
RESEARCH PAPER

Estimation of low failure probability based on active learning Kriging
model with a concentric ring approaching strategy

Xufeng Yang1,3
& Yongshou Liu2

& Xiuyang Fang1
& Caiying Mi1,3

Received: 27 August 2017 /Revised: 23 January 2018 /Accepted: 19 February 2018 /Published online: 9 March 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Reliability analysis methods based on active learning Kriging (ALK)model have been extensively researched during the past few
years. However, the estimation of a rare event with low failure probability remains an issue in this field. To address this issue, this
paper proposes a brand-new strategy to fuse ALK model with importance sampling (IS) method. In the first stage, a series of
concentric rings in the standard normal space is configured. Starting from a small ring in safe region, ALK model is built and
utilized to judge whether failure region arises. The ring is expanded and ALK model is updated step by step until the failure
region firstly emerges. The firstly emerging failure regions are the most probable failure regions (MPFRs) with large contribution
to the failure probability. In the second stage, IS samples populating all the obtained MPFRs are generated and ALK model is
updated by treating the IS samples as candidate points. Compared with relevant methods, all the training points in the first stage
are all the optimal points chosen by ALK model. They have remarkably improved the sign prediction of a Kriging model.
Therefore, much more training points are saved in the second stage than other methods. The proposed method is able to
unbiasedly estimate the failure probability with efficiency outperforming existing relevant methods. The performance of the
proposed method is demonstrated by four case studies.

Keywords Low failure probability . Active learning . Krigingmodel . Importance sampling . Concentric ring approaching

1 Introduction

The key point of reliability analysis is to estimate the
probability that a system fails to meet the design require-
ment, considering the randomness of input variables.
Obtaining the failure probability needs to frequently call
the performance function. In practical engineering, the
performance function usually needs to be calculated by
time-consuming finite element method (FEM), computa-
tional fluid dynamics (CFD), etc. Then the computational
effort of reliability analysis will become unacceptable.

Therefore, reducing the number of function evaluations
without sacrificing the accuracy is state of the art in the
field of reliability analysis. The approaches can be classi-
fied into three groups.

The first group comprises FORM or SORM (first or
second order reliability method) (Der Kiureghian and
Dakessian 1998). Both of them behave poorly for highly
nonlinear performance functions or performance functions
with multiple most probabilistic points (MPPs) (Qin et al.
2006; Yang et al. 2015). The second group is the sampling
methods which comprises direct Monte Carlo simulation
(MCS) method, importance sampling (IS) methods
(Ditlevsen and Madsen 1996; Au and Beck 1999; Kurtz
and Song 2013), Subset simulation method (Au and Beck
2001), etc. The vital shortcoming of sampling methods is
the poor efficiency. More than thousands of function eval-
uations are usually needed for such kind of methods. The
third group is the surrogate-model-based methods
(Bourinet et al. 2011; Kim and Na 1997; Papadopoulos
et al. 2012). Such methods firstly approximate the original
performance function by a surrogate model and then ob-
tain the failure probability with a sampling method. The
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major drawback of such methods is that it is hard to keep
the approximation error under control (Cadini et al. 2014).

Recently, adaptive strategies based on Kriging model
(Echard et al. 2011; Bichon et al. 2008; Dubourg et al. 2011)
have been proposed in the field of reliability analysis. The
major achievement of such methods lies in locally approxi-
mating the performance function in the narrow region close to
the limit-state surface. They are uniformly referred to as active
learning Kriging (ALK) model in this paper. EGRA (Bichon
et al. 2008) and AK-MCS (Echard et al. 2011) are two most
representative strategies. Serial benchmark tests reveal that
such kind of methods have great potential to accurately assess
the failure probability with a minimizing number of function
evaluations (Echard et al. 2011; Bichon et al. 2008; Wen et al.
2016). However, the estimation of low failure probability still
remains an issue for those methods (Echard et al. 2013).

EGRA approximates the limit state in a fixed design space
of ±5 standard deviation of random variables. If the size of
design space exceeds the demand, wasted expense will arise
in EGRA; otherwise, the accuracy will not be assured. In AK-
MCS, the simulated samples of MCS are used to represent the
design space which is verified as a good strategy. With this
strategy, the ALK model just meets the necessity of MCS.
However, for rare event with a very low failure probability
(10−6~10−9), the size of simulated samples required by MCS
will be very large (108 to 1011). In AK-MCS, the responses at
all the samples should be predicted by the Kriging model in
each iteration. Then, the process of purely building an ALK
model will become very time-demanding (Echard et al.
2013). In reliability based design optimization, to build an
ALK model in an approximate region as small as possible,
an local adaptive sampling (LAS) region was proposed in
Refs. (Li et al. 2016; Chen et al. 2014). In those methods,
to calculate the failure probability at each design point, the
LAS region should be predicted by a Kriging model and then
choose optimal training points until the ALK model is accu-
rate enough in the LAS region. However, in the initial pro-
cess, the Kriging model is too inaccurate to predict a proper
LAS region and the LAS region will be very inaccurate and
much larger than necessity. However, the whole process of
choosing training points should be executed in such a much
larger approximate region. An adaptive sampling region
(ASR) based on the Kriging model was defined in Ref.
(Wen et al. 2016). However, in each iteration, the ASR should
be predicted by the current Kriging based on MCS. In addi-
tion, various learning criteria (Sun et al. 2017; Wang and
Wang 2013; Wang and Wang 2016; Hu and Mahadevan
2016), diverse stopping conditions (Sun et al. 2017; Zhu
and Du 2016) have been proposed to improve the perfor-
mance of AK-MCS. In each iteration of those methods,
MCS should also be used. Therefore, for the estimation of
low failure probability, those method are also very time-
demanding just like AK-MCS.

To avoid this shortcoming, replacing MCS method by IS
method is a wise option. The basic idea of IS strategies is
forcing the simulated samples to fall into the most probable
failure region (MPFR) so that the rare event can occur more
often (Ditlevsen and Madsen 1996). By doing so, an IS
method is able to accomplish the estimation of low failure
probability with a remarkably reduced size of simulated
samples. Then the vital drawback of AK-MCS will be over-
come. Several schemes have been proposed during the past
several years. The method fusing ALK model with FORM-
based IS method was proposed and termed as AK-IS in Ref.
(Echard et al. 2013). Recently, an improved method of AK-
IS which combined ALK model with a trust region method
was proposed in Ref. (Gaspar et al. 2017). However, the
adoption of FORM-based IS method limits its application
to performance functions with one single MPFR (Cadini
et al. 2014). In Ref. (Zhao et al. 2015), Markov chain
Monte Carlo (MCMC) method (Au and Beck 2001; Yuan
et al. 2013) calling the true performance function was
adopted to identify the MPFR(s) and then AK-IS was used
to predict the failure probability. As is known to us, purely
identifying all the MPFRs by MCMC frequently needs hun-
dreds to thousands of function evaluations (Au and Beck
1999; Yuan et al. 2013). Therefore, this method is not effi-
cient in practice. In Ref. (Cadini et al. 2014), a metamodel-
based IS (meta-IS) method developed in Ref. (Dubourg
et al. 2013) was adopted to identify all the MPPs and the
method termed as MetaAK-IS2 was proposed. However,
MetaAK-IS2 is not efficient dealing with low failure proba-
bility estimation demonstrated from Ref. (Cadini et al.
2014).

This paper is aimed at fusing ALK model with IS method
to deal with the issue of rare event estimation. The work com-
prises two main stages like other methods in Refs. (Cadini
et al. 2014; Echard et al. 2013; Zhao et al. 2015): (1) identify
all the MPFRs; (2) update an ALK model with IS samples. To
efficiently recognize all the MPFRs, a brand-new scheme
combining ALK model with a so-called concentric ring ap-
proaching (CRA) method is proposed. And then ALK model
is updated in the framework of IS method. The proposed
method is denoted as ALK-CRA-IS. Compared with other
methods (Cadini et al. 2014; Echard et al. 2013; Zhao et al.
2015), the points evaluated in Stage (1) are all optimal points
for improving the sign prediction of Kriging model.
Therefore, they can be made full use and fewer additional
training points are required in Stage (2). Thus, ALK-CRA-
IS is more efficient than other methods in general.

The organization of this paper is summarized as follows.
ALK model applied in the field of reliability analysis is
reviewed in Section 2. The ALK-CRA-IS method is formu-
lated in Section 3. The performance of the proposed method is
compared with other methods through four case studies in
Section 4. Conclusions are made in the last section.
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2 Review of ALK model and important
sampling

In the standard normal space, denote the performance function
as G(u) with u = [u1, u2,⋯, un] the n input random variables.
Given the failure region F = {u|G(u) < 0}, the failure proba-
bility can be obtained by

Pf ¼ P u∈Ff g ¼ ∬⋯∫I u∈Fð Þ f uð Þdu ¼ E I u∈Fð Þ½ � ð1Þ

where P{·} is the probability of an event; f(·) is the joint prob-
ability density function (PDF); E(·) is the expectation opera-
tor; I(·) is the indicator function of an event, with value 1 if the
event is true and 0 otherwise. With MCS, the failure probabil-
ity can be estimated as

P̂ f ¼ 1

NMC
∑
j¼1

NMC

I G u jð Þ
� �

< 0
� �

ð2Þ

in which {u(j), j = 1, 2,⋯,NMC} is the NMC simulated sam-
ples. (2) reveals that only the sign of G(u) can affect the value
of P̂ f . Therefore, during constructing a surrogate model with
as few training points as possible, it is wise to only accurately
predict the sign ofG(u) rather than its specific value. This idea
can be perfectly accomplished by ALK model.

Krigingmodel is a Gaussian process model. Given a design
of experiments (DoE), it offers not only the predicted value
μG(u), but also the specific uncertainty information of this

prediction, i.e. Ĝ uð Þ∼N μG uð Þ;σG uð Þð Þ (Jones et al. 1998;
Ranjan et al. 2008). The predicted value μG(u) is given as

μG uð Þ ¼ β̂ þ r θ; uð ÞTR θð Þ−1 g−β̂1
� �

ð3Þ

The predicted variance σ2
G uð Þ is given as

σ2G uð Þ ¼ σ2 1þ
1TR θð Þ−1r θ; uð Þ−1
� �2

1TR θð Þ−11 −rT θ; uð ÞR θð Þ−1r θ; uð Þ

2
64

3
75 ð4Þ

In (3)–(4), g is the vector of response in a DoE; 1 is a unit
column vector; r(θ, u) is a correlation vector and R(θ) is a

correlation matrix; β̂, σ2 and θ are parameters of a Kriging
model. On details of Kriging model, people can refer to Ref.
(Yang et al. 2016).

The basic procedure of ALK model applied in reliability
analysis is listed as follows:

(1) Define a candidate region.
(2) Construct an initial Kriging model with a small number

of training points.
(3) Find out an optimal point u∗ from the candidate region.

u∗ is the point at which the sign of performance function
has the largest risk to be wrongly predicted. This step is
fulfilled with a so-call learning criterion.

(4) Add u∗ into the DoE and update the Kriging model.
(5) Repeat (3)–(4) until the risk of wrong sign prediction is

small enough.

Following the five steps listed above, people will find out
that most training points will be located in the vicinity of the
limit state G(u) = 0. That means ALK model only finely ap-
proximates G(u) in this narrow region rather than throughout
the candidate region. That is the main advantage of ALK
model compared with other surrogate models.

Learning criterion or learning function is the key to con-
struct an ALK model. Recall that Kriging offers the specific
uncertainty information of the prediction, i.e.

Ĝ uð Þ∼N μG uð Þ;σG uð Þð Þ. Making full use of this property,
several criteria can be elaborated. Learning function U was
proposed in AK-MCS (Echard et al. 2011). The famous learn-
ing function named expected feasible function (EFF) was pro-
posed in Ref. (Bichon et al. 2008). The expected risk function
(ERF) was proposed in Ref. (Yang et al. 2015), which mea-
sures the expected risk that the sign of a point is wrongly
predicted by the Kriging model. The so-called failure
potential-based function (FPF) was proposed in Ref. (Wang
and Wang 2016), to find points probably located in the failure
region and with large predicted error. Similar idea with FPF
can be seen in Refs. (Chen et al. 2014; Lee and Jung 2008).
Other criteria can be seen in Refs. (Sun et al. 2017; Wang and
Wang 2013; Bect et al. 2012).

The size of candidate region determines the size of approx-
imating space where the ALK model should precisely predict
the sign of performance function. If the size exceeds the de-
mand, some computational expense will be wasted; contrari-
wise, accuracy will be sacrificed. The candidate region of
EGRA is fixed as [−5,5]n. Apparently, it is not the optimal
option. Ref. (Wen et al. 2016) suggested that the minimal
candidate region (MCR) should be a sphere centered on the
origin with a radius

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−2
n 1−αP f
� �q

ð5Þ

in which χ−2
n �ð Þ is the inverse cumulative distribution function

(CDF) of Chi-square distribution, n is the degree of freedom
of Chi-square distribution or the number of input variables.
The joint PDF of region outside the MCR is P{‖u‖ ≥ β} = 1
− χn(β

2) = αPf. By setting the constant α as 0.05, an ALK
model built in the MCR will have a relative error less than
5% during predicting Pf with MCS. However, such a MCR is
infeasible because Pf is the quantity to be computed. In AK-
MCS, the simulated samples of MCS are used to represent the
candidate region which is verified as a good strategy.With this
strategy, the ALK model just meets the necessity of MCS.
This strategy has been extensively adopted by other re-
searchers (Yang et al. 2015; Hu and Mahadevan 2016;
Fauriat and Gayton 2014; Perrin 2016). However, it is not
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applicable to the estimation of a rare event where the size of
simulated samples is required to be very large (108 to 1011). To
avoid this shortcoming, replacing MCS method by IS method
is a wise option.

Introducing an instrumental density function (IDF) h(u),
(1) can be rewritten as

Pf ¼ P G uð Þ < 0f g ¼ ∫I u∈Fð Þ f uð Þ
h uð Þ h uð Þdx

¼ E I u∈Fð Þ f uð Þ
h uð Þ

� �
ð6Þ

Then the failure probability can be estimated as

P̂
IS
f ¼ 1

NIS
∑
i¼1

NIS

I G u ið Þ
� �

< 0
h i f u ið Þ� �

h u ið Þð Þ ð7Þ

The corresponding variance and the coefficient of variation
(Cov) are respectively given as

Var P̂
IS
f

� �
¼ 1

NIS

1

NIS
∑
i¼1

NIS

I G u ið Þ
� �

< 0
h i f u ið Þ� �

h u ið Þð Þ

 !2

− P̂
IS
f

� �20
@

1
A ð8Þ

Cov P̂
IS
f

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var P̂

IS
f

� �r
P̂
IS
f

ð9Þ

If the IDF is properly devised, IS method can unbiasedly
estimate the failure probability with a remarkably smaller
number of simulated samples than MCS. The word ‘properly’
means that the IDF should help samples of IS populate all the
most probable failure regions (MPFRs) (Au and Beck 1999;
Au and Beck 2001). A MPFR is a failure domain with large
probability density where the main contribution of the failure
probability comes from. Therefore, the main task of IS
methods is the identification of MPFR.

IS methods consist of two stages: (1) identify all the MPFRs;
(2) generate the simulated samples populating MPFRs and esti-
mate the failure probability. To improve the efficiency of IS with
ALK model, both stages should be elaborately tackled. In Refs.
(Echard et al. 2011; Bichon et al. 2008; Dubourg et al. 2011), it
has been demonstrated that ALKmodel is very good at efficient-
ly predicting the sign of performance function. Therefore, it is
natural to utilize ALK model to predict the sign of performance
function in Stage (2). That means treating the simulated samples

u 1ð Þ; u 2ð Þ;⋯; u NISð Þ	 

as candidate points and iteratively

updating the Kriging model by adding an optimal training point
into the DoE until the risk of wrong sign prediction is small
enough. Consequentially, the training points will be located in
the neighborhood of G(u) = 0.

The key of Stage (1) lies in identifying theMPFR(s). Several
methods are available to fulfill this task. AK-IS used FORM,
Ref. (Zhao et al. 2015) chose MCMC, MetaAK-IS2 adopted

Meta-IS. All of them are not efficient and cannot assure
obtaining all the MPFRs. Moreover, the points evaluated in
Stage (1) are not necessary the optimal points capable of re-
markably improving the sign prediction of a Kriging model.
Therefore, much more training points are still needed in Stage
(2). This paper elaborates a brand-new strategy to identify the
MPFRs with ALKmodel. That means, in Stage (1), most of the
training points will be located in the neighborhood of G(u) = 0.
Those training points will be made full use to improve the sign
prediction of ALKmodel. And thus much fewer training points
are required in Stage (2) than other methods.

3 ALK-CRA-IS

3.1 Basic idea

The basic idea of our strategy is to formulate a series of con-
centric rings to asymptotically approach the MPFR(s). As
shown in Fig. 1, in the standard normal space, the center of
the rings is the origin and the circular band of them is narrow.
Therefore, the points in the same ring have approximate prob-
ability density and the points in the larger ring have smaller
probability density. By expanding the rings step by step, the
MPFR(s) will be approached by our method.

The basic procedure is listed as follows.

(1) Configure an initial ring with small inner and outer
radiuses.

(2) Judge if failure region arises in the ring with ALKmodel.
(3) If so, stop. Otherwise, expand the ring and do the same

judgment as Step (2) until failure region arises.

The key of the proposedmethod lies in Step (2), i.e., how to
judge if failure region exists in the current ring. We generate a
population of uniformly distributed points to fill this ring.
Because the circular band of the ring is narrow, an acceptable
number of points can fulfill this task. Then we treat them as
candidate points and build an ALKmodel with the procedures

Fig. 1 Basic idea of ALK-CRA-IS
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stated in Section 2. The ALK model is competent to predict
whether failure points exist among the samples. If no failure
points exist, we deem failure region does not exist or the
failure region is very small; otherwise, failure region must
be located in the ring. Here we expound the CRA method in
detail.

3.2 Concentric ring approaching strategy

The inner radius of initial circular ring is chosen as

β 1ð Þ
in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−2
n 1−P0ð Þ

q
ð10Þ

Here, P0 is the joint probability of the region outside the

sphere centered on the origin with a radius β 1ð Þ
in because there

is P uk k≥β 1ð Þ
in

n o
¼ 1−χn β 1ð Þ

in

� �2� �
¼ P0; here we assign a

value 0.1 to P0 so that the inner radius of initial circular ring is
remarkably smaller than MCR if Pf is less than 0.1.

The outer radius is chosen as

β 1ð Þ
out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−2
n 1−P0=N step

� �q
ð11Þ

in which Nstep is a constant. β
1ð Þ
out−β

1ð Þ
in is the width of a circular

ring and the value of Nstep determines this width. The width
should not be too large or too small. If the width is too small,
the number of iteration will increase. If the width is too large,
the region scanned by concentric rings will be much larger
than necessity and the efficiencywill be reduced. In this paper,
the value of Nstep is uniformly chosen as 10.

Then we generate a large number of points uniformly cov-
ering the circular band of the ring. Note that those points obey
conditional distribution, i.e., they are situated in the circular
band of the ring. Although MCS can be used to generate those
points, we resort to MCMCwhich is more efficient. Denote the
set of points in the ith ring asC(i). Then we build an ALKmodel
by treating those points as candidate points. InC(i), only the sign
of performance function is our concern. The uncertain informa-

tion provided by a Kriging model is Ĝ uð Þ∼N μG uð Þ;σG uð Þð Þ.
Therefore, the probability that Ĝ uð Þ and μG(u) have different
signs can be obtained by

P Ĝ uð ÞμG uð Þ < 0
	 
 ¼ 1−Φ

μG uð Þj j
σG uð Þ

� �
ð12Þ

In whichΦ(·) is the CDF of standard normal distribution. In
Ref. (Echard et al. 2011), learning function U was proposed,
which is given as

U uð Þ ¼ μG uð Þj j
σG uð Þ ð13Þ

It can be seen thatU(u) is inversely proportional to (12). In
C(i), find out the point at which the sign of Ĝ uð Þ has the largest
probability to be wrongly predicted (i.e. the point with mini-
mum value of U(u)) and add it to the DoE, then the sign
prediction of Kriging model will be largely improved.
Therefore, learning function U is adopted in this paper. As
stated above, various learning functions have been proposed
in the field of reliability analysis until now. Several of them
can be applied into our ALK-CRA-IS method and note that
the adoption of different learning functions may influence the
efficiency of the proposed method.

Then we develop a stopping condition to tell the ALK
model when to stop in each ring. According to Refs.
(Dubourg et al. 2011; Yang et al. 2018; Haeri and Fadaee
2016), the region with large probability to be negative was
defined as

SN ¼ u μG uð Þ≤−δσG uð Þjf g ð14Þ

In which δ = 1.96, then the probability is larger than 95%.
The region with large probability to be positive was defined as

SP ¼ u μG uð Þ≥δσG uð Þjf g ð15Þ

The region in which the sign of performance function re-
mains uncertain was defined as

SO ¼ u −δσG uð Þ≤μG uð Þ≤δσG uð Þjf g ð16Þ

Apparently, a point in SO has the minimal value of U(u)
compared with points in SP and SN. Therefore, the added points
must be located in SO. According to Ref. (Dubourg et al. 2011),
the size of SO will shrink along with sequentially adding train-
ing points into SO. That means the size of SN will sequentially
approximate to that of SN ∪ SO or the size of SPwill sequentially
approximate to that of SP ∪ SO. From a discrete point of view,
the number of points located in SN will sequentially approxi-
mate to that of SN ∪ SO or the number of points located in SPwill
sequentially approximate to that of SP ∪ SO. In ALK-CRA-IS
method, only the failure region is our most concern. Therefore,
the stopping criterion is defined as

Ratio ¼
epsþ ∑

j¼1

NC

I u jð Þ
C ∈SN

� �

epsþ ∑
j¼1

NC

I u jð Þ
C ∈SN∪SO

� �

¼
epsþ ∑

j¼1

NC

I μG u jð Þ
C

� �
≤−δσG u jð Þ

i

� �� �

epsþ ∑
j¼1

NC

I μG u jð Þ
C

� �
≤δσG u jð Þ

i

� �� � ð17Þ

where eps is a small constant to prevent the denominator from

being zero, and u 1ð Þ
C ; u 2ð Þ

C ;⋯; u NCð Þ
C

n o
are the set of current
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candidate samples. If Ratio ≥ 0.99, the Kriging model is accu-
rate enough to predict the signs of performance function at
current candidate samples.

If no points are located in SN or the size is very small, we
expand the current circular ring. The ith ring closely clings to
the former one so that every part of the uncertain region can be
scanned. Therefore, the inner and outer radiuses of the ith(i ≥
1) ring are defined as

β ið Þ
in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−2
n 1−Pi−1=N step

� �q
ð18Þ

β ið Þ
out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−2
n 1−Pi−1=N 2

step

� �r
ð19Þ

Then we build an ALK model in the ith ring. Note that the
previous training points can be used as the initial training
points of the current ALK model. Then no training points will
be wasted. The process is repeated until failure region or fail-
ure points firstly arise in a ring. However, if the number of
failure points is very small, that means the size of MPFR is
very small. Then we continue to expand the ring. According to
our experience, for medium to low dimensional problems, one
more iteration can meet the size requirement of MPFR.

Executing the iterative process stated above, NF failure
points in MPFR are identified by ALK model. Denote them

as u 1ð Þ
F ; u 2ð Þ

F ;⋯; u N Fð Þ
F

n o
and we have u ið Þ

F ∈S
N . IDF centered

on those points can be defined as

h uð Þ ¼ 1

N F
∑
j¼1

N F

N u jð Þ
F ; 1

� �
ð20Þ

A number of samples are generated according to h(u) and
the samples will populate all the failure regions that mainly
contribute to failure probability. Then we continually execute
the active learning process stated above by treating the IS
samples as candidate points. Finally, the ALK model can ac-
curately estimate the low failure probability.

3.3 Summary of ALK-CRA-IS

The flowchart of the proposed algorithm is given in Fig. 2.
The basic procedure is summarized as follows.

(1) Transform the input variables into the standard normal
space. For non-Gaussian random variables, Rosenblatt’s
transformation or Rackwitz-Fiessler transformation (Luo
et al. 2009) should be utilized to fulfill this task.

(2) Define the initial DoE. The number of training points is
12 which is the same as AK-MCS. Latin Hypercube
Sampling (LHS) is utilized to generate the points and
the lower and upper bounds are chosen as [−5 5].

(3) Define the initial ring by (10) and (11).

(4) Generate a large number of samples located in the current
ring by MCMC. They are treated as candidate points.
The number is chosen as 104 × n with n the dimension
of input random variables.

(5) Pick out the optimal point u
*ð Þ by (13) from the current

set of candidate points and update the Kriging model.
(6) Repeat Step (5) until the stopping condition in (17) is

satisfied.
(7) Judge whether failure regions arise in the ring. If the

number of failure points (located in SN) is very small,
i.e. NF ≤ 100, we deem failure region does not exist.
Expand the ring by (18)–(19) and return to Step (4).

(8) Configure the IDF by (20) and generate a large number
of important samples as candidate points. Repeat Steps
(5)–(6) until the stopping condition in (17) is satisfied.
Estimate the failure probability by

P̂
IS
f ¼ 1

NIS
∑
i¼1

NIS

I μG u ið Þ
� �

< 0
h i f u ið Þ� �

h u ið Þð Þ ð21Þ

4 Numerical examples

4.1 A highly nonlinear example

The first example is taken from Ref. (Echard et al. 2013) and
the performance function is defined as

G uð Þ ¼ 0:5 u1−2ð Þ2−1:5 u2−5ð Þ3−3 ð22Þ
where u1 and u2 are two independent standard Gaussian ran-
dom variables.

The initial ring and the points uniformly covering the ring
is shown in Fig. 3. It can be seen that no failure points exist in
this ring. The points are used as candidate points and 12 train-
ing points are used to build an initial Kriging model. Because
all the candidate points are far away from the limit state, no
new training points are added into the DoE and the ALK
model is precise enough to predict the sign of points in Ring
1. ALKmodel successfully predicts no failure points exist and
thus the ring is expanded. Until Ring 3, failure points firstly
emerge. Treat the points in Ring 3 as candidate points and
continually refine the ALK model. Only two new training
points very close to the limit state are added into the DoE,
the ALK model is precise enough to predict the sign of points
in Ring 3. From Fig. 3, it can be seen that ALK model rightly
identifies the failure points and the MPFR is rightly recog-
nized. With the failure points located in the MPFR, Stage (2)
of ALK-CRA-IS is triggered. The instrumental density func-
tion is configured and IS samples are generated, as shown in
Fig. 3. With the training points in Stage (1) as initial training
points and those IS samples as candidate points, ALK model
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is refined again. Two new training points are added into the
DoE in this stage and the ALK model is competent to predict
the sign of performance function at the IS samples.

As shown in Table 1, ALK-CRA-IS provides a precise
estimation for failure probability at a smaller expense than
other methods. Note that, for AK-IS, 19 function evaluations
are cost to obtain the MPP. Although the 19 points are used to

build the Kriging model, they have little contribution to im-
proving the sign prediction of Kriging model. Therefore, 7
more function evaluations are still needed in Stage (2). All
the added training points are chosen for maximally improving
the sign prediction of Kriging model. That is the main advan-
tage of ALK-CRA-IS over AK-IS.

4.2 2D example with four failure regions

The second example is a performance function with four
MPFRs which is defined as (Echard et al. 2011;
Schueremans and Van Gemert 2005)

G uð Þ ¼ min

k1 þ u1−u2ð Þ2
10

−
u1−u2ð Þffiffiffi

2
p

k1 þ u1−u2ð Þ2
10

þ u1−u2ð Þffiffiffi
2

p

u1−u2ð Þ þ k2ffiffiffi
2

p

− u1−u2ð Þ þ k2ffiffiffi
2

p

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð23Þ

where u1 and u2 are two independent standard Gaussian ran-
dom variables; k1, k2 are two constants. Two cases are

Transform inputs into standard normal

space

Initiate a ring by Eqs. (10)-(11)

Define an initial DoE

Generate candidate points in current

ring by MCMC

Pick an optimal point from candidate

points by Eq.(13), Erich the DoE,

update the Kriging model

Stopping condition in

Eq.(17)

No

Yes

Failure regions

appear

Expand the

ring by

Eqs.(18)-(19)
No

Configure the IDF by

Eq.(20)

Estimate failure probability by

Eq.(21)

Yes

Pick an optimal point from

candidate points by Eq.(13), Erich

the DoE, update the Kriging

model

Stopping condition in

Eq.(17)

No

Yes

Generate important

samples as candidate

points

Stage (1) Stage (2)Fig. 2 Flowchart of ALK-CRA-
IS
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Fig. 3 Executing process of ALK-CRA-IS for example 4.1
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considered in this example, i.e. k1 = 3, k2 = 7 and k1 = 5, k2 =
10. The results of different methods are listed in Table 2.

4.2.1 Case 1

As shown in Fig. 4, the proposed method successfully recog-
nizes the four MPFRs with two iterations. The failure region
contained in Ring 1 is very small. After 10 training points are
added into the initial DoE, ALK model is capable to predict
the sign of points located in Ring 1. Only about 27 failure
points are predicted and thus one more iteration is executed.
Ring 2 contains all the MPFRs. 22 training points located in
Ring 2 and in the vicinity of the contour G(u) = 0 are added
into the DoE. More than 1000 failure points are identified and
thus we deem the MPFRs are large enough. In Stage (2), 104

important samples surrounding the four MPFRs are generated
and ALK model is continually updated. The training points in
Stage (1) have been deployed close to the limit state
intersected by the four MPFRs. Therefore, in Stage (2), there
is no need to add more training points in such regions. As
shown in Fig. 4, most of the training points in Stage (2) get
rid of such regions. That means all the training points in Stage
(1) are made full use in ALK-CRA-IS method.

From Table 2, it can be seen that ALK-CRA-IS accurately
predicts the failure probability with a remarkably fewer func-
tion evaluations than other methods. Note that AK-IS is not
applicable to this example because multiple failure regions

exist. Obtaining only one MPP cannot favor the IS samples
to populate all the main failure regions and biased estimation
will be obtained. For MetaAK-IS2, the training points in Stage
(1) are not necessary the optimal points to improve the sign
prediction of Kriging model. Therefore, a large number of
training points are still required in Stage (2). Achieving satis-
factory estimations with similar coefficients of variation,
ALK-CRA-IS costs 68 fewer function evaluations than
MetaAK-IS2.

4.2.2 Case 2

The “true” failure probability is 8.95 × 10−7 which is obtained
byMCS with 6 × 108 simulations. The active learning process
of the proposed method is illustrated in Fig. 5. It can be seen
that ALK-CRA-IS manages to identify the four failure regions
by sequentially expanding the ring five times. After all the
MPFRs are obtained, importance samples surrounding them
are generated and IS method can be efficiently executed. Only
104 importance samples are enough to obtain an unbiased
estimation with a Cov about 2.5%. By treating them as candi-
date samples, ALK model can be efficiently established. That
is why the method combining ALK model with IS method is
researched in this paper.

From Fig. 5, it also can be seen that most of the training
points for identifying the MPFRs are located in the vicinity of
limit state surface. They have largely improved the sign

Table 1 Results of example 4.1
with different methods Method MCS* FORM* FORM+IS* AK-IS* MetaAK-IS2* ALK-CRA-IS

Ncalls 5 × 107 19 19 + 104 19 + 7 24 + 4 14 + 3

Pf 2.85 × 10−5 4.21 × 10−7 2.86 × 10−5 2.86 × 10−5 2.87 × 10−5 2.83 × 10−5

Cov 2.64% – 2.39% 2.39% 2.39% 2.51%

*The results come from Ref. (Cadini et al. 2014)

Table 2 Results of example 4.2 with different methods

Method MCS MetaAK-IS2 ALK-CRA-IS

U ERF EFF FPF

Case 1

Ncalls 781,016* 48 + 90* 44 + 26 50 + 21 50 + 18 57 + 42

Pf 2.24 × 10−3* 2.21 × 10−3* 2.19 × 10−3 2.19 × 10−3 2.19 × 10−3 2.18 × 10−3

Cov 2.3%* 1.7%* 2.28% 2.28% 2.28% 2.29%

Case 2

Ncalls 6 × 108 44 + 47 47 + 12 46 + 11 46 + 12 50 + 23

Pf 8.95 × 10−7 8.85 × 10−7 9.31 × 10−7 9.28 × 10−7 9.30 × 10−7 9.29 × 10−7

Cov 4.32% 2.97% 2.62% 2.67% 2.66% 2.67%

*The results come from Ref. (Cadini et al. 2014)
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prediction of an ALK model. On the other hand, the training
points ofMeta-IS2 in Stage (1) are not necessarily located near
the limit state surface, as shown in Fig. 6. Although similar
number of training points are required in Stage (1), much
fewer training points are required in Stage (2) for the proposed
method. That is the main reason why ALK-CRA-IS saves 32
training points in total compared with MetaAK-IS2.

4.2.3 Performances of different learning functions

Note that except for learning function U, various learning
functions are applicable to ALK-CRA-IS. The performances
of some representative ones, such as ERF, EFF, and FPF,
when they are applied to ALK-CRA-IS are compared in the

subsection. The results are given in Table 2. Note that the
initial training points, the stopping conditions, the candidate
points in each ring and candidate points of importance sam-
ples are kept the same for different learning functions during
this comparison. It can be seen that U, ERF and EFF, which
focus on rightly predicting the sign of performance function,
have similar performance for both cases. While, all of them
behave better than FPF. That is because FPF tends to choose
points located in the failure region and points with large pre-
dicted error, even if a point has little contribution to improving
the sign prediction of a Kriging model. This feature makes it
waste some extent of training points when it is applied into
ALK-CRA-IS. Figure 7 gives the iterative process in the fifth
ring with different learning functions. It can be seen that, with
different learning functions, the proposed strategy smoothly
converges to the stopping condition of (17). That reflects the
robustness of the proposed method.

Fig. 5 Executing process of ALK-CRA-IS for example 4.2(case 2)
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4.3 A non-linear oscillator

A non-linear oscillator with a moderate dimensionality of in-
puts is investigated here (Echard et al. 2013). As shown in
Fig. 8, the oscillator is subject to a rectangular pulse load.
The performance function is defined as

G c1; c2;m; r; t1; F1ð Þ ¼ 3r−
2F1

mω2
0

sin
ω0t1
2

� �








 ð24Þ

where ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2ð Þp

=m. The six random variables are
given in Table 3. Two cases are studied in this example. It is
worth emphasizing that both cases have very low failure prob-
ability. The benchmark solutions are obtained by MCS with
1.8 × 108 and 9 × 1010 samples respectively.

Results obtained by different methods are listed in Table 4.
Again, it can be seen that ALK-CRA-IS shows remarkable
advantages in terms of accuracy and efficiency. Only a single
MPP exists in the performance function. Therefore, AK-IS
behaves very well in accuracy. In efficiency, although 29
points are evaluated to search for the MPP in Stage (1), they
produce little benefit on improving the sign prediction of
Kriging model. Therefore, 38 new training points are still
required in Stage (2). However, the points for identifying the
MPFR are made full use and they do a large favor on improv-
ing the sign prediction of Kriging model. Therefore, only a
little number of training points are required in Stage (2). That
is why ALK-CRA-IS can be more efficient than AK-IS.

4.4 Vehicle side impact problem

This problem comes from Refs. (Wang andWang 2016; Youn
et al. 2004). The performance function is defined as

G xð Þ ¼ 0:489x1x4 þ 0:843x2x3‐0:0432x5x6

þ 0:0556x5x7 þ 0:000786x27−0:75 ð25Þ

where x = [x1,⋯, x7] are random variables, details about them
can be seen in Table 5. G(x) represents whether the side im-
pact of a car satisfies the regulated requirement with known
uncertainties.

The results obtained by eachmethod are listed in Table 6. It
can be seen that the performance of the proposed method
outperforms other methods in terms of Ncalls for obtaining
satisfactory estimation with a similar Cov. From the last col-
umn, it can also be seen that several learning functions can be
applied into ALK-CRA-IS and the learning functions which
focus on improving the sign prediction of Kriging model are
more appropriate than the one which focuses on approximat-
ing the failure region.

Table 3 Random variables of the non-linear oscillator

Variable Distribution mean COV

m Normal 1 0.05

c1 Normal 1 0.1

c2 Normal 0.1 0.1

r Normal 0.5 0.1

t1 Normal 1 0.2

F1 Normal 0.6/0.45 1/6

Fig. 8 A non-linear oscillator

Table 4 Results of example 4.4 with different methods

Method MCS* FORM+IS* AK-IS* ALK-CRA-IS

μF1
¼ 0:6

Ncalls 1.8 × 108 29 + 104 29 + 38 40 + 6

Pf 9.09 × 10−6 9.13 × 10−6 9.13 × 10−6 9.04 × 10−6

Cov 2.47% 2.29% 2.29% 2.46%

μF1
¼ 0:45

Ncalls 9 × 1010 29 + 104 29 + 38 48 + 6

Pf 1.55 × 10−8 1.53 × 10−8 1.53 × 10−8 1.54 × 10−8

Cov 2.68% 2.70% 2.70% 2.47%

*The results come from Ref. (Echard et al. 2013)

Table 5 Random variables of the vehicle side impact problem

Variables
Meaning Distribution

type Mean
Standard
Deviation

x1 Floor side inner Normal 1.38 0.3

x2 Door beam Normal 1.38 0.3

x3 Door belt line Normal 1.38 0.3

x4 Roof rail Normal 1.38 0.3

x5 Mat. floor side
inner

Normal 0.3 0.06

x6 Barrier height Normal 0 10

x7 Barrier hitting Normal 0 10
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5 Conclusion

Reliability methods based on ALK model are competent to
accurately estimate the failure probability with as few function
evaluations as possible. However, the estimation of low fail-
ure probability remains an issue in this field. Several strategies
have been proposed to fuse ALKmodel with ISmethods. This
paper proposes a brand-new methodology, i.e. ALK-CRA-IS,
in this context. The key of the proposed method is the identi-
fication of all the MPFRs. The basic idea is the formation of
serial concentric rings in the standard normal space. In a small
ring, active learning process is executed to build a Kriging
model rightly predicting the sign of performance function.
And then the ALK model is utilized to judge whether failure
region arises in the current ring. If not, the ring is expanded
and Kriging model is updated in the new ring. By expanding
the ring step by step, all the MPFRs can be approached by our
method. And then IS samples populating all the MPFRs can
be generated and active learning process is executed by
treating the IS samples as candidate points.

Four cases are researched to demonstrate the accuracy and
efficiency of the proposed method. Compared with AK-IS,
ALK-CRA-IS is capable of identifying all the MPFRs and
obtaining unbiased estimation for performance functions with
multiple failure regions. Compared with AK-IS and MetaAK-
IS2, ALK-CRA-IS is more efficient because all the points
evaluated in Stage (1) are made full use to improve the sign
prediction of Kriging model and thus much fewer training
points are needed in Stage (2). In one word, the proposed
method is more efficient than other ALK-model-based IS
methods.

However, we should admit that ALK-CRA-IS is not appli-
cable to high dimensional problems. In Stage (1) of ALK-
CRA-IS, a population of points is required to fill the ring.
However, the circular band of a ring can intensively expand
as the increase of the dimensionality. For high dimensional
problems, a very large number of points are needed so that a
ring can be totally covered. And then purely building an ALK
model will be very time-consuming like AK-MCS. Another
strategy which can alleviate the dimension problem is under
research by the authors.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (Grant No. 51705433, 51475386), the
Fundamental Research Funds for the Central Universities (Grant No.
2682017CX028), and the Open Project Program of The State Key
Laboratory of Heavy Duty AC Drive Electric Locomotive Systems
Integration (Grant No. 2017ZJKF04, 2017ZJKF02).

References

Au S, Beck JL (1999) A new adaptive importance sampling scheme for
reliability calculations. Struct Saf 21:135–158

Au S-K, Beck JL (2001) Estimation of small failure probabilities in high
dimensions by subset simulation. Probab Eng Mech 16:263–277

Bect J, Ginsbourger D, Li L, Picheny V, Vazquez E (2012) Sequential
design of computer experiments for the estimation of a probability of
failure. Stat Comput 22:773–793

Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008)
Efficient global reliability analysis for nonlinear implicit perfor-
mance functions. AIAA J 46:2459–2468

Bourinet J-M, Deheeger F, Lemaire M (2011) Assessing small failure
probabilities by combined subset simulation and support vector ma-
chines. Struct Saf 33:343–353

Cadini F, Santos F, Zio E (2014) An improved adaptive kriging-based
importance technique for sampling multiple failure regions of low
probability. Reliab Eng Syst Saf 131:109–117

Chen Z, Qiu H, Gao L, Li X, Li P (2014) A local adaptive sampling
method for reliability-based design optimization usingKrigingmod-
el. Struct Multidiscip Optim 49:401–416

Der Kiureghian A, Dakessian T (1998)Multiple design points in first and
second-order reliability. Struct Saf 20:37–49

Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley,
New York

Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design op-
timization using kriging surrogates and subset simulation. Struct
Multidiscip Optim 44:673–690

Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based importance
sampling for structural reliability analysis. Probab EngMech 33:47–
57

Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning
reliability method combining Kriging and Monte Carlo simulation.
Struct Saf 33:145–154

Echard B, Gayton N, Lemaire M, Relun N (2013) A combined impor-
tance sampling and kriging reliability method for small failure prob-
abilities with time-demanding numerical models. Reliab Eng Syst
Saf 111:232–240

Fauriat W, Gayton N (2014) AK-SYS: An adaptation of the AK-MCS
method for system reliability. Reliab Eng Syst Saf 123:137–144

Table 6 Results of example 4.4 with different methods

Method MCS AFIS* AK-IS MetaAK-IS2 ALK-CRA-IS

U ERF FPF

Ncalls 5 × 106 170 45 + 63 52 + 18 49 + 2 49 + 4 65 + 0

Pf 1.57 × 10−4 1.42 × 10−4 1.50 × 10−4 1.56 × 10−4 1.56 × 10−4 1.56 × 10−4 1.56 × 10−4

Cov 3.57% – 3.91% 3.05% 2.04% 2.09% 2.04%

*The results come from Ref. (Wang and Wang 2016)

Estimation of low failure probability based on active learning Kriging model with a concentric ring... 1185



Gaspar B, Teixeira A, Soares CG (2017) Adaptive surrogate model with
active refinement combining Kriging and a trust region method.
Reliab Eng Syst Saf 165:277–291

Haeri A, Fadaee MJ (2016) Efficient reliability analysis of laminated
composites using advanced Kriging surrogate model. Compos
Struct 149:26–32

Hu Z, Mahadevan S (2016) Global sensitivity analysis-enhanced surro-
gate (GSAS) modeling for reliability analysis. Struct Multidiscip
Optim 53:501–521

Jones DR, SchonlauM,WelchWJ (1998) Efficient global optimization of
expensive black-box functions. J Glob Optim 13:455–492

Kim S-H, Na S-W (1997) Response surface method using vector
projected sampling points. Struct Saf 19:3–19

Kurtz N, Song J (2013) Cross-entropy-based adaptive importance sam-
pling using Gaussian mixture. Struct Saf 42:35–44

Lee TH, Jung JJ (2008) A sampling technique enhancing accuracy and
efficiency of metamodel-based RBDO: Constraint boundary sam-
pling. Comput Struct 86:1463–1476

Li X, Qiu H, Chen Z, Gao L, Shao X (2016) A local Kriging approxima-
tion method using MPP for reliability-based design optimization.
Comput Struct 162:102–115

Luo Y, Kang Z, Li A (2009) Structural reliability assessment based on
probability and convex set mixed model. Comput Struct 87:1408–
1415

Papadopoulos V, Giovanis DG, Lagaros ND, Papadrakakis M (2012)
Accelerated subset simulation with neural networks for reliability
analysis. Comput Methods Appl Mech Eng 223:70–80

Perrin G (2016) Active learning surrogate models for the conception of
systems with multiple failure modes. Reliab Eng Syst Saf 149:130–
136

Qin Q, Lin D, Mei G, Chen H (2006) Effects of variable transformations
on errors in FORM results. Reliab Eng Syst Saf 91:112–118

Ranjan P, Bingham D, Michailidis G (2008) Sequential experiment de-
sign for contour estimation from complex computer codes.
Technometrics 50:527–541

Schueremans L, Van Gemert D (2005) Benefit of splines and neural
networks in simulation based structural reliability analysis. Struct
Saf 27:246–261

Sun Z, Wang J, Li R, Tong C (2017) LIF: A new Kriging based learning
function and its application to structural reliability analysis. Reliab
Eng Syst Saf 157:152–165

Wang Z, Wang P (2013) A Maximum Confidence Enhancement Based
Sequential Sampling Scheme for Simulation-Based Design. J Mech
Des 136:021006–021010

Wang Z, Wang P (2016) Accelerated failure identification sampling for
probability analysis of rare events. Struct Multidiscip Optim 54:
137–149

Wen Z, Pei H, Liu H, Yue Z (2016) A Sequential Kriging reliability
analysis method with characteristics of adaptive sampling regions
and parallelizability. Reliab Eng Syst Saf 153:170–179

YangX, Liu Y, Gao Y, ZhangY, Gao Z (2015) An active learning Kriging
model for hybrid reliability analysis with both random and interval
variables. Struct Multidiscip Optim 51:1003–1016

Yang X, Liu Y, Gao Y (2016) Unified reliability analysis by active learn-
ing Kriging model combining with Random-set based Monte Carlo
simulation method. Int J Numer Methods Eng 108:1343–1361

Yang X, Liu Y, Mi C, Tang C (2018) System reliability analysis through
active learning Kriging model with truncated candidate region.
Reliab Eng Syst Saf 169:235–241

Youn B, Choi K, Yang R, Gu L (2004) Reliability-based design optimi-
zation for crashworthiness of vehicle side impact. Struct Multidiscip
Optim 26:272–283

Yuan X, Lu Z, Zhou C, Yue Z (2013) A novel adaptive importance
sampling algorithm based on Markov chain and low-discrepancy
sequence. Aerosp Sci Technol 29:253–261

Zhao H, Yue Z, Liu Y, Gao Z, Zhang Y (2015) An efficient reliability
method combining adaptive importance sampling and Kriging
metamodel. App Math Model 39:1853–1866

Zhu Z, Du X (2016) Reliability Analysis With Monte Carlo Simulation
and Dependent Kriging Predictions. J Mech Des 138:121403–
121411

1186 X. Yang et al.


	Estimation of low failure probability based on active learning Kriging model with a concentric ring approaching strategy
	Abstract
	Introduction
	Review of ALK model and important sampling
	ALK-CRA-IS
	Basic idea
	Concentric ring approaching strategy
	Summary of ALK-CRA-IS

	Numerical examples
	A highly nonlinear example
	2D example with four failure regions
	Case 1
	Case 2
	Performances of different learning functions

	A non-linear oscillator
	Vehicle side impact problem

	Conclusion
	References


