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Abstract
During the past decade, considerable research has been conducted on constrained optimization problems (COPs) which are
frequently encountered in practical engineering applications. By introducing resource limitations as constraints, the optimal
solutions in COPs are generally located on boundaries of feasible design space, which leads to search difficulties when applying
conventional optimization algorithms, especially for complex constraint problems. Even though penalty function method has
been frequently used for handling the constraints, the adjustment of control parameters is often complicated and involves a trial-
and-error approach. To overcome these difficulties, a modified particle swarm optimization (PSO) algorithm named parallel
boundary search particle swarm optimization (PBSPSO) algorithm is proposed in this paper. Modified constrained PSO algo-
rithm is adopted to conduct global search in one branch while Subset Constrained Boundary Narrower (SCBN) function and
sequential quadratic programming (SQP) are applied to perform local boundary search in another branch. A cooperative mech-
anism of the two branches has been built in which locations of the particles near boundaries of constraints are selected as initial
positions of local boundary search and the solutions of local boundary searchwill lead the global search direction to boundaries of
active constraints. The cooperation behavior of the two branches effectively reinforces the optimization capability of the PSO
algorithm. The optimization performance of PBSPSO algorithm is illustrated through 13 CEC06 test functions and 5 common
engineering problems. The results are compared with other state-of-the-art algorithms and it is shown that the proposed algorithm
possesses a competitive global search capability and is effective for constrained optimization problems in engineering
applications.

Keywords Particle swarm optimization . Constrained optimization problems . Subset constraints boundary narrower function .

Parallel boundary search . Diversity enhancement

1 Introduction

Constrained optimization problems (COPs) are the most pop-
ular type of problems in engineering optimization. COPs are
generally composed of objective function, constrained

functions, variables and bounds (search space) and can be
formulated as (1):

Find x∈S⊆RD

min f x!
� �

s:t: gi≤0; for i ¼ 1 to q
gi ¼ 0; for i ¼ qþ 1 to m

ð1Þ

Here f and g are objective function and constrained func-
tions, respectively. x! are variables and S represents design
space defined on RD. q is the number of inequalities andm − q
is equalities constrained functions.
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For practical engineering optimization problems, the objec-
tive function value is generally an engineering objective such
as the minimization of cost or mass. The resource limitation is
often expressed as constraint. When an optimal solution sits
on a boundary of feasible design space, it implies resource is
exhausted. By agreement, boundary of constraint refers to as
boundary of feasible design space in this article. At boundaries
of constraints, values of constraint become zero and these
constraints are called active constraints (Bonyadi and
Michalewicz 2014). Many existing optimization algorithms
have difficulties in handling constraints. Taking penalty func-
tion method as an example, a mild punishment may lead to
infeasible solutions while excessive punishment may restrict
particles moving to regions near boundaries of constraints and
therefore, optimal solutions are likely to be missed.

In this paper, one of the existing global optimization algo-
rithms, Particle Swarm Optimization algorithm (PSO), is ex-
tended to solve the constrained optimization problem com-
bined with a novel local boundary search method. PSO algo-
rithm was originally proposed by Kennedy and Eberhart
(Kennedy and Eberhart 1995). Imitating the cooperative be-
haviors of fish schooling and bird flocking, the algorithm is
based on particle swarm to converge to an optimal solution.
Two characteristics of a particle include position and velocity
guide motivation. Position is the current location in a search
region and velocity is updated according to the individual and
the global search history.

While the concept is simple, the PSO algorithm has a
strong search capability and becomes a very popular global
optimization algorithm. It also has been extended to solve
COPs. Parsopoulos (Parsopoulos and Vrahatis 2002) incorpo-
rated the non-stationary multi-stage penalty function method
into PSO algorithm and the testing results demonstrated the
advantage of PSO for solving COPs. Pulido (Pulido and
Coello 2004) proposed the feasibility-based rules method for
handling constraints in which the global best of particle swarm
was chosen based on feasibility rules. A turbulence operator
was also used in this method to improve the exploratory abil-
ity. Hu (Hu and Eberhart 2002) and Guo (Guo et al. 2004)
used a fly-backmechanism to keep particles from escaping the
feasible region so that the feasibility of solutions can be
proved. He (He and Wang 2007a) proposed a co-evolution
PSO approach to solve COPs. In that method, along with the
optimization process, the penalty function evolves in a self-
adaptive way. He and Wang (He and Wang 2007b) employed
the simulated annealing method with PSO algorithm to im-
prove the global search capability of the standard PSO and the
feasibility-based rules were used for handling the constrain
functions. Paquet (Paquet and Engelbrecht 2007) proposed a
PSO variant to solve linear equality constrained problems. All
particles positions are initialized at the position satisfying the
constraints so that all further generated particles are feasible.
Liang (Liang et al. 2010) proposed a CoCLPSO method to

deal with COPs in which particles were adaptively assigned to
explore different constraints according to their difficulties and
the SQPmethod is also combined in CoCLPSO to improve its
local search ability. Sun (C-l et al. 2011) proposed the IVPSO
to update the position of particles in a vector pattern and the
one-dimensional search method was applied to find feasible
positions for particles escaping from the feasible region.
Bonyadi (Bonyadi et al. 2013) proposed a constraint handling
method in cooperation withMLPSOmethod to solve COPs. It
was assumed that any particles with feasible positions are
better than infeasible particles and infeasible particles with
smaller constraint violation values are better than those with
larger values. Mezura-Montes and Coello (Mezura-Montes
and Coello Coello 2011) published a survey paper summariz-
ing considerable amount of existing constraint-handling tech-
niques within nature-inspired algorithms. Main features of
each constraint-handling technique have been given and it
should be noted that extra parameters are generally required
in most of the methods.

As stated above, present researches on constrained PSO
algorithms focus on constraint handling mechanism to keep
solution feasible while ignoring the fact that a global optimum
generally locates near boundaries of constraints. Also, to im-
prove the accuracy of constraint handling, control parameters
are often used in these algorithms but adjusting parameters for
different problems is always complicated and time-consum-
ing. To overcome the limitations of existing methods, our goal
in this work is to improve the constrained PSO algorithm by
enhancing local search near boundaries.

The key issue in local boundary search is how to find
boundaries of constraints. This research builds on the concept
of subset constraints boundary narrower (SCBN) function
proposed by Bonyadi MR. (Bonyadi and Michalewicz 2014)
The SCBN function was originally proposed to narrow a fea-
sible region of COPs to its boundaries of constraints and par-
ticles within the narrowed band region can then be picked and
stored during the optimization process of PSO. The area of
band region is controlled by adjusting a positive parameter ε.
The SCBN function is defined as (2):

HΩ;ε ¼ max max
i∈Ω

gi xð Þf g þ ε

����
����−ε;max

i∉Ω
gi xð Þf g

� �
ð2Þ

From its formulation,HΩ, ε ≤ 0 if and only if at least one of
the constraints is 2ε-active in the subset Ω while others are
satisfied. After using the SCBN function, particles moving
near boundaries of constraints can be easily picked out and
their positions will be provided for local boundary search.

Based on the SCBN function, this paper comes up with
a parallel boundary search particle swarm optimization
(PBSPSO) algorithm which has two parallel branches
with cooperative mechanism. In one branch, constrained
PSO based on the penalty function method is adopted and
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global search is conducted. The particles near boundaries
of constraints are picked out iteratively using the SCBN
function and locations of these particles are stored. In
another branch, the local boundary search process is per-
formed from the stored positions as initial points based on
the sequential quadratic programming (SQP). The results
of local boundary search will reversely influence the

search program of the other branch by guiding particles
motion direction in the next generation. With the pro-
posed algorithm, the cooperative mechanism of the global
and local search processes not only directly increases the
search intensity near boundaries of constraints, but also
avoids the trial-and-error in adjusting penalty parameters.
Note the increase of search intensity improves the chance
of finding an optimal solution. The proposed algorithm is
relatively suitable for real engineering optimization prob-
lems where solution often sits on the boundary of
constraint.

This paper is organized as follows. Section 2 provides a
brief introduction of the standard PSO algorithm. In Section 3,
the proposed PBSPSO algorithm is described covering the
constraint handling mechanism, diversity enhanced technique
and the algorithm execution process. The result of numerical
experiment is presented in Section 4. CEC06 benchmark test
functions and five common engineering problems are chosen
to test the proposed algorithm. In the last section, conclusions
are drawn and the future research work is presented.

2 Standard particle swarm optimization

The basic particle swarm optimization algorithm was orig-
inally proposed by Kennedy and Eberhart (Kennedy and

Fig. 1 Schematic diagram of PBSPSO algorithm. Green area represents
feasible region, particles with black full lines are previous generation
while others with dotted line are updated, the purple particle is the
initial point of SQP search and it is chosen by SCBN function. Blue dot
is the result of global search and red dot is the result of SQP search

Fig. 2 Flowchart of the proposed
PBSPSO
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Eberhart 1995) in 1995 for unconstrained global optimi-
zation problems. After years of development, the standard
PSO is widely used now and many modified PSO algo-
rithms are revised from the standard version.

The mathematical expression of the standard PSO
algorithm is summarized as follows. Assuming a prob-
lem with D-dimensions, xik stands for the position of the
ith particle and vik is the velocity. pik and pgk are the
historically best position of each particle and the global
best position, respectively. The updating regulations of
all particles are based on two rules: each particle will
pursue the historical best position and global best posi-
tion iteratively. The whole swarm is controlled by

equations below. (3) is velocity update equation and
(4) is position update equation.

vikþ1 ¼ ωvik þ c1⋅r1⋅ pik−x
i
k

� �þ c2⋅r2⋅ pgk−x
i
k

� � ð3Þ
xikþ1 ¼ xik þ vikþ1 ð4Þ

ω iterð Þ ¼ itermax−iterð Þ
itermax

� ωmax−ωminð Þ þ ωmin ð5Þ

There are three parts in (3). The first part contains the
velocity of earlier generation and inertia factor ω. The latter
ensures that particles are able to “fly” across the design
space and also guarantees the balance between local and
global search capacities. A linearly varying inertia weight
proposed by Shi and Eberhart (Shi and Eberhart 1999) has
significantly improved the standard PSO, shown as (5). iter
is the current generation and itermax is the maximum gen-
eration. The second part called the cognition component
expresses the personality of each particle and motivates
particles to pursue its personal best position in the search
history. The third part is called the social component part
(Kennedy 1997) and represents the collaborative behaviors
among particles. c1 and c2 are named cognitive scaling
parameter and social scaling parameter, respectively
(Eberhart and Shi 2001). r1 and r2 are two random numbers
within the range [0,1].

3 The parallel boundary search particle swarm
optimization (PBSPSO) algorithm

Conventional constrained PSO algorithms ensure the fea-
sibility of solutions by constraint handling mechanism,
such as the penalty function method, but the process of
adjusting parameters is complicated in various problems.

Table 2 Statistical performance of results of PBSPSO for 13 benchmark test functions

Funs Best Mean Worst SD Nmax Naver Nmin Pop

g01 −15 −15 −15 0.00E + 00 164 97 54 40

g02 −0.8036196 −0.7742606 −0.7271980 2.81E-02 737 413 300 100

g03 −1.0004754 −1.0001848 −0.9993826 2.37E-04 1293 472 124 100

g04 −30,665.539 −30,665.539 −30,665.539 7.43E-12 797 362 25 40

g05 5126.49671 5126.49671 5126.49671 1.86E-12 638 140 75 40

g06 −6961.814 −6961.814 −6961.814 4.96E-12 1709 803 149 40

g07 24.306 24.306 24.306 5.04E-14 111 91 79 40

g08 −0.095825 −0.095825 −0.095825 8.88E − 17 160 143 38 40

g09 680.630 680.630 680.630 4.64E − 13 992 738 539 40

g10 7049.248 7049.248 7049.248 2.04E − 12 1000 274 39 40

g11 0.7499 0.7499 0.7499 1.84E-13 12 12 12 40

g12 -1 -1 -1 0.00E + 00 95 78 62 40

g13 0.053941514 0.053941514 0.053941514 4.72E-15 1000 529 51 40

Table 1 Summary of 13 benchmark test problems in CEC06 (Liang 2006)

Problem n Type of function ρ LI NI LE NE a

g01 13 Quadratic 0.0111% 9 0 0 0 6

g02 20 Non-linear 99.9971% 0 2 0 0 1

g03 10 Polynomial 0.0000% 0 0 0 1 1

g04 5 Quadratic 52.1230% 0 6 0 0 2

g05 4 Cubic 0.0000% 2 0 0 3 3

g06 2 Cubic 0.0066% 0 2 0 0 2

g07 10 Quadratic 0.0003% 3 5 0 0 6

g08 2 Non-linear 0.8560% 0 2 0 0 0

g09 7 Polynomial 0.5121% 0 4 0 0 2

g10 8 Linear 0.0010% 3 3 0 0 6

g11 2 Quadratic 0.0000% 0 0 0 1 1

g12 3 Quadratic 4.7713% 0 1 0 0 0

g13 5 Non-linear 0.0000% 0 0 0 3 3

Notes of Table 1: n is the no. of dimensions, ρ is the percentage of feasible
region in the whole search space, LI is the no. of linear inequality con-
straints, NI is the no. of nonlinear inequality constraints, LE is the no. of
linear equality constraints, NE is the no. of nonlinear equality constraints,
a is the no. of active constraints.
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Meanwhile, optimal solutions may be missed since the
inadequate search near boundaries of constraints. To over-
come these difficulties, in this work, the constrained PSO
is modified based on a local boundary search procedure
so that the parameter adjustment process is more straight-
forward and search capability near boundaries is

observably improved. In this section, mechanism of the
proposed parallel boundary search particle swarm optimi-
zation (PBSPSO) algorithm is introduced in detail.

The schematic diagram of the proposed PBSPSO algo-
rithm is shown in Fig. 1. In one branch of PBSPSO, PSO
algorithm based on non-stationary penalty function

Table 3 Statistical performance of results of PBSPSO for the CEC06 benchmark test problems g01-g13

Fun. Statistics
SMES (Mezura-
Montes and
Coello 2005)

HCOEA
(Wang et al.
2007)

ATMES
(Wang et al.
2008)

M-ABC (Mezura-
Montes and Cetina-
Dominguez 2012)

PSGA
(Dhadwal
et al. 2014)

MOPSO
(Venter and
Haftka 2010)

DSS-MDE
(Zhang et al.
2008)

PBSPSO

g01 Best −15.000 −15.000 −15.000 −15.000 −15.000 −14.98 −15.000 −15.000
Mean −15.000 −15.000 −15.000 −15.000 −15.000 −10.38 −15.000 −15.000
Worst −15.000 −14.999 −15.000 −15.000 −15.000 −6.00 −15.000 −15.000
SD 0 4.30E-07 1.60E-14 0 0 2.54E + 00 0 0

g02 Best −0.803601 −0.803241 −0.803388 −0.803615 −0.803597 −0.700 −0.803619 −0.8036196
Mean −0.785238 −0.801258 −0.790148 −0.799336 −0.794836 −0.539 −0.788011 −0.7742606
Worst −0.751322 −0.792363 −0.756986 −0.777438 −0.786442 −0.373 −0.744690 −0.7271980
SD 1.67E-02 3.83E-03 1.30E-02 6.84E-03 5.64E-03 6.5E-02 1.50E-02 2.81E-02

g03 Best −1.000 −1.000 −1.000 −1.000 −1.0005 – −1.0005 −1.0004755
Mean −1.000 −1.000 −1.000 −1.000 −1.0005 – −1.0005 −1.0001848
Worst −1.000 −1.000 −1.000 −1.000 −1.0005 – −1.0005 −0.9993826
SD 2.09E-04 1.30E-12 5.90E-05 4.68E-05 2.69E-05 – −2.70E-09 2.37E-04

g04 Best −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,666 −30,665.539 −30,665.539
Mean −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,664 −30,665.539 −30,665.539
Worst −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,656 −30,665.539 −30,665.539
SD 0 5.40E-07 7.40E-12 2.22E-11 7.28E-12 1.89E + 00 2.70E-11 7.43E-12

g05 Best 5126.599 5126.498 5126.498 5126.736 5126.497 – 5126.497 5126.497
Mean 5174.492 5126.498 5127.648 5178.139 5140.897 – 5126.497 5126.497
Worst 5304.167 5126.498 5135.256 5317.196 5166.438 – 5126.497 5126.497
SD 50.06E + 00 1.73E-07 1.80E + 00 5.61E + 01 1.44E + 01 – 0 1.86E-12

g06 Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 −6959 −6961.814 −6961.814
Mean −6961.284 −6961.814 −6961.814 −6961.814 −6961.814 −6939 −6961.814 −6961.814
Worst −6952.482 −6961.814 −6961.814 −6961.814 −6961.814 −6910 −6961.814 −6961.814
SD 1.85E + 00 8.51E-12 4.60E-12 0 9.26E-12 1.27E + 01 0 4.96E-12

g07 Best 24.327 24.306 24.306 24.315 24.360 26.97 24.306 24.306
Mean 24.475 24.307 24.316 24.415 24.738 36.96 24.306 24.306
Worst 24.843 24.309 24.359 24.854 24.999 72.54 24.306 24.306
SD 1.32E-01 7.12E-04 1.10E-02 1.24E-01 2.30E-01 8.93E + 00 7.00E-08 5.04E-14

g08 Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.096 −0.095825 −0.095825
Mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.096 −0.095825 −0.095825
Worst −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095 −0.095825 −0.095825
SD 0 2.42E-17 2.80E-17 4.23E-17 3.84E-09 0 3.90E-17 8.88E-17

g09 Best 680.632 680.630 680.630 680.632 680.631 681.8 680.630 680.630
Mean 680.643 680.630 680.639 680.647 680.658 685.4 680.630 680.630
Worst 680.719 680.630 680.673 680.691 680.725 693.5 680.630 680.630
SD 1.55E-02 9.41E-08 1.00E-02 1.55E-02 2.48E-02 2.28E + 00 2.50E-13 4.64E-13

g10 Best 7051.903 7049.287 7052.253 7051.706 7049.255 7611 7049.248 7049.248
Mean 7253.047 7049.525 7250.437 7233.882 7059.107 8992 7049.248 7049.248
Worst 7638.366 7049.984 7560.224 7473.109 7092.609 15,553 7049.249 7049.248
SD 1.36E + 02 1.50E-01 1.20E + 02 1.10E + 02 1.26E + 01 1.23E + 03 3.10E-04 2.04E-12

g11 Best 0.7500 0.7500 0.75 0.75 0.7499 – 0.7499 0.7499
Mean 0.7500 0.7500 0.75 0.75 0.7499 – 0.7499 0.7499
Worst 0.7500 0.7500 0.75 0.75 0.7499 – 0.7499 0.7499
SD 1.52E-04 1.55E-12 3.40E-04 2.30E-05 1.92E-07 – 0 1.84E-13

g12 Best −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
Mean −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
Worst −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
SD 0 0 1.00E-03 0 2.76E-09 0 0 0

g13 Best 0.053986 0.053949 0.053950 0.053985 0.054103 – 0.053942 0.05394151
Mean 0.166385 0.053949 0.053959 0.158552 0.061601 – 0.053942 0.05394151
Worst 0.468294 0.053949 0.053999 0.442905 0.083042 – 0.053942 0.05394151
SD 1.77E-01 8.68E-08 1.30E-05 1.73E-01 7.23E-03 – 8.30E − 17 4.72E-15
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method (Yang et al. 1997) is adopted and PSO global
search is conducted. In order to avoid the procedure from
stagnating, a judgement criterion has been built and a
velocity reset operator proposed in our previous study
(Liu et al. 2016) is used to scatter particles away from
the stagnation position. Boundary bounce method (Clerc
2006) is applied to pull back particles escaping from the
given design space. In each generation, particles are cal-
culated and picked by the SCBN function and location of
the particle closest to boundaries of constraints is record-
ed for the other branch.

In the second branch, the sequential quadratic pro-
gramming (SQP) is executed and the location informa-
tion recorded in the first branch is set as the initial
position of SQP local search. The Hessian matrix is
calculated using the BFGS method for the SQP imple-
mentation. The results of SQP local search and PSO
globa l sea r ch ( r ed and b lue do t s in F ig . 1 ,
respectively) are compared with each other and the bet-
ter one is set to be the globally optimal solution of the
present generation. When search result near boundary of
constraint in the second branch is chosen as the current
global optimal solution, the search direction of the PSO
algorithm in the next generation will be influenced and
particles in next generation will be led to the sensitive
boundaries of constraint.

A cooperative mechanism is hereby established that the
global search process of the PSO algorithm provides ini-
tial points iteratively for the local search process and the
best solutions of local boundary search will influence the
particles movement direction in return. The termination
conditions of the proposed method are set as follows:
the maximum generation is reached or relative difference
between the results of last two generations is less than ε.
The value ε is set as 10−5 in this study.

The parallel structure of PBSPSO algorithm has three
major advantages than the existing algorithms. Firstly, lo-
cal boundary search approach increases search intensity
near boundaries of constraints so that there is no need to
spend much time on adjusting the control parameter.
Secondly, the local boundary search improves the overall
search ability of the algorithm and increases the chances
of finding a global optimal solution. Thirdly, two
branches of the algorithm are not independent with each
other while PSO provides initial location information for
local boundary search and the results of local boundary
search may lead PSO global search to sensitive bound-
aries of constraint. This treatment ensures the algorithm
efficiency. Together, the parallel algorithm structure and
the cooperative mechanism between global and local
boundary search method effectively improved the optimi-
zation capability of the algorithm.

The algorithm flow chart is displayed in Fig. 2.

3.1 Constraint handling for the PBSPSO algorithm

As a constraint handling mechanism, the penalty function
technique is simple in concept and convenient in operation.
So, the widely-used non-stationary penalty functions (Yang
et al. 1997) are employed in our work to handle constrain
functions. The penalty functions are defined as in (6) and (7):

F xð Þ ¼ f xð Þ þ h kð ÞH xð Þ; x∈S ð6Þ

H xð Þ ¼ ∑
m

i¼1
θ qi xð Þð Þqi xð Þγ qi xð Þð Þ ð7Þ

Here qi(x) = max {0, gi(x)}, i = 1, …, m. θ(qi(x)) is the
multi-stage assignment function. γ(qi(x)) is the power of the
penalty function and gi(x) represents the constrained func-
tions. The rules of parameters are specified below (Eberhart
and Shi 2001):

γ qi xð Þð Þ ¼ 1; if qi xð Þ < 1
γ qi xð Þð Þ ¼ 2; if qi xð Þ≥1

�
θ qi xð Þð Þ ¼ 10; if qi xð Þ < 0:001
θ qi xð Þð Þ ¼ 20; if qi xð Þ≤0:1
θ qi xð Þð Þ ¼ 100; if qi xð Þ≤1
θ qi xð Þð Þ ¼ 300; if qi xð Þ > 1

8>><
>>:
h kð Þ ¼ k

ffiffiffi
k

p
for our optimization problem.

Table 4 The results of Wilcoxon test between PBSPSO and other
algorithms

PBSPSO vs. R+ R- α = 0.05 α = 0.1 α = 0.2

SMES 80.5 10.5 H1 H1 H1

HCOEA 69.5 21.5 H0 H0 H1

ATMES 69.5 21.5 H0 H0 H1

M-ABC 80.5 10.5 H1 H1 H1

PSGA 62.5 28.5 H0 H0 H0

MOPSO 37.5 7.5 H0 H1 H1

DSS-MDE 50 41 H0 H0 H0

Notes of Table 2: The sample size of MOPSO is 9 while that of other
algorithms is 13.

Fig. 3 Tension/Compression spring and its design variables
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3.2 Diversity enhancement in the PBSPSO algorithm

It has been noted that the PSO may be trapped into stagnation
for numbers of generations without any improvement. For the
purpose of escaping from stagnation, a velocity reset operator
presented in our previous work (Liu et al. 2016) is employed.

Once the programming is judged to trap into stagnation, ve-
locity reset operator is activated and velocity of swarm will be
reset according to the current generation number and the inertia
weight factor ω. The velocity reset equation is shown as (8).

Vreset ¼ μ⋅rw⋅Vrand

μ ¼ itermax−itercurrentð Þ
itermax

rw ¼ rwmax−rwminð Þ* itermax−itercurrentð Þ
itermax

þ rwmin

ð8Þ

where Vrand is a velocity matrix in which elements are ran-
domly defined between ‐Vmax and Vmax.μ records the search
process and will linearly decrease when the iterations in-
creases. itermax and itercurrent are the max generation and the
current generation, respectively. rw is named velocity correla-
tion coefficient and its boundary is within a predefined range
[rwmin, rwmax] referring to the inertia weight factor ω of the
standard PSO. Along with the optimization process, (itermax −
itercurrent) decreases and the value of μ is diminished. rw is
used to control the distribution range of reset velocities.
Finally, Vreset shrinks and the algorithm’s convergence property
is guaranteed. Once the adaptive reset operator is activated,
velocities are reset by (8) and particles are rebounded off the
stagnation position by (9).

Pp ¼ Pstagnation þ Vreset ð9Þ

Table 5 Comparison of best solutions obtained from variable optimizers for tension/compression spring design problem

DV DEDS
(Zhang et al.
2008)

HEAA
(Wang et al.
2009)

WCA
(Eskandar et al.
2012a)

DELC (Wang
and Li 2010)

G-QPSO
(Coelho
2010)

MBA
(Sadollah et al.
2013)

NM–PSO (Zahara
and Kao 2009)

IAPSO
(Guedria
2016)

PBSPSO

x1 0.051689 0.051690 0.051680 0.051689 0.051515 0.051656 0.051620 0.051685 0.051689
x2 0.356718 0.356729 0.356522 0.356718 0.352529 0.355940 0.355498 0.356629 0.356718
x3 11.288965 11.288294 11.300410 11.288966 11.538862 11.344665 11.333272 11.294175 11.288969
g1(x) 1.45E − 09 2.75E − 08 −1.65E − 13 −3.40E − 09 −4.83E − 05 0 1.01E − 03 −1.97E − 10 -1.29E-14
g2(x) −1.20E − 09 −2.09E − 08 −7.9E − 14 2.45E − 09 −3.58E − 05 0 9.95E − 04 −4.64E − 10 6.66E-15
g3(x) −4.053786 −4.053808 −4.053399 −4.053786 −4.0455 −4.052248 −4.061860 −4.053610 −4.053786
g4(x) −0.727729 −0.727721 −0.727864 −0.727729 −0.73064 −0.728268 −0.728588 −1.091686 −0.727729
f(x) 0.01266523 0.01266523 0.012665 0.01266523 0.012665 0.012665 0.012630 0.01266523 0.01266523

Table 6 Comparison of
Statistical performance of results
given by different optimizers for
tension/compression spring
design problem

Method Worst Mean Best S.D

GA2 (Coello and Montes 2002) 0.012973 0.012742 0.012681 5.90E − 05
CAEP (Coello and Becerra 2004) 0.015116 0.013568 0.012721 8.42E − 04
CPSO (He and Wang 2007a) 0.012924 0.012730 0.012675 5.20E − 04
HPSO (He and Wang 2007b) 0.012719 0.012707 0.012665 1.58E − 05
NM–PSO (Zahara and Kao 2009) 0.012633 0.012631 0.012630 8.47E − 07
G-QPSO (Coelho 2010) 0.017759 0.013524 0.012665 1.27E-03

DE (Lampinen 2002) 0.012790 0.012703 0.012670 2.7E − 05
DELC (Wang and Li 2010) 0.012665 0.012665 0.012665 1.3E − 07
DEDS (Zhang et al. 2008) 0.012738 0.012669 0.012665 1.3E − 05
HEAA (Wang et al. 2009) 0.012665 0.012665 0.012665 1.4E − 09
PSO–DE (Liu et al. 2010) 0.012665 0.012665 0.012665 1.2E − 08
LCA (Kashan 2011) 0.01266667 0.01266541 0.01266523 3.88E − 07
WCA (Eskandar et al. 2012a) 0.012952 0.012746 0.012665 8.06E − 05
MBA (Sadollah et al. 2013) 0.012900 0.012713 0.012665 6.30E − 05
APSO (Yang 2010) 0.014937 0.013297 0.012700 6.85e − 4
IAPSO (Guedria 2016) 0.01782864 0.013676527 0.01266523 1.573E − 3
ABC (Cuevas and Cienfuegos 2014) 0.01321041 0.012850718 0.01266523 1.18E-04

PBSPSO 0.01266523 0.01266523 0.01266523 5.10E-17
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3.3 Implementation of the PBSPSO algorithm

The implementation of the proposed PBSPSO algorithm is
described as follows.

4 Numerical experiment

In this section, thirteen benchmark test functions from
CEC06 (Liang 2006) and five real world engineering
problems were chosen to test the proposed algorithm.

The benchmark test functions from CEC06 are used to
test the ability of the proposed algorithm to deal with
conventional constrained optimization problems while
five engineering problems are used to evaluate its ability
to solve practical engineering optimization problems.

Table 7 Comparison of best solutions obtained from variable optimizers for three bar truss design problem

DV DEDS
(Zhang et al. 2008)

PSO-DE
(Liu et al. 2010)

WCA
(Eskandar et al. 2012a)

MBA
(Sadollah et al. 2013)

SCA
(Ray and Liew 2003)

PBSPSO

x1 0.788675 0.788675 0.788651 0.788565 0.788621037 0.788675137
x2 0.408248 0.408248 0.408316 0.4085597 0.408401334 0.408248283
g1(x) −2.10E-11 −5.75E-13 4.23E-07 −5.29E-11 −8.28E-09 −6.66E-16
g2(x) −1.464102 −1.464102 −1.464024 −1.4637475 −1.46392765 −1.464101624
g3(x) −0.535898 −0.535898 −0.535975 −0.5362524 −0.536072358 −0.535898376
f(x) 263.895843 263.895843 263.895843 263.8958522 263.8958466 263.895843

1: Reformulating the objective function according to Eq. (6) and Eq. (7)

2: Initializing the swarm position

3: Obtaining new swarm information

The branch of constrained PSO algorithm:

4: Computing the fitness values

5: Recording the personal and global best values

6: Making stagnation judgement

7: If procedure stagnates

8: Resetting Velocities and updating positions

The branch of local boundary search:

4': Calculating particles according to SCBN

5': function expressed in Eq. (2)

6': Recording the particle nearest to boundary

7': Conducting SQP process at the selected particle

8': Comparing the present result with the historical

9: according to Eq. (8) and Eq. (9)

10: Conducting boundary bounce method

11: Turning back to Step 3

12: Else

13: Putting the best solution out as Output_1

9': best result of SQP

10': Putting the best solution out as Output_2

14: Comparing Output_1 with Output_2

15: Conducting termination judgement

16: If Termination condition is not satisfied

17: Updating particles velocities and positions according to Eq. (3), Eq. (4) and Eq. (5)

18: Conducting boundary bounce method

19: Turning back to Step 3

20: Else

21: Putting the present global best values as the optimum solution
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The initial population is set to be 40 for both test functions
and engineering problems. The population of g02 and g03 is
100 because of the strong nonlinearity of these problems. The
thickness parameter ε in SCBN is set as 0.5 and tolerance δ for
the translation of equality constraints into inequalities is set as
1.0E-4. 25 runs have been completed for each problem. The
tests were run on a computer with 3.40GHz core i7 CPU and
8 GB RAM.

4.1 Benchmark test functions

The chosen 13 functions from CEC06 are characterized as
several types based on the number of variables, degree of
nonlinearity, proportion of feasible region, constraint type
and the number of active constraints. See Table 1.

Table 2 shows the results of benchmark test functions of
PBSPSO and contains the best, mean, worst, SD values, the
maximum, average and minimum iteration numbers and the
initial population size for different functions. It must be noted
that the average iteration of four functions are below 100
while that of ten functions are below 500, which indicates
relatively high levels of efficiency of the proposed algorithm.

The proposed algorithm is compared with the existingmost
advanced algorithms including SMES (Mezura-Montes and
Coello 2005), HCOEA (Wang et al. 2007), ATMES (Wang
et al. 2008),M-ABC (Mezura-Montes and Cetina-Dominguez
2012), PSGA (Dhadwal et al. 2014), MOPSO (Venter and
Haftka 2010) and DSS-MDE (Zhang et al. 2008). Instead of
using the conventional penalty function, SMES (Mezura-
Montes and Coello 2005) is based on a diversity mechanism
and feasibility-based comparison mechanism to handle infea-
sible solutions and guide particles to the feasible region.
HCOEA (Wang et al. 2007) effectively combines multi-
objective optimization with a niching genetic algorithm for
global search and a parallel local search adopting a clustering
partition of the population and multiparent crossover. To
achieve a balance between optimizing the objective function
and reducing constraint violations, an adaptive tradeoff model
(ATM) is combined with the evolutionary strategy (ES) in
ATMES (Wang et al. 2008). M-ABC (Mezura-Montes and
Cetina-Dominguez 2012) is a constrained optimization algo-
rithm containing four modifications such as selection mecha-
nism, the scout bee operator and the equality constraint and
constraints of boundaries. PSGA (Dhadwal et al. 2014) is a
novel hybrid evolutionary algorithm composed of PSO and
GAs, in which PSO is aimed for improving the worst solutions
and efficiency while GAs is to keep population diversity. A
constrained, single objective optimization problem is convert-
ed into an unconstrained, bi-objective problem in Multi-
objective Particle Swarm Optimization (Venter and Haftka
2010) (MOPSO) algorithm and the method does not need
any problem dependent parameters while it provides perfor-
mance that is similar or superior to that of a tuned penalty
function approach. Considering the promise in feasible solu-
tions during the evolution process, DSS-MDE (Zhang et al.
2008) assembles the dynamic stochastic selection (DSS) with
multimember differential evolution.

The comparison is made based on the statistical perfor-
mance of each algorithm. The PBSPSO achieves the present
optimum solutions for all test functions except for g03. Apart
from the optimum, mean and worst values of PBSPSO are
also better than using other algorithms in full. The results ofFig. 4 Welded beam and its design variables

Table 8 Comparison of
Statistical performance of results
given by different optimizers for
tension/compression spring
design problem

Method Worst Mean Best S.D

PSO-DE (Liu et al. 2010) 263.895843 263.895843 263.895843 4.50E-10

DEDS (Zhang et al. 2008) 263.895849 263.895843 263.895843 9.70E-07

HEAA (Wang et al. 2009) 263.896099 263.895865 263.895843 4.90E-05

WCA (Eskandar et al. 2012a) 263.896201 263.895903 263.895843 8.71E-05

MBA (Sadollah et al. 2013) 263.915983 263.897996 263.895852 3.93E-03

SCA (Ray and Liew 2003) 263.969756 263.903357 263.895847 1.30E-02

PBSPSO 263.895843 263.895843 263.895843 5.80E-14
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g02 and g03 are not good because the two problems are of
strong nonlinearity. Overall, PBSPSO is strong to be compet-
itive against other algorithms on CEC06 benchmark test func-
tions. The results are displayed in Table 3 and numbers in bold
represent optimal results.

To detect significant differences between algorithms in
Table 3, the Wilcoxon matched-pairs signed-ranks test
(Garcia et al. 2009), a non-parametric pairwise statistical test
has been made in this study. The Wilcoxon tests have been
conducted with three levels of significance including α =
0.05, α = 0.1 and α = 0.2. The results of Wilcoxon test are
listed in Table 4. The statistical hypotheses for the Wilcoxon
test are as follows:

(1) The null hypothesis H0: The results of two algorithms
come from one statistical population.

(2) The alternative hypothesis H1: The results of two
algor i thms come from different s ta t i s t ica l
populations.

According to results of Wilcoxon test in Table 4, conclu-
sions can be drawn:

(1) The PBSPSO algorithm outperforms SMES and M-
ABC(2/7) with a level of significance α = 0.05.

(2) The PBSPSO algorithm outperforms SMES, M-
ABC and MOPSO(3/7) with a level of significance
α = 0.1.

(3) The PBSPSO algorithm outperforms SMES, M-ABC,
MOPSO, HCOEA and ATMES(5/7) with a level of sig-
nificance α = 0.2.

Table 10 Comparison of
Statistical performance of results
given by different optimizers for
welded beam design optimization
problem

Method Worst Mean Best SD

GA2 (Coello and Montes 2002) 1.993408 1.792654 1.728226 7.47E − 02
CAEP (Coello and Becerra 2004) 3.179709 1.971809 1.724852 4.43E − 01
CPSO (He and Wang 2007a) 1.782143 1.748831 1.728024 1.29E − 02
HPSO (He and Wang 2007c) 1.814295 1.749040 1.724852 4.01E − 02
PSO-DE (Liu et al. 2010) 1.724852 1.724852 1.724852 6.70E − 16
NM-PSO (Zahara and Kao 2009) 1.733393 1.726373 1.724717 3.50E − 03
WCA (Eskandar et al. 2012a) 1.744697 1.726427 1.724856 4.29E − 03
LCA (Kashan 2011) 1.7248523 1.7248523 1.7248523 7.11E − 15
MBA (Sadollah et al. 2013) 1.724853 1.724853 1.724853 6.94E − 19
APSO (Yang 2010) 1.993999 1.877851 1.736193 0.076118

IAPSO (Guedria 2016) 1.7248624 1.7248528 1.7248523 2.02E − 06
SSO-C (Cuevas and Cienfuegos 2014) 1.7993318 1.7464616 1.7248523 2.57E-02

FA (Gandomi et al. 2011) 2.3455793 1.8786560 1.7312065 2.68E-01

PBSPSO 1.7248523 1.7248523 1.7248523 4.10432E-15

Table 9 Comparison of best solutions obtained from variable optimizers for welded beam design optimization problem

DV GA2 (Coello and
Montes 2002)

CPSO (He and
Wang 2007a)

CAEP (Coello and
Becerra 2004)

NM-PSO (Zahara
and Kao 2009)

WCA (Eskandar
et al. 2012a)

MBA
(Sadollah et al.
2013)

IAPSO
(Guedria
2016)

PBSPSO

x1 0.205986 0.202369 0.205700 0.205830 0.205728 0.205729 0.2057296 0.2057296
x2 3.471328 3.544214 3.470500 3.468338 3.470522 3.470493 3.47048866 3.4704887
x3 9.020224 9.048210 9.036600 9.036624 9.036620 9.036626 9.03662391 9.0366239
x4 0.206480 0.205723 0.205700 0.20573 0.205729 0.205729 0.20572964 0.2057296
g1(x) −0.074092 −12.839796 −0.000472 −0.02525 −0.034128 −0.001614 −1.05E − 10 −4.00E-11
g2(x) −0.266227 −1.247467 −0.001561 −0.053122 −3.49E − 05 −0.016911 −6.91E − 10 −1.20E-10
g3(x) −0.000495 −0.001498 0 0.000100 −1.19e − 06 −2.40E − 07 −7.66E − 15 0
g4(x) −3.430043 −3.429347 −3.433213 −3.433169 −3.432980 −3.432982 −3.43298378 −3.4329838
g5(x) −0.080986 −0.079381 −0.080700 −0.080830 −0.080728 −0.080729 −0.08072964 −0.0807296
g6(x) −0.235514 −0.235536 −0.235538 −0.235540 −0.235540 −0.235540 −0.23554032 −0.23554032
g7(x) −58.666440 −11.681355 2.603347 −0.031556 −0.013503 −0.001464 −5.80E − 10 −5.00E-11
f(x) 1.728226 1.728024 1.724852 1.724717 1.724856 1.724853 1.7248523 1.7248523
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By means of the Wilcoxon test, the statement: "PBSPSO is
strong to be competitive against other algorithms." could be
statistically supported.

4.2 Engineering problems

Five common engineering problems have been tested in this
part.

4.2.1 Tension/compression spring design optimization
problem

Tension/compression spring design optimization problem
aims at minimizing the weight of the spring constrained
on minimum deflection, shear stress, surge frequency and
outside diameter. Three variables are the wire diameter
(x1), the mean coil diameter (x2) and the number of active
coils (x3), respectively. Fig. 3 presents a schematic view
of the problem. The mathematical model of the problem is
shown in Appendix 1.

The proposed PBSPSO is compared with a number of
advanced constrained optimization algorithms including
DEDS (Zhang et al. 2008), HEAA (Wang et al. 2009),
WCA (Eskandar et al. 2012a), DELC (Wang and Li
2010), G-QPSO (Coelho 2010), MBA (Sadollah et al.
2013), NM-PSO (Zahara and Kao 2009), IAPSO
(Guedria 2016), GA2 (Coello and Montes 2002), CAEP
(Coello and Becerra 2004), CPSO (He and Wang 2007a),

HPSO (He and Wang 2007b), DE (Lampinen 2002),
PSO-DE (Liu et al. 2010), LCA (Kashan 2011), APSO
(Yang 2010), ABC (Cuevas and Cienfuegos 2014). The
best solutions and the statistical performance of results
are summarized in Table 5 and Table 6, respectively.

The active constraints of the problem are g1 and g2.
The values of the two constraints in best results of
WCA, MBA and PBSPSO are closer to zero than
others, which indicates that the optimal solutions of
these three algorithms impend over boundaries of active
constraints. In other words, deflection and shear stress
are quite close to the minimum deflection (represented
by g1) and the limited shear stress (represented by g2),
respectively. The mean and the worst results of
PBSPSO are also better than most of other algorithms.
The standard deviation results show that results central-
ity of PBSPSO is greater. All the 25 runs finished with-
in 100 iterations.

4.2.2 Three bar truss design problem

The problem aims at minimizing the total volume of bar truss
system. Refer to Appendix 2 for mathematical form of the
problem.

The best solutions and statistic results of PBSPSO are com-
pared with DEDS (Zhang et al. 2008), PSO-DE (Liu et al.
2010), WCA (Eskandar et al. 2012a), MBA (Sadollah et al.
2013), SCA (Ray and Liew 2003), HEAA (Wang et al. 2009),
see Table 7 and Table 8.

The active constraint of the problem is g1. The best solu-
tions of DEDS, PSO-DE and PBSPSO are closer to bound-
aries of constraints and are also better than other algorithms.
The mean, worst and SD values of PBSPSO are better than all
of others. It should be noted that the SD value of PBSPSO is
1E-14 order of magnitude, which is much smaller and far
better than other algorithms. The maximum iteration number
is 51 in 25 runs.

Table 11 Comparison of best solutions obtained from variable optimizers for pressure vessel design optimization problem

DV CDE (Fz
et al. 2007)

GA2 (Coello and
Montes 2002)

NM-PSO (Zahara
and Kao 2009)

G-QPSO
(Coelho
2010)

WCA
(Eskandar et al.
2012a)

MBA
(Sadollah et al.
2013)

APSO
(Yang
2010)

IAPSO
(Guedria
2016)

PBSPSO

x1 0.8125 0.8125 0.8036 0.8125 0.7781 0.7802 0.8125 0.8125 0.77817
x2 0.4375 0.4375 0.3972 0.4375 0.3846 0.3856 0.4375 0.4375 0.38465
x3 42.0984 42.0974 41.6392 42.0984 40.3196 40.4292 42.0984 42.0984 40.31962
x4 176.6377 176.6540 182.4120 176.6372 200.0000 198.4964 176.6374 176.6366 200.00000
g1(x) −6.67E − 07 −2.01E − 03 3.65E − 05 −8.79E − 07 −2.95E − 11 0 −9.54E − 7 −4.09E − 13 0
g2(x) −3.59E − 02 −3.58E − 02 3.79E − 05 −3.58E − 02 −7.15E − 11 0 −3.59E − 2 −3.58E − 2 −3.89E-16
g3(x) −3.683016 −27.8861 −1.5914 −0.2179 −1.35E − 06 −86.3645 −63.3626 −1.39E − 07 1.16E-09
g4(x) −63.3623 −63.3460 −57.5879 −63.3628 −40.0000 −41.5035 −0.9111 −63.3634 −40.00000
f(x) 6059.7340 6059.9463 5930.3137 6059.7208 5885.3327 5889.3216 6059.72418 6059.71433 5885.33277

Fig. 5 Pressure vessel and its design variables
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4.2.3 Welded beam design optimization problem

The welded beam design optimization problem aims to min-
imize the fabrication cost of welded beam. The problem is
constrained by shear stress, bending stress in the beam, buck-
ling load on the bar and deflection on the beam. The design
variables include the thickness of the welding line (x1), length
of the weld (x2), beam thickness (x3) and width of the beam
(x4). Fig. 4 shows the schematic view of the problem.
Mathematical description of the problem is presented in
Appendix 3.

Algorithms chosen for comparison in this problem include:
GA2 (Coello and Montes 2002), CPSO (He and Wang
2007a), CAEP (Coello and Becerra 2004), NM-PSO (Zahara
and Kao 2009), WCA (Eskandar et al. 2012b), MBA
(Sadollah et al. 2013), IAPSO (Guedria 2016), HPSO (He
and Wang 2007b), PSO-DE (Liu et al. 2010), LCA (Kashan
2011), APSO (Yang 2010),SSO-C (Cuevas and Cienfuegos
2014) and FA (Gandomi et al. 2011). See Table 9 and
Table 10.

The active constraints of the problem are g1, g2 and g3.
The optimal solutions of IAPSO and PBSPSO are closer to the
boundaries of constraints defined by g1, g2 and g3 than any
other solutions and the optimal solutions of the two algorithms
are also the best. The result of CAEP is superior but not fea-
sible. Statistic results show that the optimal solution of
PBSPSO algorithm is superior to 13 state-of-the-art algo-
rithms in Table 10. The maximum iteration number is 81 in
25 runs among all algorithms.

4.2.4 Pressure vessel design optimization problem

Pressure vessel design optimization problem is considered
here as the fourth problem. The target of the problem is to
minimize the total fabricating cost of the pressure vessel.
The constraints include materials, forming and welding costs.
The design variables are thickness of the shell (x1), thickness
of the head (x2), the inner radius (x3) and the length of the
cylindrical section of the vessel (x4) as plotted in Fig. 5.
Mathematical description is presented in Appendix 4.

Fig. 6 Speed reducer and its
design variables

Table 12 Comparison of
Statistical performance of results
given by different optimizers for
pressure vessel design
optimization problem

Method Worst Mean Best SD

GA2 (Coello and Montes 2002) 6469.3220 6177.2533 6059.9463 130.9297

NM-PSO (Zahara and Kao 2009) 5960.0557 5946.7901 5930.3137 9.1610

G-QPSO (Coelho 2010) 7544.4925 6440.3786 6059.7208 448.4711

CDE (Fz et al. 2007) 6371.0455 6085.2303 6059.7340 43.0130

WCA (Eskandar et al. 2012a) 6590.2129 6198.6172 5885.3327 213.0490

LCA (Kashan 2011) 6090.6114 6070.5884 6059.8553 11.37534

MBA (Sadollah et al. 2013) 6392.5062 6200.64765 5889.3216 160.34

APSO (Yang 2010) 7544.49272 6470.71568 6059.7242 326.9688

IAPSO (Guedria 2016) 6090.5314 6068.7539 6059.7143 14.0057

PBSPSO 5885.3328 5885.3328 5885.3328 9.28E-13
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The optimum and statistical performance of results of
PBSPSO are compared with CDE (Fz et al. 2007), GA2
(Coello and Montes 2002), G-OPSO (Coelho 2010),WCA
(Eskandar et al. 2012b), MBA (Sadollah et al. 2013), APSO
(Yang 2010), IAPSO (Guedria 2016), NM-PSO (Zahara and
Kao 2009), G-QPSO (Coelho 2010) and LCA (Kashan 2011)
as summarized in Table 11 and Table 12.

The active constraints are g1, g2 and g3 in this problem as
shown in Table 11. The best solutions of WCA and PBSPSO
are closer to the three boundaries of constraints and the per-
formance of the two algorithms precedes others for this prob-
lem. The best solution of MBA is quite close to two of the
active constraints (g1 and g2), however, it is far from the
boundary of constraint defined by g3. As a result, it is worse
than solutions of WCA and PBSPSO. The statistic results
shown in Table 12 demonstrate that the solution of PBSPSO

possesses a strong centrality and is superior to other
constrained algorithms for this problem. The maximum itera-
tion number is 69 in 25 runs.

4.2.5 Speed reducer design optimization problem

This problem aims to minimize the mass of the speed
reducer as shown in Fig. 6. The problem is constrained
by the bending stress of gear teeth, the surface stress,
transverse deflections of the shafts and stress in the shafts.
Variables are the face width (x1), module of teeth (x2),
number of teeth in the pinion (x3), length of the first shaft
between bearings (x4), length of the second shaft between
bearings (x5) and the diameter of the first (x6) and the
second shafts (x7), respectively. See Appendix 5 for math-
ematical expression.

Table 14 Comparison of
Statistical performance of results
given by different optimizers for
speed reducer design optimization
problem

Method Worst Mean Best SD

SC (Ray and Liew 2003) 3009.964736 3001.758264 2994.744241 4.0

PSO-DE (Liu et al. 2010) 2996.348204 2996.348174 2996.348167 6.4E − 06
DEDS (Zhang et al. 2008) 2994.471066 2994.471066 2994.471066 3.6E − 12
HEAA (Wang et al. 2009) 2994.752311 2994.613368 2994.499107 7.0E − 02
ABC (Akay and Karaboga 2012) NA 2997.058000 2997.058000 0.0

WCA (Eskandar et al. 2012a) 2994.505578 2994.474392 2994.471066 7.4E − 03
LCA (Kashan 2011) 2994.471066 2994.471066 2994.471066 2.66E − 12
MBA (Sadollah et al. 2013) 2999.652444 2996.769019 2994.482453 1.56

APSO (Yang 2010) 4443.017639 3822.640624 3187.630486 366.146

IAPSO (Guedria 2016) 2994.471066 2994.471066 2994.471066 2.65E − 09
PBSPSO 2994.3413157 2994.3413157 2994.3413157 4.64E-13

Table 13 Comparison of best solutions obtained from variable optimizers for speed reducer design optimization problem

DV DEDS
(Zhang et al.
2008)

HEAA
(Wang et al.
2009)

PSO-DE
(Liu et al.
2010)

WCA
(Eskandar et al.
2012a)

MBA
(Sadollah
et al. 2013)

IAPSO
(Guedria
2016)

SCA (Ray
and Liew
2003)

ABC (Akay and
Karaboga 2012)

PBSPSO

x1 3.5 3.500022 3.5 3.5 3.5 3.5 3.5 3.5 3.5
x2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
x3 17 17 17 17 17 17 17 17 17.0
x4 7.3 7.300428 7.3 7.3 7.300033 7.3 7.32760205 7.3 7.3
x5 7.715320 7.715377 7.800000 7.715319 7.715772 7.7153199 7.71532175 7.8 7.7153199
x6 3.350215 3.350231 3.350214 3.350214 3.350218 3.350215 3.35026702 3.350215 3.3502147
x7 5.286654 5.286664 5.2866832 5.286654 5.286654 5.286654 5.28665450 5.286683 5.2866545
g1(x) −0.073915 −0.073923 −0.073915 −0.073915 −0.073915 −0.073915 −0.073917 −0.073915 −0.07391528
g2(x) −0.197999 −0.198006 −0.197999 −0.197999 −0.197999 −0.197999 −0.198 −0.197999 −0.19799853
g3(x) −0.499172 −0.499095 −0.499172 −0.499172 −0.499167 −0.499172 −0.493501 −0.499172 −0.49917225
g4(x) −0.904644 −0.904643 −0.901472 −0.904644 −0.904627 −0.904644 −0.904644 −0.901555 −0.9046439
g5(x) −2.99E-07 −1.40E-05 −4.73E-13 5.96E-07 −2.93E-06 4.01E-13 −6.36E-07 −2.99E-07 −2.00E-15
g6(x) 2.64E-07 −5.00E-06 −4.67E − 14 2.64E-07 3.51E-07 −1.51E-12 -1.95E-08 −0.000633 1.11E-15
g7(x) −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025
g8(x) 0 −6.00E-06 0 0 0 0 −1.93E-06 0 0
g9(x) −0.583333 −5.83E-01 −0.583333 −0.583333 −0.583333 −0.583333 −0.583333 −0.583333 −0.58333333
g10(x) −0.051326 −5.14E-02 −0.051326 −0.051326 −0.051329 −0.051326 −0.054889 −0.051326 −0.05132575
g11(x) −7.78E-08 −6.00E-06 −0.010852 5.18E-08 −5.87E-05 1.49E-09 −2.33E-07 −0.010695 −8.88E-16
f(x) 2994.47107 2994.49911 2996.34817 2994.47107 2994.48245 2994.47107 2994.7442 2997.058412 2994.34132
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The following algorithms are involved in comparison of
this problem: DEDS (Zhang et al. 2008), HEAA (Wang
et al. 2009), PSO-DE (Liu et al. 2010), WCA (Eskandar
et al. 2012b), MBA (Sadollah et al. 2013), LCA (Kashan
2011), IAPSO (Guedria 2016), SCA (Ray and Liew 2003),
ABC (Akay and Karaboga 2012), SC (Ray and Liew 2003)
and APSO (Yang 2010). See Table 13 and Table 14.

There are 4 active constraints including g5, g6, g8 and
g11. The best solution of PBSPSO is closer to the bound-
aries of active constraints as indicated by values of active
constraints. The best solution of ABC is the worst in all
algorithms because the solution is respectively far from

the boundary of the active constraint (g11) indicating that
resource expressed by g11 was not made full use of. The
mean and worst solutions of PBSPSO are also better than
other algorithms and the S.D value is relatively small. The
maximum iteration number is 45 for this problem.

4.2.6 Further discussion

As mentioned before, optimal solutions of actual engineering
problems generally locate on boundaries of active constraints
because of the limitation in resources (Bonyadi and
Michalewicz 2014). In someways, the close distance in which
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Fig. 7 Generalized distance of five engineering problems
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solutions get to boundaries of constraints indicates the strong
capability algorithms possess to conduct boundary search. As
a result, solutions found are relatively superior. In order to
quantitatively describe this significant characteristic of

constrained optimization algorithms, a generalized distance ~D
is defined in this article as (10).

~D ¼ ∑
i
Di ð10Þ

Diis formulated as (11).

Di ¼
0 ; if gi xð Þj j≥1

log10 gi xð Þj j; if 10−20 < gi xð Þj j < 1
−20 ; if gi xð Þj j≤10−20

8<
: ð11Þ

i is the number of constraints. |gi(x)| is the absolute value of the ith
constraint and there are three components in (11). If |gi(x)| ≥ 1, it
means the solution is far away from the ith constraint, Di equals
zero. If 10−20 < |gi(x)| < 1, the solution is near the ith constraint
and Di is defined as log10|gi(x)|. If f|gi(x)| ≤ 10−20, the solution is
almost on the ith boundary of constraint and Di is set to be −20.
The value of ~D is a negative real number without unit. The
smaller the value, the closer the solutions get to boundaries of

constraints. The ~D values in the above 5 engineering problems
are presented using the bar charts as shown in Fig. 7.

As displayed in Fig. 7, generalized distance values of
PBSPSO are relatively small in all the five problems, which
indicates that the optimal solutions are close to active con-
straints and the algorithm possesses strong capability of
boundary search. Summarized the overall performance of
the modified constrained PSO algorithms in boundary search,
the proposed algorithm behaves better than other modified
PSO algorithms such as G-QPSO, IAPSO, CPSO and
APSO. Although some algorithms, e.g., MBA, WCA and
DEDS are better than PBSPSO in some problems, their per-
formance fluctuates from one problem to another, which re-
veals the relative instability of these algorithms in different
engineering problems. For example, MBA performs well in
the spring design problem and the vessel design problem. In
other three problems, its solutions are ordinary while perfor-
mance of PBSPSO is stable and competitive in all problems.

5 Conclusions and future research work

In real world engineering optimization problems, Optimal solu-
tions generally locate on boundaries of active constraints because
of limitation of resources. Considering this characteristic, a par-
allel boundary search particle swarm optimization (PBSPSO)
method is proposed as a novel constrained optimization algo-
rithm in this paper. The PBSPSO has two branches with cooper-
ative mechanism. In the global search branch, PSO with the
penalty function method conducts the search process. The

velocity reset operator in our prior development of PSO algo-
rithm is adopted to enhance swarm diversity. Particles are calcu-
lated by the SCBN function and locations of those close to the
boundaries of constraints are selected as initial points in the
branch of local boundary search. In the local boundary search
branch, SQP proceeds at the points identified by the former. The
results from the local boundary search procedure will reversely
influence the global search process in the next generation and
particles will be led to boundaries of active constraints. The pro-
posed algorithm relieves the complex parameters adjustment
course in traditional constrained PSO methods. Its cooperative
mechanism increases the chance of finding global optimal solu-
tions, which is suitable for practical engineering constrained op-
timization problems. PBSPSO is tested by thirteen CEC06
benchmark test functions and five common engineering optimi-
zation problems. Conclusions are summarized as follows:

(a) From the results of benchmark functions, the PBSPSO
algorithm with parallel structure and cooperative mecha-
nism is shown to be effective in search capabilities and
results stability.

(b) The employment of a local boundary search process sig-
nificantly increases the chance of finding global optima
near the boundaries of constraints. This local boundary
search procedure is suitable for practical engineering
problems. The test results of five engineering problems
support the above conclusion.

(c) By combining velocity reset operator with the PSO, the
proposed method overcomes the limitation of existing
modified constrained PSO algorithms in falling into local
solutions. As a result, the global search capability of the
PBSPSO algorithm is improved effectively.

In future work, the selection strategy of initial points pick-
ing will be further studied and the local boundary search pro-
cess will be further improved.
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Appendix 1 Tension/compression spring
design problem

f Xð Þ ¼ x3 þ 2ð Þx2x21 ðMinimizeÞ

subject to:
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g1 Xð Þ ¼ 1−
x32x3

7:1785x4
≤0

g2 Xð Þ ¼ 4x22−x1x2
12:566 x2x31

� �
−x41

þ 1

5:108x21
−1≤0

g3 Xð Þ ¼ 140:45x1
x22x3

1≤0

g4 Xð Þ ¼ x2 þ x1
x22x3

−1≤0

with0:05≤x1≤2:0; 0:25≤x2≤1:3;
and 2:0≤x3≤15:0:

Appendix 2 Three bar truss design problem

f Xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
l ðMinimizeÞ

subject to:

g1 Xð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x21 þ 2x1x2
P−σ≤0

g2 Xð Þ ¼ 2ffiffiffi
2

p
x21 þ 2x1x2

P−σ≤0

g3 Xð Þ ¼ 1ffiffiffi
2

p
x2 þ x1

P−σ≤0

0≤xi≤1; i ¼ 1; 2
l ¼ 100cm; p ¼ 2kN=cm2;σ ¼ 2kN=cm2

Appendix 3 Welded beam design problem

f Xð Þ ¼ 1:10471x1x22 þ 0:04811x3x4 14þ x2ð Þ ðMinimizeÞ
subject to:

g1 Xð Þ ¼ τ Xð Þ−τmax≤0
g2 Xð Þ ¼ σ Xð Þ−σmax≤0
g3 Xð Þ ¼ x1−x4≤0
g4 Xð Þ ¼ 0:1047121 þ 0:4811x3x4 14þ x2ð Þ−5≤0
g5 Xð Þ ¼ 0:125−x1≤0
g6 Xð Þ ¼ δ Xð Þ−0:25≤0
g7 Xð Þ ¼ P−Pc Xð Þ≤0
0:1≤x1; x4≤2
0:1≤x2; x3≤10

whereτ Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 02 þ 2τ 0x2 þ 2Rþ τ ″2

q
τ

0 ¼ Pffiffiffi
2

p
x1x2

; τ ″ ¼ MR
J

;M ¼ P 14
x2
2

� �

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1þ x3

2


 �2

; J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

� �� � �s
;

σ Xð Þ ¼ 504000

x4x23
; δ Xð Þ ¼ 65856000

30� 106x4x33
� �

Pc ¼ 4:013� 30� 106
� �
196

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23x

6
4

36
� 1− x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30� 106

4� 12� 106
� � =28

s !" #
;

vuut

P ¼ 6000lb; L ¼ 14in;E ¼ 30� 106psi;G ¼ 12� 106psi;

τmax ¼ 13600psi; σmax ¼ 30000psi; δmax ¼ 0:25in

Appendix 4 Pressure vessel design problem

f Xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x23

þ 3:1661x21x4 þ 19:84x21x3 ðMinimizeÞ

subject to:

g1 Xð Þ ¼ −x1 þ 0:0193x3≤0
g2 Xð Þ ¼ −x2 þ 0:0954x3≤0

g3 Xð Þ ¼ −πx23−
4
�
3

� �
πx33 þ 1296000≤0

g4 Xð Þ ¼ x4−240≤0
0≤xi≤100; i ¼ 1; 2
10≤xi≤200; i ¼ 3; 4

Appendix 5 Speed reducer design problem

f Xð Þ ¼ 0:7854x1x22 3:3333x23 þ 14:9334x3−43:0934
� �

−1:508x1 x26 þ x27
� �þ 7:4777 x36 þ x37

� �þ 0:7854 x4x26 þ x5x27
� �

ðMinimizeÞ
subject to:

g1 Xð Þ ¼ 27

x1x21x3
−1≤0

g2 Xð Þ ¼ 397:5

x1x22x
2
3

−1≤0

g3 Xð Þ ¼ 1:93x34
x2x3x46

−1≤0

g4 Xð Þ ¼ 1:93x35
x2x3x47

−1≤0

g5 Xð Þ ¼ 1:0

110x46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745:0x4
x2x3


 �
þ 16:9� 106

s
−1≤0

g6 Xð Þ ¼ 1:0

85x47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745:0x5
x2x3


 �
þ 157:5� 106

s
−1≤0

g7 Xð Þ ¼ x2x3
40

−1≤0

g8 Xð Þ ¼ 5x2
x1

−1≤0

g9 Xð Þ ¼ x1
12x2

−1≤0

g10 Xð Þ ¼ 1:5x6 þ 1:9

x4
−1≤0

g11 Xð Þ ¼ 1:1x7 þ 1:9

x5
−1≤0

with2:6≤x1≤28; 0:7≤x2≤0:8;
17≤x3≤28; 7:3≤x4≤8:3; 7:3≤x5≤8:3;
2:9≤x63:9; 5:0≤x7≤5:5;
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