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Abstract
The efficient global optimization method (EGO) based on kriging surrogate model and expected improvement (EI) has received
much attention for optimization of high-fidelity, expensive functions. However, when the standard EI method is directly applied to a
variable-fidelity optimization (VFO) introducing assistance from cheap, low-fidelity functions via hierarchical kriging (HK) or
cokriging, only high-fidelity samples can be chosen to update the variable-fidelity surrogate model. The theory of infilling low-
fidelity samples towards the improvement of high-fidelity function is still a blank area. This article proposes a variable-fidelity EI
(VF-EI) method that can adaptively select new samples of both low and high fidelity. Based on the theory of HKmodel, the EI of the
high-fidelity function associatedwith adding low- and high-fidelity sample points are analytically derived, and the resultingVF-EI is
a function of both the design variables x and the fidelity level l. Through maximizing the VF-EI, both the sample location and
fidelity level of next numerical evaluation are determined, which in turn drives the optimization converging to the global optimum of
high-fidelity function. The proposed VF-EI is verified by six analytical test cases and demonstrated by two engineering problems,
including aerodynamic shape optimizations of RAE 2822 airfoil and ONERA M6 wing. The results show that it can remarkably
improve the optimization efficiency and compares favorably to the existing methods.
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1 Introduction

1.1 Background

The efficient global optimization method (EGO) (Jones et al.
1998) based on kriging model and expected improvement (EI)
has received much attention and gained a great success in en-
gineering design optimizations (Forrester et al. 2008; Liu et al.
2017; Queipo et al. 2005; Wang and Shan 2007), where high-

fidelity (hi-fi) and expensive numerical simulations are often
employed. It generally includes the following steps. First, a
limited number of sample points in the design space are chosen
by the method of design of experiments (DoE) (Giunta et al.
2003) and an expensive numerical analysis, such as computa-
tional fluid dynamics (CFD) or computational solid dynamics
(CSD), is executed to get the functional responses; then an
initial kriging model is built based on the sampled data.
Second, new sample point(s) is selected by maximizing the
expected improvement (EI) function calculated through the pre-
dicted functional values of the cheap-to-evaluate kriging model
and its mean-squared error (MSE). Third, the newly selected
sample point(s) is evaluated by the expensive numerical analy-
sis and the functional response(s) is augmented to the sampled
data. Fourth, the kriging model is rebuilt and this adaptive sam-
pling process is repeated until the resulting sample-point se-
quence converges to the global optimum. The EGO method
soon got popularity in engineering design after its birth, for it
enables the searching of global optimum with much less num-
ber of expensive function evaluations than the methods such as
genetic algorithm (GA) (Holland 1975) and particle swarm
optimization algorithm (PSO) (Kennedy and Eberhart 1995).
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The advent of the EGOmethod greatly inspired the research
and development of a type of optimization method called
surrogate-based optimization (SBO) (Forrester and Keane
2009; Han and Zhang 2012; Koziel et al. 2013). The SBO
method can be viewed as a generalized EGO method, by using
different types of surrogate models and infill-sampling criteria
(ISC) (Forrester and Keane 2009; Jones 2001; Liu et al. 2012),
without being limited to kriging and EI only. Despite the suc-
cess of SBO, it is still suffering from the “curse of dimension-
ality” (Koch et al. 1999; Shan and Wang 2010). To tackle this
problem, many researchers have devoted themselves to devel-
oping more accurate surrogate models, towards more efficient
global optimization. Two kinds of methods are concerned. One
is gradient-enhanced surrogate model (Han et al. 2017) with the
cheap gradients computed by adjoint method, and the other is
variable-fidelitymodel (VFM) (Park et al. 2017) using auxiliary
low-fidelity (low-fi), cheaper function to assist the prediction of
hi-fi, expensive function. This article is mainly concerned with
the VFMmethod, and the use of cheap gradients to enhance the
prediction is beyond the scope of this article.

Generally, the VFM methods can be classified into three cat-
egories. The first type is the correction-based method that cor-
rects the low-fi model using a bridge function (or scaling func-
tion) to approximate the hi-fi function (Alexandrov et al. 1998,
2001). The correction can bemultiplicative (Haftka 1991; Chang
et al. 1993), additive (Choi et al. 2004, 2009), or hybrid (Gano
et al. 2005; Han et al. 2013). The second type is the space map-
ping (Bakr et al. 2001; Leifsson et al. 2016). The design space of
the low-fi function is distorted to cause its optimal point to match
that of the hi-fi function (Robinson et al. 2008; Viana et al. 2014).
The third type is variable-fidelity kriging such as cokriging
(Kennedy and O’Hagan 2000; Han et al. 2012; Forrester et al.
2007) and HK (Han and Görtz 2012). The cokriging was origi-
nally proposed in geostatistics community (Journel and
Huijbregts 1978) and then extended to deterministic computer
experiments by Kennedy and O’Hagan (2000). Cokriging intro-
duces the assistance of cheap low-fi function by constructing the
cross covariance between the low- and hi-fi functions. The newly
developed HK model (Han and Görtz 2012) directly takes the
kriging of the cheap low-fi function as the model trend of the
kriging for the expensive hi-fi function, and the difficulty associ-
ated with constructing the cross covariance as that in cokriging is
avoided. The HK model turns out to be as simple and robust as
the correction-based method and as accurate as cokriging meth-
od. Moreover, it provides a more reasonable mean-squared error
(MSE) estimation than any of the existing kriging and cokriging
methods. Recently, the HK model received much attention in
engineering design such as uncertainty analysis in CFD (Palar
and Shimoyama 2017), multi-objective optimization (Ha et al.
2014), aerodynamic shape optimization (Zhang et al. 2015), and
structural optimization (Courrier et al. 2016).

With the development of VFM, there is a trend that the
VFO has become more and more attractive for engineering

design problems where numerical simulations of varying
fidelity are available. The literatures in the research area,
published since 2000, are summarized in Table 1, in chro-
nological order. We found that most of the literatures are
dealing with low-dimensional optimization problems (< 10
dimensions) and most of the ISC methods used are essen-
tially for local optimization. To enable global optimization,
EI or a combination of MSP (minimizing surrogate predic-
tion) and MSE have been used. When the EI method pro-
posed by Jones et al. (1998) for single-fidelity optimization
is directly applied to a variable-fidelity kriging model such
as HK or cokriging model, only hi-fi samples can be chosen
to update the variable-fidelity surrogate model. To improve
the optimization efficiency, there is a strong need for adap-
tively selecting the samples of both low fidelity and high
fidelity. However, currently, the theory and method of
infilling low-fi samples for the improvement of hi-fi func-
tion of interest are still a blank area.

1.2 Objectives

This article is inspired by the motivation of developing an
adaptive method that can select the new samples of both low
fidelity and high fidelity to update the variable-fidelity surro-
gate model towards the global optimum of hi-fi function. The
objectives of developing such a method are as follows:

1) The first objective is to solve the problem associated with
how to adaptively infill both low-fi and hi-fi samples. A
variable-fidelity surrogate model is generally built
through a number of observed low-fi samples and a few
observed hi-fi samples (Han and Görtz 2012). After the
initial variable-fidelity surrogate model is built, it can be
improved not only by adding a hi-fi sample but also by
adding a low-fi sample. But the question is how to select
the new sample points? One way, the traditional way, is to
use a fixed number of low-fi samples during the design,
while hi-fi samples are repetitively added based on the
ISC. It is, of course, not the most efficient way, since it
is always questionable that how many low-fi samples
would be sufficient. The other way, and a potentially bet-
ter way, is that both low-fi and hi-fi samples are adaptive-
ly added. This motivates us to develop a theory and meth-
od that the infilling of low-fi and hi-fi samples are both
towards the improvement of hi-fi function.

2) The second objective is to develop a more efficient global
optimization method based on numerical simulations of
varying fidelity. Literature survey shows that most of the
VFOmethods reported by current literatures are essential-
ly for local optimization. The reason is that it is not eco-
nomic or possible to build a sufficiently accurate global
surrogate model for a multi-dimensional optimization
problem. Therefore, there is a strong need to extend the
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standard EI method, proposed by Jones et al. (1998), to a
VFO. The only method that serves this target is the aug-
mented EI method proposed by D Huang and T T Allen
et al. (2006) and the improved version in 2014
(Reisenthel and Allen 2014). However, the performance
of augmented EI method is dependent on the empirical
setting of free parameters. This motivates us to develop a
variable-fidelity EI method which is free of empirical pa-
rameters and mathematically more general.

2 Variable-fidelity optimization based
on hierarchical kriging and standard EI

The aim of this study is to solve the following constrained optimi-
zation problem based on a hi-fi expensive numerical analysis with
assistance of a low-fi but cheaper numerical analysis

Min: y xð Þ
w:r:t: xlow≤x≤xup
s:t: gi xð Þ≤0; i ¼ 1;⋯;NC

with assistance of ylf xð Þ and glf ;i xð Þ;
ð1Þ

where y(x) and gi(x) denote the objective and constraint func-
tions, respectively, which are evaluated by expensive, hi-fi nu-
merical analyses; ylf(x) and glf, i(x) are the low-fi objective and
constraint functions, respectively, which are evaluated by cheap
numerical analyses;NC is the number of constraint functions; xup
and xlow are the upper and lower bounds of the design variables
x, respectively. Note that here we are mainly concerned with the
single-objective optimization, and the extension to multi-
objective optimization is beyond the scope of this article.

2.1 Variable-fidelity optimization framework

The optimization is solved based on HK surrogate models
(Han and Görtz 2012) for the objective and constraint func-
tions, which are built through a few expensive hi-fi samples
and many cheap low-fi samples. The HK models are repeti-
tively updated by the adaptive addition of expensive hi-fi
sample points suggested by maximizing the EI function
(Jones et al. 1998), until the optimum is reached. The frame-
work of this HK-based optimization is shown in Fig. 1. The
basic steps are as follows:

a. Two sets of sample points are generated by using a DoE
method and they are evaluated by the low- and hi-fi nu-
merical analyses, respectively.

b. Based on the low-fi sample data, a kriging model is built.
Then taking it as the model trend, a HK surrogate model is
built through the hi-fi samples. The HK model(s) for con-
straint function(s) is built in a similar manner.

c. New sample point(s) is selected by maximizing the
constrained EI (CEI) function through a combination ofTa
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GA, Hooke and Jeeves, and BFGS optimization methods,
and then evaluated by the expensive, hi-fi numerical anal-
ysis. When BFGS method is used, the gradients of EI
function are computed by a central difference based on
the HK prediction. Please note that only hi-fi sample points
are chosen, and the number of low-fi samples is fixed.

d. The newly selected sample point and its functional re-
sponses are augmented to the sampled dataset, and then
the HK surrogate models are rebuilt.

e. The steps b–d are repeated until the termination condition
is satisfied.

2.2 Design of experiments

Before constructing the HK model, DoE method is used to
generate initial low- and hi-fi sample points. Different from
other VFM methods, such as cokriging model, the hi-fi sam-
pling sites do not need to be a subset of the low-fi sampling
sites, which enables us to use DoE method for each fidelity
level separately. In this article, the Latin hypercube sampling
(LHS) (Giunta et al. 2003) method is adopted.

2.3 Surrogate modeling via hierarchical kriging

Kriging is a statistical interpolation method suggested by
Krige (1951) and mathematically formulated by Matheron
(1963). Kriging gained popularity in design and analysis of
deterministic computer experiments after the milestone re-
search work of Sacks et al. (1989). The HK model, proposed
by Han and Görtz (2012), is an extension of the Sacks' kriging
model to one that approximates the expensive hi-fi function
with assistance of a cheap low-fi function. The details about
the formulation of HK can be found in Appendix A.1.

2.4 Infill-sampling criterion of EI method

After constructing the initial HKmodel, it can be improved by
adding new sample points using the EI method, proposed by
Jones et al. (1998). EI is defined as the mathematical expec-
tation of improvement with respect to the best solution ob-
served so far. Through maximizing the EI function, the next
update point can be identified. The details about the formula-
tion of EI method can be found in Appendix A.2.

2.5 Termination conditions

Several termination criteria can be used in the HK-based optimi-
zation, such as the criteria defined based on the distance between
samples and difference of their objective responses, the allowable
minimum value of CEImax, the thresholds about accuracy of
surrogate models, and the affordable maximum number of ex-
pensive function evaluations.

3 Proposed method

3.1 Formulation of variable-fidelity EI

This article formulates a VF-EI function, which is an exten-
sion of the standard EI to consider not only the model uncer-
tainty due to lack of a hi-fi sample but also the model uncer-
tainty due to lack of a low-fi sample. When HK model (Han
and Görtz 2012) is used, the uncertainty due to lack of a low-fi
sample can be analytically derived, whichmight be difficult or
even not possible for other kinds of models such as cokriging.
This uncertainty is used to define the EI of hi-fi function due to
lack of a low-fi sample. Combining this EI with the standard
EI, the VF-EI is formulated as not only a function of the
design variables x (or spatial location) but also the function
of fidelity level denoted by l.

Recall that for a HK model (see Appendix A.1 for detailed
formulation), the random process of hi-fi function is assumed as

Y xð Þ ¼ β0ŷlf xð Þ þ Z xð Þ: ð2Þ

Yes

DoE (LHS)

Hierarchical kriging model

End

Start

New hi-fi sample

argmax ( )
low up

CEI
x x x

x x

No
Stop?

Low-fi analysis Hi-fi analysis

Low-fi kriging

Low-fi sample data Hi-fi sample data

Hi-fi analysis

Fig. 1 Flowchart of VFO based on hierarchical kriging model and the
standard EI method
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where β0 is a scaling factor representing how the low-fi kriging
ŷlf xð Þ matches the hi-fi function. Based on the assumption, the
resulting HK predictor and its MSE is

ŷ xð Þ ¼ β0ŷlf xð Þ|fflfflfflffl{zfflfflfflffl}
trend term

þ rTR‐1 yS‐β0Fð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
correction term

MSE ŷ xð Þ
n o

¼ s2 xð Þ ¼ σ2 1:0−rTR−1rþ rTR−1F−ŷlf xð Þ
h i2

= FTR−1F
� �−1� �

;

ð3Þ
where

F ¼ ŷlf x 1ð Þ
� �

;⋯; ŷlf x nð Þ
� �h iT

∈ℜn: ð4Þ

The key issue of VF-EI is how to define the EI of hi-fi func-
tion associated with adding a low-fi sample point. As β0ŷlf xð Þ is
its model trend, the uncertainty of the HK prediction associated

with lack of a low-fi sample at x is found to be β2
0s

2
lf xð Þ. Note

that the uncertainties in F are neglected and s2lf xð Þ is the uncer-
tainty of the low-fi kriging model ŷlf xð Þ. Then, we extend the
model uncertainty of a HK model to s2(x, l), which is a function

of both the spatial location x and fidelity level l

s2 x; lð Þ ¼ β2
0s

2
lf xð Þ l ¼ 1 for low‐fi level

s2 xð Þ l ¼ 2 for hi‐fi level

�
; ð5Þ

where s2(x) is the uncertainty of the HK model. We can assume
that the prediction of the HK model for the objective function at
any untried site x obeys the normal distribution

Ŷ x; lð Þ∼N ŷ xð Þ; s2
�
x; l
�h i

; l ¼ 1; 2; ð6Þ

whose mean is the prediction of the HK model ŷ xð Þ.
With the assumption above, we redefine the statistical

improvement w.r.t. the best-observed hi-fi objective
function ymin so far as:

Ivf x; lð Þ ¼ max ymin−Ŷ x; lð Þ; 0
� �

; ð7Þ

which is also a function of both the spatial location x and
fidelity level l. Then the VF-EI can be derived in a similar
manner as the standard EI by Jones et al. (1998) does:

EIvf x; lð Þ ¼ ymin−ŷ xð Þ
� �

Φ
ymin−ŷ xð Þ
s x; lð Þ

 !
þ s x; lð Þϕ ymin−ŷ xð Þ

s x; lð Þ

 !
; if s x; lð Þ > 0

0; if s x; lð Þ ¼ 0

8><
>: : ð8Þ

It is worth to note that the VF-EI only relates to the im-
provement of the hi-fi function. The VF-EI for the hi-fi level,
EIvf(x, l = 2) indicates the expected improvement of the hi-fi
function if a hi-fi sample point is added, which is similar to the
standard EI method. But the VF-EI for the low-fi level,
EIvf(x, l = 1), is the expected improvement of the hi-fi function
when a low-fi sample is added. Please note that here we are
not concerned with the expected improvement of low-fi func-
tion predicted by a low-fi kriging model. Rather, the infillings
of both low-fi and hi-fi samples are hi-fi-optimum oriented,
which is a unique property of the proposed method.

For a unconstrained optimization, the new sample point x
and its fidelity level l can be determined by solving the fol-
lowing sub-optimization problem

x; l ¼ argmax
xlow ≤x≤xup;l¼1;2

EIvf x; lð Þ: ð9Þ

If the new sample is found to be a low-fi one (l = 1), which
means that adding a low-fi sample will improve the hi-fi objec-
tive function most, it will be evaluated by the cheaper analysis.
Otherwise, the new sample will be evaluated by the expensive
analysis (l = 2).

During the design, we found that the VF-EIwill automatically
tend to add more low-fi samples, which is a preferred feature for
the consideration of improving the overall optimization efficien-
cy. And the addition of low- and hi-fi samples will be in an
alternative manner, along with the change of predicted

correlation between low- and hi-fi functions and the ratio of
two kinds of uncertainties mentioned above, s2lf=s

2. For a HK
model (see eq. (3)), supposing that the low-fi function can cor-
rectly capture the trend of the hi-fi function, the uncertainty of
HKmodel, due to lack of a hi-fi sample (correction term in HK),
will be generally much smaller than that due to lack of a low-fi
sample (trend term in HK). As a result, maximizing the VF-EI
will automatically lead to the more addition of low-fi samples.
On the contrary, if the low-fi function correlates poorly with the
hi-fi function, the β0 will be very small (close to zero), and
maximizing theVF-EIwill tend to add hi-fi samples since adding
a low-fi sample has a little contribution to the improvement of the
hi-fi function. On the other hand, the addition of low- or hi-fi
samples is also controlled by the ratio of uncertainties s2lf=s

2.

Besides the process variance, s2lf=s
2 is related to the distance to

the observed sample. At a point where the low-fi function is
undersampled, the VF-EI may tend to add low-fi samples,
simply because the process variance of the hi-fi HK model
will be much smaller than that of the low-fi kriging. And at
a point where low-fi function is densely sampled, the VF-EI
may switch to add hi-fi samples.

3.2 Constraint handling

For a constrained optimization, the HK model for the con-
straint function, ĝ xð Þ, is also built, and we also assume the

Variable-fidelity expected improvement method for efficient global optimization of expensive functions 1435



prediction of the HK model for the constraint function at any
site is a normal distribution

G x; lð Þ∼N ĝ xð Þ; s2g
�
x; l
�h i

; l ¼ 1; 2; ð10Þ

where s2g x; 1ð Þ and s2g x; 2ð Þ are the uncertainties of constraint
function due to lack of low- and hi-fi samples, respectively.
Therefore, the probability of satisfying the constraint is

P G x; lð Þ≤0½ � ¼ Φ
−ĝ xð Þ
sg x; lð Þ

 !
: ð11Þ

Eventually, the constrained VF-EI can be expressed as

CEIvf x; lð Þ ¼ EIvf x; lð Þ⋅P G x; lð Þ≤0½ �: ð12Þ

For an optimization problem with multiple constraints, the
corresponding constrained VF-EI is

CEIvf x; lð Þ ¼ EIvf x; lð Þ⋅∏NC
i¼1P Gi x; lð Þ≤0½ �; ð13Þ

where NC is the number of constraints. It can be seen that in
the above equation, the constrained VF-EI is a function of
both the design variable x and the fidelity level l.

Through maximizing the constrained VF-EI, the spatial
location of new sample point x and fidelity level of next nu-
merical evaluation l can be determined by

x; l ¼ argmax
xlow ≤x≤xup;l¼1;2

CEIvf x; lð Þ: ð14Þ

3.3 Discussion about the difference with augmented
EI

By literature survey, we found that there is a similar but different
method called augmented EI, which is proposed byHuang et al.
(2006) and formulated based on cokrigingmodel (Kennedy and
O’Hagan 2000). The formulation of augmented EI is

EI aug x; lð Þ ¼ EI xð Þ⋅α1⋅α2; l ¼ 1; 2; ð15Þ

where

α1 ¼ corr ŷl xð Þ; ŷ2 xð Þ
h i

;α2 ¼ t2=tl; ð16Þ
whereα1 is a cross-correlation coefficient between the low- and
hi-fi models and α2 is the cost ratio between a single hi-fi
numerical simulation and a single low-fi numerical simulation.
As the cross-correlation coefficient corr ŷl xð Þ; ŷ2 xð Þ½ � could be
not easy to calculate for other kinds of surrogate models, an
alternative formulation is given in (Reisenthel and Allen 2014)

corr ŷl xð Þ; ŷ2 xð Þ
h i

¼ sl xð Þ= ŷ2 xð Þ−ŷl xð Þ
			 			þ s2 xð Þ
� �

: ð17Þ

Although the motivations and ideas are similar, the VF-EI
method proposed in this article is different from the

augmented EI method. The main difference is that the VF-EI
is derived analytically, but the augmented EI is somehow heu-
ristic and empirical. As a result, VF-EI is free of empirical
parameters and the addition of low- and hi-fi samples is fully
adaptive. In contrast, the performance of the augmented EI is
dependent on the proper use of low-fi function and empirical
setting of α1 and α2. From this point of view, we could infer
that the VF-EI can be potentially better than or at least as good
as the augmented EI. In fact, this hypothesis is confirmed by
the analytical function test cases and engineering design prob-
lems provided in Sections 4 and 5.

3.4 Implementation of proposed VF-EI

In this article, all the optimization test cases are performed
based on an in-house optimization code called “SurroOpt”
(Han 2016a, b). It is a surrogate-based generic optimiza-
tion code that can be used to efficiently solve arbitrary
single and multi-objective (Pareto front), unconstrained,
and constrained optimization problems. The proposed
VF-EI method and augmented EI were implemented in
“SurroOpt.” Algorithm 1 is given as an implementation
of the VFO and the corresponding framework is sketched
in Fig. 2. The difference with the conventional optimiza-
tion framework based on the standard EI method (see
Fig. 1) is that both low-fi and hi-fi samples are added to
update the HK model towards the global optimum of the
hi-fi function,

Algorithm 1: Procedure of VF-EI based optimization

0: procedure

1: set initial low- and hi-fi sample points, J = 0

2: evaluate the samples by low-fi and hi-fi analyses, respectively

3: while J < Jmax

4: construct the low-fi kriging model ŷlf
5: construct the HK model ŷhf
6: find x*lf ¼ argmaxCEIvf x; l ¼ 1ð Þ
7: find x*hf ¼ argmaxCEIvf x; l ¼ 2ð Þ
8: if EIvf x*lf ; 1

� �
> EIvf x*hf ; 2

� �
then:

xnew ¼ x*lf ; l ¼ 1

9: else
xnew ¼ x*hf ; l ¼ 2

endif

10: if (l = 1) then
evaluate xnew using low-fi analysis, go to 4

11: else
evaluate xnew using hi-fi analysis, J=J+1, go to 5

endif

12: end while

13: end procedure
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4 Test cases of analytical functions

4.1 An illustrative example

In this sub section, a one-dimensional test function (Forrester
et al. 2007) is used to verify the correctness of the proposed
VF-EI method. The mathematical model is

min y ¼ 6x−2ð Þ2sin 12x−4ð Þ
ylf ¼ 0:5yþ 10 x−0:5ð Þ−5:

w:r:t: x∈ 0; 1½ �
ð18Þ

Please note that the theoretical optimal solution is at x∗ =
0.75725 with optimal functional value of f(x∗) = − 6.020740.

The refining process of the HK model by using the pro-
posed VF-EI is sketched in Table 2 and Fig 3. First, the initial
HKmodel is built with six low-fi and three hi-fi sample points
(Slf = {0.0, 0.1402, 0.3742, 0.4180, 0.7469, 0.9777},
S = {0.2223, 0.6128, 0.9877}), shown in Fig. 3a. Figure 3
(a, left) shows the low-fi kriging and HK models compared
with the true functions. Although the low-fi kriging is not
accurate enough, the trend is correctly mapped to three hi-fi

samples. Figure 3 (a, right) is the distribution of the VF-EI
function through the whole design space. It can be seen that
the maximum of EI(x, 1) in the low-fi level is much higher
than the maximum of EI(x, 2)in the hi-fi level, which implies
that for the 1st update cycle, we should add a low-fi sample at
location of x = 0.6423. Second, the low-fi kriging and HK
models are rebuilt with the initial samples and the newly
added low-fi sample (pink cross symbol), as shown in Fig. 3
(b, left). The low-fi kriging model is getting more accurate and
the resulting HKmodel features the similar trend with the true
hi-fi function. As the maximum of EI(x, 2) in hi-fi level is
larger, shown in Fig. 3 (b, right), a hi-fi sample point at x =
0.7305 is added at the 2nd cycle. Then, the HK model is
updated and becomes more accurate than the previous cycle.
However, the exact optimal location is still not precisely
reached, as shown in Fig. 3c. Then, two low-fi sample points
are added into the sample dataset at the 3rd and 4th cycles and
the low-fi kriging and HK models are both getting more and
more accurate near the optimum, as shown Fig. 3d, e. Finally,
a hi-fi sample point is added at a site that is very closing to the
optimal location and the updating process terminates, see in
Fig. 3f. The refining process of the HK model by using the
augmented EI is sketched in Fig. 4. Here, we assume that the
cost ratio t2/tl is 4. We find that only hi-fi samples are added
during the optimization iterations. This is because the low-
and hi-functions have a big difference in functional value,
which results in a small value of correlation coefficient α1,
consequently, and only hi-fi samples points are added during
the entire design (see Table 3).

In this test case, only 5 hi-fi samples, including 3 initial
samples, are used for VF-EI method to successfully find the
global optimum (see Table 2), with assistance of 9 low-fi
samples, which in turn verifies the correctness and effective-
ness of the proposed VF-EI method. It is shown that the VF-EI
method can adaptively determine both the location and fidelity
level of a new design point, and the addition of both low- and
hi-fi samples are in an alternative manner and hi-fi optimum
oriented. During the updating process, the low-fi sample
points are firstly used to depict the trend of the hi-fi function
near the optimal solution; and then the hi-fi sample points are
added to correct the absolute value until the hi-fi global opti-
mum is reached.

4.2 Other test functions

To demonstrate the VF-EI method and make a reasonable
comparison with the augmented EI method, six analytic func-
tions with the number of dimensions in the range from 1 to 5
are tested. Among them, the test functions 5 and 6 are from the
literature (Huang et al. 2006), in which the augmented EI was
proposed. The expressions of adopted functions are shown in
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Fig. 2 Flowchart of VFO based on hierarchical kriging and the proposed
VF-EI method
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Table 4, and the definitions of analytical test cases are shown
in Table 5.

The test cases include the following: (1) case 1–3, all
of the hi-fi functions are the 1-d function from (Forrester
et al. 2007) with different low-fi functions. For Forrester

1a, the low-fi function has a different optimal location
with the hi-fi function; the Forrester 1b has the same
trend but large difference in functional response with
the hi-fi function; the Forrester 1c has a totally opposite
trend with the hi-fi function; (2) case 4 is a 2-d function

(a) Initial low-fi kriging and HK model (left) and the corresponding VF-EI function(right) 

(b) low-fi kriging and HK model (left) refined by adding a low-fi sample (pink cross) and the corresponding VF-EI function

(right) 
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Fig. 3 Refinement process of VFO of a 1-d analytical function based on HK surrogate model and the proposed VF-EI method (fidelity level of added
samples: low-hi-low-low-hi)
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test case from Ref (Gano et al. 2005), where the low-fi
function is obtained by adding linear and nonlinear noise
factors to the hi-fi function. The low-fi function has sim-
ilar trend and close optimal location with the hi-fi func-
tion; (3) case 5 is a 3-d “Hartman 3” function and the
low-fi function is defined as adding systematic errors
“MA 3” multiplied by 7.6 to the hi-fi functions. As a
large deviation is introduced in the low-fi function, there
is a big difference in functional responses between low-
and hi-fi functions; (4) case 6 is a 5-d “Ackley 5” func-
tion, and the low-fi function is defined as adding system-
atic errors “MA 5” multiplied by 0.74 to the hi-fi func-
tion, which can retain the main trend of the hi-fi function.
The 1-d and 2-d function cases, which can be visualized,
are shown in Fig. 5.

In all of the three test cases, the initial numbers of low- and
hi-fi sample points are 3 and 6 times of the number of dimen-
sions and chosen by LHS respectively. The optimization using

standard EI, augmented EI, and VF-EI are all repeated 10
times to consider the influence of the randomness due to initial
sampling and the sub-optimization algorithms (when GA is
used). The average test results are shown in Table 6.

From the test results, we can observe that, first, the
global optima are successfully found in all of the cases,
which validate the applicability of HK model-based opti-
mization. Second, it is shown that the VF-EI can improve
the optimization efficiency in all of the cases, in terms of
the number of hi-fi sample points, compared with that
using the standard single-fidelity EI method. Although
the low-fi function has a poor correlation with hi-fi func-
tion (case 3), the performance of VF-EI is at least as good
as the standard EI method. Third, as for the augmented EI,
it only performs well in case 4, in which the low-fi func-
tion has similar trend and close optimal location with that
of the hi-fi function. In case 6, it does improve the opti-
mization efficiency but not as good as our VF-EI method.
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Fig. 3 (continued)
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However, it does not work well in other analytical func-
tion cases and even worse than the standard EI in case 5.
Please note that the similar result of case 5 was presented
in the literature (Huang et al. 2006). We observed that
unsatisfactory performance of the augmented EI method

is due to the big difference in functional responses or
optimal locations between low- and hi-fi functions.

In conclusion, the proposed VF-EI method can adaptively
infill the low- and hi-fi sample points in an alternative manner,
and is proved to be effective in all of the presented optimiza-
tion cases. In contrast, the performance of the augmented EI
method is problem dependent.

Table 2 Refinement process of the VF-EI based optimization of the 1-d
illustrative test case

Updating cycle Added sample Fidelity level Best-observed hi-fi
objective function

1 x = 0.6423 1 (low-fi) − 0.5903

2 x = 0.7305 2 (hi-fi) − 5.6696

3 x = 0.7745 1 (low-fi) − 5.6696

4 x = 0.7577 1 (low-fi) − 5.6696

5 x = 0.7580 2 (hi-fi) − 6.0205
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(a) Initial low-fi kriging and HK model (b) low-fi kriging and HK model refined by adding a high-fi

samples (blue cross) 

(c) low-fi kriging and HK model refined by adding two 

high-fi samples (blue cross)  

(d) low-fi kriging and HK model refined by adding three

high-fi samples (blue cross) 

Fig. 4 Refinement process of VFO of a 1-d analytical function based on HK surrogate model and the augmented EI method (fidelity level of added
samples: hi-hi-hi)

Table 3 Refinement process of the augmented EI based optimization of
the 1-d illustrative test case

Updating cycle Added sample Fidelity level Best-observed hi-fi
objective function

1 x = 0.6597 2 (hi-fi) − 2.6835
2 x = 0.0000 2 (hi-fi) 3.0272

3 x = 0.7190 2 (hi-fi) − 5.3345
4 x = 0.7529 2 (hi-fi) − 6.0110
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5 Application to engineering design problems

5.1 Drag minimization of RAE2822 airfoil in transonic
viscous flow

5.1.1 Problem statement

The VF-EI method is applied to a benchmark problem of
airfoil design, defined by the AIAA aerodynamic design op-
timization discussion group (ADODG) (Zhang et al. 2016),

which is the drag minimization of a RAE 2822 airfoil, subject
to area, and pitching moment constraints, at a freestream
Mach number of 0.734, lift coefficient of 0.824, and
Reynolds number of 6.5 × 106. It can be written as a standard
nonlinear programming problem

min Cd

s:t: Cl ¼ 0:824
Cm≥−0:092;
Area≥Area0

ð19Þ

Table 4 Test functions

Name and source Description of functions

Forrester 1 (Forrester et al. 2007)

f xð Þ ¼ 6x−2ð Þ2sin 12x−4ð Þ
x∈ 0; 1½ �
x* ¼ 0:75725; f * ¼ −6:020740

Forrester 1a flf(x) = 0.5f(x) + 10(x − 0.5) − 5

Forrester 1b flf(x) = f(x) − 5

Forrester 1c flf(x) = [6(x + 0.2) − 2]2 sin[12(x + 0.2) − 4]

Gano 2 (Gano et al. 2005)
f xð Þ ¼ 4x21 þ x32 þ x1x2
g xð Þ ¼ 1=x1 þ 1=x2−2
xi∈ 0:1; 10½ �; for i ¼ 1; 2
x* ¼ 0:8846146; 1:1500039ð Þ; f * ¼ 5:668365

Gano 2a f lf xð Þ ¼ 4 x1 þ 0:1ð Þ2 þ x2−0:1ð Þ3 þ x1x2 þ 0:1
glf xð Þ ¼ 1=x1 þ 1= x2 þ 0:1ð Þ−2−0:001
xi∈ 0:1; 10½ �; i ¼ 1; 2

Hartman 3 (Hartman 1973) f xð Þ ¼ − ∑
4

i¼1
ciexp − ∑

3

j¼1
αij x j−pij
� �2" #

where αij ¼
3 10 30
0:1 10 35
3 10 30
0:1 10 35

2
664

3
775ci ¼

1
1:2
3
3:2

2
664

3
775pij ¼

0:3689 0:1170 0:2673
0:4699 0:4387 0:7470
0:1091 0:8732 0:5547
0:03815 0:5743 0:8828

2
664

3
775

0≤xi≤1; for i ¼ 1; 2; 3; and j ¼ 1;…; 4
Nlocal > 1;Nglobal ¼ 1
x* ¼ 0:114; 0:556; 0:852ð Þ; f * ¼ −3:8627

Ackley 5 (Ackley 1987) f xð Þ ¼ −aexp −b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
5

i¼1
x2i

s" #
−exp

1

n
∑
5

i¼1
cos cxið Þ

� �
þ aþ exp 1ð Þ

a ¼ 20; b ¼ 0:2; c ¼ 2π
−2:0≤xi≤2:0; for i ¼ 1;…; 5
Nlocal > 1;Nglobal ¼ 1
x* ¼ 0;…; 0ð Þ; f * ¼ 0:0

MA 3 (McDaniel and Ankenman 2000) f xð Þ ¼ 0:585−0:324x1−0:379x2−0:431x3−0:208x1x2 þ 0:326x1x3
þ 0:193x2x3 þ 0:225x21 þ 0:263x22 þ 0:274x23

MA 5 (McDaniel and Ankenman 2000) f xð Þ ¼ 0:585−0:00127x1−0:00113x2−0:00663x3−0:0129x4−0:00611x5
þ 0:00526x1x4 þ 0:0106x1x5−0:000626x2x4−0:00310x2x5
−0:00724x4x5−0:00096x23−0:0124x

2
4−0:0101x

2
5
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where Cl, Cd, and Cm is the lift, drag, and pitching moment
coefficient respectively and Area is the airfoil cross-sectional
area normalized by the chord length.

For convenience, in our study, the problem is reformulated
as following:
min Cd

s:t: Cl ≥0:824
Cm≥−0:092;
Area≥Area0

ð20Þ

where the angle of attack α is fixed at 2.8795 degree, at which
the Cl of baseline RAE 2822 is 0.824. Please note that in the
following text, the drag coefficient will be given in terms of
drag count (cts) with 1 cts = 1 × 10−4.

5.1.2 Determination of low- and hi-fi CFD models

The high- and low-fi analysis models are defined as CFD
simulations solving the same governing flow equations
(Reynolds-averaged Naiver-Stokes equations) with differ-
ent convergence criteria and computational meshes of
varying resolutions. The flow solver used in this paper
is an in-house solver called “PMNS2D” (Han et al.
2007; Xie et al. 2008). According to the grid study shown
in Fig. 6, we choose the grid with 73,728 cells as the hi-fi
model, and the grid with 18,432 cells as the low-fi model

(see in Fig. 7). The low-fi CFD simulation terminates
after 200 iterations and the hi-fi CFD simulate stops until
the density residual has dropped 5.5 orders in magnitude,
as shown in Fig. 8. As a result, the computational cost
ratio of a hi-fi simulation to a low-fi simulation is approx-
imately 100, which means that the cost of 100 low-fi CFD
simulations is identical to that of a single hi-fi CFD
simulation.
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Fig. 5 Sketch of the low- and hi-fi functions for case 1 to 4 (left: case 1–3; right: case 4)

Table 5 Definition of variable-fidelity test cases

Number Hi-fi function Low-fi function Costhf Costlf

1 Forrester 1 Forrester 1a 1.0 0.25

2 Forrester 1 Forrester 1b 1.0 0.25

3 Forrester 1 Forrester 1c 1.0 0.25

4 Gano 2 Gano 2a 1.0 0.25

5 Hartman 3 Hartman 3 +MA 3 × 7.6 1.0 0.5

6 Ackley 5 Ackley 5 +MA 5 × 0.74 1.0 0.2

Table 6 Comparison of VFOs with the standard EI, augmented EI, and
the proposed VF-EI for analytical test cases

Test case ISC methods Averaged No. of
added sample points

Difference
with optima*

Low-fi
sample

Hi-fi
sample

Case 1 (1d) EI / 10 0.0002

Augmented EI 2.5 8 0.00006

VF-EI 18.9 6 0.00005

Case 2 (1d) EI / 8 0.001

Augmented EI 1.4 8 0.0003

VF-EI 21.8 5 0.00006

Case 3 (1d) EI / 8 0.00006

Augmented EI 1.9 8 0.00005

VF-EI 10.6 7 0.00005

Case 4 (2d) EI / 43 0.015

Augmented EI 25.8 18 0.0016

VF-EI 28 20 0.0012

Case 5 (3d) EI / 38 0.0025

Augmented EI 2.8 47 0.002

VF-EI 14 12 0.003

Case 6 (5d) EI / 71 0.1

Augmented EI 129.4 36 0.1

VF-EI 132 20 0.1

1442 Zhang et al.



5.1.3 Results

The airfoil is parameterized by class-shape transformation
(CST) method (Kulfan 2008), and 18 design variables are
utilized to describe the airfoil. After parameterizing the base-
line RAE2822 airfoil, the design space is obtained by
expanding the initial parameters by 1.5 times and narrowing
it by half.

Here, we compare VF-EI, augmented EI, and standard
EI-based VFO with the single-fidelity optimization. 5 hi-fi
and 100 low-fi samples are selected by DoE to construct
the initial HK model. To increase the confidence of the
statistical analysis, the optimization based on each method
is repeated 10 times. Figure 9 shows the comparison of
the shapes and pressure coefficient distributions of base-
line and optimal airfoils. As one can see that the location
of maximal thickness is moved backward, compared with
the baseline RAE2822 airfoil, and the leading edge radius
is reduced. Consequently, the shock intensity is decreased
sharply.

Figure 10 shows the averaged convergence histories of
the objective function. The vertical bars represent the

standard deviation of the objective function caused by re-
peating the optimizations. Please note that the convergence
history is plotted in a manner that shows the variation of
the best hi-fi objective function observed so far versus the
number of hi-fi functional evaluations only. It is obvious
that both the VFOs with the proposed VF-EI, augmented
EI, and the standard EI perform much better than the
single-fidelity optimization, and both the VF-EI and aug-
mented EI are dramatically more efficient than the standard
EI. For using the VF-EI, although more low-fi samples are
used, the total computational cost is reduced dramatically,
since a low-fi CFD is much cheaper than a hi-fi CFD.
Table 7 shows the comparison of optimization results using
four different methods. It can be seen that the VF-EI-based
method offers the best design on average and smallest stan-
dard deviation. Table 8 is for the comparison of optimiza-
tion efficiency of using four different methods. We can see
that when 25 hi-fi sample points are used for the VFO with
the standard EI method, the drag is reduced by 36.03%. In
contrast, only 13 hi-fi samples (including 5 initial hi-fi
samples) are needed to achieve the same level of drag re-
duction when the VF-EI method is used, which means that
the VF-EI is almost twice faster than the standard EI
method.

5.2 Dragminimization of ONERAM6 wing in transonic
inviscid flow

5.2.1 Problem statement

This case is the drag minimization of a ONERA M6 wing
at a freestream condition ofMa = 0.8395, α = 3.06°, subject
to four constraints on the maximum thickness-to-chord ra-
tio and one constraints on the lift coefficient. The wing is
parameterized by four control sections with the planar
shape being fixed (see Fig. 11). Each of the control section
is parameterized by five-order CST method, resulting in 12
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variables for each section and 48 design variables in total.
It can be written as a standard nonlinear programming
problem:

min CD

s:t: 1Þ CL≥CL;0

2Þ t1≥ t1;0 3Þ t2≥ t2;0
4Þ t3≥ t3;0 5Þ t4≥ t4;0

; ð21Þ

where t denotes the maximum thickness-to-chord ratio of
the control sections, and its subscript is the index of the
control sections.

5.2.2 Determination of low- and hi-fi CFD models

The flow analyses are performed with the in-house code
called PMNS3D. It solves the Euler equations to simu-
late the inviscid flow around the wing. With the struc-
tured grids of C-H topology generated by our in-house
code, the low- and hi-fi CFD models are also defined in
a similar way with the previous cases. According to the
grid study shown in Fig. 12, we choose the grid with the
distribution of 168 (chord-wise direction) × 36 (normal
direction) × 44 (span direction) as the low-fi CFD, and
the grid with the distribution of 312 (chord-wise direc-
tion) × 72 (normal direction) × 72 (span direction) as the

Cycles

L
o

g
10

(R
es

/R
es

0)

C
d

C
l

0 200 400 600 800 1000 1200 1400
-10

-8

-6

-4

-2

0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Low-fi simulation
terminates

Cl

Residual

Cd

Cycles

L
o

g
10

(R
es

/R
es

0)

C
d

C
l

0 200 400 600 800 1000
-10

-8

-6

-4

-2

0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Hi-fi simulation
        terminates

Cl

Residual

Cd

Fig. 8 Convergence histories of low-fi (left) and hi-fi (right) simulations for the baseline RAE2822 airfoil (Ma = 0.734, α = 2.8795°, Re = 6.5 × 106)

x/c

C p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

X/C

Y/
C

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

RAE2822
Optimal airfoil

RAE2822
Optimal airfoil

Fig. 9 Comparison of baseline RAE 2822 and optimal airfoils (upper:
pressure coefficient distributions; lower: airfoil shapes, Ma = 0.734, α =
2.8795°, Re = 6.5 × 106)

No. of evaluated hi-fi samples

C d

0 20 40 60 80 100
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

kriging_EI
HK_EI
HK_AEI
HK_VFEI

36% drag reduction

Fig. 10 Comparison of convergence histories of VFOs using proposed
VF-EI, augmented EI, and the standard EI with the single-fidelity
optimization based on kriging and EI (RAE2822 airfoil test case)

1444 Zhang et al.



hi-fi CFD (see in Fig. 13). The low-fi CFD simulation
terminates after 20 iterations and the hi-fi CFD simulate
stops until the density residual has dropped 5.2 orders in
magnitude, as shown in Fig. 14. For this wing case, the
computational cost ratio of hi-fi CFD to low-fi CFD is
approximately 10.

5.2.3 Results

The design space is obtained by expanding the CST
parameters of control sections of M6 wing by 1.25
times and narrowing it by a quarter. And 24 hi-fi and
300 low-fi samples are selected by DoE to construct the
initial HK model. Here, only VFO based on HK model,
using VF-EI, augmented EI, and standard EI are con-
ducted, as it is difficult for single-fidelity method to
optimize the wing with 48 design variables. The opti-
mizations are also repeated for 10 times in this case.
Table 9 compares the aerodynamic performance and
thickness of the control sections between the baseline
and optimized wings. The drag coefficient is reduced
by 29.69 cts with all of the constraints are satisfied.
Figure 15 shows the comparison of pressure contour

of baseline and optimized wings. The result is further
checked by comparison of the pressure distributions and
shape at four span-wise sections of the wing. As we can
see that, the shock is weakened for the optimal shape at
all of the sections.

The averaged convergence histories with standard
deviation of using different optimization strategies are
sketched in Fig. 16. One can see that the optimization
efficiency can be improved by using the proposed VF-
EI method. Table 10 is for the comparison of the op-
timization results using three different methods. Again,
it is shown that the VF-EI-based method offers the best
design on average. Table 11 is for the comparison of
optimization efficiency of using three different methods
for the same level of drag reduction. We can see that
the VF-EI method also performs the best. When 17 hi-
fi sample points are added (41 in total) for the VFO
with the VF-EI method, the drag is reduced by
19.65%. As for the augmented EI and standard EI
method, to achieve the same level of drag reduction,

Table 8 Comparison of optimization efficiency of using different
methods for same level of drag reduction (RAE2822 airfoil test case)

Surrogate
model

Infill-
sampling
criterion

Average
Cd (cts)

Δ Nl Nh Equivalent
to no. of
hi-fi CFD

kriging EI 123.09 − 35.98% / 40 40

HK EI 122.99 − 36.03% 100 25 26

Augmented
EI

122.43 − 36.32% 200 18 20

VF-EI 122.52 − 36.29% 189 13 15

Nl: number of low-fi CFD analyses, Nh: number of hi-fi CFD analyses

Table 7 Comparison of optimization results using different methods
(RAE2822 airfoil test case)

Surrogate
models

Infill-sampling
criterion

Optimal Cd (cts) Standard
deviation
(cts)Best Average Worst

kriging EI 110.80 113.91 118.53 3.2

HK EI 110.08 111.83 114.17 1.1

Augmented EI 108.65 112.23 117.94 3.1

VF-EI 107.80 109.38 113.41 2.1
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30 and 43 hi-fi sample points are need to be added.
And the augmented EI method does improve the opti-
mization efficiency, but not as good as our VF-EI
method.

6 Summary and future works

In this article, a variable-fidelity expected improvement
(VF-EI) method was proposed for efficient global

optimization of expensive-to-evaluate function with as-
sistance of cheaper-to-evaluate function, based on a
variable-fidelity model called hierarchical kriging
(HK). The VF-EI method, as an extension of standard
EI method, can select the new samples of both low
fidelity and high fidelity to update the VFM towards
the global optimum of the hi-fi function, and the
infillings of both low-fi and hi-fi samples are hi-fi-
optimum oriented.
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Table 9 The optimization results
for ONREA M6 wing test case
(Ma = 0.8395, α = 3.06°)

CL CD(cts) CM t1 t2 t3 t4

Baseline 0.294408 123.13 − 0.22356 0.098733 0.098733 0.098733 0.098733

Opt. 0.294018 95.44 − 0.21996 0.098832 0.098806 0.099038 0.098734

Δ − 0.00039 − 27.69 − 0.0036 0.49E-04 0.23E-04 0.31E-03 0.69E-06
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By redefining the uncertainty of the HK model, the
VF-EI was analytically derived. The VF-EI refers to the
expected improvement of the hi-fi function by infilling

either a low-fi or a hi-fi sample point at any untried x
in the design space. The uncertainty and expected im-
provement of the hi-fi function due to lack of a low-fi
sample was analytically derived, and then the resulting
VF-EI function is formulated as a function of both the
design variables x and the fidelity level l. By maximiz-
ing the VF-EI, the new sample point and its fidelity
level can be determined. The VF-EI method was further
extended to handle nonlinear constraints, by evaluating
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Table 10 Comparison of optimization results using different methods
(ONREA M6 wing test case)

Surrogate
models

Infill-sampling
criterion

Optimal Cd (cts) Standard
deviation
(cts)Best Average Worst

HK EI 95.44 97.23 99.25 1.1

Augmented
EI

96.90 97.63 98.57 0.6

VF-EI 96.41 96.69 96.96 0.2
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the probability of satisfying the constraints using the
model uncertainty associated with lack of a low-fi sam-
ple as well.

Theoretical analysis shows that, when VF-EI is used,
typically the addition of low- and hi-fi samples will be in
an alternative way, which is controlled by the ratio of the
two kinds of uncertainties, where are due to lack of low-
and hi-fi samples, respectively. Besides, the VF-EI will
tend to add more low-fi samples than hi-fi samples, if the
low- and hi-fi functions are highly correlated. When
compared to an existing method called augmented EI,
we found that the main difference is that the VF-EI is
analytically derived and free of empirical parameters, but
the performance of the augmented EI is dependent on the
proper setting of two empirical parameters.

The VF-EI method was then verified and validated by
optimization of six analytical functions, and demonstrated
for aerodynamic shape optimizations of the benchmark
RAE 2822 airfoil in transonic viscous flow and a 48-
dimensional ONREA M6 wing in transonic inviscid flow.
It was shown that the proposed VF-EI method can adap-
tively infill the low-fi and hi-fi samples in an alternative
manner, and is proved to be effective in all of the present-
ed optimization cases. In contrast, the performance of
augmented EI method is problem dependent.

Our future work will focus on applying the VF-EI
method to higher dimensional optimization, in order to
examine its performance for complex engineering design
problems. This is still challenging for surrogate-based
optimization method, especially when the number of
dimension is larger than 100. We believe that extending
the two-level VFMs to multi-fidelity models and devel-
oping dedicated ISC can be a remedy to tackle this
problem. On the other hand, the use of cheap gradients
obtained by adjoint method or automatic differentiation
will be another promising way to ameliorate the “curse
of dimensionality.”
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Appendix

A.1 Hierarchical kriging

For an m dimensional problem, suppose we are concerned
with the prediction of an expensive-to-evaluate (and un-
known) hi-fi function y(x) :ℜm→ℜ, with the assistance of
a cheaper-to-evaluate low-fidelity function y(x) :ℜm→ℜ.
Assuming that the low- and hi-fi functions are observed at
nlf and n sites, respectively, the sample datasets for a HK
model are

Slf ¼ x 1ð Þ
lf ;…; x nlfð Þ

lf

h iT
∈ℜnlf�m; yS;lf ¼ y 1ð Þ

lf ;…; y nlfð Þ
lf

h iT
∈ℜnlf ;

S ¼ x 1ð Þ;…; x nð Þ
h iT

∈ℜn�m; yS ¼ y 1ð Þ;…; y nð Þ
h iT

∈ℜn;

ð22Þ
where the subscript “lf” denotes “low fidelity.”

Kriging model of cheap low-fi function

To build a surrogate model for the hi-fi and expensive func-
tion, we first build a surrogate model for the lower fidelity but
cheaper function that will be used thereafter to assist the pre-
diction. Assume a random process corresponding to the un-
known low-fi function ylf(x)
Y lf xð Þ ¼ β0;lf þ Z lf xð Þ; ð23Þ

where β0, lf is an unknown constant and Zlf(x) is a stationary
random process. Then, we can follow (Sacks et al. 1989) to
build a kriging based on the sampled data set (Slf, yS, lf). After
the kriging is fitted, the prediction of the low-fidelity function
at any untried point x can be written as

ŷlf xð Þ ¼ β0;lf þ rTlf xð ÞR−1
lf yS;lf−β0;lf1
� �

; ð24Þ

where β0;lf ¼ 1TR−1
lf 1

� �−1
1TR−1

lf yS;lf ;Rlf∈ℜnlf�nlf is the corre-

lation matrix representing the correlation between the observed
low-fi sample points; 1∈ℜnlf is a column vector filled with ones;

Table 11 Comparison of
optimization efficiency of using
different methods for same level
of drag reduction (ONREA M6
wing test case)

Surrogate model Infill-sampling
criterion

Average
Cd (cts)

Δ Nl Nh Equivalent to no. of
hi-fi CFD

HK EI 98.89 − 19.69% 300 67 97

Augmented EI 98.86 − 19.71% 308 54 85

VF-EI 98.94 − 19.65% 338 41 75

Nl: number of low-fi CFD analyses, Nh: number of hi-fi CFD analyses

1448 Zhang et al.



and rlf∈ℜnlf is the correlation vector representing the correlation
between the untried point and the observed low-fi sample points.
The MSE of the kriging prediction at any untried x, the uncer-
tainty due to the lack of a low-fi sample, is

MSE ŷlf xð Þ
h i

¼ s2lf xð Þ ¼ σ2
lf 1:0−rTlfR

−1
lf rlf þ rTlfR

−1
lf 1−1

� �2
=1TR−1

lf 1
h i

:

ð25Þ

The reader is referred to (Simpson et al. 2001; Martin and
Simpson 2005; Toal et al. 2008) for more details of building
such a kriging.

Hierarchical kriging for expensive high-fidelity function

By directly taking the low-fi kriging multiplied by a scaling
factor β0 as the model trend, the random process for the un-
known hi-fi function is assumed as

Y xð Þ ¼ β0ŷlf xð Þ þ Z xð Þ; ð26Þ
where β0 is a scaling factor representing how the low-fi
kriging matches the hi-fi function; ŷlf xð Þ denotes the predic-
tion of low-fi kriging at x; and Z(x) is a stationary random
process with zero mean. In this way, the trend of low-fi func-
tion is mapped to the sampled hi-fi data, resulting in a more
accurate surrogate model for hi-fi function of interest. Then, a
HKmodel (Han and Görtz 2012) can be built through the hi-fi
sample datasets (S, yS). By minimizing the MSE of the pre-
diction, the HK prediction for the hi-fi and expensive function
at any untried x can be written as

ŷ xð Þ ¼ β0ŷlf xð Þ þ rT xð ÞR−1 yS−β0Fð Þ; ð27Þ
where F ∈ℜn is a column vector filled with predictions of the
low-fi kriging at the sites of hi-fi samples; R ∈ℜn × n is the
correlation matrix representing the correlation between the
observed hi-fi sample points; and r ∈ℜn is the correlation
vector representing the correlation between the untried point
and the observed hi-fi sample points

β0 ¼ FTR−1F
� �−1

FTR−1yS

F ¼ ŷlf x 1ð Þ
� �

;⋯; ŷlf x nð Þ
� �h iT

∈ℜn;

R ¼
R x 1ð Þ; x 1ð Þ
� �

⋯ R x 1ð Þ; x nð Þ
� �

⋮ ⋱ ⋮
R x nð Þ; x 1ð Þ
� �

⋯ R x nð Þ; x nð Þ
� �

2
64

3
75∈ℜn�n;

r ¼ R x; x 1ð Þ
� �

;…;R
�
x; x nð Þ

�h iT
∈ℜn;

ð28Þ

where R(x, x′) is the spatial correlation function which only
depends on the Euclidean distance between the two sites x, x′.
Generally, the R(x, x′) can be a Gaussian exponential function
or a cubic spline function, see (Han and Görtz 2012).

The MSE of the HK prediction at any untried x, the uncer-
tainty due to lack of a hi-fi sample, is

MSE ŷ xð Þ
n o

¼ s2 xð Þ

¼ σ2 1:0−rTR−1rþ rTR−1F−ŷlf xð Þ
h i2

= FTR−1F
� �−1� �

:

ð29Þ

In comparison to a cokriging model, the HK model does
not need to calculate the cross covariance between low-
and hi-fi samples. As a result, the correlation matrix of a
HK model is relatively smaller. In addition, the HK model
can provide a more reasonable MSE estimation than any of
the existing kriging and cokriging models (Han and Görtz
2012), which is very beneficial for infill-sampling based on
the method such as EI.

A.2 Standard expected improvement method

For using the expected improvement (EI) method pro-
posed by Jones et al. (1998), we can assume that the
prediction of the HK model at any untried site x obeys a

normal distribution Ŷ xð Þ∼N ŷ xð Þ; s2 xð Þ½ �, with the mean
being the surrogate prediction ŷ xð Þ and the standard devi-
ation s(x) being its root mean-squared error (RMSE).
Then the statistical improvement at any untried location
w.r.t. the best hi-fi objective function observed so far ymin

is defined as:

I xð Þ ¼ max ymin−Ŷ xð Þ; 0
� �

: ð30Þ
Then, the EI function can be written as

EI xð Þ ¼ ymin−ŷ xð Þ
� �

Φ
ymin−ŷ xð Þ

s xð Þ

 !
þ s xð Þϕ ymin−ŷ xð Þ

s xð Þ

 !
; if s xð Þ > 0

0; if s xð Þ ¼ 0

8><
>: ;

ð31Þ
where Φ and ϕ are the cumulative distribution function and
probability density function of standard normal distribution,
respectively.

For a constrained optimization, the HK model for the con-
straint function, ĝ xð Þ, is also built. We can also assume the
prediction at any untried site obeys a normal distributed,

Ĝ xð Þ∼N ĝ xð Þ; s2g xð Þ
h i

, with the mean value being the predic-

tor ĝ xð Þ and the standard deviation being its RMSE sg(x).
Therefore, the probability of satisfying the constraint is

P Ĝ xð Þ≤0
h i

¼ Φ
−ĝ xð Þ
sg xð Þ

 !
: ð32Þ
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And the constrained EI function can be given by

CEI xð Þ ¼ E I xð Þ∩ G xð Þ≤0½ �½ � ¼ EI xð Þ⋅P G xð Þ≤0½ �: ð33Þ

If there are NC constraints, we should built NC HK models
for every constraint function, and the resulting constrained EI
function is

CEI xð Þ ¼ EI xð Þ⋅∏NC
i¼1P Gi xð Þ≤0½ �: ð34Þ

Then the following unconstrained sub-optimization prob-
lem is formulated as

x ¼ argmax
xlow ≤x≤xup

CEI xð Þ: ð35Þ

A hybrid method of combing GA, Hooke and Jeeves pat-
tern search, and BFGS gradient-based method is used to solve
the above sub-optimization problem to suggest the new sam-
ple point (Han 2016a, b), which is to be evaluate by hi-fi
numerical analysis again. Please note only the hi-fi sample
point is obtained here, since the above EI function is defined
based on the uncertainty due to lack of a hi-fi sample.
Therefore, if we need to adaptively select low-fi sample points
as well, the EI function based on the uncertainty coming from
the low-fi kriging model should be formulated, which is al-
most a blank area so far and will be done in Section 3.
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