+1) ≤ 0, and zn+1 = −1 otherwise. Therefore,
the GP model of f and the LS-SVM classification may
involve different numbers of observations if some of them
fall in . Note that if , we have f̂n+1 = f̂ , but
because of the update of P(C+|x) we shall have in general
xn+2 �= xn+1. Consequently, the EGO-LS-SVM method
will improve the estimation of �adm till it proposes a new
point xn+1 ∈ �adm to update f̂ .

Compare to the similar classification based approach
proposed in Basudhar et al. (2012), we remark that our
approach is based on the original sigmoid probability in (34)
such that P(C+|x) remains differentiable, facilitating the
search of xn+1. Second, a single point is added and have
to be evaluated per EGO iteration, where the approach
in Basudhar et al. (2012) enriches the training set with
d + 1 new points at each iteration. The computational cost
to perform these d + 1 evaluations of f is expected to be
too important in many application and is not necessary for
the LS-SVM classification procedure. This is demonstrated
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on a numerical example later, in Section 3.5, where we
discuss further the differences and respective efficiencies of
the method of Basudhar et al. (2012) and our.

The work-flow of one iteration step of the EGO-LS-SVM
method is summarized in the Algorithm 1 below. In the full
optimization process, the Algorithm 1 is called iteratively
until a convergence is reached or a maximum workload
has been reached. The lines 1 and 2 correspond to the
GP surrogate construction of the objective function f .
This allows computing the mean and variance predictions
given in (4) and (5). Lines 3 to 5 concern the LS-
SVM classification model with the classification probability
in (20) as output. To do this, a first optimization problem
is solved for the parameters (γ, λ) (line 3). Then, the
system (16) is solved, at line 4, to determine (αn, b) in (17).
Finally, the coefficients A and B in (20) are computed by
Newton’s method (Lin et al. 2007). To the end, the new point
xn+1 is determined at line 6 by solving a last optimization
problem for one of the merit functions in (21)–(24).

2.3.2 Convergence assessment

In the following sections, we are assessing and comparing
the efficiency of the proposed EGO-LS-SVM method on
several problems. To this end, we need to monitor the
convergence of the sequence of optimization iteration. The
convergence can be characterized in different ways. For
instance one may report the best point in the training set,
xbest ∈ Xn, corresponding to the smallest objective function
value fbest

.= f (xbest). Note that fbest is an upper bound
of the true optimal value, and that fbest can only improve
as the optimization iterations proceeds. Alternatively, in the

analytical tests presented in the next section, where the
objective function is easily evaluated, one can determine
at each iteration the approximated optimal point x∗

opt and
objective function value f ∗

opt
.= f (x∗

opt) associated to the
current state of knowledge of f and computable domain
P(C+|x). Specifically, one can solve for x∗

opt the following
constrained optimization problem

x∗
opt = arg min

x∈�

f̂ (x) s.t. P(C+|x) ≥ 0.5, (25)

and subsequently evaluate f ∗
opt = f (x∗

opt). It is noted,
however, that x∗

opt may not be a computable point since
the classifier may have a non-zero misclassification rate.
Further, when the exact solution of the optimization
problem is known, one can report the distance to current
estimate x∗

opt to the optimum true optimum xopt, in terms of
Euclidian distance ‖xopt −x∗

opt‖ or objective function values
f (x∗

opt) − f (xopt) ≥ 0.

2.3.3 Illustration of the infilling strategy

Before applying the EGO-LS-SVM method to generic
problems, we first illustrate the properties of the different
merit functions in the criteria (21)–(24), and the benefit
of applying them in a sequential fashion. To this end,
we consider the one-dimensional domain � = [0, 1]
and the Ricker Wavelet objective function f (x) =(
1 − 2π2x2

)
exp

(−π2x2
)
. We define the set of non-

computable points through
Ω f x Ω : x xmin 0 2 (26)

where xmin =
√

3/2
π

is the minimum of f in �. Letting
Ωadm Ω Ω f , the optimization problem becomes

min
x∈�adm

f (x) =
(

1 − 2π2x2
)

exp
(
−π2x2

)
. (27)

The optimum of (27) is found on the boundary of �adm

at xopt = xmin + 0.2. We solve this problem for several
infilling strategies, with an initial sample set with size
nLHS = 10. observations, and fix the maximum number
of calls to f to Nf = 50 (thus 40 optimization iterations
are performed). Figure 1 compares the distances to the
optimum as a function of Nf for the sequential use of
all the merit functions (21)–(24), or using systematically
only one of them. It is seen that using only (21) (pink
curve) or (24) (black curve) to drive the procedure does
not yield satisfactory results on this example. In contrast,
using (22) alone (blue curve) or (23) alone (green curve)
yields a convergence similar to that obtained using the four
merit functions sequentially (red curve). These behaviors
can be explained on this simple problem: because the
criteria (22) and (23) produce points closer to the boundary
than the unconstrained merit functions in (21) and (24),
they are more efficient to recover an optimum located
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Fig. 1 Convergence with the number of calls Nf of the distance to
optimum, ‖xopt − x∗

opt‖. Values are only reported for computable
optimum x∗

opt solution of (25). Case of problem (27)

on the boundary. Nevertheless, using sequentially all the
merit functions (21)–(24) does not impact negatively the
convergence. We thus advise for the alternative use of all the
four merit functions in a sequential infilling strategy. This
setting favors both the exploration of promising areas (with
large AEI) of the design space and of the most uncertain
boundaries of the computable domain (P ∼ 0.5).

Finally, we report in Fig. 2 the convergence of
EGO-LS-SVM when using the merit functions (22) alone
(left plot), or (23) alone (right plot), and for different values
of the threshold probability ρ = 0.2, 0.5 and 0.8. Again,
the curves depict the distance to the optimum as a function
of the total number Nf of calls to f . These plots show
that the value of ρ seems to have a moderate effect on
the convergence in the present example. In addition, using
ρ = 0.5 appears to be the best choice for the two merit
functions. This value will be considered as the default value
in the following experiments.

3 Analytical test problems

In this section, we illustrate the accuracy and the
computational efficiency of the EGO-LS-SVM approach
by solving few optimization problems defined analytically.
We consider problems with objective functions that are not
computable over a subset f of the full design space �. The
classification approach is used to estimate the admissible
(i.e. computable) domain adm : f , and the GP
model of f is constructed using only evaluations at points
proposed in �adm. For reference and comparison purposes,

we rely on the evolutionary algorithm CMA-ES (Hansen
2006) to solve the different problems, employing a high
penalization value f (x) = f∞ for the individual x /∈
�adm. This penalization f∞ and other parameters of the
CMA-ES method (population size, cross-over parameter. . . )
are carefully set for each optimization problem, following
the recommendations (Hansen 2006).

The selected test problems are presented in the following.
A simple two-dimensional illustrative example is firstly
proposed in Section 3.1; a multi-dimensional optimization
problem is considered in Section 3.2, which includes
optimizations in increasing dimensions and calculations
with different initial sample set sizes; Section 3.3 investigate
the behavior of the EGO-LS-SVM method in the case of
a multi-dimensional optimization problem with complex
domain f corresponding to a large portion of � (case
of an over-constrained problem); Section 3.4 proposes the
minimization of a problem where the domain �adm and
objective function f are defined probabilistically; finally
Section 3.5 concerns the efficiency comparison of the
original SVM based approach (Basudhar et al. 2012) to our
new EGO-LS-SVM method.

3.1 Two-dimensional illustrative example

We consider the two-dimensional domain � = [0, 4]2 and
the simple convex objective function f (x) = x2

1 + x2
2 . We

define the set of non-computable points through

Ω f x : c1 x 0 c2 x 0 (28)

where c1(x) = 0.25x2
1 + 0.75x2

2 − 1 and c2(x) = 0.75x2
1 +

0.25x2
2 − 1. Letting adm f , the optimization

problem becomes

min
x∈�adm

f (x) = x2
1 + x2

2 . (29)

The exact optimum of the problem is found to be on the
boundary of �adm at xopt = (1, 1).

The EGO-LS-SVM algorithm is initialized using a
Latin Hypercube Sampling (LHS) set of 15 points drawn
randomly in �. The optimization iterations are repeated till
the AEI merit function reaches a value less than 10−3. In the
CMA-ES method, the optimization is carried-out until the
estimated optimum is in �adm with a value of f less than
the EGO-LS-SVM solution. As mentioned before, a large
penalization f∞ = 100 is applied to points not belonging to
�adm in the CMA-ES algorithm.

Figure 3 shows the convergence of the error (red squares
and blue triangles, left axis) with the cumulated number of
calls to (attempts to evaluate) f , denoted Nf. Note that Nf

is also accounting for calls to f with x /∈ �adm. The error
on the solution is defined as the Euclidian distance between
the current estimate x̂opt of the optimum and the exact one,
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Fig. 2 Convergence with the number of calls Nf of the distance to optimum, ‖xopt − x∗
opt‖, for the infilling strategy based on single merit

function (22) (left) or (23) (right), and for different threshold probabilities ρ. Values are only reported for computable optimum x∗
opt solution

of (25). Case of problem (27)

xopt. For the EGO-LS-SVM method, x̂opt is the solution
of (29) where f is substituted with its GP model. For the
CMA-ES approach, the distance to the exact optimum of
each member of the population in �adm is reported. The
number Nadm of computable calls to f is also reported
for both methods, using red and blue lines (right axis) in
the same Figure. The EGO-LS-SVM (squares and red line)
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opt solution
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terminated at Nf = 142, with a number of computable
calls equal to 91, such that roughly 50 points have been
proposed in the non-feasible region f . The evolutionary
method needs 599 calls to f before it finds a better optimum
than the EGO-LS-SVM one, among which 401 were for
computable points. This result shows that, in this example,
the EGO-LS-SVM method is able to properly estimate the
feasible domain �adm in the neighborhood of the optimum,
and converges to this optimum at a significantly faster rate
than the CMA-ES approach.

To better appreciate the effectiveness of the classification
approach, contours of P(C+|x) are reported in Fig. 4 at
Nf = 50 and 100. Also shown in the plots are the iso-
value corresponding to P(C+|x) = 0.5 (dashed white
line), proposed computable points (white squares) and non-
computable points (black triangles). After 50 calls to f ,
the classification has well discovered �adm and the level
P(C+|x) = 0.5 is not far from the actual boundary
of �adm. After 100 calls to f , a large fraction of the
proposed points are concentrated around the optimum and
the contour P(C+|x) = 0.5 is not following anymore
the boundary of �adm, except in the immediate neighbor
of the optimum. Farther from the optimum in areas less
explored, the classification probability quickly returns to
P(C+|x) ≈ 0.5 as we move away from observed points.
This behavior is due to the classification parameters λ and
γ (see Section 2.2) that are adjusted to capture the steep
transition in P(C+|x) at the interface between �adm and

f , where the optimum point xopt is located. This behavior
is desirable because it allows considering the exploration of
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(a) At Nf = 50. (b) At Nf = 100.

Fig. 4 Contours of the classification probability P(C+|x) after 50 and 100 calls. Case of problem (29)

areas that were initially classified as unfeasible with high
probability if they exhibit large merit function AEI. Indeed,
the plot also reveals several calls to f for points in f , far
from the optimum, that confirm non-feasibility and balance
large merit function values (recall that the unconstrained
optimum is at the origin).

3.2 Higher dimensional problems

3.2.1 Influence of dimensionality

To investigate the behavior of the EGO-LS-SVM method as
the dimensionality of the search space � is increasing, we
propose the following problem where no function value is
provided for points not belonging to the feasible domain.
Let d > 1 be the dimensionality of � := [−1, 1]d . We
denote Bd the hypersphere center on xc = (0.1 · · · 0.1)

with radius Rd = √
0.05(d − 1) and set . The

optimization problem is then defined by

min
x∈�\Bd

f (x) =
d∑

i=1

x2
i . (30)

As for the previous problem, the optimal solution is
found on the boundary of . The initialization of the
EGO-LS-SVM method uses LHS set having increasing
size with d. Specifically the tests shown below correspond
to d = 2, 5, 10 and 20 and respective LHS sizes
nLHS = 15, 40, 100 and 200. The stopping criteria for the
EGO-LS-SVM and CMA-ES methods are identical to the
previous one in Section 3.1.

Figure 5 shows the convergences for the different
dimensionality d tested. The plot shows the sequence
of values f (x) at computable proposed points x as a
function of Nf. The evolutions of the cumulated number of
computable calls Nadm are also reported.

For all the dimensionality d tested, the CMA-ES method
needs more function calls than the EGO-LS-SVM method
and the ratio of numbers of calls increases with d. In
other words, the efficiency of the EGO-LS-SVM method
relatively to the CMA-ES method is increasing with d. It
is remarked that for the same number of calls to f , the
CMA-ES is proposing more points in �adm than the
EGO-LS-SVM method, but the latter is more effective at
proposing points with low f value. For the EGO-LS-SVM
method, we also note the presence of distinct branches
of function values. These branches reflect the competing
trends involved in the selection of the new optimum candi-
dates xn+1, because of the alternated use of conservative or
aggressive strategies specified by (23) and (24).

3.2.2 Influence of initial sample set size

This section aims at assessing the impact of the initial
sample set size on the convergence of the optimization
procedure. Indeed, the initial design of experiments can be
crucial in the optimization process and may significantly
affect the EGO procedure. To study the robustness of the
EGO-LS-SVM method, we solve the problem (30), with
d = 5 and three different initial sample set sizes: nLHS =
10, 50 and 100. For these three cases, we perform 300 EGO
iterations.
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Fig. 5 Sequence of computable values of f (xn) and cumulated number of computable calls Nadm as functions of Nf and for the EGO-LS-SVM
and CMA-ES optimization procedures. Case of problem (30) with different dimensionality d as indicated

Figure 6 shows the convergences for the different sample
set sizes nLHS. The plot shows the sequence of objective
function values f at computable points as a function of
Nf (also counting the initial sample set generation). We
see that for the nLHS = 50 and 100 cases the algorithm
immediately proposed new points that improve the function
values of f and accordingly converge quickly within ≈ 200
iterations. The case of only nLHS = 10 initial samples
exhibits a very different behavior with an initial exploration
phase with selected points having high objective function
values, up to Nf ≈ 150. after which the optimization quickly
converges. Overall, the convergence requires slightly more

iterations for nLHS = 10 than for the larger initial sample
sets. Nevertheless, this example highlights the robustness of
the EGO-LS-SVM method since the procedure converges
to the optimum even when a coarse initial sample set (10
points in 5 dimension) is employed.

3.3 Over-constrained problem

The following problem is designed to illustrate the limits of
the EGO-LS-SVM method in the case where the feasible
domain �adm is hard to learn and explore, because of
a complex structure. This problem which was proposed
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of Nf, for different initial sample set sizes nLHS. Case of problem (30)
with d = 5

in Tenne and Goh (2010) is then said over-constrained. The
domain �adm is here define as a subset of � = [−10, 10]d ,
for d = 7, through

�adm = {
x ∈ �, ci=1,...,4(x) ≤ 0

}
, (31)

where

c1(x) = 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127,

c2(x) = 7x1 + 3x2 + 10x2
3 + x4 − x5 − 282,

c3(x) = 23x1 + x2
2 + 6x2

6 − 8x7 − 196,

c4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7.

The optimization problem finally writes as

min
x∈�adm

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 +7x2

6 +x4
7 − 4x6x7 − 10x6 − 8x7. (32)

The global optimum is located at

xopt = (2.330499, 1.951372, −0.4775414, 4.365726,

−0.624487, 1.038131, 1.594227) .

As before, only the proposed points in �adm are evaluated
and used to approximate f , while the classification proceeds
with all the points, computable or not. Therefore, a large
LHS set of 800 points drawn uniformly in � is needed to
ensure that the initial GP model of f uses sufficiently many
points. In the experiment presented below, only 7 of the 800
LHS points were drawn in �adm, a low fraction illustrating
the complexity of the constrained problem.

Figure 7 shows the evolution of the Euclidian distances
to the exact optimum, ‖xopt − x̂opt‖2 as a function of Nf.
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Fig. 7 Distance to the optimum ‖xopt − x∗
opt‖ and cumulated

number of computable calls to f Nadm as functions of Nf and for
the EGO-LS-SVM and CMA-ES optimization procedures. Case of
problem (32)

The EGO-LS-SVM method progresses during the first 500
calls to f (EGO iterations), but subsequently stalls. Note
that when the optimization procedure is halted, only 187
evaluations have been generated for a total of 3541 calls to
f . The low ratio of computable proposed points xn indicated
that for this example the EGO-LS-SVM method is not able
to properly learn the domain �adm. On the contrary, the
CMA-ES method performs satisfactorily on this problem
and appears to be much more robust against the complexity
of �adm. Nevertheless, it should be underlined that this
problem corresponds to an extreme situation where the
objective function is not computable over most of the search
domain �.

3.4 Problemwith random computable domain

To complete the series of tests on analytically defined
problems, we propose a problem for which the domain
of non-computable function f and the objective function
are defined randomly. We set � = [−5, 5]2 and generate
randomly f using the following procedure. We first
generate randomly 100 points xc

l=1,··· ,100 ∈ �. Then, for
each point xc

l we decide with a probability p f 0 1 if
f is non-computable in the neighborhood ‖x − xc

l ‖2 ≤
1. We then define f as the intersection of � with the
non-computable neighborhoods. For this construction, the
probability that f is not computable at a given x ∈ � is
approximated from the cumulative distribution function of
the binomial law B 100 p f , where |�| is the volume of
�. Figure 8 presents two random realizations of f (gray
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(a) pF = 27%. (b) pF = 61%.

Fig. 8 Realizations of the non-computable domain f (gray circles) for probabilities Pf 0.21 and 0.61. Also shown are color contours of f

areas) for a probability Pf 27% and 61% in the left and
right plot respectively.

The optimization problem is finally defined as
min

x Ω Ω
f

f x x xopt
2
2 (33)

where the solution xopt is drawn at random in f . In the
computations, the EGO-LS-SVM method is initialized with
an LHS set of nLHS = 10 points in � and the optimization
procedure is stopped at Nf = 50.

We solve the optimization problem (33) for several
probabilities Pf . For every value of Pf several realizations
of f and xopt are generated to estimate statistics of
the solution. Figure 9 shows the convergence of the
optimization procedure with Nf (optimization iteration) and

for increasing values of
Pf . Figure 9a–c correspond to

increasing values of
Pf and reports the median (blue line)

and first and third quartiles (red lines) of the distance to
the optimum. Figure 9d compares the convergence of the
median distance to the optimum, for several values of Pf .
The plots show that as Pf increases from 0, the convergence
of the median and first quartile is only mildly affected. In
contrast, the third quartile is significantly impacted, with
an O(1) distance to the optimum when Pf 61%. This
behavior indicates that the EGO-LS-SVM method is quite
robust and successful in finding the optimum, except when
Pf becomes too large with computable domains �adm with
a low ratio of |�adm|/|�| and complicated structures. In
these situations, the EGO-LS-SVM method is not making
progress and becomes inefficient at proposing new points
∈ �adm to improve the model of f . As a result, the
approach is either successful or completely failing, with
a significantly skewed distribution of the distance to the
optimum as evidenced by the distance between the first
and third quartiles to the median. However, the results
reported in Fig. 9d show that the EGO-LS-SVM method is

quite robust since for probabilities as high as Pf 79% the
approach is still converging for at least half of the generated
problems.

3.5 Comparison with EGO-SVM(d+1)

A classification approach was proposed in Basudhar et al.
(2012) for the treatment of constraints, and it can be adapted
to the case of non-computable domains. This section aims at
contrasting this approach with ours, and at highlighting the
improved efficiency of our approach.

As mentioned before, the method proposed in Basudhar
et al. (2012) uses a classifier to predict the feasibility of
new points (i.e. whether constraints are satisfied), and so
can be used in the same way to predict if f is computable.
Compared to our approach, the method in Basudhar et al.
(2012) differs on four main points. First, it uses an SVM
method to determine the classification function h(x), in a
polynomial space, where we use an LS-SVM method in
general Reproducing Kernel Hilbert spaces. The LS-SVM
has thus generally better approximation properties when
the SVM method selects a subset of points to construct h

with possibly a reduced computational cost. Second, using
a reduced training set in SVM calls for a correction of the
classification probability to ensure that disregarded training
samples are correctly classified. In Basudhar et al. (2012)
the following correction of the sigmoid function (20) was
considered,

P
(
C+|x) = 1

1 + exp
(
Ah (x) + B

(
d−(x)

d+(x)+δ
− d+(x)

d−(x)+δ

)) ,

(34)

where d+(x) (resp. d−(x)) is the distances of x to the
closest point in the training set belonging to C+ (resp.
C−), and δ = 10−10 is used to avoid numerical overflows.
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Fig. 9 Statistic (median, 25% and 75% quartiles) of the distance to the optimum ‖xopt−x∗
opt‖ as a function of Nf and for several failure probabilities

Pf

This modification is introduced to account for the fact that
the class of the training samples is exactly known. Third,
the method in Basudhar et al. (2012) considers a single
merit function based on the expected improvement (EI).
Forth and finally, the infilling strategy in Basudhar et al.
(2012) adds not only the point xn+1 classified in C+ and
maximizing the EI but also d additional new points in its
neighborhood to maintain the isotropy of the training set
(a requirement made necessary by the corrected probability
in (34)). In contrast, our approach uses the simpler and

smoother sigmoid function, alternates between the criteria
in (21)–(24) to accommodate different situations and enrich
the training set by a single element at each iteration of the
iterative procedure. As subtle as they may appear, these
differences greatly impact the efficiency of the optimization
procedures.

To distinguish between the impacts of the classifier
construction methods and of the infilling strategies (classi-
fication probability, selection criteria for xn), we considered
the following methods:
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– EGO-LS-SVM : the approach proposed in this paper,
with LS-SVM construction of the classification func-
tion h(x), sigmoid classification probability definition,
sequential selection using criteria (21)–(24).

– EGO-SVM(d+1) : the approach proposed (Basudhar
et al. 2012), with SVM construction of h(x), modified
sigmoid classification probability definition in (34),
EI-only selection criteria and d-points neighborhood
exploration.

– EGO-SVM : the same as EGO-LS-SVM but with a
SVM construction of h(x).

– EGO-LS-SVM(d+1) : the same as EGO-SVM(d+1) but
with a LS-SVM construction of h(x).

These methods are tested on problem (30), fixing d =
5. The results of these experiments are summarized in
Fig. 10. Note that the SVM and LS-SVM methods both use
kernel-based constructions. The plots report the sequence
of computable function values f (xn) as a function of
the number of function calls Nf. In the case of the
EGO-SVM(d+1) and EGO-LS-SVM(d+1), the function
values are reported only for the newly selected point xn+1,
if computable, and not for its d additional companion
points. In addition, the convergence of the best feasible
function value fbest is reported, using lines, and considers
all evaluations of f (including the eventual d additional
points).

Figure 10a compares the LS-SVM methods for an
initial sample set with nLHS = 10 points. It is seen
that our approach EGO-LS-SVM explores the design
space during about 100 function calls and converges to
the computable optimum in about 250 calls. In contrast,
the EGO-LS-SVM(d+1) method that uses the probability
function and infilling strategy of Basudhar et al. (2012)
is seen to have not converged even after 1,800 function
evaluations, being unable to focus on the correct area.
Figure 10b shows the case of the SVM methods using again
nLHS = 10 samples. The plot shows that the EGO-SVM
method converges essentially as fast as for our proposed
EGO-LS-SVM, albeit with a somehow longer exploration
phase, as one would have expected for using the SVM
in place of the LS-SVM model. For the EGO-SVM(d+1)
method, corresponding to the original method proposed
in Basudhar et al. (2012), we observe that it is now
converging too, but it requires a few times more function
evaluations to achieve a comparable best value fbest

compared to our infilling strategy. This result highlights
the computational overhead due to the need of adding d

additional points to maintain the isotropy of the sample
points. Figure 10c (resp. Fig. 10d) corresponds to the same
methods as in Fig. 10a (resp. Fig. 10b) but now using an
initial sample set with nLHS = 100 points. It shows that
our infilling method does not improve significantly when

increasing nLHS, or conversely demonstrating once more the
robustness and interest of alternating between merit criteria.

We finally remark that the construction of the SVM
classifier is much more time consuming than the LS-SVM
one, in the presented experiments using a kernel-based
approach. This can be appreciated from the computational
times reported Table 1 for different training set sizes. The
differences in the computational times are mainly due to
model selection step in the SVM classifier, which involves
the resolution of a quadratic problem (using an SMO
method (Platt 1999)). The higher computational cost of the
SVM classifier construction further pleads for using the
LS-SVM.

4 Application to flexible hydrofoil
optimization

4.1 Optimization problem and solvers

We now apply the EGO-LS-SVM on a realistic problem
corresponding to the optimization of a flexible hydrofoil.
The objective of the optimization is to minimize the
hydrofoil drag force at selected conditions (forward speed
and lifting force) while ensuring non-cavitating flows. The
complete description of the optimization problem and the
hydrodynamical analysis of the optimized hydrofoil are
not provided in this paper, which focuses on the method;
interested readers can refer to Sacher et al. (2017). The
original optimization problem proposed in Sacher et al.
(2017) involved 11 design variables describing the shape
and elastic characteristics of the foil flexible trailing edge,
as schematically illustrated in Fig. 11. In the present work,
the number of design variables is reduced to 5 in order
to maintain reasonable computational times and to allow
extensive comparisons of the optimization methods. Among
the retained optimization variables, 4 concern the trailing
edge camber geometry at rest (p1,...,4), while the last one
modifies the Young modulus EBeam of the flexible part.
We set � = [−0.1, 1.5] × [−0.5, 0.2] × [−0.3, 0.5] ×
[−0.3, 0.3] × [0.1, 1.2].

As mentioned before, the optimization concerns the
minimization, for 4 conditions, of the hydrofoil drag
coefficients CDi=1,...,4 . Each condition corresponds to a
prescribed forward speed and hydrodynamic lift force
developed by the hydrofoil. The optimization problem is
written as

min
x∈�adm

f (x) =
4∑

i=1

wiCDi
(x), (35)

where the wi > 0 are prescribed weighting coefficients fix-
ing the relative importance of the 4 conditions. Constrains
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Fig. 10 Sequence of computable objective function values f (xn) (symbols) and convergence of the best value fbest (lines) as functions of the total
number of calls Nf for different classifiers constructions, infilling strategies and initial sample set sizes. Case of problem (30) with d = 5

Qi(x) are introduced to prevent the cavitation of the flow for
4 other conditions. The admissible and computable domain
is then defined as the intersection of the set of design points

Table 1 Measured computational times (in seconds) for building the
LS-SVM and SVM classifiers on training set with different sizes

Training set size 50 100 150 200

CPU time (s) of LS-SVM 0.2 0.4 1.1 2.1

CPU time (s) of SVM 0.9 3.7 15.5 30.9

x satisfying the cavitation constraints, with f the set
of x having computable function f :

adm x Qi 1 4 x 0 f (36)

Indeed, parts of the search domain � corresponds to non-
computable points, because of the lack of robustness of the
simulation tool. As an example, Fig. 12 shows a hydrofoil
corresponding to a non-computable point of the search
space, at which the flow solver is not able to determine the
hydrodynamic forces. Although it may be possible to finely
tune the solvers to improve their robustness, automating
the tuning process can be a difficult task. In addition,
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Fig. 11 Illustration of hydrofoil parameters

these non-computable configurations often correspond to
uninteresting or even unphysical design points, such that the
direct classification of these non-computable areas has been
found very effective.

The explicit constraints Qi are expressed as

Qi(x) = −CPi
(x) − λi, λi = p̄i − pv

1
2ρU2

i

, (37)

where ρ is the fluid density, pv the saturated vapor pressure,
CPi

the minimal pressure coefficient, λi the cavitation
number, and Ui and p̄i are the reference velocity and
pressure for the i-th condition. The minimum of the pressure

coefficient is defined by CPi
(x) := p−

i (x)−p̄i

0.5ρU2
i

, where p−
i

is the lowest pressure over the hydrofoil surface. The
condition Qi ≤ 0 expresses the constraint that the minimum
of the pressure around the hydrofoil should remain higher
than the vapor pressure: p−

i (x) ≥ pv .
Given a value x of the design variable, the evaluation

of the objective function f and the constraints Qi requires
the resolution of 8 nonlinear fluid-structure interaction
problems. For the flow, we rely on a static vortex lattice
method with viscous boundary layer equations, using the
solver XFOIL (Drela 1989; Morgado et al. 2016), while a
nonlinear elasticity solver (Durand et al. 2014) is used for
the elastic deformations of the foil (Durand et al. 2014),

Fig. 12 Configuration of the hydrofoil leading to a non computable
case

modeling the elastic trailing edge with 2D Linear Strain
Triangles (LST) (Pedersen 1973) and Timoshenko beam
elements (see Fig. 11a). The nonlinear equilibrium FSI
solutions are computed by a Newton method with Aitken
relaxation. We mention that the conditions call for the
enforcement of a prescribed lift force. This is achieved in
XFOIL by adjusting the Angle of Attack (AoA) of the
hydrofoil.

4.2 Optimization results

In the following, we consider two EGO approaches to
handle the constraints related to the cavitation. First, the
proposed EGO-LS-SVM method is used to estimate directly
�adm from the classification of previous points x. In other
words, the LS-SVM method is employed to predict both
the satisfaction of the constraints Qi(x) ≤ 0 and the
computability of future points. For the second method,
the LS-SVM classification is used only to predict the
computability, while the functionals Qi of the cavitation
constraints are approximated by individual GP models
following the EGO method presented in Schonlau (1997).
We call this second approach the EGO-GPC. These two
approaches are also compared to the reference CMA-ES
algorithm (Hansen 2006) with a penalty value f∞ = 100
for the non-computable points. In all computations, the
two EGO methods are initialized using an LHS set of
size 100. For this example, the EGO optimizations are
continued until a maximum computational budget of 36
hours is exhausted. Both the resolutions of the non-linear
FSI problems, the construction of the GP models and the
search for the maximizer of the AEI criteria are included in
the computational time. Note that on a classical workstation
computer it takes approximatively Tf = 75s to decide
the admissibility of a point and evaluate f at a given
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computable x, solving the FSI problems corresponding to
the prescribed 8 conditions.

Figure 13 shows the evolution of the successive values
of f with the number of calls to f . It is seen that
the EGO-LS-SVM and EGO-GPC methods require a
significantly lower number of function evaluations than
CMA-ES to reach the optimum neighborhood. Specifically,
the CMA-ES optimization needs 1615 function evaluations,
that is, twice as much, to eventually produce a better
point than the EGO-LS-SVM optimum (stopped after 36h
of computations). The two EGO methods have similar
behavior, although the sequence of computed values of f

produced the EGO-GPC method is slightly more dispersed
than for the EGO-LS-SVM method. This difference can be
explained by the additional evaluations needed to construct
the GP models of the constraints in the EGO-GPC method.

If the two EGO methods behave similarly in term of
the convergence with the number of calls to f , they do
present significant differences in terms of computational
times. This can be appreciated from the plots of Fig. 14.
Figure 14a reports the cumulated computational times of
the EGO-LS-SVM and EGO-GPC methods as functions
of the optimization iteration. The computational times are
split into the time dedicated to the FSI problems resolution,
called FSI time, and the construction of the GP models
and search of maximizer of the extended AEI, called EGO
time. It is seen from the graph that the EGO time is
dominant for the two approaches and increases with the
iteration index at a polynomial rate r � 2, because of the
increasing size of the GP models construction. Furthermore,
the EGO time of the EGO-GPC method is significantly
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Fig. 13 Sequence of computable function values f (xn) as a function
of the number of calls Nf for the EGO-LS-SVM, EGO-GPC and
CMA-ES methods. Case of problem (35)

higher than that of the EGO-LS-SVM method, as one
may have expected since more GP processes must be
estimated. In contrast to the EGO time, the computational
times spent on the FSI problems increase roughly at a
linear rate, with the EGO-LS-SVM FSI time being half
of the EGO-GPC FSI time. A closer inspection of the
results reveals that, when the computational budget of 36
hours is reached, the EGO-GPC method called for 312
evaluations of f , including 8 non-computable points, while
EGO-LS-SVM made up to 554 calls to f , among which 294
violated the constraints and 5 were not computable. These
numbers explain the lower FSI time of the EGO-LS-SVM
method, compared to the EGO-GPC method. Indeed, the
full classification approach of the EGO-LS-SVM method
allows for significant computational savings because once
the constraint on cavitation for a certain condition has been
found to be non-satisfied, there is no need to solve the
remaining FSI problems for the other conditions and to
compute f . For the EGO-GPC method, on the contrary,
one must solve systematically all the FSI problems for
the whole set of 8 (constraints and objective) conditions
to improve the GP models of all the Qi and f . To
further illustrate this point, we compare in Fig. 14b the
current best value of f observed, denoted min (f ), as
a function of the computational time, for the two EGO
methods. The EGO-LS-SVM method is seen to be more
efficient as it gives a better optimum than the EGO-GPC
approach. Moreover, the convergence rate seems faster for
the EGO-LS-SVM method: an excellent minimum within
less than 0.1% of the terminal value of f is obtained in
just 4 hours when for the GP method a comparable point
is obtained after 17 hours. These differences are consistent
with the fact that the number of EGO-LS-SVM iterations
performed in a given computational time is essentially twice
that of the EGO-GPC: although it is proposing a significant
fraction of non-feasible points, the EGO-LS-SVM method
better explores the design space and takes advantage of a
cheaper evaluation cost for non-feasible points.

Nevertheless, it should be noted that the CMA-ES
algorithm can be computationally cheaper than the EGO
methods, depending on the computational budget and the
problem considered. For instance, Fig. 15a shows the
best admissible (and computable) value of f obtained
as a function of the computational time for the two
EGO methods and the CMA-ES procedure. It is seen
that in the case of the hydrofoil optimization with the
numerical models considered here, the CMA-ES always
outperforms EGO-GPC, except for a point around 17 hours
of computational time. Compared to the EGO-LS-SVM,
the CMA-ES is significantly less efficient at the beginning
of the optimization procedure but eventually do better
as the computational time increases, with a better point
found by the evolutionary approach after ≈ 26 hours
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Fig. 14 Left: comparison of the computational times of the
EGO-LS-SVM and EGO-GPC methods, splitting the FSI solves (FSI
time) and the GP models construction and AEI exploration (EGO time)

contributions. Right: convergence of the computable fbest value with
the total computational time. Case of problem (35)

of calculation. Obviously, these results are for a single
realization of the optimization procedures that are random
in essence (through the selection / re-sampling of the
population in CMA-ES and initial LHS sample in the
EGO methods). A complete comparison should consider
averages over multiple realizations, but the results reported
in Fig. 15a are representative of the relative behavior of

the different methods. However, these relative efficiencies
are highly dependent on the problem and the numerical
model involved. In the present case, the important fraction
of the computational time dedicated to the GP models
construction is detrimental to the relative performance of
the EGO methods. To illustrate this, we can estimate the
computational times that would result if the resolution of
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Fig. 15 Evolution of the best computable objective function value fbest with the total computational time for the EGO-LS-SVM, EGO-GPC and
CMA-ES methods and considering different evaluation times Tf . The sequence of computable function values f (xn) are also reported. Case of
problem (35)
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the FSI problems were much more demanding, so the
EGO times become relatively less significant. This is made
in Fig. 15b where we have considered the case of an
evaluation of f requiring 30 minutes of computational
time, instead of 75 seconds. In this situation, the CMA-ES
optimization would need roughly 525 hours to find a better
point than the one obtained in just 125 hours by the
EGO-LS-SVM. Even the EGO-GPC method would become
more competitive than the CMA-ES strategy for Tf large
enough. In conclusion, the EGO-based methods are most
suited to the case of costly models.

5 Conclusion

In this work, we have proposed the use of a classification
approach in EGO procedures to deal with the existence of
non-computable design points and inequality constraints.
The key idea of the approach is to define the admissible
sub-domain of the original design space consisting of points
being computable and satisfying the problem constraints.
The method, named EGO-LS-SVM, relies on an LS-
SVM classifier to predict the admissibility of points
in the global search domain. The LS-SVM classifier
composes a Gaussian process model with a sigmoid
function, leading to an admissibility probability. It is trained
on the set of previously classified points. We combine
the probabilistic characterization of the admissibility with
the classical Augmented Expected Improvement (AEI)
statistical criterion, to propose several merit functions for
the selection of the next EGO point. These merit functions
induce conservative or on the contrary aggressive strategies,
with respect to admissibility when exploring the design
space. In fact, we recommend to actually alternate between
the merit functions to yield a robust but effective sequential
infilling strategy, ensuring the intensive exploration of
promising areas of the search domain and the boundaries of
the admissible domain.

The EGO-LS-SVM method has been tested on several
analytical problems presenting different types of difficul-
ties. These tests have validated the method and revealed
its robustness with respect to the number of design vari-
ables. In fact, it is shown that compared to standard evo-
lutionary algorithms (CMA-ES) the relative efficiency of
EGO-LS-SVM is increasing with the number of parameters
in the range tested. However, the EGO-LS-SVM method
can be challenged in extreme situations where the admis-
sible domain consists of a small portion of the global
design set with complex geometry. For these situations,
the EGO-LS-SVM may not have found admissible points,
stalling the convergence.

Finally, the method was tested on the constrained
optimization of a fully nonlinear numerical fluid-structure

interaction system. Here we aimed at minimizing the drag
of a flexible hydrofoil in several operating conditions,
with constraints related to the cavitation. On this example,
the EGO-LS-SVM method has been compared with the
CMA-ES and EGO methods with GP models of the
constraints. This example highlighted the interest of using
EGO-based methods compared to the CMA-ES on these
complex problems, and the advantages of treating the
constraints and computable domain in a unified approach to
the EGO-LS-SVM method.

Future works should focus on the current limits of
the EGO-LS-SVM method. In particular, the initialization
procedure must be improved in the situation where the
computable domain is small compared to the whole search
domain. One possible route in this direction could be to
initiate the optimization with an evolutionary method, and
subsequently switch to EGO-LS-SVM when sufficiently
many points have been found in the admissible domain.
Also, when the absolute probabilities of C± are much
unbalanced (small or large computable domain, compared
to the search domain) the use of a Weighted-SVM
approach (Yang et al. 2005) could help achieving better
classification performances, in particular during the initial
optimization iterations.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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