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Abstract

To reduce the computational cost of metamodel based design optimization that directly relies on the computationally expensive
simulation, the multi-fidelity cokriging method has gained increasing attention by fusing data from two or more models with
different levels of fidelity. In this paper, an enhanced cokriging based sequential optimization method is proposed. Firstly, the
impact of considering full correlation of data among all models on the hyper-parameter estimation during cokriging modeling is
investigated by setting up a unified maximum likelihood function. Then, to reduce the computational cost, an extended expected
improvement function is established to more reasonably identify the location and fidelity level of the next response evaluation
based on the original expected improvement criterion. The results from comparative studies and one airfoil aecrodynamic
optimization application show that the proposed cokriging based sequential optimization method is more accurate in modeling
and efficient in model evaluation than some existing popular approaches, demonstrating its effectiveness and relative merits.
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Nomenclature

EIl Expected improvement

EEI Extend expected improvement
CFD Computational fluid dynamics
GP Gaussian process

RMSE Root-mean-square mean
LHD Latin Hypercube design

d Response data

n Number of sample points
t Fidelity level of models
Y(x) -level-fidelity model
D, Input sites

r Input space
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R(x,x)  Correlation matrix

Roughness parameters
Regression coefficients

Scaling factor

Spatial covariance parameter
Discrepancy function

Calculation cost of the metamodel
Corr(x,t) Model correlation

n(x, t) Sample density function

CR(®) Ratio of cost
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1 Introduction

The application of surrogate models or metamodels to
predicting the response of a computationally expensive simu-
lation function has grown in popularity for engineering design
optimization over the past 15 years (Jin et al. 2001; Simpson
et al. 2001; Yang et al. 2005; Shi et al. 2013). Sometimes, the
evaluation on the complex system of interest is so expensive
that straightforward application of the metamodel-based opti-
mization might be too costly. Generally, a complicated phys-
ical process can be modeled using several methods with dif-
ferent levels of fidelity, or a computer code for a complex
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problem can be run at different levels of fidelity. For example,
the aerodynamic analysis in aerospace engineering can be im-
plemented using the high-fidelity computational fluid dynam-
ics (CFD) simulation or low-fidelity engineering handbook
equations; further CFD can also be solved with fine (high-
fidelity) or coarse (low-fidelity) mesh. Therefore, the multi-
fidelity modeling approach that combines the data from two
or more models/codes (uniformly referred to as models here-
after in this paper) with different levels of fidelity to efficiently
construct a metamodel has gained increasing attention in op-
timization design (Qian and Wu 2008; Zheng et al. 2013; Park
et al. 2016; Ng and Eldred 2012; Tuo et al. 2013; Chen et al.
2015; El-Beltagy and Wright 2001). The differences between
various MFS frameworks have been investigated in detail with
the aid of examples including algebraic functions and a bore-
hole example by Park et al. (2017). As a well-known multi-
fidelity modeling technique with good computational charac-
teristics, the cokriging method combining two data sets re-
spectively from high- and low-fidelity responses based on
the Gaussian process theory has been widely studied and ap-
plied to aerodynamic analysis (Han et al. 2012; Laurenceau
and Sagaut 2008) and aerodynamic optimization (Toal and
Keane 2011; Huang et al. 2013), robust optimization of gas-
turbine compressor blade (Keane 2015), and prediction of soil
bulk density (Yang et al. 2016). To handle multi-level comput-
er models with a hierarchy of fidelity that often exist in engi-
neering problems, the original two-level cokriging method has
been extended to multi-level (s-level) cokriging using a hier-
archical updating treatment (Kennedy and O’Hagan 2000).
However, it is often difficult to know beforehand how many
samples are needed to construct a sufficiently accurate
metamodel, and thus sequential optimization based on the
bi- and multi- level cokriging methods have been introduced
to further reduce the computational cost (Xiong et al. 2008;
Huang et al. 2006; Gratiet and Cannamela 2015) by
employing the sequential sampling strategies (Jin et al. 2002;
Xiong et al. 2009; Zhu et al. 2015).

For the multi-level cokriging based sequential optimiza-
tion, one key procedure is to estimate the unknown hyper-
parameters during cokriging modeling, which evidently has
impact on the accuracy of metamodel as well as optimization.
In the well-known Bayesian discrepancy-based autoregressive
multi-fidelity model using GP proposed by Kennedy and O’
Hagan, the assumption of a Markov property for the covari-
ance structure of the observed data is made, and these hyper-
parameters are divided into s groups and then estimated group
by group using the maximum likelihood estimation method
considering the correlation of the observed data from two
models with adjacent fidelities (Kennedy and O'Hagan
2000). Later, based on the autoregressive model proposed by
Kennedy and O" Hagan, Forrester et al. went into more detail
about the hyper-parameter estimation of cokriging from the
sampling point of view (Forrester et al. 2007). To reduce the
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numerical complexity and computational expense in estimat-
ing the model hyper-parameters of the method proposed by
Kennedy and O’ Hagan, Le Gratiet adopted the “Jeffreys
priors” and Bayesian method to obtain the closed-form es-
timations of more model hyper-parameters firstly and esti-
mate the rest using the maximum likelihood estimation
method group by group at the sacrifice of the prediction
accuracy, in which only the correlation among the observed
data from the same model was exploited (Le Gratiet 2013).
Overall, although the existing multi-fidelity cokriging
modeling approaches utilize the data from all models for
response prediction, most of those methods only consider
the correlation of the data from two models with adjacent
fidelities or from the same model in estimating the un-
known hyper-parameters using the maximum likelihood
estimation method. Since the lower-fidelity models gener-
ally yield a similar trend of the highest-fidelity response, all
models with different fidelities actually are correlated to
each other to some extent. If the correlation can be fully
utilized for hyper-parameter estimation, the accuracy of
cokriging metamodel may be improved. Therefore, a uni-
fied maximum likelihood function is established according-
ly for hyper-parameter estimation in an all-in-one manner
during cokriging modeling by utilizing the full correlation
of data among all models in this work.

The other important issue associated with the cokriging
based sequential optimization is the sequential sampling strat-
egy. As a more efficient one, the objective-oriented approach
that brings the design objective into account has been widely
studied. The most popular objective-oriented sequential sam-
pling criterion was developed by Jones et al. in their efficient
global optimization (EGO) algorithm (Jones et al. 1998),
which employs an expected improvement (EI) function to
balance the trade-off between the global exploration for reduc-
ing the metamodel uncertainty and the local exploitation for
searching the optimum. Further, Sasena investigated and com-
pared different objective-oriented sequential sampling criteria
to shown their relative merits (Sasena 2002). Xiong et al.
(2008) developed a bi-fidelity optimization approach, in
which the statistical lower bounding criterion is employed
for sequential sampling. However, these methods merely
adopt the high-fidelity simulations to construct or update the
metamodels. In some region of design space, if the accuracy
improvement of the updated metamodel using samples re-
spectively from higher- and lower-fidelity models is relatively
close, the lower-fidelity samples are preferred since it is com-
putationally cheaper. Thus, Huang et al. (2006) developed a
kriging based sequential optimization scheme using multiple-
fidelity responses, in which an integrated objective-oriented
sequential sampling criterion was proposed to determine both
the location and fidelity level of the subsequent new evalua-
tion to reduce the computational cost. However, during our
study, it is found that the samples generated by this criterion
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may cluster within a certain region, which clearly will cause
a waste of samples and thus reduce the efficiency of optimi-
zation. Therefore, an extended sequential sampling strategy is
established by introducing a sample density function into the
one proposed by Huang et al., which can further reduce the
computational cost through more reasonably identifying the
location and the fidelity level of the new evaluation.

The contributions of this work mainly lie in: 1) based on
the autoregressive model proposed by Kennedy and O’
Hagan, establishing a unified maximum likelihood function
for hyper-parameter estimation to investigate the impact of
utilizing full correlation of all observed data on the accuracy
of cokriging metamodel during modeling; 2) developing an
extended objective-oriented sequential sampling strategy with
the consideration of the sample cluster issue to reduce the
computational cost of the cokriging based sequential optimi-
zation. The remainder of the paper is organized as follows. In
Section 2, the basic ideas of the cokriging technique for hier-
archical multi-fidelity modeling is briefly reviewed. In
Section 3, the proposed cokriging based sequential optimiza-
tion method is presented in detail along with the hyper-
parameter estimation method and the objective-oriented sam-
pling strategy. In Section 4, comparative studies are conducted
to verify the effectiveness of the proposed method. In
Section 5, an airfoil shape multi-fidelity optimization problem
is solved to further demonstrate the effectiveness of the pro-
posed method. Conclusions are drawn in Section 6.

2 Review on hierarchical multi-level cokriging
modeling

The classic mathematical formula of hierarchical multi-level
cokriging metamodel proposed by Kennedy and O’Hagan
(2000) based on Gaussian process (GP) considering s levels
of models yl(x), ..., Y'(x) is represented as

V() = pey (%) +0(x), 6 =2, (1)

where X =[x, x2, ..., x,] € R” is a p-dimensional set of input
variables, and y'(x): R” —R (t=1, ..., s) denotes the model
response at the /7 level of fidelity.

A larger ¢ corresponds to a higher level of fidelity, and thus
»'(x) is the lowest-fidelity model and y*(x) is the highest one.
The parameter p,_ | represents the scaling factor, capturing the
strength of the relationship between »/(x) and »'~'(x); §(x)
represents the discrepancy between 1'(x) and p, 1) '(x),
and it is considered to be independent of '~ 'x), ..., yl(x).
The dependence assumed in our work refers to the depen-
dence of the priori of § and y'~ 'x), ..., y‘(x) before the col-
lection of data. The additivity of GPs should be utilized during
the modeling of the proposed cokriging method, of which the

premise is that the two GPs added together should be inde-
pendent to each other.

It is assumed that the model output response is ob-
served without random measurement error. For the /"
level (¢=1,...,s) model, it is supposed that a set of re-

T
sponse observations d, = [y’ (x}), .0 (qul)} at input

AT
sites D, = |:<Xt1)T, (xg)T, o (xt ) ] have been collect-

ny

ed. Let d= [le, ...,dST]T denotes all of the collected re-
sponse data from all models at the input space I =[Dy;
D»; ...; Dg]. Furthermore, the correlation matrix between
response observations taken at points in D; and D,
(D,cI',D,cT) is denoted by R(Dy, D)); if k=1, R(D;, Dy)
is denoted as R(D;) (D,cT). One popular choice for
R,.(x,X) in the computer experiment literature is the
Gaussian correlation function

R, (x,x/) =7 (x—xl, 0’) = exp{—Zi_IGf( (xk—x/k)z} (2)

r
where 6" = {9’1 05, 91’,} is a vector of spatial correla-

tion parameters (aka scale or roughness parameters) with
respect to each dimension of the input variable x. It is used
to represent the rate at which the correlation between y'(x)
and y'(x)) decays to zero as x and x* diverge.

In the cokriging modeling, the GP theory is applied to build
metamodels for the functional response of interest. Based on
various assumptions, a GP model in a classical form can be
built to represent the highest-fidelity output responsey’(x).

V(x) ~g7)(m(x),V(x,x,)) (3)

where m(x) is the mean function usually expressed as hx)B,
with A(x)” denoting a column vector of pre-specified polyno-
mial functions (i.e., constant, linear, quadratic, etc.), and 3 a
column vector of the to-be-determined regression coefficients;
V(x,X)=0°R(x,X)=0°r(x—x, 0) is the covariance

function, representing the spatial covariance between any

two inputs x and x’ of the process.

The unknown parameters ¢ = {f3, 02, 0, p}, referred to as
hyper-parameters, characterizes the GP model, where the re-
gression coefficients are $=(4,, ..., B,  the scaling factors

p=(pps.cpey) 02 = (o7, ..., of)T and the spatial corre-
lation parameters 6 = (6, ..., OS)T. Once ¢ are estimated,
the s-level cokriging model is established, of which the re-
sponse prediction and the corresponding mean square error
T
(MSE) at any new input sites X, (X, = [xlT,sz, e XZI; )
can be predicted. Since the same structure of cokriging model
is employed for the proposed FC method as that of the one

proposed by Kennedy and O’Hagan, the formulations of the
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involved matrixes and vectors (such as h(x)T and V(x, X')) as
well as the response prediction and MSE above are the same
as that of FC. To introduce the proposed method more
smoothly and clearly, these formulations are presented in
Subsection 3.1.

3 The proposed cokriging-based sequential
optimization procedure

Although the existing multi-fidelity cokriging modeling ap-
proaches utilize the data from all models for response predic-
tion, most of those methods only consider the correlation of the
data from two models with adjacent fidelities or from the same
model in estimating the unknown hyper-parameters.
Therefore, a method for hyper-parameters estimation is pro-
posed by utilizing full covariance of all the data, which is
denoted as FC. Meanwhile, to more reasonably identifying
the location as well as the fidelity level of the new evaluation,
an extended EI (denoted as EEI) criterion is developed to fur-
ther reduce the computational cost of sequential optimization.

The outline of the proposed sequential optimization ap-
proach employing FC in conjunction with EEI is provided in
Fig. 1 and described as below. It follows the general procedure
of'the existing kriging based sequential optimization proposed
by Huang et al. (2006), while two improvements are made
(see the two shaded boxes). The step-by-step description of
the proposed cokriging based sequential optimization ap-
proach is given as follows.

Step 1: Generate certain initial input samples for each
model with varying fidelity.

Step 2: Calculate the response data of the multi-
hierarchical lower-fidelity models and the single high-
fidelity model.

Step 3: Based on the current input and output data, con-
struct the cokriging model using the FC method.

Step 4: Obtain the global optimum based on the
cokriging model.

Step 5: Determine the input location and the model fidel-
ity level of the next new evaluation by the EEI criterion.
Step 6: If the convergence criterion (inequality (34)) is
satisfied, go to Step 7, stop the procedure and output the
current optimal solutions; if not, go to Step 2, i.e. calcu-
late the response data of model with the selected fidelity
level at the new input location in Step 5, which is then
added to the old data set to update the cokriging model.

3.1 Parameter estimation considering full correlation
of data

The full correlation of all the observed data is utilized in this
work to obtain the hyper-parameters ¢ = {3, 2, 0, p} of the
multilevel cokriging model, which is then compared to the
methods proposed by Kennedy and O’ Hagan (denoted as
KOH) (Kennedy and O'Hagan 2000) and Gratiet (denoted as
BM) (Le Gratiet 2013). With KOH, the Markov property is
assumed and ¢ are reckoned numerically by the maximum
likelihood estimation (MLE) method in s separate steps,
where only the correlation of the observed data between two
models with adjacent fidelity (i.e., y(x) and y'~ '(x)) is uti-
lized. For BM, some parameters {p, 3, 0>} are estimated
based on the “Jeffreys priors” and then © is obtained by
MLE numerically in s separate steps, in which only the corre-
lation of the observed data within the same model (i.e., 1/(x))
is explored. However, for FC, the correlation of the observed
data among all the models (v'(x), ..., (x)) is fully explored to
estimate all hyper-parameters altogether by maximizing one
unified likelihood function. For the detailed introduction of
KOH and BM, readers can refer to (Kennedy and O'Hagan
2000; Le Gratiet 2013), respectively.

With FC, the high-fidelity model y°(x) can be expressed as
below based on the general formulation of cokriging model in

(D).

Fig. 1 Flowchart of the proposed
cokriging based sequential

[ 1 START: Generate certain initial input )

[ 7 END: Output the optimum ]

L o5 L sample points )
optimization approach — YES '
/2 Calculate responses \ 7 i
_____________________________ nequality
| Multi-hierarchical 1 Single high- ! 34) satisfied?

E_ lower-fidelity models E: 1"1de1itEf model !

oo Lo )

5 Determined location and model
fidelity level of new evaluation

H High- 1deiity !

i data !

\

p
3 Cokriging modeling considering full
correlation of data (FC)

fidelity data using Extend Expected
Improvement (EEI)
J L £ T

4 Find global of)Tilmum based on
cokriging model
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Vi(x) = (i m)y‘ (x) + (@ p,) & (x) + ...

+ 08 (X) + 8 (%) (4)
It is assumed that y'(x), 6°(X), ..., 6°(x) can be respectively
modeled as a GP as below.

¥ ()= gP(R' ()5, V)

5()~GP(H(O) 5, VE) =2, s (5)

Then, additively the model y°(x) can be expressed by a GP
based on (4) and (5).

¥ 0) ~g7>(h‘<->% (n p,-) L ROTS, (np) o KO,
s-1 2 s-1 2 (6)
(H Pi> Va+ (H Pi) szt to Tt Vii)
i=1 i=2

Based on the assumption of GP, all the collected data fol-
low a multivariate normal distribution, i.e.

d~N(HB, Va) (7)

where the involved matrixes and vectors are formulated as
below.
The matrix H of size (n1+, ..., +ng) X s is

lel (Dz) Hz(Dz) 0 0
H= | ~rHi(Ds) pHy(D3)  Hs(D3) : (8)

<j pi>H1 (Dy) <lj: Pi).Hz(DX) H,(D,)

with the vector H, (D, ) = [ht (x’l/) v (xé) — (xﬁ:, )} r
where /'(x)" denotes a column vector of pre-specified poly-
nomial functions (A (x)" =1 is adopted in this paper).

The vector 3 of size s x 1 is given as

B:(ﬂl7“'7ﬁs)T' (9)

The matrix V4 of size (n+, ..., +ny) X (n1+, ..., +1,) is giv-
en as

Vii - Vig
Va=| & - i, (10)
Vs,l VSA,S

where the 7" diagonal block (n; % n,) is defined as

-1
Vie= R(D) + 02 R (D) + .+ (1)1 (D),
i=1

(11)

and the off-diagonal block of size n, X n, is given by

/-1 -1
v = (1) (0000 (i 0. (12
1<t < £ <s.
Then the MLE method is employed to estimate the hyper-
parameters ¢ = {3, 6°, 0, p}. Given the collected response

data set d, the unified likelihood function of the hyper-
parameters ¢ is constructed as

Clolayval W] Pexp{ - (a-B)'V, (a1
(13

where W = (H'V,'H) .

Solving the maximum unified likelihood function in (13) is
equivalent to maximizing its logarithm (i.e., log-likelihood
function) as below.

max L(Pp|d) = max log[L(d]|d)]
B.0%,0,p

B,0%,6,p
= max ¢ d
pmax (dld)

(14)

where 0(¢|d) «1log|W|-1log|Vy|-5 (d-HB) "V, (d-HB).
According to the first order optimality condition

ou(l)

—0
B ‘B—B

: (15)
N\T _

(a-HB) Vo'H = a7V, H-BH'V, H=0

the estimation in the closed-form expression [3 for 3 can be
obtained.

B = WHV,'d (16)

which is expressed in a function of o and@.

The rest of hyper-parameters ¢°, © and p can be estimated
by solving the maximum unifie log-likelihood function below
using numerical optimization algorithm, e.g., a genetic algo-
rithm or simulated annealing.

1 1 1 T
max 51og|W|—510g|Vd\—§(d—Hﬁ) Vd(d—Hﬁ) (17)

3 can then be estimated by using (16). It should be
noticed that the hyper-parameters are estimated alto-
gether in the proposed method by solving the unified
likelihood function, while they are estimated group by
group in s separate steps in KOH and BM methods.
Meanwhile, the covariance among all the models is uti-
lized. Once all the hyper-parameters are estimated, the
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response prediction y(x,) and its corresponding mean

square error (MSE) at any new input sites x, (X, =

T
{X{, X7, . XT} ) can be predicted. With the GP model,

X
the collected data d together with the to-be-predicted re-
sponses y(x,) = [y(x1),...,»(x,, )] T follow a multivariate
normal distribution.

o[ (L Je 32 %)) o

where H and V4 are the polynomial function and covariance
matrix for the observed data d, which have been formulated in
(8) and (10), respectively; H,, and V,, are the polynomial func-
tion and covariance matrix for the to-be-predicted responses
¥(x,); T, denotes the covariance matrix between y(x,,) and d.
Details regarding the matrices H,,, V,,, and T, will be given in
(21)~(25) below. Then the final prediction of y(x,) and its
MSE can be computed by

y(x) = H, B + T,V;' (d—HB), (19)
MSE[p(x,)] = V,~T,V,'T]

T
+ (R V' TE) WV T,
(20)

where
T

= ()0 0" (T )00 "0 ) (21)

i=1

x (size 1 X s)

T, = (m (Xp,Dl)T, ey kg (xp,DS) T) (size n, X s) (22)
f (xp,Dl)T _ (ﬁl pi)J%Rl (x,,Dy) (23)

tt(xpa Dt)T = Pl (Xpa DI)T + (ﬁ Pt) U?Rt(xpa Dt)7
=t

(24)

t=2,...,8

Vo=V (%, %) +p VY (X, %) +p2 pL, Ve (Xp, Xp) +-..
s—1 2 (25)
" (tl_IZ p,) Vi(xp.X,) (size m, x n,)

Meanwhile, it should be pointed out that in KOH and BM,
the input sets are assumed to be nested, i.e., DyC, ...,c Dy,
which is not necessary but allows to have a closed-form ex-
pression for the parameter posterior distribution. In KOH, it is
necessary to calculate 5,(x)=d,, 1 - pp’(D,, 1) to define the

@ Springer

likelihood function in estimating the parameters (6;, 0%, p, ;).
Meanwhile, for BM, G, 1 =['(D,,1) H,. (D, )] should be
defined in the “Jeffreys priors” to obtain the estimations of
parameters (p,_|, 3, 07,6,). Clearly, (D, ) exists only if
the sample points for y** ! and )’ are nested, i.e., D,,; c D, If
not, an approximated GP model for each lower-fidelity model
should be constructed firstly, based on which the multi-level
cokriging model can also be constructed. However, for the
FC, it is not restricted by this assumption, and thus it is more
flexible.

In addition, in the FC method,the maximum likeli-
hood function contains a matrix Vg4, of which the size
(ny+, ..., +ny) X (n1+, ..., +ny) is determined by the number of
models for fusion and the number of sample points from each
model. If the size of V4 is large, the computational cost in
solving the maximum likelihood function will be clearly in-
creased. Meanwhile, during the process of MLE, some gar-
bage results may be generated. In this case, some additional
repeated optimization can be conducted to help find the global
optimum. For BM and KOH, since all items in their maximum
likelihood function are scalars or vectors, the computational
cost is clearly smaller than FC. However, compared with the
computational cost of model response evaluation (in practice,
it often takes a very long time to run one model evaluation),
such increase in the computational time of model fusion can
be negligible. The proposed FC method aims to increase the
accuracy of the final cokriging model, which is still of great
significance to some engineering problems.

3.2 The extended sequential sampling strategy

Several criteria have been investigated to decide a new
infilling sample site for the objective-oriented sequential sam-
pling. The statistical lower bounding (SLB) criterion and the
expected improvement (EI) criterion are the two most widely
used approaches in the literature. Based on the results of Jones
et al.’s work (Jones et al. 1998), an extended EI (EEI) criterion
is defined to determine both the location of the new input
sample and the fidelity level of the new evaluation.

EEI(x, t) = EI(x) x |Corr(x, #)| x CR(¢) x n(x,?) (26)

where EI(x) is the original EI function, and the other three
items will be described as below.

(1) Model correlation Corr(x, #)

Corr(x, t) represents the posterior correlation coefficient
between the stochastic predicted responses y,,(x) from the #-

level fidelity model and y;,(x) from the s-level (highest) fi-
delity one at the input site x, and can be computed by



Sequential optimization using multi-level cokriging and extended expected improvement criterion 1161

Corr(x, t) = Corr {yl’m(x),y;a(x)}

@) @)

e

In (27), Cov [y;m X). 9%,
ance at the input site x between the stochastic predicted re-
sponses y1,,(x) and ;,(x), and it can be obtained by

x Var {y;o(x)}

x)| denotes the posterior covari-

Cov[yl(X),y»\'(x)] :Cov[y’(x),y’(x)p+§(x)}
= Cov[y’ (x),»' (x)p} +M ~(o" )2 PR, (%)

=0

29)

= Coy(x).y )TV (T3)

+ ((H;) "y, (1) T> ‘w < (1) "y, (1) T> ’

(28)

Cov |15, (%), 73 (%)

where

In the above equation, p denotes the weight coefficient
between »'(x) and y*(x), which is a scalar calculated as

P=puPis1 " Ps- Meanwhile, in (27), Var [y;w(x)] = Cov

3, 0).33,(0)] and Var[st,(x)] = Cov [y}, (x),34,(x)]
can also be calculated by (28).

If t=s, for any x, Corr(x, f) = 1, which stands for the cor-
relation of the stochastic predicted responses from the highest-
fidelity model itself. If #£ss, for any x, |Corr(x, #)| € [0, 1],
which describes the ratio between the accuracy improve-
ment for the predicted response in adding the lower-
fidelity response data y(x) and highest-fidelity one y*(x).
It should be noticed that for the input set that already has

the corresponding model response data, Var [y[‘m(x)] X

Var [y;m (x)] and Cov[y/(x),)’(x)] are all equal to 0. In this

case, Corr(x, #) is defined as 0 in our study.
(2) Ratio of cost CR(?)

CR(?) represents the computational cost ratio of a single
response evaluation between the highest-fidelity model °(x)
and the #-level one y'(x), i.e.

CS

CR() =& (30)

where C° and C’ respectively represents the computational
cost of a single response evaluation for the highest-fidelity
model 1°(x) and the -th level lower-fidelity modely/(x).

If =5, CR(f) = 1; if t£ss, CR(f) >1, which means that it is
more efficient to employ the lower-fidelity model y'(x) to
evaluate the response. The inclusion of CR(#) in (26) aims to
select the computationally cheapest model as much as possi-
ble that is then called to evaluate the response at the identified
new input location, considering the trade-off from other two
aspects (model correction and sample density). That is to say,
if similar accuracy improvement and sample density property
can be obtained, the model with the smallest cost will be
selected to reduce the computational cost as much as possible.

(3) Sample density functionn(x, )

7(x, t) describes the density of the input samples from the
same model, which is used to avoid the clustering of samples.
The spatial correlation of the GP is employed to quantify the
distance between the input samples, and thus 7(x, #) is defined
as

n(x,t) = [T, [1-R(x, x')] (31)

where N’ represents the number of samples from #-th level
fidelity model, while x are the locations of input samples;
R(x,xi) is the spatial correlation function of GP, which is the
same as that used in the cokriging modeling above.
Moreover, if higher-fidelity response data exist at a certain
input location, adding new lower-fidelity response data at this
input location generally contributes minimally to the improve-
ment of the accuracy of the response prediction. Therefore,
based on (31), the sample density factor function 7(x, ¢) is
redefined as below to avoid unnecessary waste of samples.

N® N!

n(x,t) = g [1-R(x,x)],Vt<s (32)

i=1

Clearly, each item in (26) plays an important role. As the
basis of the EEI criterion, the original EI(x) quantifies the
improvement of response prediction accuracy at any input
location. If Corr(x,?) is removed, the model with the lowest
fidelity will always be selected for response evaluation since it
has the smallest cost. If CR(?) is removed, the high-fidelity
model will always be selected for response evaluation since
it can obtain the maximum improvement of response predic-
tion accuracy. If 7(x, £) is removed, samples may get clustered,
decreasing the optimization efficiency. In addition, if only a
single model is used for response prediction, EEI will be au-
tomatically degenerated to the original EI function.

Note that apart from the EEI criterion defined in (26), other
formulations certainly can be adopted to balance among the
model correlation, computational cost, and the sample density
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Table 1 Function descriptions
Functions

No.

3(x) = sin(x) 4 0.2x + (x—0.5)*/16 4 0.5
2(x) = (x-0.5)(x—4)(x—9) /20 + 2
Y(x) = sin(x) + 0.2x 4 0.5

[

3 5 _ (1—3%) (IOOOzf X x7 + 1900x7 + 2092x; + 60)

<
|

S ( 1—eﬁ) (IOOOtf X x3 + 1900x3 + 2092x; + 60)

1000¢/ x x3 4+ 500x% + 4x; + 20

§ (1_(3%) (1000;;‘ X 13 + 1900x3 4 2092x; + 60) SetxM2

1000#/ x x% + SOOx% + 4x; + 20 x§+th +1
552
1

x%ﬂh +1

10x7 + 4x3
50xx; + 10

1000#/ x x3 + 500x% + 4x; + 20

if =0.2,th=0.3,1 = 0.1;x1,x,€0, 1]
4 Aerodynamic modeling of wrap-around fin

property. For example, when their ratios have significantly
different orders of magnitude, the small one may not be con-
sidered in the EEI criterion. In this case, the designer can
analyze this influence via sensitivity studies and propose an
effective formulation such as assigning different powers to the
three factors based on their orders of magnitude. Different
formulations used in the EEI criterion would not influence
the procedure of other posterior analysis of the FC method.

Both the location of new input X,,,, and the corresponding
model ¢,,, called to evaluate the response at x,,,, are deter-
mined through maximizing the EEI function.

The optimization scheme stops when the current obtained
optimal EEI objective value is smaller than a specified value

v, L.e.

max EEI(x,?) < v = a% x [max(d)-min(d)], (34)
where + is the so-called “relative stopping criterion” (Huang
etal. 2006), which is defined as % of the “active span” of the
collected response data d; max(d) and min(d) respectively
represent the maximum and minimum elements in the current
collected response data set d; max(d) —min(d) is the “active
span” of the responses; a% is selected as o« % =0.05% in our

(Xnews faqd) = max EEI(x, 1) (33) study, corresponding to 95% confidence interval.
x.t Clearly, x,,.,, and ¢,,; found by the proposed EEI criterion
can make a good balance among the response accuracy im-
provement, the computational cost, and the sample density
Table 2 Errors and time costs of
FC, KOH and BM for example 1 FC KOH BM
RMSE Time(s) RMSE Time(s) RMSE Time(s)
Nested No.1 0.1023 36.02 0.1296 19.45 0.2070 12.02
No.2 0.1024 38.1 0.1295 19.95 0.2072 16.24
No.3 0.1022 37.5 0.1297 21.58 0.2075 11.27
No.4 0.1021 355 0.1298 20.46 0.2065 11.08
No.5 0.1025 34.2 0.1299 21.05 0.2069 12.84
Mean 0.1023 36.23 0.1297 20.5 0.2070 12.70
Non-nested No.l 0.1025 38.21 0.1326 18.99 0.2100 13.16
No.2 0.1024 35.55 0.1325 28.54 0.2098 16.88
No.3 0.1021 37.5 0.1324 23.44 0.2107 16.5
No.4 0.1026 39.82 0.1327 24.73 0.2102 16.45
No.5 0.1027 41.25 0.1328 19.58 0.2103 14.85
Mean 0.1025 38.466 0.1326 23.06 0.2102 13.57
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nested sampling
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Fig. 2 Predicted responses from different models of example 1 (nested)

property, i.e. X, and #,4, try to improve the accuracy of the
cokriging metamodel as much as possible with as little com-
putational cost as possible.

4 Comparative studies

Three numerical examples and one engineering problem
(shown in Table 1) are employed to test the effectiveness of
the proposed hyper-parameter estimation method (FC) during
cokriging metamodeling, which is compared to KOH and
BM. Then, sequential optimization employing FC and EEI
is then conducted to obtain the optimal solutions. For all the
examples, it is assumed that s = 3 levels of fidelity y'(x), 1*(x),
2(x) exist.

4.1 Validation of FC for hyper-parameter estimation

Firstly, the FC hyper-parameter estimation method is tested.
To evaluate the accuracy of the constructed cokriging
metamodel, the root-mean-square mean (RSME) error is com-
puted. A smaller RMSE corresponds to a more accurate
cokriging metamodel. The RSME is calculated as

RSME = \/X(5(x,) 9 (%,))*/1, (35)

where x,, are the test sample points generated randomly and
uniformly in the design region of the input x with the number

non-nested sampling

non-nested sampling

as n, = 1000; y(xp) and y*(x,,) are the response predictions at
test input set X,, obtained by the cokriging model and the
response model with the highest-fidelity level, respectively.

4.1.1 Numerical example 1

The input sample points for the three models y' (x), y*(x), y*(x)
are selected with ny =5, n, =10, and n; =20, satisfying the
nested property D; € D, € D;. The non-nested input sample
points are also generated uniformly with the same size. For
both cases in all the examples, several different sets of input
sample points are tested repeatedly with the same settings to
test the robustness of the FC method, based on which the
mean values of RMSE and time cost are calculated. In addi-
tion to the accuracy of cokriging, the time cost in estimating
the hyper-parameters on a personal computer (Intel Corei7-
4710HQ, CPU 2.50GHz) is also computed. The results are
shown in Table 2, from which some noteworthy observa-
tions can be made. Firstly, for both nested and non-nested
sampling strategies, the accuracy of cokriging metamodel
constructed by FC is the best, followed by KOH and then
BM. Specially, the RMSE of BM is almost twice that of FC.
Secondly, for the time cost, FC is the most time-consuming,
followed by KOH and then BM. The interpretation is that
for FC, the correlation of the data from all the models is
computed and fully utilized during the hyper-parameter es-
timation. Thus the accuracy of FC is improved compared to

non-nested sampling

95%CIL
A HF points

>4

—--BM
gt ¥3
""" HF model
95%CI
A HF points

Fig. 3 Predicted responses from different models of example 1 (non-nested)
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Table 3 Errors and time costs of
the three approaches for FC KOH BM
example 2
RMSE Time(s) RMSE Time(s) RMSE Time(s)
Nested No.1 0.0219 46.68 0.0452 21.48 0.1212 17.41
No.2 0.0218 48.25 0.0449 19.95 0.1218 18.34
No.3 0.0223 475 0.0461 22.55 0.1224 15.64
No.4 0.0221 47.80 0.0455 20.40 0.1199 17.58
No.5 0.0220 48.75 0.0454 21.45 0.1198 17.54
Mean 0.0220 47.80 0.0454 21.17 0.1210 17.30
Non-nested No.1 0.0216 40.45 0.0514 19.21 0.1217 15.54
No.2 0.0214 42.58 0.0508 19.95 0.1218 16.8
No.3 0.0212 45.54 0.0511 18.70 0.1211 17.5
No.4 0.0218 41.24 0.0515 18.25 0.1223 14.25
No.5 0.0219 41.28 0.0516 183 0.1225 14.5
Mean 0.0216 42.22 0.0513 18.88 0.1220 15.72

the other two approaches. However, in solving the MLE, a
covariance matrix of large size (35 x 35 for this example) is
involved for FC, resulting in an evident increase in compu-
tational cost; meanwhile, no large-scale matrix operations
are involved for KOH and BM. Thirdly, compared to the
results for nested sampling, the errors with the non-nested
sampling for KOH and BM are slightly larger; meanwhile
for FC, the two sets of results are very close to each other.

nested sampling

nested sampling

The reason is that when the sample points for different
fidelities are not nested, a GP model has to be constructed
based on the collected data for each lower-fidelity model
Y'(x) (t=1,...,s-1) for KOH and BM, which apparently
would induce certain error. Since this example is relatively
simpler, the GP models constructed are generally accurate.
So for KOH and BM, the difference of results between
nested and non-nested sampling is very small. In addition,

nested sampling

> > 1
0.5 —y3
£ 95%CI B\ A b HF model A\ /! HF model A\
N HF model P L 95%Cl1 A oF 95%CI i
0s ) A y3 Poim ) ) 0s ) A HF‘poims ) ) 0s A HF Points ) )
0 1 2 3 4 577 1 2 3 4 5770 1 2 3 4 5
X X X

Fig. 4 Predicted responses from different models of example 2 (nested)

non-nested sampling

non-nested sampling

non-nested sampling

“T--FC

—y3
95%CI
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""" HF model 95%CI 95%CI
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- - 0.5 - . - y 0.5 . y
0 2 3 2 3 4 0 1 2 4

X

X

Fig. 5 Predicted responses from different models of example 2 (non-nested)

@ Springer

X



Sequential optimization using multi-level cokriging and extended expected improvement criterion 1165

Table 4 Results of the three approaches for example 3

FC KOH BM

RMSE Time(s) RMSE Time(s) RMSE  Time(s)
No.1 1.3824 5945 24521 2830 3.0114 2450
No.2 14421 5825 2.5613 2495 33873 18.34
No.3 14762  57.5 2.8241 27.55 32448  23.62
No.4 1.4018 57.80 2.1149  28.40 32808 2421
No.5 1.4767  58.75 22086 2645 33017 17.54
No.6 13762  60.25 2.9548  30.80 3.1207 16.55
No.7 1.4028  54.55 2.8685 30.51 33844 16.85
No.8 14602  52.62 2.8465  29.55 33809 15.24
No.9 1.4967  64.58 24558  25.05 34208 16.88
No.10  1.4458  59.55 2.5503 24.85 3.4405 1844
Mean  1.4361 58.33 2.5837 27.64 32973 19.22

the variation of RSME is relatively small, indicating the
robustness of FC as well as other two methods.

The predicted responses from the constructed cokriging
models by FC, KOH and BM with nested and non-nested
sample points with one of the five sample sets are shown in
Figs. 2 and 3 (see the dot dash line), where the 95% confi-
dence interval (CI) for the prediction of each cokriging model
is also plotted. Meanwhile, the true response from the highest-
fidelity model (denoted by y*) and predicted response from the
kriging model constructed with only the data from the highest-
fidelity model y* (denoted by HF) are also shown in Figs. 2
and 3 for comparison.

It is found from these figures that generally the prediction
responses of the cokriging models by FC are slightly closer to
the true response (y°) yielding smaller errors, compared to
KOH and BM; and both KOH and FC are more accurate than
BM. This exhibits great agreement to the results shown in
Table 2. Meanwhile, compared to the curves (HF) produced
by using only the highest-fidelity data, the cokriging models
are much more accurate due to the fusion of the lower-fidelity
data.

1

Fig. 6 Predicted responses from different models of example 3
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4.1.2 Numerical example 2

Similarly, nested and non-nested sample points with n3 =4,
n,=11, and n; =21 are selected to test the effectiveness of
the proposed FC for hyper-parameter estimation. The results
of the three methods are shown in Table 3.

The constructed cokriging models by FC, KOH and BM,
as well as the HF model constructed with only the data from
»*(x) and the true response ) are shown in Figs. 4 and 5.

Similar observations can be made from Table 3 and the
figures above that FC performs best with smaller errors, more
accurate predicted output response curves and smaller
metamodel uncertainty, compared to KOH and BM. The re-
sults of FC are the most accurate, followed by KOH and BM.
For the time cost, FC is the most time-consuming, followed by
KOH and then BM.

4.1.3 Numerical example 3

Since it is not easy to directly generate nested sample points as
the one-dimensional examples above, only the non-nested
samples are tested. For approach that can generate nested
sample points, the readers can refer to Ref. (Skilling 2006).
Latin Hypercube sampling (LHS) is used to select the input
sample points with n3 =8, n, = 15 and n; = 20. The results are
shown in Table 4.

The constructed cokriging models by FC, KOH and BM,
as well as the model constructed with only the data from y*(x)
(HF) and the true response y° are shown in Fig. 6. For the two-
dimensional problem, the results exhibit great agreements to
what has been observed above that the accuracy of FC is
clearly the best, followed by KOH and then BM; and FC is
the most time-consuming, followed by KOH and then BM. As
Table 4 shows, RMSE of FC is much smaller than the other
two approaches. Meanwhile, the response surface produced
by FC is clearly much closer to the true response surface y°,
yielding smaller metamodel uncertainty.

Il BM
Il HF model

Il KOH
I HF model

00
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Fig. 7 The geometric profile of o
the rocket - il 4

R \

™ {
9
I3 ’, R ¥
4
N

4.1.4 Aerodynamic modeling of wrap-around fin

In this part, the cokriging method is employed to construct the
aerodynamic metamodel for a rocket with wrap-around fins
(shown in Fig. 7), under the flight condition with Mach num-
ber as Ma =4 and angle of attack as & = 6. The input vector is
x=[D, A\, t, R, @, L, xo], which is presented in Table 5.

CFD is employed for the aerodynamic analysis. Since this
work focuses on investigating the effectiveness of FC in
cokriging modeling and it is very time-consuming to run
CFD here, we did not dig into setting up various CFD simu-
lation models with different fidelities but directly utilized the
CFD data provided in Ref. (Xue 2010) to create models with
different fidelities. Generally, as the number of sample points
increases, the accuracy of the kriging model is improved.
Hence, the models with 3 levels of fidelity y'(x), y*(x), y*(x)
are replaced by different kriging models that are respectively
constructed based on different numbers of CFD data (10, 20
and 32). Then the LHS method is employed to generate sam-
ple points for the three models yl(x), yz(x), y3 (x) with n; =40,
n, =20 and n3 = 10. The results are presented in Table 6, from
which similar observations can be made that for the higher-
dimensional problem, FC performs best with the smallest er-
rors; while for the time cost, FC is the most time-consuming,
followed by KOH and then BM.

4.2 Sequential optimization

Then, the cokriging based sequential optimization method
(named as cokriging-M) employing FC for hyper-parameter
estimation and EEI for sequential sampling is applied to opti-
mization. The sequential kriging method constructed based
only on the high-fidelity data that employs the original EI to
sequentially generate samples (denoted as kriging), and
cokriging employing FC for hyper-parameter estimation that
is updated with only the high-fidelity data identified by EI
(denoted as cokriging-H) are also employed for optimization,
of which the results are compared to cokriging-M.

For the three approaches, the same convergence criterion in
inequality (34) is employed. For the mathematical examples
and the wrap-around fin example, since they are just used to
test the effectiveness of the proposed sequential sampling
method, the models from low to high fidelities ('(x), 1*(x),
YX)...... ) involved are all very computationally cheap, yield-
ing almost the same computational costs. Thus, C cannot be
assigned directly as the computational time of a single model
evaluation. In our work, the cost C for these examples is
roughly assigned based on the accuracy of the model. As the
accuracy of the model improves, C assigned to this model is
increased, which evidently accords with the practical situa-
tion. Although, it is a little subjective to determine the values
of C (C°, C* and C") in our work and different values may

Table 6  Results of three approaches for wrap-around fin aerodynamic

Table 5 Input vector and the bounds modeling

Symbols Explanations LB UB FC KOH BM

D diameter of the missile body (mm) 125 200 RMSE Time(s) RMSE Time(s) RMSE  Time(s)

Aa slenderness of the missile body 10 30

; thickness of the wrap-around fins (mm) 5 g No.1 2.0478 92.83 24521 5946 3.0114 4821

R radius of curvature of the middle of 125 200 No.2  2.1149 9645 27688  63.58 3.1816  58.82
cambered surface (mn1) No.3 24511 101.63  2.8241 5544 3.2448  53.62

d center angle of the wrap-around fins (°) 40 70 No.4 1.9629 91.24 2.1149  57.82 29655 4421

L root-chord (mm) 400 700 No.5 1.9614 88.62 22086 56.78 29226 5578

Xo wing leading edge sweep angle (°) 15 30 Mean  2.1027 94.15 24737 58.61 3.0652 52.13
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(C) Cokriging updated with 5

yield different total computational cost, but similar optimal
solutions. Therefore, the values of C does impact the verifica-
tion process and conclusions. For brevity, only the results
about the maximization of examples 2 and 3 are shown here.
For the problem of maximizing example 2, the numbers of
uniformly generated initial samples for the three multi-fidelity
models are ny =8, ny =5, n3 =4. It is assumed that the cost of a
single model evaluation of y°, y* and y' is C* =15, C* =2 and
C' =1, respectively. The cokriging model constructed by FC
using the initial samples are shown in Fig. 8a and the cokriging
models sequentially updated with new samples generated by
the proposed EEI sampling criterion are shown in Fig. 8b—d.

25

4 1 2 3 4
X

new samples (d) Cokriging updated with 8 new samples

It is observed that with the increase of the number of sam-
ples, the predicted response of the cokriging model is getting
closer to that of the high-fidelity one (), and the uncertainty
of the cokriging model is reduced. With EEI, 2 samples from
y' and 1 from y? are sequentially identified to update
the cokriging model (see Fig. 8b). The uncertainty of the
cokriging model in the latter half of the design region is slight-
ly reduced with the maximum uncertainty value reduced from
0.0075 to 0.0049, while error exists around the optimum.
Subsequently, 1 sample from y' and 1 from )* are identified
to update the cokriging model, shown in Fig. 8c. Clearly, the
accuracy in the middle design region of the updated cokriging
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Fig. 9 Sequential samples without considering sample density (example 2)
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Table 7 Optimal solution and computational cost of three approaches
(example 2)

Methods Evaluation number Total cost  x* y¥
YO Y@ Fas)
Cokriging-M 11 10 4 91 2.4999  1.9999
Cokriging-H 8 5 6 108 2.5004  1.9999
Kriging - - 7 105 2.52 1.9998
Real opt. - - - - 2.5 2
4 ‘
-yl
B8 | 2
e —y3
3 .. |_®_optimum solution ||

Fig. 10 Plots of 3-level fidelity models y3(x), yz(x) and yl(x)

Fig. 11 Initial and updated 95%T
cokriging models (example 3) 15 Il FC
y3
10 optimum solution

0.5

0.4
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model is increased, especially for the region around the opti-
mum. Finally, 3 new samples from y* that are all close to the
optimum are sequentially generated to further improve the
accuracy of the cokriging model around the optimum (see
Fig. 8d), until the convergence criterion (see inequality (34))
is satisfied. Meanwhile, as can be seen from Fig. 8d, in the
front half of the design region, evident discrepancy exists
between the predicted responses of the final cokriging model
and the high-fidelity model y*, which however does not affect
the proposed optimization procedure to find the optimal solu-
tion (x* =2.4999, y* =1.999).

With the same initial samples and convergence criterion,
EEI in (26) without including the sample density function
n(x, £) is also employed for sequential optimization, of which
the cokriging models sequentially updated by 13 samples are
shown in Fig. 9a—c. Clearly, it is noticed that the added
samples (7 from y* and 6 from y') cluster around the opti-
mum and the latter half of the design region. Although the
optimal solution is accurate enough (x* =2.4998, y* =
1.999), the total cost from the added samples is 20(7%2 +
6*1), while it is 14(5%2 + 4*1) for the proposed EEI sam-
pling strategy. The interpretation is that adding dense and
clustered samples has little effect on improving the accura-
cy of the metamodel, and adding too many samples far from
the optimum is of little help to find the optimum. These
results demonstrate the effectiveness of integration of the
sample density functionn(x, 7).

The optimal solutions and the cost are listed in Table 7, from
which it is found that the optimal design variable x* and

95%T
15 [ e
3
10 ¥

optimum solution
@ (b)

0.6 0.8

y3

new y3 points
new y2 points
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objective function y* obtained by the three approaches are all
very close to the real optimal solutions, while the proposed
sequential optimization method is more efficient than the other
two methods. From Table 7, it is also noticed that no sample
from the highest-fidelity model y*(x) is selected during sequen-
tial sampling. The interpretation is that the objective-oriented
sequential optimization prefers to select samples from y*(x) to
improve the accuracy of metamodel near the optimum rather
than )*(x), since the accuracy of y*(x) around the optimum is
clearly very close to y*(x) (see Fig. 10), while its cost is cheaper
(C*=2, C" = 1). Therefore, the method chooses all the samples
from 1(x) and y'(x) to make the least cost.

For the problem of maximizing example 3, it is assumed
that the cost of a single model evaluation of y*, y* and y' is
C*=10, C*=2 and C' =1, respectively. The initial samples
are selected with n3 =6, n, =8 and n; =10, based on which
the initial cokriging model is constructed, as shown in
Fig. 11a. Clearly, large discrepancy exist between the predict-
ed response of cokriging and the high-fidelity model y°.
Samples sequentially identified with EEI and the updated
cokrigings are shown in Fig. 11b—c. From Fig. 11b, it is ob-
served that with the evolution of sequential optimization, the
accuracy of the cokriging is clearly improved, with uncertain-
ty clearly reduced. Meanwhile, as shown in Fig. 11c, many of
the added samples are close to the optimum (indicated by
star). The contour map of the final cokriging model is illus-
trated in Fig. 11d, from which it is also found that with the
evolution of the sequential optimization, the added samples
grow closer to the optimum, which is of great help to finding
the optimum.

The optimal solutions and the cost are listed in Table 8,
from which it is found that the optimal design variables and
objective function obtained by the three approaches are all
very close to the real optimal solutions, while the proposed
sequential optimization method is clearly more efficient than
the other two methods.

Table 8  Optimal solution and computational cost of three approaches
(example 3)

Methods Total — x* y¥

cost

Evaluation number

Y'Y Y19

Cokriging-M 16 14 12 164 (0.2051,0.0426)  13.3606
Cokriging-H 10 8 18 206 (0.2108,0.0578) 13.3458
Kriging - - 20 200 (0.2311,0.0768)  13.2298
Real opt. - - - - (0.2051,0.0256)  13.3607

0.1 . .
— B-spline fit
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Fig. 12 B-spine parameterization for the airfoil

5 Application to drag minimization
of the NACA 0012 airfoil

The proposed sequential optimization method is applied to a
benchmark aerodynamic design problem simply based on the
AIAA aerodynamic design optimization discussion group
(Ren et al. 2016), which is a viscous case. It aims at maximiz-
ing the lift-to-drag radio L/D of the modified NACA 0012
airfoil section at a free-stream Mach number of M. =0.8 and
an angle of attack a=2.5", subject to the thickness constraint.
The optimization problem is stated as

(X, L(x)/D(x) (36)
S.t.z (X) max = Zmaxbaseline

where x is the vector of design variables, depicted in de-
tail below; z(X)max 1S the airfoil maximum thickness and
Zmaxbaseline (Zmaxbaseline = 0-12) 18 the maximum thickness of
the original baseline airfoil.

In this work, the B-spline curve (Farin 1993) with 10 control
points is employed for the shape parameterization, where the
horizontal locations of the 10 control points are fixed as /=[0.1
0.30.50.70.90.90.7 0.5 0.3 0.1] and the vertical locations are
free to move, as shown in Fig. 12. The original airfoil is

[
Fig. 13 Views of the airfoil with the mesh D
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Table 9  Grid density convergence study for the NACA0012 airfoil

Mesh index Grid size L/D Simulation time (s)
A 64 x 64 8.3271 37.5

B 128 x 128 8.4728 68.5

C 256 x 256 8.5944 152

D 512x 512 8.6652 3245

E 1024 x 1024 8.6684 2208

considered as the baseline with the vertical locations of the 10
control points as Zpasetine = [0.04698 0.06000 0.05216 0.03667
0.01450-0.01450 -0.03667 -0.05216 -0.06000 -0.04698]. The
vertical locations of the 10 control points are considered as
design variables x = [x1,...,x10] = [21,---sZ10]-

CFD is employed for aerodynamic analysis and a mesh
with size 512 x 512 is generated using the integrated computer
engineering and manufacturing code for CFD in the Ansys
software as shown in Fig. 13. The mesh density is controlled
by both the numbers of cells on and normal to the airfoil
surface. It should be noted that the density of the mesh signif-
icantly impacts the simulation time cost and the accuracy of
CFD analysis result. As shown in Table 9, when the
mesh density is increased from mesh D to mesh E, the result
of L/D does not change clearly. So for this application exam-
ple, CFD with mesh D is considered as the highest-fidelity
model y3(x), CFD with mesh C as the intermediate-fidelity
model yz(x), and CFD with mesh B as the lowest-fidelity
model yl(x).

Table 10  Comparative results of the three approaches

0.1

0.05¢

0.051

01 . . . .
0 0.2 0.4

Fig. 14 The airfoil curve after optimization

Cokriging-M, cokriging-H and kriging are all employed
to solve this optimization problem in (36). Furthermore,
the optimization is also conducted directly on the CFD
simulation model with mesh D (i.e. the highest-fidelity
model) without employing any metamodel technique (de-
noted as direct), to verify the accuracy and effectiveness of
the proposed cokriging-M. For cokriging-M, cokriging-H,
kriging and direct, the genetic algorithm is used for
searching the optima. For this drag minimization engineer-
ing problem, it is a practical problem and thus the models
with different fidelities yield clearly different computation-
al time (see Table 9). For this reason, C is directly set as the
computational time of a single model evaluation for each
model. Based on Table 9, it is obtained that the cost for y3,
y*and y' is C* =324.5 (s), C* =152 (s) and C' = 68.5 (s).

Methods Evaluation number Cost (min) Xopt L/D g Z(X)max
51 2 5
Cokriging-M 74 53 46 468 [0.042204 0.059528 14.4906 0.1273
0.054698 0.039769
0.018209  —0.015566
—0.039573  —0.05455
—0.057029 —0.044078]
Cokriging-H 50 40 72 548 [0.042204 0.055538 14.3021 0.1237
0.054698 0.039769
0.018209 -0.016154
—0.033246  —0.053171
—0.059029  —0.044082]
Kriging - - 119 643 [0.042204 0.055538 13.0776 0.1228
0.054698 0.037713
0.018209 —0.015566
—0.036004 —0.05655
—0.57584 —0.048778]
Direct - - 907 4905 [0.042204 0.059128 14.6180 0.1272
0.054198 0.039769
0.018209 —0.015566
—0.038683  —0.055124
—0.056329  —0.044078]
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M7

)
(a) Cokriging -M

Fig. 15 Static pressure contours from baseline and cokriging-M

For cokriging-M and cokriging-H, n3 =20, n, =40, and
ny; =50 sample points are respectively generated by LHS
to run the three selected multi-fidelity CFD models for
initial cokriging modeling; meanwhile, for kriging, n; =20
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Fig. 16 Pressure coefticient distribution from baseline and cokriging-M
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Fig. 17 Wall shear stress of cokriging-M and baseline
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high fidelity samples are generated by LHS to construct the
initial model.

The results are shown in Table 10, including the optimal
design variable X, its objective function L/D,, and con-
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straint Z(Xopt)max, as Well as the computational cost. From
Table 10, it is found that X, and L/D,,; obtained by the three
approaches are all very close to those generated by direct;
while generally the results of proposed cokriging-M are slight-
ly closer to that of direct yielding smaller errors, and are more
efficient than the other two methods. In the optimization
process, direct requires 907 highest-fidelity model evalua-
tions, while cokriging-M just needs 46 along with 53
intermediate-fidelity model evaluations and 74 low-
fidelity ones, with much less total computational cost
(468) compared to that of direct (4905). L/D of the airfoil
obtained by cokriging-M is clearly improved after optimi-
zation compared to the original one. These results further
demonstrate the effectiveness of the cokriging based opti-
mization method proposed in this paper.

The airfoil curves after optimization by the proposed
cokriging-M method and other approaches are shown in
Fig. 14, from which it is found that compared to the baseline
airfoil, the curvature and thickness of leading edge of the
upper surface obtained by cokriging-M are both reduced,
resulting the increase of the lift. Meanwhile, it is observed that
the location of the maximum thickness of the airfoil moves
backwards (baseline: /=0.3; optimized: /=0.37), which can
make the turbulent transition delayed, and then reduce the
drag. Therefore, the lift-to-drag ratio obtained by the proposed
cokriging-M is increased ultimately.

In addition, Fig. 15 shows the static pressure contours. It is
found that the static pressure of the upper surface optimized by
cokriging-M is smaller than that of the baseline airfoil (the
area in blue is larger for cokriging-M); while the static pres-
sure is smaller for the lower surface (the area in green is larger
for cokriging-M), which means that the lift of the optimized
airfoil by cokriging-M is increased. In Fig. 16, the pressure
coefficient distributions from cokriging-M and baseline are
also shown, from which it is noticed that the pressure coeffi-
cient for the upper surface is reduced after optimization;
meanwhile the pressure coefficient for the lower surface is
increased, resulting in increased pressure differentials, i.e. in-
creased lift. The results in Figs. 15 and 16 show great agree-
ments on the optimal lift coefficient obtained by the proposed
method, which is increased from 0.34922 (baseline) to
0.492546 (optimized). Fig. 17 illustrates the wall shear stress
of the upper and lower surfaces, where the wall shear stress
optimized by cokriging-M is generally smaller than that of the
baseline. Since the viscous drag force is the integration of the
wall shear stress, the drag is clearly reduced after optimization
with cokriging-M, exhibiting great agreement to the obtained
optimal drag coefficient 0.033991 that is clearly reduced com-
pared to the baseline 0.040307.

@ Springer

6 Conclusions

In this paper, a cokriging based sequential optimization meth-
od is proposed. With the proposed approach, the covariance
among data from all the multi-fidelity models is fully utilized
in estimating the hyper-parameter through establishing a uni-
fied maximum likelihood function to improve the accuracy of
cokriging modeling. Moreover, an extended expected im-
provement sequential sampling criterion considering the sam-
ple cluster issue is developed to more reasonably identify the
location and fidelity level of the next response evaluation with
reduced computational cost. Through comparative studies, it
is noticed that the proposed method can make more accurate
cokriging response prediction than the existing popular multi-
level cokriging modeling approaches due to the consideration
of the full correlation of all the data, which however requires
longer computational time of modeling. Meanwhile, it is more
computationally efficient compared to some existing sequen-
tial optimization methods. The effectiveness and advantage of
the proposed method are further demonstrated using an AIAA
benchmark aerodynamic optimization problem.
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