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Abstract
This article addresses the problem of piezoelectric actuator design for active structural vibration control. The topology
optimization method using the Piezoelectric Material with Penalization and Polarization (PEMAP-P) model is employed in
this work to find the optimum actuator layout and polarization profile simultaneously. A coupled finite element model of the
structure is derived assuming a two-phase material, and this structural model is written into the state-space representation.
The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the
controllability for a given vibration mode. The optimization of the layout and poling direction of embedded in-plane
piezoelectric actuators are carried out using a Sequential Linear Programming (SLP) algorithm. Numerical examples are
presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic
Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the polarization
profile.

Keywords Topology optimization · PEMAP-P · Piezoelectric actuator · Controllability Gramian

1 Introduction

Piezoelectric materials are characterized by the capability
of converting electrical energy into mechanical energy and
vice-versa. This class of materials has been widely used
in several engineering applications, as static shape control,
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micro electromechanical systems (MEMS) and energy
harvesting devices (Irschik 2002; Priya 2007). In particular,
the use of piezoelectric actuators (embedded or bonded)
in host structures is usually considered effective for active
vibration control.

Several aspects must be taken into account in order to
achieve a desired control performance, including the actu-
ator design and placement. The actuator design employing
topology optimization method is a suitable procedure
since it is considered a powerful tool when looking for
performance improvements at the conceptual design stage.

For multi-material problems, some topology optimiza-
tion approaches have been developed. For instance, Bendsøe
and Sigmund (1999) proposed a mixture rule in the Solid
Isotropic Material with Penalization (SIMP) method based
on the material distribution concept. Yin and Ananthasuresh
(2001) proposed an interpolation model for multi-phase
materials considering a linear combination of normal dis-
tribution functions in a way that only one design variable
is used for each element. However, this material model
becomes highly nonlinear when more than two solid phases
are involved. Recently, Zuo and Saitou (2017) presented a
piece-wise interpolation model for the multi-material opti-
mization without introducing any new variables.
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Piezoelectric and dielectric properties also need to be
interpolated for problems in which one phase is a piezo-
electric material. Silva and Kikuchi (1999) proposed the
Piezoelectric Material with Penalization (PEMAP) model,
which is an extension of the SIMP model where the
power law is also used to interpolate these properties. This
approach has been extensively used to design piezoelectric
transducers. Carbonari et al. (2007) formulated a simulta-
neous topology optimization problem for the host structure,
piezoceramic domain and piezoceramic rotation angles con-
sidering both the maximization of output displacements or
forces. Wein et al. (2009) dealt with the topology opti-
mization problem of piezoelectric actuator patches aiming
to maximize the resonance response under harmonic exci-
tation. Silveira et al. (2015) and Gonçalves et al. (2016)
studied the actuator topology design using controllabil-
ity measures. They predefined the electrode configuration
imposing null-polarity phases separating areas of different
independent electrodes in order to avoid short-circuiting.
However, this null-polarity domain is arbitrarily chosen
and, therefore, can lead to poor quality solutions. Kang
et al. (2011) included a new design variable to represent
the spatial distribution of the control voltage. By some
means, this work is connected with the electrodes polarity
problem.

Based on the PEMAP model, Kögl and Silva (2005)
introduced another design variable for the piezoelectric
polarization of the material. This is the so-called PEMAP-
P (Piezoelectric Material with Penalization and Polariza-
tion) model. Nakasone and Silva (2010) combined the
PEMAP-Pmodel with the Rational Approximation of Mate-
rial Properties (RAMP) (Stolpe and Svanberg 2001) to
reduce numerical instabilities as gray scale appearance and
localized modes in dynamic problems. Luo et al. (2010)
studied the topology optimization of a multi-phase compli-
ant actuator considering the design of both host structure
and piezoelectric parts. Kiyono et al. (2012) combined the
PEMAP-P model with the Discrete Material Optimization
(DMO) (Lund 2009) approach to consider also the fiber ori-
entation for the design of laminated piezocomposite shell
transducers. The polarization profile optimization was stud-
ied by Donoso and Bellido (2009) considering a fixed host
structure and, recently, along with the host structure opti-
mization (Ruiz et al. 2016) for the piezoelectric transducers
design.

In this paper, the design of embedded in-plane piezoelec-
tric actuators is carried out by means of an optimization
procedure using the controllability Gramian. The literature
review reveals that, to the best of authors knowledge, there
seems to be no contributions on the controllability-based
topology optimization of piezoelectric actuators consider-
ing its layout and poling direction simultaneously. There-
fore, the concept of topology optimization, based on the

PEMAP-P model, is employed in this work to find both
the layout and polarization profile of piezoelectric actuators
which maximizes the control performance for a target vibra-
tion mode. The topology optimization problem is solved
using a Sequential Linear Programming (SLP) algorithm.
Numerical examples are presented considering the applica-
tion of a Linear Quadratic Regulator (LQR) scheme. The
control is synthesized for the piezoelectric actuators with
both uniform and optimal polarization profiles and their
dynamic responses are compared in order to verify the
performance improvement.

2 Structural modeling

In this work, the goal is to design piezoelectric actuators
in the most suitable way to suppress the vibration of a
single target mode, considering a set of actuators embedded
in a structure with fixed domain boundary. Figure 1a
shows the general problem for topology optimized actuator
design. The physical domain, � = �b ∪ �d , is split
into two parts: a base domain, �b, and a design domain,
�d . The base domain plays only structural role while the
design domain is also responsible for the actuation. As
mentioned above, the design domain is also split into two
parts: a positive-polarized piezoelectric domain, �p, and a
negative-polarized piezoelectric domain, �n. The domain
boundary, � = �d ∪ �n, is composed of two parts: the
Dirichlet boundary with prescribed displacements, �d , and
the Neumann boundary with zero normal stress, �n.

The body has its upper and lower surfaces covered with
thin electrodes, which are subjected to prescribed voltages,
as represented in Fig. 1b where P and E are the poling
and electric field directions. Therefore, it is possible to
produce both tensile and compressive fields in different
regions of the body using the same control voltage and pair
of electrodes.

2.1 Constitutive equations for a three-phase
material

A standard committee of the IEEE published a well-
known description of a piezoelectric media behavior, which
consists of two linear constitutive relations (Meitzler et al.
1988):

Ti = cij Sj − dkiEk (1)

Di = dij Sj + eikEk (2)

where Ek denotes the electric field vector, Ti is the mechan-
ical stress vector, Sj is the mechanical strain vector, and
Di is the electric displacement vector. Moreover, cij , dij

and eij are the elastic, piezoelectric coupling and dielectric



Simultaneous optimization of piezoelectric actuator topology and polarization 1141

(a) (b)

Fig. 1 General problem for topology optimized actuator design: a boundary conditions and b electrode configuration

constants, respectively. These constitutive equations con-
sider linear behavior, which is acceptable when low stresses
and electric intensity fields are applied. Otherwise, piezo-
electric ceramics can present nonlinear behavior, especially
hysteretic effects (Chen and Montgomery 1980).

A linear interpolation is used to describe the constitutive
constants within the physical domain. Therefore, one can
consider the same linear constitutive relations for both
base domain, �b, and design domain, �d . Thus, one
can respectively define elastic, piezoelectric and dielectric
properties by means of:

cij = ρc
pzt
ij + (1 − ρ)cbase

ij (3)

dij = ρ(2ϕ − 1)dpzt
ij (4)

eij = ρ(2ϕ − 1)epzt
ij (5)

Similarly, the interpolated material density can be written
as:

γ = ργ pzt + (1 − ρ)γ base (6)

where ρ and ϕ are variables which define the presence of
piezoelectric material and its poling direction; cbase

ij and

c
pzt
ij are the elastic properties of base and piezoelectric

material; d
pzt
ij and e

pzt
ij are the electromechanical coupling

and dielectric properties of the piezoelectric material; γ base

and γ pzt are the density of base and piezoelectric material,
respectively. According to this material model, a given point
within the physical domain is defined as active piezoelectric
material with positive polarization if ρ = 1 and ϕ = 1,
while negative polarization is defined if ρ = 1 and ϕ = 0.
Consequently, a passive base material is defined if ρ = 0,
as represented in Fig. 1a.

2.2 Finite element model andmodal analysis

The Hamilton’s variational principle extended to a piezo-
electric media (Lerch 1990) is an equivalent description of
the boundary value problem. Assuming proper finite ele-
ment approximations (Allik and Hughes 1970), the global
equations which govern the spatial movement for a dis-
cretized body are written as:

Muuü + Cuuu̇ + Kuuu + Kuφφ = 0 (7)

where u is the displacement vector, φ is the voltage vector,
Muu is the mass matrix, Cuu is the damping matrix, Kuu is
the stiffness matrix,Kuφ is the piezoelectric coupling matrix
and the upper dot denotes time derivative.

The piezoelectric patch can be configured in either
open- or short-circuit, depending on whether the bottom
and upper electrodes are connected. This first type,
also called as sensor configuration, occurs when both
electrodes are disconnected and the voltage depends on the
structural dynamics (Becker et al. 2006). For the short-
circuit configuration, it is assumed that both electrodes
are grounded and, therefore, the generalized eigenvalue
problem is written as:

Kuuψ = ω2Muuψ (8)

where ψ and ω are the eigenvector and the eigenfrequency,
respectively.

The structural model can be truncated to consider only a
few representative modes for the global dynamic response.
Therefore, the displacement vector u is approximated by:

u ≈ �η =
∑

i∈M
ψ iηi (9)

where � is the truncated modal matrix, η is the corre-
sponding vector of modal coordinates, and M is a set
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containing the representative modes. Using this approxima-
tion, one can rewrite (7) into the reduced modal space as:

η̈ + �η̇ + �2η + �TKuφφ = 0 (10)

where � is the diagonal matrix of natural frequencies, and:

� = diag
i∈M

(2ζiωi) (11)

is the modal damping matrix in which ζi and ωi are the
natural modal damping ratio and frequency of the i-th mode,
respectively. The damping matrix is usually unknown when
dealing with continuous problems. Therefore, the definition
of a model in the modal coordinates stablishes an important
advantage since damping properties are conveniently
evaluated in terms of these coordinates (Gawronski 2004).

3 Actuator topology design using
the controllability Gramian

3.1 Controllability of a dynamic system

Since the electrical degrees of freedom φ are the actuator
control voltage, the term �TKuφφ in (10) can be considered
as an external force. Consequently, the equation of motion
can be stated in the state-space representation as the
following system of constant coefficient linear differential
equations:

ẋ = Ax + Bφ (12)

where x is the state vector, A is the system matrix and B is
the control input matrix. In this work, the state variables are
defined as the truncated modal displacements and velocities,
x = {η η̇}T which is a straightforward approach and
present direct physical interpretation (Gawronski 2004).
Thus, the system and control input matrices are respectively
given by:

A =
[

0 I
−�2 −�

]
(13)

B =
[

0
−�TKuφ

]
(14)

where I and 0 are the appropriately dimensioned identity
and zero matrices, respectively.

The system controllability will depend on the structural
dynamics (matrix A) and actuator design parameters,
which are included in matrix B. A structure is considered
controllable if the actuators are able to excite the structural
modes of interest. One way to determine such feature is
using the so-called controllability Gramian (W) (Preumont
2011). It is defined as:

W(τ ) =
∫ τ

0
eAtBBTeA

Tt dt (15)

When dealing with stable systems, we can consider the
stationary solutions, i.e., Ẇ = 0, which allows obtaining
the controllability Gramian by the Lyapunov equation
(Gawronski 2004):

AW + WAT = −BBT (16)

where W = W(∞). The system is controllable, i.e, all
states x can be excited by the control input φ, if and only
ifW is positive definite (Gawronski 2004; Preumont 2011).
The Gramian evaluation requires the numerical solution
of a Lyapunov equation, which is obtained using, for
instance, the Bartels-Stewart (B-S) method (Bartels and
Stewart 1972) or the Hammarling’s method (Hammarling
1991). The latter is an alternative to the B-S method when
the Lyapunov equation is stable and its right-hand side is
semidefinite (Penzl 1998).

3.2 Topology optimization formulation

In most cases, two types of perturbation can excite a flexible
structure: transient or persistent. For a transient perturba-
tion, the control system aims to lead the dynamic system to
a desired space in a given time interval with the minimum
control effort. When dealing with persistent perturbation,
the energy transmitted from the actuators to the structure
should be maximized in order to minimize the perturbation
effects. Hać and Liu (1993) derived controllability indexes
to help finding the optimum actuators placement consider-
ing both transient and persistent problems. However, both
approaches can be used in actuator placement problems for
structures with small damping ratios and well-spaced fre-
quencies (Hać and Liu 1993; Leleu et al. 2000). Considering
an initial condition given by x(0) = x0, the optimum actu-
ator placement is the one which expend less energy to lead
the dynamic system to a desired space x(τ ) = xτ after a
time interval τ . Thus, one can write the following minimum
energy problem (Middleton and Goodwin 1990):

min : F =
∫ τ

0
φT(t)φ(t) dt

s.t. : x(0) = x0
: x(τ ) = xτ

: ẋ(t) = Ax(t) + Bφ(t) (17)

This problem has a known solution, which can be written
in terms of the controllability Gramian (Hać and Liu 1993)
and the minimal energy:

Fmin =
(
eAτx0 − xτ

)T
W−1(τ )

(
eAτx0 − xτ

)
(18)

Then, the minimal energy required to lead the system from
x0 to xτ in a time interval τ is obtained if a norm ofW−1(τ )

is minimized.
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Considering the time integral form in (15), the steady state
solution for the controllability Gramian can be stated as:

W(∞) = W(τ ) +
∫ ∞

τ

eAtBBTeA
Tt dt (19)

This equation can be rewritten as (Hać and Liu 1993):

W(τ ) = W(∞) − eAτW(∞)eA
Tτ (20)

where eAτ depends only on the structure dynamics and the
time interval τ . Moreover, ‖ eAτ ‖→ 0 when T → ∞ for
a stable system. Therefore, the optimum actuator placement
is the one that maximizes some norm of W(∞) (Hać and
Liu 1993).

Following the above-mentioned premise, the proposed
topology optimization formulation aims to maximize the
controllability for a given vibration mode. This formulation
is written in terms of the eigenvalues of W which are
proportional to the energy transmitted from the actuator to
the structure for individual vibration modes (Hać and Liu
1993). Therefore, this controllability measure is suitable for
both transient and persistent perturbations. The optimization
problem is written as:

max
ρ,ϕ

: f = λk

s.t. : g1 =
∑

i∈N ρi

V
≤ CV

: 0 ≤ ρi ≤ 1 i ∈ N

: 0 ≤ ϕi ≤ 1 i ∈ N (21)

where ρi and ϕi are the design variables associated with
the i-th element, λk is the eigenvalue related to the k-th
vibration mode, V is the volume of the physical domain, CV

is a threshold for the piezoelectric material volume and N is
the set containing all elements. It is important to remark that
this formulation is valid for structures with small damping
ratios. Otherwise, the relationship between eigenvalues λi

and energy for individual vibration modes is not directly
found. The controllability Gramian eigenvalues are positive
real numbers (since W is assumed to be positive-definite
throughout the optimization process) obtained by solving
the following problem:

(W − λiI) σ i = 0 (22)

with

σT
i σ i = 1 i ∈ S (23)

where λi is the i-th eigenvalue of W, σ i is its respective
eigenvector, and S is the set containing all states. This
formulation considers truncated modal spaceM to represent
the dynamic behavior of a flexible structure. Spillover
instabilities can occur when a truncated model is used
to synthesize the controller for a continuous structure
(Preumont 2011). However, we are not considering these
undesirable effects in this formulation. A limit to the control

spillover, which refers to the control input exciting vibration
modes that are not included in the truncated model, was
investigated by Gonçalves et al. (2017).

The optimization problem proposed here can be
described as the optimum layout material of three phases
with non-vanishing stiffness. These phases are defined
according to the discrete element-wise design variables ρ

and ϕ. This type of problem is an integer optimization,
i.e., the design variables can assume only values 0 or 1.
However, integer optimization of the continuous problem
is ill posed, and its spatial discretization might not con-
verge with the mesh refinement, i.e., one can find different
topologies for different mesh sizes, thus a unique solution
is nonexistent. Therefore, a relaxed continuous optimization
is formulated by introducing a constitutive parameterization
which allows the design variables to assume intermediate
values in the interval ρmin ≤ ρi ≤ 1 and 0 ≤ ϕi ≤ 1, where
the subscript refers to the i-th design variable and ρmin is a
small lower bound, commonly imposed to avoid singularity
issues when solving the equilibrium problem through FEM
(Bendsøe and Kikuchi 1988; Bendsøe et al. 2004). For this
particular problem, the lower bound for the design variables
ρ is set in order to avoid singularity problem when cal-
culating the controllability Gramian W, since this process
requires the knowledge of input matrix B that depends on
the piezoelectric coupling matrix which would be singular
for ρi equals to zero.

Although this relaxed version of the optimization prob-
lem is efficient for many applications, it can present a solu-
tion with a large number of intermediate design variables,
which is usually undesirable during the interpretation of the
optimal distribution of material. A well-known method to
force the solution to be as discrete as possible is the so-
called SIMP (Solid Isotropic Material with Penalization)
(Bendsøe and Sigmund 1999; Bendsøe et al. 2004).

Thus, the design variables are penalized as ρ
p
i in order

to push intermediate values toward either 0 or 1. The local
stiffness for ρi < 1 is lowered by specifying an exponent
value p > 1. Hence, there is an additional cost to have inter-
mediate design variables in the final solution. Therefore, the
design parameterization written in terms of the SIMP model
can be expressed as (Bendsøe and Sigmund 1999):

cij = ρpc
pzt
ij + (1 − ρp)cbase

ij (24)

An extension of this approach is the Piezoelectric
Material with Penalization and Polarization (PEMAP-P)
proposed by Kögl and Silva (2005). Thus, the coupling
piezoelectric and dielectric properties are written as:

dij = ρp1 (2ϕ − 1)p2 d
pzt
ij (25)

eij = ρp1 (2ϕ − 1)p3 e
pzt
ij (26)

where p1, p2 and p3 are penalization factors.
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3.3 Sensitivity analysis

First-order optimization algorithms, as the Sequential
Linear Programming (SLP), require the sensitivities of the
objective function and constraints. Since the sensitivities
with respect to both design variables are similar, we denote
v as a variable that represents either ρi or ϕi .

3.3.1 Controllability Gramian sensitivity

Considering the problem presented in (22), eigenvalue
derivatives with respect to v can be obtained by solving a
new eigenanalysis problem for ∂λj /∂v (Wu et al. 2007):
[
σT

j

(
∂W
∂v

)
σ j − ∂λj

∂v

]
γ j = 0 (27)

where γ j is the j -th eigenvector of the derivative
eigenproblem. The sensitivity of the controllability Gramian
is given by the differentiation of (16) with respect to the
design variable v and, therefore, can be obtained by solving
a new Lyapunov equation for ∂W/∂v:

A
∂W
∂v

+ ∂W
∂v

AT = −Qd (28)

where

Qd =
(

∂A
∂v

W + W
∂AT

∂v
+ ∂B

∂v
BT + B

∂BT

∂v

)
(29)

is a matrix which its components are known before solving
each linear programming problem. Sensitivities of system
and control input matrices are respectively given by:

∂A
∂v

=
[

0 0

− ∂�2

∂v
− ∂�

∂v

]
(30)

∂B
∂v

=
[

0

− ∂�T

∂v
Kuφ − �T ∂Kuφ

∂v

]
(31)

3.3.2 Eigenvalues and eigenvectors sensitivity

The sensitivities of the modal matrix and natural frequencies
are evaluated following the method proposed by Wu et al.
(2007) in which the occurrence of repeated eigenvalues is
taken into account. If the solution of (8) has r repeated
eigenvalues ω2

j for j = 1, . . . , r , one can define a matrix

with their respective eigenvectors�re = [
ψ1, . . . , ψ r

]
and,

therefore, the sensitivity of the natural frequency is given
by:
[
�T

re

(
∂Kuu

∂v
− ω2

j

∂Muu

∂v

)
�re − ∂ω2

j

∂v
I

]
γ j = 0 (32)

Unique eigenvalues H = [h1, . . . ,hr ] can be defined by
means of the relationship H = �re

[
γ 1, . . . , γ r

]
, where γ j

are distinct eigenvectors obtained by (32). Denoting Fj =

(
Kuu − ω2

jMuu

)
, one can write the derivative of (8) with

respect to the design variable v as:

Fj

∂ψj

∂v
= −∂Fj

∂v
ψj (33)

where

∂Fj

∂v
= ∂Kuu

∂v
− ω2

j

∂Muu

∂v
− ∂ω2

j

∂v
Muu (34)

The sensitivity ∂hj /∂v is assumed to have the form
∂hj /∂v = zj + Hw, where zj is a particular solution of
(33) which satisfies Fjzj = −(∂Fj /∂v)hj and w is given
by (Wu et al. 2007):

wj = −1

2
h
T

j

(
∂Muu

∂ρi

hi + 2Muuzj

)
(35)

The following extended system of equations was
introduced by Wu et al. (2007) with unknowns zj and μij :

⎡

⎢⎢⎢⎣

Fj M̄1 . . . M̄r

M̄T
1 0 . . . 0
...

...
. . .

...
M̄T

r 0 . . . 0

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zj

μ1j
...

μrj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂Fj

∂v
hj

0
...
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(36)

where M̄j = Muuψj , zj = ∂ψj /∂v is the eigenvector

sensitivity with a solution vector
{
zj μ1j . . . μrj

}T =
{
zj 0 . . . 0

}T.
This sensitivity analysis presented suitable efficiency in

previous studies and for the cases analyzed in this work. A
general review of the sensitivity analysis of eigenvalues and
eigenvectors can be found in Seyranian et al. (1994). For the
specific application in the piezoelectric field problem, Ha
and Cho (2006) proposed a sensitivity analysis and topology
optimization where repeated eigenvalues are also taken into
account.

3.3.3 Material model sensitivity

The gradient of both mass and stiffness matrices are
required to find the sensitivity of modal matrix and
natural frequencies, which can be straightforward obtained.
However, these terms depend on the material model. The
gradients of the effective elastic properties and density are:

∂cij

∂v
=

⎧
⎪⎨

⎪⎩

pρp−1
(
c
pzt
ij − cbase

ij

)
if v = ρ

0 if v = ϕ

(37)

∂γ

∂v
=
⎧
⎨

⎩

γ pzt − γ base if v = ρ

0 if v = ϕ

(38)
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Finally, the gradient of the piezoelectric coupling
properties is required to solve the term ∂Kuφ/∂v in (31):

∂dij

∂v
=

⎧
⎪⎨

⎪⎩

p1ρp1−1 (2ϕ − 1)p2 d
pzt
ij if v = ρ

2ρp1p2 (2ϕ − 1)p2−1 d
pzt
ij if v = ϕ

(39)

where all terms were already defined.

3.4 Optimization procedure

In this section, we discuss some numerical aspects of
the optimization process. A flowchart of the implemented
algorithm for solving the simultaneous problem is presented
in Fig. 2 and some features of this algorithm are described.

The modal analysis is carried out applying a solid FE
model using the formulation of an 8-node brick element
with incompatible modes (Hughes 2012). For the initial
s iterations, only the polarization design variables ϕi are
calculated in order to avoid starting the simultaneous
optimization with null-polarization elements.

The design variables are updated solving a linear
programming (LP) problem which requires both objective
and constraint functions to be linear. Otherwise, they can be

Fig. 2 Flowchart of analysis and optimization procedure

Fig. 3 Structure with embedded piezoelectric actuator and its
boundary conditions

expressed by means of a Taylor series expansion truncated
at the linear term. Then, side constraints should be included
since this approximation is only acceptable for an arbitrary
small neighborhood. These additional constraints, also
called moving limits, are defined as

ρL
i ≤ ρi ≤ ρU

i , i ∈ N (40)

ϕL
i ≤ ϕi ≤ ϕU

i , i ∈ N (41)

where ρL
i and ϕL

i are the lower limits, and ρU
i and ≤ ϕU

i are
the upper limits. The update of the moving limits is carried
out based on the design variables convergence.

The stopping criteria are based on the tolerance
thresholds and take into account the values of design
variables and objective function for the current (k) and
previous iterations, as follows

max
{∣∣∣ρ(k) − ρ(k−1)

∣∣∣
}

≤ tρ (42)

Table 1 Piezoelectric material properties (Rubio et al. 2009)

Elastic constant (1010 N/m2)

c
pzt

11 12.10

c
pzt

12 7.54

c
pzt

13 7.52

c
pzt

33 11.10

c
pzt

44 2.11

c
pzt

66 2.26

Piezoelectric constant (C/m2)

d
pzt

31 − 5.4

d
pzt

33 15.8

d
pzt

51 12.3

Dielectric constant (F/m)

e0 8.85 · 10−12

e
pzt

11 /e0 916

e
pzt

33 /e0 830

Density γ pzt 7750 (kg/m3)
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max
{∣∣∣ϕ(k) − ϕ(k−1)

∣∣∣
}

≤ tϕ (43)

∣∣∣∣∣
f (k)

f (k−1)
− 1

∣∣∣∣∣ ≤ tf (44)

where tρ and tϕ are tolerance thresholds for the design
variables and tf is the tolerance threshold for the objective
function. The optimization solution is assumed as converged
only if all stopping criteria have been simultaneously
reached.

4 Numerical results and discussion

In this section, the proposed formulation is examined by
means of two numerical examples: a cantilever beam and a
fixed beam. The flexible structure with embedded in-plane
piezoelectric actuator analyzed have two phases: passive
base material �b and active piezoelectric material �d =
�p ∪ �n, as presented in Fig. 3. The design domain �d is

Fig. 4 Vibration modes considered in the optimization process

Table 2 Parameters used in the numerical simulations

Geometric parameter (m)

Length 0.600

Height 0.150

Thickness 0.020

Number of elements 2400

Topology optimization parameter

CV 0.120

p 3

p1 3

p2 1

p3 1

s 2

tρ 0.040

tϕ 0.040

tf 0.020

Initial design variables

ρi (for i ∈ N) 0.505

ϕi (for i ∈ N) 0.505

defined according to the solution of the design variables ρi

for i ∈ N. Within this domain, the piezoelectric material
can have positive or negative polarization direction, which
depends on the design variables ϕi for i ∈ N.

The passive base material phase is defined as an isotropic
elastic material with aluminum constitutive properties (E =
71 · 109 N/m2, ν = 0.33, and γ = 2700 kg/m3). A
piezoelectric ceramic PZT-5A is considered as the active
material phase and its elastic, piezoelectric and dielectric
constants are presented in Table 1.

The face with coordinates z = 0 is grounded and the
input voltage is prescribed on the potential face, with z =
thickness, as represented in Fig. 3. Four vibration modes

Table 3 Description of the analyzed cases

Case Design variables Example Obj. function

A ρ Cant. Beam λ1

B ϕ, ρ

C ρ Cant. Beam λ2

D ϕ, ρ

E ρ Cant. Beam λ4

F ϕ, ρ

G ρ Cant. Beam λ5

H ϕ, ρ

I ρ Fixed Beam λ1

J ϕ, ρ

K ρ Fixed Beam λ2

L ϕ, ρ
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Fig. 5 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case A and b case B

(a) (b)

Fig. 6 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case C and b case D

(a) (b)

Fig. 7 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case E and b case F

(a) (b)
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Fig. 8 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case G and b case H

(a) (b)

for the cantilever beam example and two vibration modes
for the fixed beam example, with the lower frequencies,
are considered in the optimization procedure. These modes
and their respective natural frequencies are presented in
Fig. 4. We do not consider the third vibration mode (with
natural frequency f3) for the cantilever beam example
since it is an extensional mode and the solution for the
optimal polarization profile, when considering this mode,
is a uniform distribution. Table 2 furnishes an overview of
the main parameters used for the finite element mesh and
topology optimization procedure.

The initial design variables ϕi for i ∈ N are set
close to 0.500 in order to define elements with either
positive or negative polarization from the first iterations.

Fig. 9 Independent electrode configuration used in Silveira et al.
(2015) along with the actuators designs obtained by the proposed
formulation

Ill-conditioning problem occurs when ϕi = 0.500, then
the variable is assumed to be either 0.495 or 0.505 when
necessary. Tolerance parameters tρ , tϕ and tf were set based
on preliminary works solving the controllability problem.
Several values for stopping the optimization problem were
tested and the only difference observed was the time for
convergence and no gain was obtained in the objective
function for tighter values. Besides that, the interpretation
of the final designs did not change the objective function
value, which confirms we found solutions with a small
amount of design variables with intermediate values. A brief
description of the analyzed cases is presented in Table 3.
It is considered, for each target vibration mode, the fixed
uniform polarization (only ρi is evaluated and ϕi = 1 for
i ∈ N) and the simultaneous optimization where both ρi and
ϕi are evaluated.

It is important to mention that the controllability Gramian
eigenvalues are sorted according to their respective state
and, therefore, vibration mode. Thus, λ1 is related to the first
mode controllability and it is not necessarilly the smallest
eigenvalue.

4.1 Actuator designs

The solutions for the topology optimization problem are
presented in this section. Both design variables distributions
ϕ and ρ are presented as well as a discrete solution, which
is obtained by means of an interpretation of the intermediate
design variables.

Figure 5 presents the solution for the maximization of the
first vibration mode controllability for the cantilever beam
example. A symmetric solution is obtained when solving
the simultaneous optimization. This design is expected since
the optimal actuator placement is closer to the clamped
face. Thus, both tensile and compressive strain fields can be
caused by the actuators.
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Fig. 10 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case I and b case J

(a) (b)

Figures 6 and 7 show the solution for the maximization
of the controllability for the second and fourth vibration
modes, respectively. Symmetric solutions also occur when
solving the simultaneous optimization for these cases. This
pattern does not occur for the last case, as can be observed in
Fig. 8.However, the simultaneousoptimization lead to a solu-
tion where piezoelectric material is also distributed in
two regions close to the clamped face. These regions can
be related to the nodal points of the beam neutral axis.
Different starting points were tested for this case and the
same final topology was obtained for this multi-start test.
There is also no relationship between the non-symmetric
solution and higher vibration modes since we have obtained
symmetric solutions for higher modes of vibration. How-
ever, this type of problem is prone to show local minima
and, therefore, it is important to mention that the proposed
methodology cannot guarantee the global optimality.

For comparison purposes, Fig. 9 shows the actuators
designs obtained by the proposed formulation and the

areas where the piezoelectric properties are neglected in
order to separate the independent electrodes considered
in Silveira et al. (2015). Circular markers highlight areas
where the piezoelectric distribution would be restricted by
this assumption. This comparison is very interesting, since
it highlights the importance of not choosing null polarity
regions a priori.

It is important to remark that we are not designing the
electrode polarity profile. In that case, null-polarity areas
should be imposed in order to avoid short-circuiting, as
presented in Donoso and Sigmund (2016).

Figures 10 and 11 show the solution for the controllabil-
ity maximization of the first and second vibration modes of
the fixed beam, respectively. Symmetric solutions are also
observed when solving the simultaneous optimization for
these cases.

Figures 12 and 13 present the convergence histories for
the analyzed cases. The most important feature of the for-
mulation is that the simultaneous approach leads to higher

Fig. 11 Optimal polarization ϕ,
piezoelectric material
distribution ρ and actuator
design for: a case K and b case L

(a) (b)
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(a) (b)

(c) (d)

Fig. 12 Objective function convergence for the maximization of a λ1, b λ2, c λ4 and d λ5, considering the cantilever beam example

controllability measures. The only unusual behavior was
observed in Case H, where a considerable jump occurs in the
convergence history. This behavior is related to the update of
the moving limits, which are relaxed according to the vari-
ables convergence. The solver is more susceptible to find
either a non-feasible solution or a solution with no active
constraint when the moving limits are relaxed. However,
the solver presented sufficient robustness to find a feasi-
ble solution with active volume constraint right after this
jumping point. Besides that, we can observe that the conver-
gence is slow in the early steps of the optimization process

for all cases. This is explained by two main reasons. First,
only the polarization variables (ϕ) are evaluated in the ini-
tial steps of the optimization process. These variables are
less responsive than the distribution variables (ρ). Second,
we start the optimization problem with ρi = 0.505, i.e,
in the infeasible domain. Therefore, the algorithm spends
some iterations to reach the feasible domain, delaying the
convergence.

It is important to remark that the proposed formulation
is prepared to take into account repeated eigenvalues in the
sensitivity analysis. However, the examples studied in this

(a) (b)

Fig. 13 Objective function convergence for the maximization of a λ1 and b λ2, considering the fixed beam example
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Table 4 Free tip displacement and input voltage for the actuator
designs obtained by the maximization of λ1

Case q umax urms φrms

(×10−6m) (×10−7m) (V)

A 1 × 1015 3.749 2.034 4.859

B 1 × 1015 3.695 1.851 4.773

A 1 × 1016 3.285 1.173 11.850

B 1 × 1016 3.139 1.049 10.958

A 1 × 1017 2.282 0.610 23.541

B 1 × 1017 2.061 0.530 21.360

work are not prone to show this issue. In order to solve
more complex problems where repeated eigenvalues and
reversed modes are involved, it is also recommended the
use of mode tracking schemes like, for instance, the Modal
Assurance Criterion (MAC) (Kim and Kim 2000; Tsai and
Cheng 2013).

4.2 Performance of the actuator designs

This work considered only the open-loop system, i.e., (12),
on the optimization process. However, a state feedback
control law is used to compare the performance of the
actuator designs. This post-processing step is carried out
employing a Linear-Quadratic Regulator (LQR) scheme
in which the optimal feedback gain matrix is chosen to
minimize a quadratic cost function subject to the system
dynamics (Preumont 2011). The cost function is written
as:

J = 1

2

∫ τ

0
(xTQx + φ2R) dt (45)

Fig. 14 Free tip displacement response for the actuator designs
obtained by the maximization of λ1

Table 5 Free tip displacement and input voltage for the actuator
designs obtained by the maximization of λ2

Case q umax urms φrms

(×10−7m) (×10−8m) (V)

C 1 × 1015 7.918 3.862 0.548

D 1 × 1015 7.907 3.692 0.592

C 1 × 1016 7.762 2.555 2.080

D 1 × 1016 7.714 2.357 2.023

C 1 × 1017 7.231 1.467 4.752

D 1 × 1017 7.088 1.343 4.433

where R is a positive weighting factor for the control input
and Q is a semi-positive definite weighting matrix for the
state variables:

Q =
⎡

⎣
qI 0

0 I

⎤

⎦ (46)

where I and 0 are the appropriately dimensioned identity
and zero matrices, respectively, and q is a weighting factor.
Assuming full-state feedback, the gain matrix is

G = R−1BTP (47)

where P is the solution of the algebraic Riccati equation

ATP + PA − R−1PBBTP + Q = 0 (48)

Thus, the closed loop dynamics of the system becomes

ẋ = (A − BG)x (49)

The displacement responses are evaluated considering an
initial modal velocity. Figure 14 shows the displacement
response due to the initial condition η̇1(0) = 0.01.
Both open-loop (OL) and closed-loop (CL) are presented
considering a controller with q = 1 × 1015. These
displacement responses u(t) are related to the vertical
direction, and they are calculated for a point in the free end
of the beam, as represented in Fig. 3.

Table 4 shows an overview of the results for the first
mode control, in terms of the maximum displacement umax ,

Table 6 Free tip displacement and input voltage for the actuator
designs obtained by the maximization of λ4

Case q umax urms φrms

(×10−7m) (×10−8m) (V)

E 1 × 1015 3.502 1.596 0.169

F 1 × 1015 3.500 1.545 0.191

E 1 × 1016 3.478 1.153 0.817

F 1 × 1016 3.469 1.064 0.815

E 1 × 1017 3.383 0.679 2.091

F 1 × 1017 3.354 0.618 1.955
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Table 7 Free tip displacement and input voltage for the actuator
designs obtained by the maximization of λ5

Case q umax urms φrms

(×10−7m) (×10−8m) (V)

G 1 × 1015 2.184 0.835 0.048

H 1 × 1015 2.184 0.831 0.052

G 1 × 1016 2.178 0.714 0.344

H 1 × 1016 2.178 0.694 0.358

G 1 × 1017 2.151 0.462 1.228

H 1 × 1017 2.146 0.441 1.206

RMS displacement urms , and RMS control voltage φrms .
The control energy required to lead the perturbed state to
a desired rest state can be related to this voltage measure.
For each case, three different values were assumed for the
weighing factor q. One can observe that the displacements
and RMS control voltage are lower when using the actuator
designed by the simultaneous optimization procedure.

Results for the second mode control considering a
response due to the initial condition η̇2(0) = 0.01 are
presented in Table 5. For these cases, displacements and
RMS control voltage are also lower when using the actuator
designed by the simultaneous optimization excepting the
control voltage when q = 1 × 1015.

Results for the control of the fourth and fifth vibration
modes considering the response due to the initial conditions
η̇4(0) = 0.01 and η̇5(0) = 0.01, respectively, are presented
in Tables 6 and 7. Analogously, one can observe that
the simultaneous approach leads to actuator designs with
improved performance which can be observed especially
when higher weighting factors q are used.

Results for the control of the first and second vibration
modes for the fixed beam considering the response due
to the initial conditions η̇1(0) = 0.01 and η̇2(0) =
0.01, respectively, are presented in Tables 8 and 9. These
displacement responses u(t) are related to the vertical
direction, and they are calculated for a point in the mid-
length of the fixed beam, as represented in Fig. 3.

Table 8 Mid-length displacement and input voltage for the actuator
designs obtained by the maximization of λ1

Case q umax urms φrms

(×10−7m) (×10−8m) (V)

I 1 × 1015 3.945 1.459 0.191

J 1 × 1015 3.942 1.438 0.226

I 1 × 1016 3.896 1.215 1.297

J 1 × 1016 3.875 1.142 1.377

I 1 × 1017 3.665 0.768 4.336

J 1 × 1017 3.590 0.699 4.144

Table 9 Mid-length displacement and input voltage for the actuator
designs obtained by the maximization of λ2

Case q umax urms φrms

(×10−7m) (×10−8m) (V)

K 1 × 1015 1.844 0.703 0.086

L 1 × 1015 1.843 0.695 0.102

K 1 × 1016 1.835 0.595 0.607

L 1 × 1016 1.831 0.563 0.647

K 1 × 1017 1.792 0.382 2.106

L 1 × 1017 1.778 0.350 2.026

Figures 15 and 16 present a comparison between the
performance of actuator designs obtained using uniform and
optimal polarization profiles. Difference in terms of RMS
displacement ud = 1−us

rms/u
u
rms and RMS control voltage

φd = 1 − φs
rms/φ

u
rms are shown, where the superscript

u refers to the cases with uniform polarization (A, C, E,
G, I and K) and the superscript s refers to the cases with
simultaneous optimization (B, D, F, H, J and L).

The piezoelectric actuator designed to control the first
vibration mode presented the most relevant improvement

(a)

(b)

Fig. 15 Difference between designs obtained by uniform and optimal
polarization profile: a RMS displacement and b RMS control voltage,
for the cantilever beam example
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(a)

(b)

Fig. 16 Difference between designs obtained by uniform and optimal
polarization profile: a RMS displacement and b RMS control voltage,
for the fixed beam example

when using the simultaneous approach. For instance, the
RMS displacement and control voltage are, respectively, 9.0
and 1.8% lower for case B when using q = 1 × 1015.
However, this difference is increased when using higher
weighting factors for the control of all vibration modes
analyzed here, as it can be seen in Fig. 15.

5 Concluding remarks

In this work, the simultaneous optimization with respect
to piezoelectric actuator topology and polarization is
investigated. The design of embedded in-plane actuators
is carried out by means of a topology optimization
problem based on a controllability measure. This is a
first approach toward a single formulation that takes into
account several aspects for controllability-based designs in
topology optimization problems. Actuator designs obtained
by the simultaneous approach presented an improvement in
control performance for the analyzed cases. Moreover, this
approach allows the synthesis of a simple control system
with only one input channel which is, therefore, more

suitable for practical applications. However, the polarization
profiles presented here also give an insight on possible
alternatives to define independent electrodes, where null-
polarity areas would be required to separate different
electrodes in order to avoid problems as short-circuiting.
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Hać A, Liu L (1993) Sensor and actuator location in motion control of
flexible structures. J Sound Vib 167(2):239–261

Hammarling S (1991) Numerical solution of the discrete-time,
convergent, non-negative definite lyapunov equation. Systems &
Control Letters 17(2):137–139

Hughes TJR (2012) The finite element method: linear static and dyna-
mic finite element analysis. Dover Publications, Mineola, New
York.

Irschik H (2002) A review on static and dynamic shape control of
structures by piezoelectric actuation. Eng Struct 24(1):5–11

Kang Z,Wang R, Tong L (2011) Combined optimization of bi-material
structural layout and voltage distribution for in-plane piezoelectric
actuation. Comput Methods Appl Mech Eng 200(13):1467–1478



1154 J. F. Gonçalves et al.
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