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Abstract
The maximum entropy (ME) method is a promising tool for structural reliability analysis by estimating the unknown probability
density function (PDF) of given model response from its moment constraints. However, the classic ME algorithm has to resort to
an iterative procedure due to non-linear constraints, and the required high order moment estimations may have large statistical
error. In this paper, we (i) propose an analytical ME method based on integration by parts algorithm to transform the non-linear
constraints to a system of linear equations and (ii) derive the polynomial chaos expansion (PCE) multiplication for improving
higher order moment calculation required in the previous step efficiently. Thus, an analytical formula of response PDF is obtained
directly without intensively iterative procedure and associated convergence error, and it is followed by probability failure
estimation using numerical integration computation. Two structural engineering cases are implemented to illustrate the accuracy
and efficiency of the proposed method.

Keywords Structural reliability analysis .Maximumentropymethod . Polynomial chaos expansion .Multiplicationoforthogonal
polynomials

1 Introduction

Structure reliability analysis is one of the most important is-
sues in engineering practice because of uncertainties in geom-
etry parameters, operating conditions, material properties, ap-
plied loadings, etc. It is usually concerned with the probability
of a limit state violation of a structural component. For sim-
plicity, the failure probability is the integration of joint prob-
ability density function (PDF) of the input variables over fail-
ure domain.

Generally speaking, except for some very simple cases, it is
an intractable problem to solve the failure probability. Such
difficulty arises due to implicit limit state function as well as
associated failure domain. In this way, the numerical simula-
tion methodology, such as the Monte Carlo simulation (MCS)

and versions including various importance sampling strate-
gies, is widely employed for failure probability or reliability
calculation (Zio 2013). Although these numerical methods are
straightforward, it could lead to huge computation burden
when structures or systems in consideration are large and
complex, e.g., the finite element model. Therefore, researchers
have developed the semi-analytical methodology, e.g., the
first order reliability method (FORM) and the second order
reliability method (SORM) (Zhao and Ono 1999), to mitigate
this problem. These methods find an approximate analytical
solution of procedure instead of many samplings. However,
the gradients required in these methods are often calculated by
the finite difference algorithm, and it is also time-consuming
for complicated structures.

In addition, the response surface methodology is proposed
to deal with the issue of implicit limit state function. The basic
idea is to fit the true limit state function by approximate tech-
nologies, which makes function evaluation much easier for
further computation (Shi et al. 2014). And such approximation
is known as the response surface. Typically, it is chosen to be
first or second order polynomials, high-dimensional model
representation (HDMR) or dimensional reduction method
(DRM) (Rabitz 1999), Kriging model (Kaymaz 2005), radial
basis function (Jamshidi and Kirby 2010), etc. Then, the
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numerical simulation methodology and the approximate
methodology could execute using the response surface instead
of the original one. However, all these methods are computa-
tionally efficient but at the expense of accuracy (Chakraborty
and Chowdhury 2015). Besides, Bucher and Most also con-
cluded that relative accuracy of various response surface ap-
proaches might depend on the specific problem under consid-
eration (Bucher and Most 2008).

Another distinguished idea is the statistical response char-
acterization methodology (Shi et al. 2014). Unlike those
discussed above whose foundation is input joint PDF integra-
tion over failure domain, this methodology represents PDF of
limit state function response explicitly and obtains the proba-
bility of failure by employing numerical integration of this
PDF directly. Researchers have extended the spectral stochas-
tic finite element method (SSFEM) for PDF estimation of any
response quantity by combining FORM sensitivity analysis
(Sudret and Der Kiureghian 2002), and taken MCS for as-
sumed PDF fitting (Huang et al. 2014). However, the former
one may become a weakness when it comes to small failure
probabilities, while the latter one might not be able to capture
the response characterization when the assumed PDF form is
far from the truth, and it is also short of computational
efficiency.

An alternative way to obtain the PDF of response is the
maximum entropy (ME)method, which is proposed by Jaynes
as a rational approach to estimate unknown PDF (Jaynes
1957). The ME principle states that the PDF of response is
the one having the maximum entropy under given moment
constraints. Thus, a typical three-step method is widely
adopted (Li and Zhang 2011; Shi et al. 2014; Chakraborty
and Chowdhury 2015; Lasota et al. 2015). In the first step,
several moments of response are obtained. In the second step,
the explicit response PDF is derived from ME principle with
moment constraints, where the Newton algorithms are
employed in computation process since the constraints are
non-linear in most cases. Finally, failure probability or some
other results could come out. In the last few decades, a number
of ME algorithms have been developed and applied in various
fields, like structural reliability analysis (Zhang and Pandey
2013; Dai et al. 2016; Fan et al. 2018), structural damage
assessment (Meruane and Ortiz-Bernardin 2015), extreme sig-
nificant wave heights prediction (Petrov et al. 2013), and
rotor-shaft dynamic responses modeling (Lasota et al. 2015).

However, there are practical difficulties suffered by ME
method. First of all, Newton algorithms are iterative, which
causes additional computation and convergence issue. And
there might be unbalanced non-linearities and ill-conditioned
Jacobian matrices in Newton algorithms (Abramov 2007).
Besides, the moment estimations may have large statistical
errors by traditional sampling approach, especially for high
order moment. In order to overcome these shortcomings, re-
searchers have conducted many studies. For one thing,

Bandyopadhyay proposed an improved scaling iterative ap-
proachwithout matrix inversion (Bandyopadhyay et al. 2005).
Some researchers use Chebyshev polynomials (Gotovac and
Gotovac 2009), Fup basis functions (Gotovac and Gotovac
2009), or other orthogonal polynomials in fitting response
PDF (Abramov 2007). Although these approaches make the
ME method more stable and suitable when high order mo-
ments are given, the iterative procedure remains and the algo-
rithm convergence is a potential problem. Zhang introduced
the fractional moment concept to avoid high order moment
(Zhang and Pandey 2013), but this approach introduces addi-
tional constraints and associated iterative resolution process
for fractional values. It would increase algorithm complexity,
while fractional moment might not apply in the case where the
moment value is negative. For another, Shi made an attempt to
get response PDF by classic ME fitting method and FORM
was combined to compute failure probability, while K-S tests
are used to check goodness of both moment estimations and
PDF fitting (Shi et al. 2014). Chakraborty (Chakraborty and
Chowdhury 2015) and Lasota (Lasota et al. 2015) use poly-
nomial chaos expansion (PCE), which is a typical surrogate
response under HDMR, to obtain low order moment instead
of sampling accurately, because PCE converges in the L2
sense for any arbitrary stochastic process with finite second
moment, and the accuracy of PCE could be improved by
increasing PCE degree (Xiu and Em Karniadakis 2002;
Sudret 2008). But higher order moment calculation is obtained
by PCE sampling, which may introduce additional sampling
error and computational costs. Moreover, the univariate di-
mension reduction method (UDR) is also proposed to com-
pute high order moments efficiently (Rahman and Xu 2004),
but previous research indicated that the lack of accuracy of
UDR is inherent to its mathematical formulation and may not
be reduced (Gherlone et al. 2013). As a whole, these works
also do not change the existing framework of iterative algo-
rithm, and the moment estimations are mostly based on con-
suming sampling principle.

In this paper, we explore an analytical method to improve
the existing ME method, which could mitigate problems
discussed above. Since the formula of response PDF is an
exponential form according to ME principle, the key idea is
to separate parameters in PDF using integration by parts. So,
the constraints could be converted into a system of linear
equations. Thus, the PDF would be obtained without conver-
gence error. However, it may lead to a higher moment estima-
tion requirement in solving procedure than classic ME meth-
od. To deal with this challenge, we make an attempt to use
PCE and multiplication algorithm to obtain high order mo-
ments within limited statistical error.

The presentation of this work is structured as follows.
Section 2 presents the proposed analytical maximum entropy
method. In Section 3, the polynomial chaos expansion for
high order statistical moment calculation is introduced. The
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procedure of proposed method is presented in Section 4. The
proposed method for structural reliability analyses is illustrat-
ed by two examples in Section 5. Conclusions are summarized
in the last section as well as Appendix 1, 2, 3, and 4.

2 Maximum entropy method for reliability
analysis

2.1 Maximum entropy principle and classic algorithm

The maximum entropy principle is of particular use in char-
acterizing the specific PDF of a random variable (Jaynes
1957; Bandyopadhyay et al. 2005; Petrov et al. 2013).
According to information theory, the entropy of a continuous
random variable y∈Ωy with PDF f(y) is defined as

S f yð Þð Þ ¼ −∫y∈Ωy ln f yð Þð Þ f xð Þdx ð1Þ

TheME principle states that the PDF which best represents
the current information or constraints is the one with the larg-
est entropy. Thus, if these constraints are known as statistical
moments of arbitrary basis functions (hi(y); i = 0, ..., m), the
ME method can be defined as the following optimization
problem:

max S f yð Þð Þ
subject to
∫y∈Ωyhi yð Þ f yð Þdy ¼ μi; i ¼ 0;⋯;m

ð2Þ

where μi is the moment of the ith basis function.
The above optimization problem could be solved by intro-

ducing Lagrangian function L with the corresponding multi-
plier λi, written as

L f yð Þ;λð Þ ¼ S f yð Þð Þ− ∑
m

i¼0
λi ∫y∈Ωyhi yð Þ f yð Þdy−μi

� � ð3Þ

Thus, this optimization problem is reduced to find the max-
imum value of (3):

∂L f yð Þ;λð Þ
∂ f yð Þ ¼ ∫y∈Ωy −1−ln f yð Þð Þ− ∑

m

j¼0
λ jh j yð Þ

 !
dy ¼ 0 ð4Þ

Therefore, the generic form of the PDF f(y) is

f yð Þ ¼ exp −1− ∑
m

j¼0
λ jh j yð Þ

 !
ð5Þ

where λi becomes undetermined parameter which makes PDF
satisfy constraints in (2). Furthermore, if basis function hi(y) is
taken as monomial yi, the zeroth normalized condition is given

as ∫y∈Ωy f yð Þdy ¼ 1.

Since (2) and (5) are non-linear, a number of optimization
techniques, such as Newton method or its improved versions
(Kelley 1999) and the BFGS procedure (Abramov 2009),
could be utilized to solve this problem. We would not go into
detail on these algorithms here. However, the common feature
of them is that all of these methods suffer the iterative proce-
dure which is confronted with the challenge of convergence,
especially when it comes to high order moment. However,
high order moment information may be necessary for more
accurate estimation of PDF in general. So, it might pose a
dilemma for MEmethod. Although some researchers propose
to mitigate this problem by introducing orthogonal polyno-
mials like Chebyshev or Lagrange polynomials for PDF
fitting, many numerical difficulties still remain. In addition,
the high order moment evaluations are also a problem in
practice.

2.2 Proposed analytical maximum entropy method

To overcome the problems discussed above, we first attempt
to solve the optimization problem analytically. And then, we
employ PCE algorithm to deal with high order moment cal-
culation. The later one will be discussed in Section 3. The
original idea behind the proposed method is to avoid iterative
procedure by using the exponential form of response PDF f(y).
In other words, the undetermined parameters λi could be sep-
arated from exponential function using integration by parts for
each moment constraint in (2), while the form of exponent
remains and it could be converted to several different order
moment constraints. Note the fact that the moment constraint
itself could be treated as a whole and replaced by a known
moment value, λi could become independent from original
non-linear PDF f(y) after separation. In this way, with the
known moment information, the optimization problem could
be transformed into a system of linear equations, and λi could
be solved analytically.

However, there is a potential problem with this idea, that is,
higher order moments required in our method may be compu-
tationally instable. This phenomenon would lead to unbal-
anced non-linearities and ill-conditioned matrix for linear
equations mentioned above. To deal with this problem, we
introduce the well-known Chebyshev polynomials to improve
the quality of matrix. The detail is given as follows.

Consider the limit state function y = g(x) where
x = (x1,…,xn) ∈Ωn is an n-dimensional random input. We
assume that the form of response PDF is given as

f yð Þ ¼ exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
ð6Þ

where Tj(y) is the jth Chebyshev polynomial (see Appendix 1
(Mason and Handscomb 2002)). Without loss of generality,
wewould solve this problem and associated unknown λi in the
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interval [− 1, 1]. Other cases could be discussed at the end of
this section. Thus, (6) is subject to the following constraints:

∫1−1Ti yð Þ f yð Þdy ¼ Mi; i ¼ 0;⋯;m ð7Þ

where Mi is the moment associated with ith Chebyshev poly-
nomial Ti(y). To avoid confusion with the classic monomial
moment, e.g., E(y), E(y2), etc., we call Mi as Chebyshev mo-
ment here.

According to the recurrence relation of Chebyshev polyno-
mials in Appendix 1, a linear transformation is available as (8)
or (9)

1

4
M1−

1

4
M 3

¼ ∫1−1
1

4
T1 yð Þexp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy−∫1−1

1

4
T3 yð Þexp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1
1

4
T1 yð Þ−T3 yð Þð Þexp −1− ∑

m

j¼1
λ jT j yð Þ

 !

¼ ∫1−1 T1 yð Þ− 1

4
T 1 yð Þ þ T 3 yð Þð Þ− 1

2
T 1 yð Þ

� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1 T1 yð Þ− 1

2
xT2 yð Þ− 1

2
xT0 yð Þ

� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1 T1 yð Þ−x2T 1 yð Þ� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

ð8Þ
and for i ≥ 2

1

2
Mi−

1

4
Miþ2−

1

4
Mi−2

¼ ∫1−1
1

2
Ti yð Þ− 1

4
Tiþ2 yð Þ− 1

4
Ti−2 yð Þ

� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1 Ti yð Þ− 1

2

Tiþ2 yð Þ þ Ti yð Þ
2

� �
−
1

2

Ti yð Þ þ Ti−2 yð Þ
2

� �� �

exp −1− ∑
m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1 Ti yð Þ− 1

2
xTiþ1 yð Þ− 1

2
xTi−1 yð Þ

� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

¼ ∫1−1 Ti yð Þ−x2Ti yð Þ� �
exp −1− ∑

m

j¼1
λ jT j yð Þ

 !
dy

ð9Þ

In this way, the key step of the proposed method is to
separate unknown λi in (5) with integration by parts. The
reason why we take (1 − y2)Ti(y) instead of Ti(y) as basis func-
tion is to avoid definite integral term after parameter separa-
tion. For all i > 0, we have

∫1−1 1−y2
� �

Ti yð Þexp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ ∫1−1 1−y2
� �

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
1

2 iþ 1ð Þ dTiþ1 yð Þ

−∫1−1 1−y2
� �

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
1

2 i−1ð Þ dTi−1 yð Þ

ð10Þ

By implementing the relations among Chebyshev polyno-
mials, (10) is derived as (11)-(12) if all Chebyshev moment
information is given

1

16
2M 2−M 4−M 0ð Þλ1 þ 1

8
M 3−M 5ð Þλ2 þ 1

16

� ∑
m

j¼3
j M jþ1−M jþ3 þM j−3−M j−1
� �

λ j

¼ 1

4
M 1−M 3ð Þ ð11Þ

and for i ≥ 2

1

8 iþ 1ð Þ ∑
i

j¼1
j Miþ j−Miþ jþ2−Mi− j þMi− jþ2

� �
λ j

þ 1

8
M 2iþ1−M2iþ3ð Þλiþ1

þ 1

8 iþ 1ð Þ ∑
m

j¼iþ2
j Miþ j−Miþ jþ2 þM j−i−2−M j−i
� �

λ j

−
1

8 i−1ð Þ ∑
i−2

j¼1
j Miþ j−2−Miþ j−Mi− j−2 þMi− j
� �

λ j

−
1

8
M 2i−3−M2i−1ð Þλiþ1

−
1

8 i−1ð Þ ∑
m

j¼iþ2
j Miþ j−2−Miþ j þM j−i−M j−iþ2

� �
λ j

¼ 1

2
−

1

2 iþ 1ð Þ þ
1

2 i−1ð Þ
� �

Mi−
1

4
þ 1

2 iþ 1ð Þ
� �

Miþ2−
1

4
−

1

2 i−1ð Þ
� �

Mi−2

ð12Þ

Appendix 2 provides the details of solving procedure. The
(11)-(12) is a system of linear equations, and it could be re-
written as the following matrix form:

A11 A12 ⋯ A1m

A21 A22 ⋯ A2m

⋮ ⋮ ⋱ ⋮
Am1 Am2 ⋯ Amm

2
664

3
775

λ1

λ2

⋮
λm

2
664

3
775 ¼

B1

B2

⋮
Bm

2
664

3
775 ð13Þ

where A11 ¼ 1
16 2M 2−M 4−M 0ð Þ

A12 ¼ 1

8
M 3−M 5ð Þ

A1m ¼ m
16

Mmþ1−Mmþ3 þMm−3−Mm−1ð Þ

A21 ¼ 1

24
2M 3−M 5−M 1ð Þ

A22 ¼ 1

12
M 4−M 6−M 0 þM 2ð Þ

A2m ¼ m
24

Mmþ2−Mmþ4 þMm−4−Mm−2ð Þ− m
8

Mm−2−Mmþ2ð Þ

Am1 ¼ 1

8 mþ 1ð Þ 2Mmþ1−Mmþ3−Mm−1ð Þ− 1

8 m−1ð Þ
2Mm−1−Mmþ1−Mm−3 þMm−1ð Þ
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Am2 ¼ 1

4 mþ 1ð Þ Mmþ2−Mmþ4−Mm−2 þMmð Þ− 1

4 m−1ð Þ
Mm−Mmþ2−Mm−4 þMm−2ð Þ

Amm ¼ m
8 mþ 1ð Þ M 2m−M 2mþ2−M 0 þM 2ð Þ− m

8 m−1ð Þ
M2m−2−M 2m þM 0−M 2ð Þ

B1 ¼ 1

4
M 1−M 3ð Þ

B2 ¼ 3

4
M 2−

1

2
M3 þ 1

4
M 0

Bm ¼ 1

2
−

1

2 mþ 1ð Þ þ
1

2 m−1ð Þ
� �

Mm−
1

4
þ 1

2 mþ 1ð Þ
� �

Mmþ2−
1

4
−

1

2 m−1ð Þ
� �

Mm−2

The equations could be used to solve λi analytically. The
result is an exact solution without convergence error.

Moreover, if i = 0, we have the following equation:

M 0 ¼ ∫1−1T 0 yð Þexp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ ∫1−1exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ exp −1−λ0ð Þ∫1−1exp − ∑
m

j¼1
λ jT j yð Þ

 !
dy ð14Þ

That is, λ0 is derived as

λ0 ¼ −1−ln ∫1−1exp − ∑
m

j¼1
λ jT j yð Þ

 !
dy

 !
ð15Þ

Therefore, the failure probability of given model could be
computed by integration as follows:

Pf ¼ ∫0−1 f yð Þdy ¼ ∫0−1exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy ð16Þ

In addition, since Ti(y) itself is a polynomial form based on
monomial y lower than ith order, the Chebyshev moment Mi

corresponding to Ti(y) could be calculated by the linear com-
bination of traditional monomial moments, e.g., M4 = 8E(y4)
− 8E(y2) + 1. It is shown that each Chebyshev moment in-
cludes both high order and low order classical monomial mo-
ment information. This property could avoid unbalanced non-
linearities. It is because the value of response domain is within
the interval [− 1, 1], and there would not be divergence of
monomial moments as well as Chebyshev moments. In addi-
tion, even if the moment value is close to zero as the order of
monomial moment increase, the low order monomial moment

in Chebyshev moment could compensate for this and the high
order Chebyshevmoment would not be zero, which makes the
matrix of (13) non-singular.

It should be noted that the analytical method mentioned
above requires that the response of given model should belong
to the interval [− 1, 1], which may be violated in many cases.
Thus, the arc-tangent transformation is taken as (17) where the
value domain of response is [− 1, 1].

y ¼ 2

π
arctan g xð Þ=kð Þ ð17Þ

The reasons of this transformation are (1) the magnitude of
high order moment is under control without divergence; (2)
The interval [− 1, 1] is in accordwith Chebyshev polynomials,
and the fitting accuracy is assured; (3) it could avoid truncated
error of integral interval during calculation procedure if the
interval of response is unknown and an assumed interval is
taken.

In general, the existing methods are developed based on
classic ME algorithm framework, which obtains results by
iterative procedure using low order moments, and the accura-
cy of these methods depends on iteration times. Compared
with these ME methods, the efficiency of our analytical meth-
od could be significantly improved, because it could avoid
iterative procedure based on high order moment.

2.3 Example

The efficiency of our method is inherently better than classic
methods, and we test two examples to illustrate the accuracy
of proposed method. The first one is a complicated bi-model,
which is used to test failure PDF fitting in structural reliability
analysis, and the second one is a difficult step function, which
is used to test the stability of our algorithm. Without loss of
generality, the initial values of unknowns in classic ME are all
zeros. In addition, the evaluation criteria of PDF fitting is the
root mean square error (RMSE), which is defined as

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
f xið Þ− f ME xið Þð Þ2

s
ð18Þ

where f(x) is the original PDF and fME(x) is the ME PDF
obtained by our method or classic ME method. n is the num-
ber of discrete points within the interval [− 1, 1], and xi is the
sequential discrete point. In our cases, n is chosen to be
10,000.

The bi-modal PDF is a sum of two Gaussian PDFs. Its total
area is normalized to [− 1, 1]. The results presented in Fig. 1
and Table 1 indicate that the accuracy and efficiency of our
method are both better than the classic method. When m is 8,
RMSE of our method is 4.3026 × 10−2, and RMSE of the
classic method is 4.8732 × 10−2 with 30 iteration. What’s
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more, if the accuracy is not acceptable whenm is 8, our meth-
od could improve the accuracy using larger moments, e.g.,
when m = 16, the PDF fitting is close to the exact one, whose
RMSE is about 0.00125. While, the classic method may not
be able to execute due to unbalanced non-linearities and ill-
conditioned Jacobian matrices.

Then, we would compare the results of step PDF fitting
with our method and the classic method in Fig. 2 and
Table 2. Since the step PDF is a difficult function, both
methods may not be able to describe it precisely. The accuracy
of our method is less than that of the classic method; however,
our method could improve its performance by increasing the
moment constraints. Whenm is 16, RMSE of step PDF fitting
using our method is 6.3264. While, the classic method may
not execute due to unbalanced non-linearities and ill-
conditioned Jacobian matrices. Besides, there is no iterative
procedure using our method, which is more efficient than the
classic method. With equivalent calculation cost, our method
is more accurate than the classic method. For example, when
m is 2, the RMSE of our method is 13.8951 × 10−2, and that of
the classic method is 19.3571 × 10−2 with 1 iteration.

Thus, the proposed method may be an efficient algorithm
for PDF fitting in reliability analysis compared with the classic
method at similar accuracy.

When it comes to engineering applications, it may not
be able to obtain moment information directly. The tra-
ditional MCS approach is time-consuming and unstable
for high order moment calculation. Thus, we propose to
take PCE algorithm to provide such information as in
Ref. (Chakraborty and Chowdhury 2015; Lasota et al.
2015). However, it may not be convenient for PCE to
offer high order moments except for the first two mo-
ments. Therefore, the key point of proposed method then
becomes high order computation based on PCE.

3 PCE for high order moment calculation

In this section, the classic PCE would be extended for
high order moment calculation, which then would be
used as inputs for ME method above. We would first
introduce the classic PCE and its global statistical

(a) The results obtained by proposed method (b) The results obtained by Classic method 
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Fig. 1 The approximation of bi-modal PDF. a The results obtained by proposed method. b The results obtained by classic method

Table 1 The comparison between
proposed method and classic
method for bi-modal PDF fitting

The number of iterations RMSE of PDF fitting (10−2)

m = 2 m = 4 m = 8

Proposed method 1 26.5330 12.320 4.3026

Classic method 1 31.7247 31.4711 23.1592

5 28.5336 13.5590 5.4681

10 28.5337 12.4105 4.8732

20 28.5337 12.4105 4.8732

30 28.5337 12.4105 4.8732
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properties for the first two order moments. Then, the
classic PCE would be developed for high order moments
by PCE multiplication, while the accuracy of these re-
sults would be proved.

3.1 The PCE algorithm

PCE, which was originally introduced by Wiener, em-
ploys the Hermite polynomials in the random space to
approximate the Gaussian stochastic processes. In Xiu
and Em Karniadakis (2002), Xiu and Karniadakis devel-
oped the PCE under Wiener-Askey scheme that could be
applied for non-Gaussian scenarios. It could uniformly
approximate any random process with finite second order
moments.

Consider the model y = g(x) in Section 2.1 again. Then, let
ξif gni¼0 be independent standardized orthogonal random var-
iables associated with xif gni¼1. For example, if xi~N(2, 0.5),
then we have xi = 0.5ξi + 2 where ξi is subject to the standard-
ized normal distribution N(0, 1).

Then, the PCE of the limit state function is (Sudret 2008)

y ¼ gPCE ξð Þ ¼ c0ψ0 þ ∑
n

i1¼1
ci1ψ1 ξi1

� �þ ∑
n

i1¼1
∑
i2¼1

i1

ci1i2ψ2 ξi1 ; ξi2
� �

þ ∑
n

i1¼1
∑
i2¼1

i1

∑
i3¼1

i2

ci1i2i3ψ3 ξi1 ; ξi2 ; ξi3
� �þ⋯

ð19Þ

where c j
� �∞

j¼0 are the coefficients, and ψs ξi1 ;⋯; ξis
� �

de-

notes the polynomial chaos basis of sth degree in terms of
multi-dimensional standardized random variables ξ = (ξ1,
⋯, ξn)

T. In addition, the expansion bases ψsf g∞s¼0 are multi-
dimensional hyper-geometric polynomials, which are defined
as tensor products of the corresponding one-dimensional or-
thogonal polynomial ϕkf g∞k¼0, that is,

ψs ξ1; ξ2;⋯; ξsð Þ ¼ ∏
s

k¼1
ϕαk

ξkð Þ ð20Þ

where ϕi is a one-dimensional orthogonal basis with orthogo-
nality relation

ϕi;ϕ j

	 
 ¼ ϕ2
i

	 

δij ð21Þ

(a) The results obtained by proposed method (b) The results obtained by Classic method 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

f(x
)

Exact pdf
Proposed method (m=2)
Proposed method (m=4)
Proposed method (m=8)
Proposed method (m=16)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

f(x
)

Exact pdf
Classic method (m=2)
Classic method (m=4)
Classic method (m=8)

Fig. 2 The approximation of step PDF. a The results obtained by proposed method. b The results obtained by classic method

Table 2 The comparison between
proposed method and classic
method for step PDF fitting

The number of iterations RMSE of PDF fitting(10−2)

m = 2 m = 4 m = 8

Proposed method 1 13.8951 16.2995 13.1930

Classic method 1 19.3571 17.9066 16.9767

5 11.7176 8.8892 6.5348

10 11.7176 8.8892 6.5348

20 11.7176 8.8892 6.5348

30 11.7176 8.8892 6.5348
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where δij is the Kronecker delta, <•,•> denotes the ensemble
average which is the inner product in Hilbert space. And αk is
the vector of index, which is subjected to non-negative integer.

The type of orthogonal polynomials depends on the distrib-
uted type of input variables, e.g., the orthogonal polynomials
corresponding to normal distribution are Hermite polyno-
mials, while the orthogonal polynomials corresponding to uni-
form distribution are Legendre polynomials. If the distribution
types of input variables are not the same, Isukapalli provided
several distribution transformation relationships that map dif-
ferent distributions as functions of normal random variables
(Isukapalli 1999). With the pre-processing, the problem of
inconsistent distribution could be overcome.

In engineering practice, the PCE is truncated to finite terms.
So, considering an n-dimensional orthogonal polynomial with

the degree not exceeding p, (19) can be rewritten as another
form with limited terms, that is,

y≈yp ¼ gPCE ξð Þ ¼ c0 þ ∑
n

i¼1
∑

α∈φi

cαψα ξið Þ

þ ∑
1≤ i1< i2 ≤n

∑
α∈φi1 i2

cαψα ξi1 ; ξi2
� �þ⋯þ

∑
1≤ i1<⋯< is ≤n

∑
α∈φi1⋯is

cαψα ξi1 ;⋯; ξis
� �

þ⋯þ ∑
α∈φ1;2;⋯;n

cαψα ξ1;⋯; ξnð Þ

ð22Þ

where the subscript α is a tuple defined as α = (α1,…, αn),
and φi1;⋯;is is defined as a realization ofα = tuple so that only

the indices {i1,…,is} are non-zeros:

φi1;⋯;is ¼ α :
αk > 0 ∀k ¼ 1; 2;⋯; n: k∈ i1;⋯; isð Þ
αk ¼ 0 ∀k ¼ 1; 2;⋯; n: k∉ i1;⋯; isð Þ

� �
ð23Þ

Correspondingly, the expansion bases

ψα ξð Þ ¼ ∏
n

k¼1
ϕαk

ξkð Þ, where ∑
j

k¼1
αk ≤p. Denote N as the total

number of polynomials, and then we have

N ¼ nþ p
p

� �
¼ nþ pð Þ!

n!p!
ð24Þ

Generally, (22) can be further simplified as

yp ¼ ∑
N−1

j¼0
c jψ j ξð Þ; for ξ ¼ ξ1;⋯; ξnð Þ ð25Þ

where coefficient cj and expansion base ψj(ξ) are correspond-
ing to (22) sequentially.

Table 3 The high order moment estimations and associated relative error with different PCE degrees

Moment
order

MCS PCE (p = 3) Relative error PCE (p = 5) Relative error PCE (p = 7) Relative error

1 0.5379 0.5387 0.0015 0.5375 0.0007 0.5376 0.0006

2 0.3398 0.3416 0.0054 0.3394 0.0011 0.3395 0.0007

3 0.2281 0.2302 0.0091 0.2278 0.0015 0.228 0.0007

4 0.1624 0.165 0.016 0.1621 0.0019 0.1623 0.0004

5 0.1198 0.1226 0.0236 0.1195 0.0024 0.1198 0.0001

6 0.0917 0.0949 0.0355 0.0914 0.0029 0.0917 0.0008

7 0.0719 0.0753 0.0472 0.0716 0.0038 0.072 0.0014

8 0.0579 0.0618 0.066 0.0577 0.004 0.0581 0.0032

9 0.0475 0.0513 0.0806 0.0472 0.006 0.0477 0.0038

10 0.0399 0.0443 0.1111 0.0402 0.008 0.0397 0.0051

11 0.0339 0.038 0.1212 0.0336 0.0099 0.0341 0.007

12 0.0294 0.0348 0.1823 0.03 0.0183 0.0293 0.0045

13 0.0258 0.0296 0.1489 0.0253 0.0192 0.026 0.0085

14 0.0231 0.0308 0.3359 0.0241 0.0448 0.0232 0.0044
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Fig. 3 The relative error of high order moment estimations with different
PCE degrees
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Let ξi
� �M

i¼1 denote a set of the random variable samples,

and it could be determined by probabilistic collocation meth-

od (PCM). Again Let g ξi
� �� �M

i¼1 denote the corresponding

set of model output or response, where M is the number of
samples. Denoting c = (c0,…,cN − 1)

T, an approximation ĉ
could be given by least squares algorithm:

ĉ ¼ argmin
c

∑
M

i¼1
g ξi
� �

− ∑
N

j¼0
c jψ j ξ

i� � !2

ð26Þ

where M is suggested to be selected as M = 2(N + 1)
(Isukapalli 1999).

Due to the orthogonality of the basis, the mean value and
the variance of y in (25) can be calculated as (Sudret 2008)

E yp
 �

¼ c0

V yp
 �

¼ ∑
N−1

j¼1
c2jE ψ2

j ξð Þ
 � ð27Þ

3.2 PCE for high order moment calculation

As could be seen above, the PCE could provide the first two
order moments accurately. However, there are some difficul-
ties for high order moment calculation. Consider the fact that
PCE consists of orthonormal bases, and the product of two

PCEs in (25) can be expanded as a linear combination of
Hermite polynomials, we could make multiplication of or-
thogonal polynomials to obtain high order moments by (27).
In Luo (2006), the generalization form of PCE multiplication
based on (19) is presented. In this paper, we would apply this
theory to the truncated PCE, and prove that the multiplication
form could provide an accurate high order moment estimation
under appropriate PCE degree.

Suppose u and v have PCE formula with the same n-di-
mensional standardized random variables ξ = (ξ1,⋯, ξn)

T but
different degree pα and pβ respectively. That is,
u ¼ ∑

αj j≤pα
uαψα ξð Þ, v ¼ ∑

βj j≤pβ
vβψβ ξð Þ. If E(|uv|2) <∞, then

the product of u and v has the PCE formula

uv ¼ ∑
θj j≤pαþpβ

∑
0≤β≤θ

∑
θ−βþ rj j≤pα;
βþrj j≤pβ

C θ;β; rð Þuθ−βþrvβþrψθ ξð Þ ð28Þ

and

C θ;β; rð Þ ¼ θ−βþ r
r

� �
βþ r
r

� �
θ

θ−β

� �� �1
2

ð29Þ

where the subscripts α, β, r, and θ are tuples associated with
PCE terms, e.g., α = (α1, α2, …, αn). We say β ≤ θ if βi ≤ θi
for all i = 1,2,…,n. The operation of these subscripts, such as
+ or −, is also defined as component-wise. Especially, the
factorial of tuples is defined like α! = ∏i αi!. The proof is
provided in Appendix 3.

Specifically, the mean of uv is

E uvð Þ ¼ ∑
rj j≤min pα;pβð Þ

C θ ¼ 0;β ¼ 0; rð Þurvr ¼ ∑
rj j≤min pα;pβð Þ

urvr ð30Þ

Based upon the preparation above, we could calculate the
high order moments of PCE by replacing u and v with two
PCEs respectively. That is, u and v in (28) could be replaced
by yp, y2p, y

3
p, …, respectively as (31). Thus, the high order

moments could be computed analytically.

Numerical simulation

Iterative procedure

(i) PCE for high order 

moments

(ii) Analytical procedure 

The Classic ME Method The Proposed Method

Obtain Moment information

Solve ME PDF

(iii) PDF Integration
Compute failure probability

StepFig. 4 The difference between
classic ME method and proposed
method

P1 P2 P3 P4 P5 P6

L1

L2

L3

L4
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L6

L

A

B

D

C

Fig. 5 The composite beam considered in Section 5.1
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E y2 ξð Þ� �
≈E y2p ξð Þ
 �

¼ E yp ξð Þ⋅yp ξð Þ
 �

E y3 ξð Þ� �
≈E y3p ξð Þ
 �

¼ E y2p ξð Þ⋅yp ξð Þ
 �

⋮
E yk ξð Þ� �

≈E ykp ξð Þ
 �

¼ E y
k
2b c

p ξð Þ⋅y
k
2d e

p ξð Þ
� � ð31Þ

where ⌊•⌋ is rounded down and ⌈•⌉ is rounded up.
In addition, if E(yk(ξ)) is required, it is not necessary to

calculate the coefficients of yk(ξ) when k is a positive even
number. Instead, it could be obtained by an alternative ap-
proach as

E yk ξð Þ� � ¼ E y
k
2 ξð Þ

 �2
þ V y

k
2 ξð Þ

 �
≈E y

k
2
p ξð Þ

 �2
þ V y

k
2
p ξð Þ

 �
ð32Þ

Since the PCE is L2 convergence in the corresponding
Hilbert functional space, that is

lim
p→∞

E yp−y
 �2

¼ 0 ð33Þ

We could prove that moment evaluations by (32) are also
accurate with L2 convergence as

lim
p→∞

E ykp−y
k

 �2
¼ 0; k ¼ 1; 2;… ð34Þ

The detail is presented in Appendix 4. Specifically, for a
given function or model, the main source of error for high
order moment estimation comes from PCE approximation
procedure itself, and there is no additional source of error in
following PCE multiplication for high order moment estima-
tion. In addition, the error of PCE decreases as the increasing
of PCE degree, which in turn leads to error reduction of high
order moment estimation. In this way, we could obtain the
moment information precisely and efficiently using PCE mul-
tiplication above. And we also employ an example to show
the accuracy of this method for high order moment estimation.
Consider a function

g ¼ 1:5−0:25x1−0:05x22x3−0:05x
2
3sin πx1ð Þ ð35Þ

where x1~N(2, 0.2), x2~N(3, 0.5), and x3~N(1, 0.3). PCE of
increasing degrees (p = 3, 5, 7) are used to estimate high order
moments. The results are presented in Table 3 and Fig. 3. It is
shown that the relative error of PCE for higher order moment
estimation becomes larger as the order of moment increases.
However, the relative error of moment estimations decreases
with the increasing degree of PCE. Thismeans that the error of
proposed method could be controlled.

In real engineering application, it may introduce much
computational burden if PCE degree is taken too large. A
practical way is to calculate PCEs with small p and p + 1
degree respectively, which is followed by comparing the dif-
ference. If the difference is less than a pre-defined threshold,
the PCE with p + 1 degree are adopted. Otherwise, PCE with

Table 4 The distribution parameters of input variable considered in
Section 5.1

Variable no. Variable Mean SD Distribution

1 A(mm) 100 0.346 Uniform

2 B(mm) 200 0.346 Uniform

3 C(mm) 80 0.346 Uniform

4 D(mm) 20 0.346 Uniform

5 L1(mm) 200 1 Normal

6 L2(mm) 400 1 Normal

7 L3(mm) 600 1 Normal

8 L4(mm) 800 1 Normal

9 L5(mm) 1000 1 Normal

10 L6(mm) 1200 1 Normal

11 L(mm) 1400 2 Normal

12 P1(kN) 15 1.5 Normal

13 P2(kN) 15 1.5 Normal

14 P3(kN) 15 1.5 Normal

15 P4(kN) 15 1.5 Normal

16 P5(kN) 15 1.5 Normal

17 P6(kN) 15 1.5 Normal

18 Ea(Gpa) 70 7 Normal

19 Ew(Gpa) 8.75 0.875 Normal

20 S(Mpa) 21 2.1 Normal

Table 5 Failure probability using
various methods Method Failure probability

(× 10−3)
Times of function
evaluations

Full-scale MCS 2.1365 5,000,000

FORM 1.7566 210

SORM 1.8220 670

The classic ME method with m = 6 1.9829 5,000,000

The classic ME method with p = 4 and m = 2
(Chakraborty and Chowdhury 2015)

1.8366 8000

Proposed method with p = 2 and m = 2 1.7926 470

Proposed method with p = 4 and m = 6 2.0872 8000
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p + 2 degree is used to repeat this procedure. Thus, the accu-
racy and efficiency are balanced for engineering practice.

4 Summary of proposed method

With the preparation of moment calculation algorithm and
response PDF solving algorithm based on ME, this section
presents a summary for structural reliability analysis using
proposed analytical MEmethod. The difference between clas-
sic ME method and the proposed method is illustrated in
Fig. 4. The general procedure of our method is shown as
follows:

(i) Compute the high order moment estimations by PCE and
associated multiplication algorithm.

& Provide distribution type and distribution parameters of
the input random variables, and then map these distribu-
tions into the same standard normal distribution.

& Compute PCE for limit state function using (26) where the
response is converted to the interval [− 1, 1] by arc-tangent
function as (17).

& Determine the number of moment constraints, which is
marked as m. During this procedure, make multiplication
of PCE and derive the moment order as (32), which is
followed by computing associated Chebyshev moments
according to the form of Chebyshev polynomials.

(ii) Compute (13) and (15) analytically, which leads to ex-
plicit ME PDF. First, a pre-defined threshold value is
taken. And then execute the proposed method with m
constraints and m + 2 constraints respectively. If the dif-
ference of failure probabilities of two computations is
less than a threshold value, we terminate the solving
process and take the latter failure probability as the final
result. Otherwise, another two higher moment con-
straints are used. The entire procedure is repeated until
the convergence condition or threshold value is reached.

(iii) Compute the failure probability by integration in inter-
val [− 1, 0] as (16).

5 Application

In this section, two examples are taken to illustrate the perfor-
mance of proposed method. The first example is a composite
beam, and the second one is about a truss bridge structure.
Both examples are conducted by MCS, FORM, SORM, the
classic methods as well as the proposed method for compari-
son in accuracy and efficiency. Besides, the classic methods
are implemented by two different moment calculation algo-
rithms, that is, the sampling algorithm and the PCE algorithm.

5.1 A composite beam example

This example is taken from Ref. (Chakraborty and
Chowdhury 2015). It is about a composite beam with an en-
hancement layer fastened to its bottom face as shown in Fig. 5.
There are 20 independent random variables including cross-
section geometric parameters of beam A and Bwith associated

Table 6 The failure probability obtained by different m when p = 4

m 2 4 6 8

Pf (10
−3) 1.8287 2.1182 2.1822 2.1708
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Fig. 6 The error curve of example 1 by proposed method
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Young’s modulus Ew, cross-section geometric parameters of
enhancement layer C andDwith associated Young’s modulus
Ea. Besides, six external forces P1, P2, P3, P4, P5, and P6 and
their location are at a distance of L1, L2, L3, L4, L5, and L6 from
the left end. Finally, the allowable stress is S. The details of
these variables are presented in Table 4. And the limit state
function is given as

g xð Þ ¼ S−

∑
6

i¼1
Pi L−Lið Þ
L

L3−P1 L3−L1ð Þ−P2 L3−L2ð Þ

2
664

3
775K

1

12
AB3 þ AB K−0:5Bð Þ2 þ 1

12

Ea

Ew
CD3 þ Ea

Ew
CD Bþ 0:5D−Kð Þ2

ð36Þ

where

K ¼
0:5AB2 þ Ea

Ew
CD Bþ 0:5Dð Þ

ABþ Ea

Ew
CD

2
664

3
775 ð37Þ

The results obtained from various methods are listed in
Table 5. It is shown that proposed method could obtain an
accurate result compared with other methods. Compared with

the classic ME method, our method takes significantly
fewer function evaluations. And compared to the classic
ME method whose moment information is provided by
PCE (Chakraborty and Chowdhury 2015), our method
could generate a more accurate result without any iterative
procedure even when the times of function evaluations are
the same. Also, compared with the FORM or SORM when
number of function evaluation is similar to our method, the
accuracy of FORM and SORM is close to that of our meth-
od. Besides, the error of FORM or SORM is inherent to its
mathematical formulation, and it may not be able to miti-
gate within its calculation process. When it comes to the
proposed method, the error could be reduced by increasing
the PCE degree, which is marked as p, and moment con-
straints, which is marked as m. For further demonstrating
the performance, the convergent tendency of proposed
method is presented in Table 6 where m = 2, 4, 6, and 8
are implemented successively. Besides, the relative error of
power moments is also presented in Fig. 6 which takes m =
8 as example. It should be noted that the original response
is transformed to interval [− 1, 1] by 2/π *atan(y/10), so the
moments are less than 1. It is shown that the proposed
method is convergent and both moment calculation and
response PDF unknown solving are precise.

L
6×L

L

A

B

P

Fig. 7 The front view of truss
bridge considered in Section 5.2

Fig. 8 The finite element model
considered in Section 5.2
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5.2 A truss bridge example

In this example, a truss bridge is considered. The problem
consists of steel bars and concrete deck subjected to gravity
load and external force as shown in Figs. 7 and 8. For sim-
plicity, all steel bars are the same I-steel. The length of each
bar is 12 m, while width and thickness of the I-steel are 400
and 16 mm respectively. The thickness of concrete deck is
30 mm. The external force considered in this example is
10 kN. Six input variables, including the size of steel bar,
Young’s modulus, and the external force, are all normally
distributed, and their distribution parameters can be seen in
Table 7. Besides, the limit state function is assumed to be g =
0.0085 −Δy, where Δy is the maximum displacement of the
truss bridge.

The MCS, FORM, SORM, two classic ME methods with
different moment calculation algorithms, and the proposed
method are employed to calculate the failure probability, and
the results are presented in Table 8.

It could be seen that the proposed method with p = 5 and
m = 6 obtains the best approximate result compared to the
benchmark solution obtained using MCS. And the number
of function evaluations of the proposedmethod is significantly
less than MCS and the classic ME methods with traditional
moment calculation algorithm. Thus, the performance of our
method is better than classicMEmethod. On the other hand, if
the efficiency is preferred, the proposed method could reduce
the computational burden by decreasing PCE degree and

moment constraints. Although the number of function evalu-
ation of proposed method is slightly less than FORM or
SORMwhen p = 3 andm = 2, the accuracies of these methods
are also close. Therefore, the proposed method may be an
alternative method for structural reliability analysis.

6 Conclusion

The paper presents a generic method for calculating struc-
tural reliability analytically. It is based on the maximum
entropy principle in which Chebyshev polynomials are
employed and unknown parameters in response probability
density function are solved by an analytical approach. In
addition, the polynomial chaos expansion and associated
multiplication are introduced for accurate high order mo-
ment calculation, and the results are presented as inputs for
analytical ME method above. The proposed method mainly
has two advantages:

First of all, in contrast to popular ME algorithm, this meth-
od could exhibit excellent efficiency and convergence because
the parameters in ME PDF is obtained analytically without
iterative procedure. And the Chebyshev polynomials adopted
in ME PDF mitigate the ill-conditional matrix during calcula-
tion procedure above.

Second, the PCE-based multiplication algorithm decreases
the number of original limit state function evaluations to about
2(n + p)!/n!/p!, where p is the PCE order and n is the dimen-
sion of input. It could make high order moment evaluations
efficient and accurate with a mean square convergent.

Third, compared with well-known FORM and SORM, the
accuracy of proposed method is similar to that of FORM or
SORM when the number of function evaluation is close.
Moreover, the proposed method could improve the accuracy
by increasing the PCE degree and moment constraints.

Several examples are presented to illustrate the numerical
accuracy and efficiency of proposed method. It is shown that
this method provides an alternate and efficient approach to
analyze structural reliability problems.

Table 7 The distribution parameters of input variable considered in
Section 5.2

Variable no. Variable Mean SD Distribution

1 A(mm) 400 0.1 Normal

2 B(mm) 16 0.05 Normal

3 Es(GPa) 210 21 Normal

4 Ec(GPa) 35 3.5 Normal

5 L(m) 12 0.05 Normal

6 P(kN) 10 1 Normal

Table 8 Failure probability using
various methods Method Failure probability

(× 10−3)
Times of function
evaluations

Full-scale MCS 9.7031 5,000,000

FORM 9.1887 65

SORM 9.3824 96

The classic ME method (m = 6) 9.8764 5,000,000

The classic ME method with PCE (p = 5, m = 2) (Chakraborty
and Chowdhury 2015)

10.3059 1000

Proposed method (p = 3, m = 2) 9.0296 58

Proposed method (p = 5, m = 6) 9.7904 1000
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Appendix 1

Chebyshev polynomials

The definition of Chebyshev polynomials is

T 0 xð Þ ¼ 1;

Tn xð Þ ¼ n
2

∑
n
2b c

k¼0
−1ð Þk n−k−1ð Þ!

k! n−2kð Þ! 2xð Þn−2k ; n≥1
ð38Þ

and the most well-known form of Chebyshev polynomials is
given by the recurrence relation

T 0 xð Þ ¼ 1;
T 1 xð Þ ¼ x;
Tnþ1 xð Þ ¼ 2xTn xð Þ−Tn−1 xð Þ; n≥2

ð39Þ

where x∈[− 1, 1]. This definition is also referred as Chebyshev
polynomials of the first kind, and there is another definition of
Chebyshev polynomials of the second kind:

U 0 xð Þ ¼ 1;
U 1 xð Þ ¼ 2x;
Unþ1 xð Þ ¼ 2xUn xð Þ−Un−1 xð Þ; n≥2

ð40Þ

The relationship between these two kinds of Chebyshev
polynomials are given as (41)-(44):

dTn xð Þ
dx

¼ nUn−1 xð Þ ð41Þ

T j xð ÞUk xð Þ ¼
1

2
U jþk xð Þ þ Uk− j xð Þ� �

; k≥ j−1;
1

2
U jþk xð Þ−U j−k−2 xð Þ� �

; k≤ j−2:

8><
>: ð42Þ

with the convention U−1 ≡ 0.

Tn xð Þ ¼ 1

2 nþ 1ð Þ
dTnþ1 xð Þ

dx
−

1

2 n−1ð Þ
dTn−1 xð Þ

dx
; ∀i≥1: ð43Þ

1−x2
� �

Un−1 xð Þ ¼ xTn xð Þ−Tnþ1 xð Þ ¼ Tn−1 xð Þ−Tnþ1 xð Þ
2

ð44Þ

Hermite polynomials

The Hermite polynomials {Hn(x)}n ≥ 0 are defined as

Hn xð Þ ¼ −1ð Þnex2
2
dn

dxn
e−

x2
2

 �
ð45Þ

and the well-known recursive relation of the Hermite polyno-
mials is

H0 xð Þ≡1;
H1 xð Þ ¼ 2x;
Hnþ1 xð Þ ¼ 2xHn xð Þ−2nHn−1 xð Þ

8<
: ð46Þ

Appendix 2

In this section, the derivation details of (12) is provided.

Cons ide r ( 10 ) , and t ake F ið Þ
1 yð Þ ¼ ∫1−1 1−y2ð Þ exp

−1− ∑
m

j¼0
λ jT j yð Þ

 !
1

2 iþ1ð Þ dTiþ1 yð Þ and F ið Þ
2 yð Þ ¼ ∫1−1 1−y2ð Þ

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
1

2 i−1ð Þ dTi−1 yð Þ for simplicity. Then,

we would solve the two parts separately.
First of all, F1

(i)(x) could be transformed as

F ið Þ
1 yð Þ ¼ 1

2 iþ 1ð Þ 1−y2
� �

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !" #1
−1

−∫1−1
1

2 iþ 1ð Þ Tiþ1 yð Þ −2xþ 1−y2
� � d

dy
−1− ∑

m

j¼0
λ jT j yð Þ

 !" #

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

iþ 1
∫1−1yTiþ1 yð Þexp −1− ∑

m

j¼0
λ jT j yð Þ

 !
dy

þ 1

2 iþ 1ð Þ ∫
1
−1Tiþ1 yð Þ 1−y2

� � d
dy

∑
m

j¼0
λ jT j yð Þ

 !

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

ð47Þ

Take (39) into consideration, the first integral term above is
derived as

1

iþ 1
∫1−1yTiþ1 yð Þexp −1− ∑

m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

iþ 1
∫1−1

Tiþ1 yð Þ þ Ti yð Þ
2

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

2 iþ 1ð Þ Miþ2 þMið Þ

ð48Þ
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Then, take (41) and (42) into consideration, the second
integral term in (47) is derived as

1

2 iþ 1ð Þ ∫
1
−1Tiþ1 yð Þ 1−y2

� � d
dy

∑
m

j¼0
λ jT j yð Þ

 !
exp −1− ∑

m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

2 iþ 1ð Þ ∫
1
−1Tiþ1 yð Þ 1−y2

� �
∑
m

j¼1
jλ jU j−1 yð Þ

 !
exp −1− ∑

m

j¼0
λ jT j xð Þ

 !
dy

¼ 1

2 iþ 1ð Þ ∫
1
−1 1−y2
� �

∑
m

j¼1
jλ jT iþ1 yð ÞU j−1 yð Þ

 !
exp −1− ∑

m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

2 iþ 1ð Þ ∫
1
−1 1−y2
� � ∑

i

j¼1
jλ j

U iþ j yð Þ−Ui− j yð Þ
2

 !
þ iþ 1ð Þλiþ1

U2iþ1

2

þ ∑
m

j¼iþ2
jλ j

U iþ j yð Þ þ U j−i−2 yð Þ
2

 !
2
66664

3
77775

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

ð49Þ

where the Chebyshev polynomials of the second kind come as
intermediate polynomials.

By using (44), the polynomial multiplication of Chebyshev
polynomials in (49) is given as the following:

1−y2
� �Uiþ j yð Þ−Ui− j yð Þ

2
¼ Tiþ j yð Þ−Tiþ jþ2 yð Þ

2
−
Ti− j yð Þ−Ti− jþ2 yð Þ

2

1−y2
� �U 2iþ1

2
¼ T 2iþ1 yð Þ−T2iþ3 yð Þ

2

1−y2
� �Uiþ j yð Þ þ U j−i−2 yð Þ

2
¼ Tiþ j yð Þ−Tiþ jþ2 yð Þ

2
þ T j−i−2 yð Þ−T j−i yð Þ

2

ð50Þ

Substitute (50) into (49), the second integral term in (47) is
derived as follows:

1

2 iþ 1ð Þ ∫
1
−1Tiþ1 yð Þ 1−y2

� � d
dy

∑
m

j¼0
λ jT j yð Þ

 !
exp −1− ∑

m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

2 iþ 1ð Þ ∫
1
−1 ∑

i

j¼1

j
2
λ j

T iþ j yð Þ−Tiþ jþ2 yð Þ
2

−
Ti− j yð Þ−Ti− jþ2 yð Þ

2

� �" #

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

þ 1

2 iþ 1ð Þ ∫
1
−1
iþ 1

2
λiþ1

T2iþ1 yð Þ−T2iþ3 yð Þ
2

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

þ 1

2 iþ 1ð Þ ∫
1
−1 ∑

m

j¼iþ2

j
2
λ j

T iþ j yð Þ−T iþ jþ2 yð Þ
2

þ T j−i−2 yð Þ−T j−i yð Þ
2

� �

exp −1− ∑
m

j¼0
λ jT j yð Þ

 !
dy

¼ 1

8 iþ 1ð Þ ∑
i

j¼1
j Miþ j−Miþ jþ2−Mi− j þMi− jþ2

� �
λ j þ 1

8
M 2iþ1−M 2iþ3ð Þλiþ1

þ 1

8 iþ 1ð Þ ∑
m

j¼iþ2
j Miþ j−Miþ jþ2 þM j−i−2−M j−i
� �

λ j

ð51Þ

By Combining (48) and (51), we have the following rela-
tionship:

F ið Þ
1 yð Þ ¼ 1

2 iþ 1ð Þ Miþ2 þMið Þ þ 1

8 iþ 1ð Þ ∑
i

j¼1
j

Miþ j−Miþ jþ2−Mi− j þMi− jþ2

� �
λ j

þ 1

8
M 2iþ1−M 2iþ3ð Þλiþ1 þ 1

8 iþ 1ð Þ ∑
m

j¼iþ2
j

Miþ j−Miþ jþ2 þM j−i−2−M j−i
� �

λ j

ð52Þ

Secondly, when it comes to F2
(i)(x), it is a little more com-

plicated. When i = 1, since T0(x) is a constant according to the
definition of Chebyshev polynomials. Otherwise, when i ≥ 2,
we could derive F2

(i)(x) with a similar procedure as (47)-(51)
with the following result:

F ið Þ
2 yð Þ ¼ 1

2 i−1ð Þ Mi þMi−2ð Þ þ 1

8 i−1ð Þ ∑
i−2

j¼1
j

Miþ j−2−Miþ j−Mi− j−2 þMi− j
� �

λ j

þ 1

8
M2i−3−M 2i−1ð Þλiþ1 þ 1

8 i−1ð Þ ∑
m

j¼iþ2
j

Miþ j−2−Miþ j þM j−i−M j−iþ2

� �
λ j

ð53Þ

What is more, consider (8) and (9), we would establish the
following equations. When i = 1, we have

∫1−1 1−y2
� �

T 1 yð Þexp −1− ∑
m

j¼1
λ jT j yð Þ

 !
dy ¼ F 1ð Þ

1 yð Þ

∫1−1 1−y2
� �

Ti yð Þexp −1− ∑
m

j¼1
λ jT j yð Þ

 !
dy ¼ F ið Þ

1 yð Þ−F ið Þ
2 yð Þ

ð54Þ

and it could be rewritten as

1

16
2M 2−M 4−M 0ð Þλ1 þ 1

8
M 3−M 5ð Þλ2 þ 1

16

� ∑
m

j¼3
j M jþ1−M jþ3 þM j−3−M j−1
� �

λ j

¼ 1

4
M 1−M 3ð Þ ð55Þ

and for i ≥ 2

1

8 iþ 1ð Þ ∑
i

j¼1
j Miþ j−Miþ jþ2−Mi− j þMi− jþ2

� �
λ j þ 1

8
M 2iþ1−M2iþ3ð Þλiþ1

þ 1

8 iþ 1ð Þ ∑
m

j¼iþ2
j Miþ j−Miþ jþ2 þM j−i−2−M j−i
� �

λ j−
1

8 i−1ð Þ ∑
i−2

j¼1
j

Miþ j−2−Miþ j−Mi− j−2 þMi− j
� �

λ j

−
1

8
M2i−3−M2i−1ð Þλiþ1−

1

8 i−1ð Þ ∑
m

j¼iþ2
j

Miþ j−2−Miþ j þM j−i−M j−iþ2

� �
λ j

¼ 1

2
−

1

2 iþ 1ð Þ þ
1

2 i−1ð Þ
� �

Mi−
1

4
þ 1

2 iþ 1ð Þ
� �

Miþ2−
1

4
−

1

2 i−1ð Þ
� �

Mi−2

ð56Þ

Appendix 3

In this section, we would prove the formula of two PCEs
multiplication.
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First of all, for any non-negative integer α and β, the prod-
uct of two Hermite polynomials can be expressed as (Savin
and Faverjon 2017)

Hα xð ÞHβ xð Þ ¼ ∑
r ≤min α;βð Þ

α
r

� �
β
r

� �
αþ β−2r

α−r

� �� �1
2

Hαþβ−2r xð Þ ð57Þ

Then, this formula could be generalized to multi-
dimensional form as (58).

ψα ξð Þψβ ξð Þ ¼ ∑
r ≤min α;βð Þ

B α;β; rð Þψαþβ−2r ξð Þ ð58Þ

where B α;β; rð Þ ¼ αð½ rÞ βð rÞ αþ β−2rð α−rÞ�12 , and
the meaning of the notations above is shown in Section 3.2.

With the preparation, we could derive the multiplication of
two PCEs as follows.

Suppose u and v have PCE formula with the same n-di-
mensional standardized random variables ξ = (ξ1,⋯, ξn)

T but
different order pα and pβ respectively. Namely, we have
u ¼ ∑

αj j≤pα
uαψα ξð Þ, v ¼ ∑

βj j≤pβ
vβψβ ξð Þ. So the multiplica-

tion of u and v is

uv ¼ ∑
αj j≤pα

∑
βj j≤pβ

uαvβψα ξð Þψβ ξð Þ

¼ ∑
αj j≤pα

∑
βj j≤pβ

uαvβ ∑
r≤min α;βð Þ

B α;β; rð Þψαþβ−2r ξð Þ

¼ ∑
αj j≤pα

∑
βj j≤pβ

uαvβ ∑
r≤min α;βð Þ

α
r

� �
β
r

� �
r!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β−2rð Þ!p
ffiffiffiffiffiffiffiffiffiffi
α!β!

p ψαþβ−2r ξð Þ

ð59Þ

Let ~α ¼ α−r, ~β ¼ β−r, then r =min(α,β) is equivalent

to ~α; ~β≥0. Alternatively, α ¼ ~αþ r, β ¼ ~βþ r and the
above summation can be rewritten as

uv ¼ ∑
~α

��� ���≤pα
∑

~β

��� ���≤pβ
∑

r þ ~α
��� ���≤pα;
r þ ~β
��� ���≤pβ

u
~αþr

v
~βþr

~αþr
r

 !
~βþr
r

 !
r!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~αþ ~β
 �

!

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~αþr
 �

! ~βþr
 �

!

r ψ
~αþ~β

ξð Þ

ð60Þ

For simplicity, we still denoteα ¼ ~α and β ¼ ~β. Then, let
θ =α +β, thus α = θ −β ≥ 0 and 0 ≤β ≤ θ. The above sum-
mation is equivalent to

uv ¼ ∑
θj j≤pαþpβ

∑
αþβ¼θ

∑
αþ rj j≤pα;
βþ rj j≤pβ

uαþrvβþr
αþr
r

� �
βþr
r

� �
r!

ffiffiffiffi
θ!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþrð Þ! βþrð Þ!p ψθ ξð Þ

¼ ∑
θj j≤pαþpβ

∑
0≤β≤θ

∑
θ−βþ rj j≤pα;
βþrj j≤pβ

uθ−βþrvβþr
θ−βþ r

r

� �
βþr
r

� �

r!

ffiffiffiffi
θ!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ−βþ rð Þ! βþrð Þ!p ψθ ξð Þ

ð61Þ

For simplicity, denote

C θ;β; rð Þ ¼ θ−βþ r
r

� �
βþr
r

� �
r!

ffiffiffiffi
θ!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ−βþ rð Þ! βþrð Þ!p ð62Þ

Thus, we have

uv ¼ ∑
θj j≤pαþpβ

∑
0≤β≤θ

∑
θ−βþ rj j≤pα;
βþrj j≤pβ

C θ;β; rð Þuθ−βþrvβþrψθ ξð Þ ð63Þ

which completes the proof.

Appendix 4

In this section, we would prove the statement in Section 3.2
that the multiplication of two PCEs converges in the L2 sense.
Let us consider a system as y = g(x) with independent distri-
bution input x. And assume that the PCE approximation of this
system is expressed as yp = gPCE(ξ), where p is the order of
PCE, and ξ is the standard normal variable associated with
input x. Then, since PCE is L2 convergence, we have

lim
p→∞

E yp−y
 �2

¼ lim
p→∞

∫Ω yp−y
 �2

f xð Þdx ¼ 0 ð64Þ

whereΩ is the domain of input x, and f(x) is the joint PDF that
subjects to ∫Ωf(x)dx = 1.

Therefore, ∀ 0 < ε < 1, ∃ n >N where N is a positive inte-
ger,

∫Ω yp−y
 �2

f xð Þdx
����

���� < ε < 1 ð65Þ

Now considering the fact that (yp − y)2 ≥ 0, if (yp − y)2 ≥ 1,
we would derive that

∫Ω yp−y
 �2

f xð Þdx
����

����≥ ∫Ω f xð Þdx�� �� ¼ 1 ð66Þ
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which is in contradiction with (65). So, we would have 0 ≤ (yp
− y)2 < 1. This means that |yp − y| is bounded.

Noting that the absolute value of response of given system
is less than 1 in our proposed method, namely, |y| ≤ 1. So, we
could obtain that

yp
�� ��≤2 ð67Þ

Now, we would prove the convergence of PCE multiplica-
tion. First of all, we would prove a basis inequality as

ykp−y
k

 �2
¼ yp−y
 �2

yk−1p þ yk−2p yþ⋯ypy
k−2 þ yk−1

 �2
≤ yp−y
 �2

yk−1p

��� ���þ yk−2p

��� ��� yj j þ⋯ yp
�� �� yk−2�� ��þ yk−1

�� �� �2
≤ yp−y
 �2

2k−1 þ 2k−2 þ⋯2þ 1
� �2

¼ yp−y
 �2

2k−1
� �2

ð68Þ

where k means the order of required moment.
Then, with this preparation, we could derive that for a lim-

ited number k,

lim
p→∞

E ykp−y
k

 �2
¼ lim

p→∞
∫Ω ykp−y

k
 �2

f xð Þdx

≤ lim
p→∞

∫Ω yp−y
 �2

f xð Þdx

≤ 2k−1
� �2

lim
p→∞

∫Ω yp−y
 �2

f xð Þdx
¼ 0

ð69Þ

This means that if yp is L2 convergence with given system,
the k-power of yp also converges to yk in L2 sense. Thus, the
approach of PCE multiplication could provide an accurate
estimation of high order moment information. So, the proof
completes.
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