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Abstract
This paper presents a sequential Kriging modeling approach (SKM) for time-variant reliability-based design optimization
(tRBDO) involving stochastic processes. To handle the temporal uncertainty, time-variant limit state functions are transformed
into time-independent domain by converting the stochastic processes and time parameter to random variables. Kriging surrogate
models are then built and enhanced by a design-driven adaptive sampling scheme to accurately identify potential instantaneous
failure events. By generating random realizations of stochastic processes, the time-variant probability of failure is evaluated by
the surrogate models in Monte Carlo simulation (MCS). In tRBDO, the first-order score function is employed to estimate the
sensitivity of time-variant reliability with respect to design variables. Three case studies are introduced to demonstrate the
efficiency and accuracy of the proposed approach.

Keywords Time-variant reliability analysis . Design optimization . Stochastic processes . Simulation-based . Kriging surrogate
model

Abbreviations
X Random variables
d Design variables
Y(t) Stochastic processes
YG(t Gaussian stochastic process
YNG(t) Non-Gaussian stochastic process
G(.) Original limit state function
g(.) Transformed time-independent limit

state function
gK(.) Surrogate Kriging model
t Time parameter

[0, T] Time interval
cost(.) Cost function
R Reliability
Rt Reliability target
CCLt User-defined cumulative confidence level target
Φ(.) Standard Gaussian cumulative

distribution function
fx(.) Probability density function
Pf Probability of system failure
W Input random variables [X,Y′, t’] of Kriging model
D Training data set
Cov(.,.) Covariance matrix
R Correlation matrix

1 Introduction

Reliability-based design optimization (RBDO) has been widely
applied in practical engineering applications to ensure system
performance under various sources of uncertainty (Simpson
and Martins 2011; Wu et al. 2001; Kim et al. 2006; Yu and
Du 2006). Different optimization strategies have been proposed
to efficiently carry out RBDO, including double-loop methods
(Youn et al. 2005; Yang and Yi 2009; Lin et al. 2011),
decoupled methods (Zou and Mahadevan 2006; Agarwal and
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Renaud 2006), and single-loopmethods (Shan andWang 2008;
Li et al. 2013; Mansour and Olsson 2016). In the double loop
methods, the inner loop performs reliability analysis while the
outer loop searches for optimum designs iteratively. To reduce
the computational costs, decoupled approaches transform the
RBDOproblem to a sequence of deterministic optimization and
reliability analysis while single-loop methods reformulate the
RBDO problem by incorporating reliability constraints as the
optimality conditions. In RBDO, reliability analysis plays a
critical role, as it requires a considerable amount of computa-
tional efforts in evaluating an integration of probability density
function over failure region. Vast efforts have been investigated
to improve the effectiveness of reliability analysis from many
aspects, such as the most probable point (MPP)-based ap-
proaches (Baran et al. 2013; Du and Hu 2012), dimension re-
duction (DR) methods (Won et al. 2009; Rahman and Xu
2004), polynomial chaos expansion (PCE) (Hu and Youn
2011; Ghanem and Spanos 2003), and surrogate-based
methods (Gaspar et al. 2014; Wang and Wang 2013). As a
MPP-based approach, FORM intents to locate the most proba-
ble point (MPP) which is defined as the closest point on the
limit state from the origin in standard normal space (U-space),
and approximate the probability of failure by linearizing the
limit state function at MPP. Dimension reduction methods re-
duce the computational cost of reliability assessment by
decomposing the multi-dimensional integration into multiple
lower dimensional integrations. The PCE methods can predict
the probability of failure more accurately with the construction
of stochastic response surfaces while demanding extensive
computational resources for high dimensional problems due
to the curse of dimensionality.

Recently, time-variant RBDO (Wang et al. 2013; Singh
et al. 2010) has gain an increasing attention for engineering
system design. Time-variant RBDO, referred to as “tRBDO”,
seeks optimum system designs with a high reliability level
over time under time-variant uncertainties such as stochastic
operation condition and system aging. Thus, the time-variant
reliability analysis in tRBDO often involves stochastic pro-
cesses and time parameters and thus is technically difficult
and computationally expensive. In the literature, many
methods have been developed for the time-variant reliability
analysis. In the extreme value based approaches (Li et al.
2007; Zhang and Du 2011), the worst scenario of system
performance over a time interval is extracted to identify sys-
tem failures. A time-variant reliability model can be trans-
formed to a time-independent counterpart by only focusing
on extreme system performances, and static reliability analysis
tools are employed to estimate the time-variant probability of
failure. Chen and Li (2007) proposed an approach to evaluate
the structural reliability based on the distribution of extreme
value, where the virtual stochastic process is created to capture
the probability density function of the extreme value. Hu and
Du (2012) proposed a sampling method to evaluate the

extreme values of stochastic processes, and approximate the
time-variant reliability using the first-order reliability method.
As analytical-based approaches, the out-crossing rate-based
approaches (Li and Der Kiureghian 1995; Sudret 2008) eval-
uate the time-variant probability of failure by the integration of
an out-crossing rate. Kuschel and Rackwitz (2000a, b) ap-
proximated the out-crossing rate by asymptotic second-order
reliability methods while Andrieu-Renaud et al. (2004) pro-
posed a PHI2 approach to obtain time-invariant reliability in-
dices using FORM and compute the outcrossing rate based on
the correlation of reliability indices at two successive time
instants. To solve the first passage problem in time-variant re-
liability analysis involving stationary random processes, Singh
et al. (2011) developed an importance sampling approach to
calculate the cumulative probability of failure. Recently, some
researchers have utilized metamodeling techniques (Wang and
Chen 2017;Majcher et al. 2015; Li andWang 2017) to alleviate
the computational burden of time-variant reliability analysis.
With the consideration of parametric uncertainty, Hu et al.
(2016) construct surrogate models for evaluating the time-
instantaneous reliability index, and then identify the time-
instantaneous most probable points using the fast integration
method. Wang andWang (2015) proposed a double-loop adap-
tive sampling approach for efficient time-variant reliability
analysis. In detail, Gaussian process regression is adopted to
build surrogate models for predicting extreme system responses
over time while the double loop sampling scheme searches for
input variables and time concurrently for updating the surrogate
model until a pre-defined confidence target is satisfied. Hu and
Du (2015) developed a simulation method to evaluate the time-
variant reliability based on the first order approximation and
series expansions, where the stochastic process of the system
performance is mapped into a Gaussian process for efficiently
approximating time-variant reliability.

Though vast efforts have been investigated for time-variant
reliability assessment, a rigorous formulation is still lacking
for generic time-variant reliability-based design optimization
(tRBDO) and it remains a grand challenge to handle such
complexity associated with both stationary and non-
stationary stochastic processes in tRBDO. In this paper, a
sequential Kriging modeling approach (SKM) is proposed to
effectively search for optimal designs with the desired system
time-variant reliability level over a time period under uncer-
tainty. The major contribution of the proposed work lies in
developing a simulation-based framework for efficiently han-
dling the complexity and high dimensionality of generic sto-
chastic processes in time-variant reliability-based design opti-
mization. The SKM approach involves a transformation
scheme for the dimension reduction of performance functions
with stochastic processes, and thus enables the development
of time-independent Kriging models in the transformed space
to evaluate time-variant system reliability. A design-driven
sequential sampling method is then developed for managing
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the surrogate model uncertainty due to lack of data in tRBDO.
The rest of the paper is organized as follows. Section 2 pro-
poses the sequential Kriging modeling method for the time-
variant reliability-based design optimization involving sto-
chastic processes. In Section 3, three case studies are used to
demonstrate the effectiveness of SKM approach.

2 Sequential kriging modeling approach

This section presents a sequential Kriging modeling approach
(SKM) for probabilistic design under both uncertain parame-
ters and stochastic processes. The framework of tRBDO with
stochastic processes using the SKM approach is first intro-
duced in Subsection 2.1, while the details of the proposed
approach are discussed in the following subsections.

2.1 Time-variant RBDO framework

In engineering design, various sources of uncertaintiesmust be
considered to ensure a high-level of system reliability; howev-
er, time-related uncertainties such as stochastic operating con-
ditions and component deteriorations have not been taken into
account in RBDO. Therefore, time-variant RBDO (tRBDO) is
introduced to obtain optimum solutions with the minimum
cost while satisfying system reliability requirements over a
time period. Generally, a time-variant RBDO with stochastic
processes Y(t) and time parameter t can be formulated as

Minimize : Cost X; dð Þ
subject to : Pf 0; Tð Þ ¼ Pr ∃t∈ 0; T½ �;Gi X; d;Y tð Þ; tð Þ≤0ð Þ

≤1−Rt; i ¼ 1; :…; nc

Y tð Þ ¼ Y 1 tð Þ; Y 2 tð Þ;…; Yns tð Þ½ �

dL≤d≤dU; d∈Rnd and X∈Rnr

ð1Þ

where Cost (X, d) is the object function and [0, T] is the
projected lifetime; Y(t) represents a vector of stochastic pro-
cesses; Gi(X, d, Y(t), t) ≤ 0 is defined as the ith failure mode
and Pf(0, T) is the time-variant probability of failure at time
interval [0, T]; d is a vector of design variables and X is a
vector of random variables; dL and dU are the lower and upper
boundaries of the design variables; nc, nd, ns, and nr are the
numbers of constraints, design variables, stochastic processes,
and random variables, respectively.

The proposed sequential Kriging modeling framework aims
to handle tRBDO involving stochastic processes, which mainly
consists of four critical components: (1) stochastic processes
modeling, (2) stochastic equivalent transformation to handle
the high dimensionality associated with temporal uncertainty,
(3) design-driven adaptive sampling, and (4) stochastic sensi-
tivity analysis. To solve a tRBDO problem, a deterministic

design optimization problem is first solved to obtain the initial
design point. Starting with the deterministic optimum design as
shown in Fig. 1, the SKM first generates realizations of stochas-
tic processes according to their probabilistic characterizations,
and then translates time-variant reliability models to time-
independent counterparts through the stochastic equivalent
transformation. It is worth noting that the resulting time-
independent reliability model can predict time-variant system
performance and thus is capable of capturing time-variant fail-
ures in time domain. Kriging surrogate model is then construct-
ed for the time-independent reliability model and updated by
identifying important samples across time-design domain. To
evaluate the time-variant reliability, the resulting Kriging
models will be mapped back to time-variant space for
predicting time-variant system performance, which eventually
yields the extreme distributions of system performance and
time-variant probability of failure. The sensitivity of time-
variant reliability with respect to design variables is approxi-
mated based on the first-order score function, and then utilized
in the optimizer to search for optimum designs iteratively.

2.2 Random processes realization

In SKM, the first step is to generate random realizations of
stochastic processes, including Gaussian/non-Gaussian and/or
stationary/non-stationary random processes. For a stochastic
process such as Gaussian process YG(t), it can be prescribed by

Fig. 1 Flowchart of SKM framework for tRBDO
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three functions with respect to time t, mean function μY(t),
standard deviation function σY(t), and auto correlation func-
tion ρY(t). In the literature, various methods (Sakamoto and
Ghanem 2002a, b; Saul and Jordan 1999) can be used to
simulate a Gaussian process, such as the Expansion Optimal
Linear Estimation method (EOLE) (Zhang et al. 2017), and
the Orthogonal Series Expansion method (Zhang and
Ellingwood 1994) (OSE). Assuming the time interval is
discretized by s time nodes, the covariance between two time
nodes is calculated by

Cov ti; t j
� � ¼ σY tið ÞσY t j

� �
ρY ti; t j
� � ð2Þ

then the corresponding covariance matrix is derived as

∑ ¼
Cov t1; t1ð Þ Cov t1; t2ð Þ ⋯ Cov t1; tsð Þ
Cov t2; t1ð Þ Cov t2; t2ð Þ ⋯ Cov t2; tsð Þ
⋮ ⋮ ⋱ ⋮
Cov ts; t1ð Þ Cov ts; t2ð Þ ⋯ Cov ts; tsð Þ

0
BB@

1
CCA ð3Þ

The covariance matrix can be decomposed as Σ =QIQT

by using Eigen decomposition where Q = [Q1, Q2, …, Qs] is
the matrix of eigenvectors and I is a diagonal matrix with the
corresponding eigenvalues. Then the Gaussian process YG(t)
can be expressed as

YG tð Þ≈μy tð Þ þ ∑
p

i¼1

ffiffiffiffi
I i

p
Qi tð ÞZi ð4Þ

where p is the number of dominated Eigen functions and
Z = [Z1, Z2, …, Zp] are a set of uncorrelated standard normal
random variables.

For non-Gaussian processes, Polynomial Chaos Expansion
(PCE) and Karhunen-Loeve (KL) expansion are adopted in
this paper to generate random realizations. According to the
methodology in Sakamoto and Ghanem (2002a), a non-
Gaussian process YNG(t) can be approximated by Hermite or-
thogonal polynomials, which is expressed as

YNG tð Þ ¼ ∑
s¼0

bs tð ÞΨs ξ tð Þð Þ ð5Þ

where the Hermite polynomials Ψs(ξ(t)) are expressed as

Ψs ξ tð Þð Þ ¼ −1ð Þs ϕ
s ξ tð Þð Þ
ϕ ξ tð Þð Þ ð6Þ

where ϕs(ξ(t)) is the sth derivative of probability density func-
tion of the standard normal process ξ(t). Then, the approxima-
tion of YNG(t) can be written as

YNG tð Þ ¼ ∑
s¼0

bs tð ÞΨs ξ tð Þð Þ ¼ b0 tð Þ þ b1 tð Þξ tð Þ

þ b2 tð Þ ξ2 tð Þ−1� �
þ b3 tð Þ ξ3 tð Þ−3ξ tð Þ� �þ…ð7Þ

where bs(t), s = 0, 1, 2, 3 are expansion coefficients correspond-
ing to the first four moments of the non-Gaussian process
YNG(t). For a given non-Gaussian process, the mean μNG(t),
standard deviation σNG(t), skewness SkNG(t), and kurtosis
KμNG(t) are used to calculate the expansion coefficients bs(t).
Assuming that a non-Gaussian process YNG(t) is expanded in a
four-terms series (s = 3), the first coefficient b0(t) is equal to
μNG(t) as the mean values of the Hermite polynomials are zero.
According to the orthonormality properties of the Hermite poly-
nomials, the ith central moments (i = 2, 3, 4) can be expressed as,

ggi b1 tð Þ; b2 tð Þ; b3 tð Þð Þ ¼ E YNG tð Þ−b0ð Þi� �
; i ¼ 2; 3; 4 ð8Þ

The values of b1(t), b2(t), and b3(t) is obtained by minimiz-
ing the difference between the ggi values and the given mo-
ments, expressed as

min
b1;b2;b3

∑
4

i¼2
ggi b1 tð Þ; b2 tð Þ; b3 tð Þð Þ−Mið Þ ð9Þ

where Mi are the ith central moments of the given non-
Gaussian process YNG(t). It is worth noting that the expansion
coefficients bs(t) are time independent if the non-Gaussian
process is stationary. Using the orthogonality properties of
the Hermite polynomials, the relationship between covariance
matrix CNG(ti, tj) of YNG(t) and covariance matrix Cξ(ti, tj) of
ξ(t) can be written as

CNG ti; t j
� � ¼ ∑

3

s¼1
b2s tð Þ⋅ s!ð Þ⋅ Cξ ti; t j

� �� �s ð10Þ

Given that CNG(ti, tj) can be analytically determined based
on the autocorrelation of random process YNG(t), the covari-
ance matrix of the standard normal process Cξ(ti, tj) can be
computed according to (10). A KL expansion is then able to
represent ξ(t) as

ξ tð Þ ¼ ∑
p

i¼1

ffiffiffiffi
λi

p
f i tð Þξi ð11Þ

where p is the number of dominant eigenvalues, λi and fi(t) are
the eigenvalues and eigenvectors of covariance matrix Cξ(ti,
tj), and ξi are independent standard normal random variables.

A stationary non-Gaussian process YNG(t) following a
Weibull marginal PDF with the shape parameter 1.5 and scale
parameter 3 is simulated to generate fifteen random realizations
as shown in Fig. 2. The autocorrelation function is expressed as

ρNG Δtð Þ ¼ e−
Δt
0:3ð Þ2 ð12Þ

where the given time interval [0, 1] is discretized into 100 time
nodes. With the first four moments μNG = 2.7082, σNG =
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1.8388, SkNG = 1.0720, andKμNG = 1.3904, a series of Hermite
polynomials is used to represent the stochastic process with the
four expansion coefficients estimated by (9), expressed as

YNG tð Þ ¼ 2:7082þ 0:9662ξ tð Þ
þ 0:5652 ξ2 tð Þ−1� �

−0:0575 ξ3 tð Þ−3ξ tð Þ� � ð13Þ

With the obtained four expansion coefficients, the covari-
ance matrix of ξ(t) is calculated by (10). Through employing
the Eigen analysis, the standard normal process ξ(t) is then
generated from the KL expansion with five dominate Eigen
values as shown in Fig. 3.

2.3 Stochastic equivalent transformation

In the time-variant reliability analysis, the limit state is a func-
tion of random inputs X, stochastic processes Y(t), and time
parameter t. In SKM, stochastic equivalent process transforma-
tion (Wang and Chen 2016) transforms the origin time-variant
limit state function G(X, Y(t), t) to a time-independent domain,
and instantaneous failure events are described as

g X;Y
0
; t

0
� �

< 0 ð14Þ

where continuous random variables Y′ and t’ are translated
from stochastic processes Y(t) and time t respectively, random
variablesX remain the same in the transformed input space. As
shown in Fig. 4, with the multiple realizations of the stochastic
process Y(t), the probability density function (PDF) of Y′ is then
obtained by averaging the PDFs of Y(t) over the time of interest
[0, T]. At each time node, the stochastic process is converted to
a random variable, and thus the transformed random parameter
Y′ is a mixture model constructed with random distributions at a
set of time nodes. By discretizing the time interval into s time
nodes, s probability density function can be obtained for the
distribution of Y(ti), i = 1, 2,…, s. The probability density func-
tion of the Y′ is then expressed as

f pdf Y
0

� �
≈
1

s
∑
s

i¼1
f pdf Y tið Þð Þ ð15Þ

For stationary Gaussian processes, the probabilistic charac-
teristics of Y′ can be obtained analytically as the mean and
standard deviation functions remain the same over time. In
terms of general random processes, the realizations of stochas-
tic processes Y(t) in Subsection 2.2 is readily merged to form a
set of random sample points that follow the distribution of

Fig. 4 Transformation of stochastic process Y(t)

Fig. 2 Fifteen random realizations of the non-Gaussian process

Fig. 3 Five dominate eigenvalues in the KL expansion
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random parameter Y′. In the transformed input space, the ran-
dom variable t’ is treated as a uniform distributed variable over
the time interval [0, T] as a failure event at any time instant
will lead to a system failure.

With the transformed random parameters X, Y′, and t’, the
probability of failure in the transformed space is defined as

P f −ave ¼ Pr g X;Y
0
; t

0
� �

< 0
h i

ð16Þ

where the Pf-ave is the average of the instantaneous probability
of failure over the time interval [0, T]. It is worth noting that
the time-independent model in (14) is able to capture time-
variant failure events by nature.

2.4 Design-driven adaptive sampling

With the stochastic equivalent transformation, surrogate
modeling techniques are employed to predict the time-
independent limit state function g(X, Y′, t’). Though a variety
of surrogate modeling techniques are available, a confidence-
based adaptive sampling scheme (Wang and Chen 2017) is
utilized in the proposed approach to construct metamodels for
the time-independent limit state function mainly due to its
ability of efficiently handling surrogate model uncertainty.
LetW = [X, Y′, t’] denotes the input variables of transformed
limit state function g(X, Y′, t’), and w is a random realization
of input W, the probability of failure is then expressed as

P f −ave ¼ Pr g wð Þ < 0ð Þ ¼ ∫…∫g wð Þ<0 f x wð Þdw ð17Þ

where fx(w) is the joint probability density function. By defin-
ing the failure region Ωf = {w│g(w) < 0}, the probability of
failure can be expressed as

Pf −ave ¼ Pr w∈Ω f
� � ¼ ∫ΩI f wð Þ f x wð Þdw ¼ E I f wð Þ� � ð18Þ

where Ω represents the transformed random input space. E[.]
is the expectation operator and If(w) is an indicator function to
classify success and failure points, defined as

I f wð Þ ¼ 1; w∈Ω f

0; othewise

	
ð19Þ

Let nr and ns denote the number of random variables
in X and Y′ respectively, then k = nr + ns + 1 is the num-
ber of input variables in W. With the training data set
D = [W, G] consisting of n input points W and the corre-
sponding responses G, the general form of Kriging model
is described as

gK wð Þ ¼ f wð Þ þ S wð Þ ð20Þ
where gK(w) is the approximation of the performance
function g(w) at the point w. The first term f(w) is a
polynomial term which can be substituted by a constant

value μ. S(w) is a Gaussian stochastic process with zero
mean and a covariance matrix given by

Cov i; jð Þ ¼ σ2R ð21Þ

where i and j represent input points wi and wj, respective-
ly, and R is a n × n correlation matrix. Various correlation
functions are available in the literature, such as Gaussian,
rational quadratic, Matern, and exponential correlation
function. According to Stein (1988), the impact on the
Kriging prediction from not using the suitable covariance
structure is asymptotically negligible if the Kriging model
can be updated by having more observations. In this
study, the Kriging surrogate will be iteratively updated
by the adaptive sampling scheme. Thus, the selection of
the Kriging covariance structure will not have significant
impact on the response prediction, and a stationary and
isotropic Gaussian correlation function is adopted in this
paper, expressed as

R wi;w j
� � ¼ exp − ∑

k

q¼1
aq wi;q−w j;q


 

bq" #

ð22Þ

With n initial samples [W,G], the log likelihood function is
given by

LogLikelihood ¼

−
1

2
nln 2πð Þ þ nlnσ2 þ ln Rj j þ 1

2σ2
G−Aμð ÞTR−1 G−Aμð Þ

� �
ð23Þ

where A is an n × 1 unit vector. All the hyper parameters can
be obtained by maximizing the likelihood function, and then
the correlation matrix R can be computed according to (22).
Let r denotes the correlation vector between a new point w’
and training samples, the response and mean square error pre-
dicted by the Kriging model are obtained as

gk w
0

� �
¼ μþ rTR−1 G−Aμð Þ ð24Þ

e w
0

� �
¼ σ2 1−rTR−1rþ 1−ATR−1r

� �2
ATR−1A

" #
ð25Þ

To handle the surrogate model uncertainty e(.) due to the
lack of data, adaptive sampling scheme should be employed
for identifying most useful point and updating Kriging for
probability analysis in Monte Carlo simulation (MCS).

In MCS, N Monte Carlo samples are generated based on
the randomness of the input variables, denoted as

wm;i ¼ xi; y
mcs
i ; ti

� �
; i ¼ 1; 2;…N ð26Þ

where yi
mcs is the ith Monte Carlo samples ofY′. For the point

wm,i, the limit state function g(wm,i) can be approximated by
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Kriging as a normally distributed random variable, given by
g(wm,i) ~ N (gK(wm,i), e(wm,i)). The indicator function is thus
derived as

I f wm;i
� � ¼ 1; gk wm;i

� �
< 0 failureð Þ

0; gk wm;i
� �

≥0 successð Þ
	

ð27Þ

The average probability of failure Pf-ave, over the time pe-
riod [0, T] is thus calculated in MCS. The confidence level
(CL) at the point wm,i is defined as the probability of correct
classification, which is expressed as

CL wm;i
� � ¼ Φ

gk wm;i
� �

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e wm;i
� �q

0
B@

1
CA ð28Þ

where Φ(.) is a standard normal cumulative distribution func-
tion. After evaluating the CL for all the points in MCS, the
cumulative confidence level (CCL) is obtained as

CCL ¼ 1

N
∑
N

i¼1
CL wm;i
� � ð29Þ

The CCL indicates the accuracy of Kriging model in
predicting Pf-ave in MCS. To enhance the fidelity of Kriging
model, the most useful point will be identified by maximizing
the importance measure, which is defined as

Η wm;i
� � ¼ 1−CL wm;i

� �� �
*f x wm;i
� �

*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e wm;i
� �q

ð30Þ

where fx(.) is the joint probability density function of input
variables, and e(.) is the estimated mean square error of
Kriging model prediction. The limit state value at the selected
point will be evaluated and then incorporated in the training
data set for updating the Kriging model. As shown in Fig. 5,
the design-driven adaptive updating procedure will be trig-
gered at each design iteration to search for the important sam-
ple points.

2.5 Time-variant reliability analysis

With the Kriging surrogate model, the time-variant probability
of failure within the time interval [0, T] can be approximated by

Pf 0; Tð Þ≈Pr ∃t∈ 0; T½ �; gk X;Y tð Þ; tð Þ < 0ð Þ ð31Þ

where gk(.) is the time-variant limit state prediction using the
Kriging model. Monte Carlo simulation (MCS) method is
employed in this work to calculate the time-variant probability
of failure in (31). In MCS, the first step is to generate N random
realizations of X and Y(t) as introduced in Section 2.2 by
discretizing the time interval [0, T] with s nodes. For the ith

realization of random parameter and the stochastic process (xi,
yi), the instantaneous limit state function g(xi, yi, (j), tj) at the j

th

time node is predicted directly by the Kriging model, and a
time-variant failure event occurs if

min
1≤ j≤ s

gK xi; yi; jð Þ; t j
� �

< 0 ð32Þ

Clearly, the distribution of the worst performance over time
period [0, T] can be obtained in (32), and the time-variant
probability of failure is then approximated by

Pf 0; Tð Þ≈N f

N
ð33Þ

where Nf is the number of time-variant failure samples within
the time interval [0, T].

2.6 Sensitivity analysis of time-variant reliability

In sensitivity analysis, a general form of the time-variant prob-
ability of failure is rewritten as

Pf 0; Tð Þ≡∫RN I f −t Xð Þ f x Xð ÞdX ¼ E I f −t Xð Þ� � ð34Þ

where X is the vector of input random variables, fx(X) is the
joint probability density function, and If-t(X) is the indicator
function expressed as

I f −t xið Þ ¼
1; min

1≤ j≤ s
gK xi; y j; t j
� �

< 0 failureð Þ

0; otherwise successð Þ

8><
>: ð35Þ

The partial derivative of the probability of failure with re-
spect to the ith design variable di is thus derived (Hu et al.
2013) as

∂P f 0; Tð Þ
∂di

¼ ∂
∂di

∫RN I f −t Xð Þ f x Xð ÞdX

¼ E I f −t Xð Þ ∂ln f x Xð Þ
∂di

� �
ð36Þ

Fig. 5 Illustration of the design-driven adaptive sampling
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For independent random variables, the joint probability
density function of X is expressed as multiplication its mar-
ginal PDFs as

f x Xð Þ ¼ ∏nr
i¼1 f xi xið Þ ð37Þ

where nr is the dimension of input variablesX. With the time-
variant reliability and its sensitivity information, the sequen-
tial quadratic programming (SQP) (Nocedal andWright 2006)
is adopted as an optimizer to search for optimum solutions
iteratively in tRBDO.

3 Case studies

In this section, three examples are used to demonstrate the
effectiveness of the proposed approach for solving the time-
variant reliability-based design optimization problems.

3.1 Case study I: a mathematical design problem

A two dimensional mathematical time-variant reliability-
based design optimization problem (Li et al. 2013) is formu-
lated as

Minimize : Cost dð Þ ¼ 10−X 1 þ X 2

subject to : P f 0; 1ð Þ ¼ Pr ∃t∈ 0; 1½ �;Gi d; Y 1 tð Þ; Y 2 tð Þð Þ≤0ð Þ
≤1−Rt; i ¼ 1∼3

d ¼ X 1;X 2½ �; 0≤X 1&X 2≤10

where G1 ¼ X 1
2X 2

20
−1

G2 ¼
X 1þX 2−5
� �2

30
þ X 1−X 2−12
� �2

120
−1−Y 1 tð Þ þ 0:01*Y 2 tð Þ

G3 ¼ 80

X 1
2 þ 8X 2−5

� � −1

ð38Þ

where the two random design variables X1 and X2 follow
normal distributions as X1 ~ N (μ1, 0.3464

2) and X2 ~ N (μ2,
0.34642). The target reliability is set to Rt = 0.985 for all three
probabilistic constraints. To maintain a high-fidelity Kriging

model during the design optimization, a high-level target cu-
mulative confidence level CCLt = 0.999 is set as a criterion in
updating Kriging models adaptively, as introduced in
Subsection 2.4. The tRBDO problem involves two stochastic
processes Y(t) = [Y1(t), Y2(t)], including a non-stationary
Gaussian process Y1(t) and a stationary process Y2(t) with a
Weibull marginal PDF. The Gaussian process Y1(t) is fully
characterized by its mean function μY(t), standard deviation
function σY(t) and the autocorrelation function ρY(t), given as

μY tð Þ ¼ 0:1*t ð39Þ
σY tð Þ ¼ 0:05*t ð40Þ

ρY t1; t2ð Þ ¼ exp −
t2−t1ð Þ2
0:001

 !
ð41Þ

The scale and shape parameters of the non-Gaussian pro-
cess Y2(t) are set to 2 and 1.2, thus the first four moments can
be directly obtained asmeanμNG = 1.8813, standard deviation
σNG = 1.5745, skewness SkNG = 1.5211, and kurtosis KμNG =
3.2357. The autocorrelation function of Y2(t) is given by

ρNG t1; t2ð Þ ¼ exp −
t2−t1ð Þ2
0:01

 !
ð42Þ

Following the procedure outlined in subsection 2.2, the
time interval [0, 1] is discretized into 100 nodes evenly, and
106 random realizations for each stochastic process are gener-
ated for the time-variant reliability analysis. The first fifty
realizations of Y1(t) and Y2(t) are shown in Fig. 6.

The first step of the SKM approach is to obtain an initial
design point by solving the corresponding deterministic opti-
mization problem, where the stochastic processes in G2 are
fixed to its mean. The deterministic design optimization starts
with d0 = [5, 5], and approaches the deterministic optimum
design dd = [8.5770, 1.4294] after seven iterations. As the
second constraint G2 contains stochastic processes, the time-
variant limit state function of G2 is converted to the time-

Fig. 6 50 realizations of the Y1(t)
and Y2(t)
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independent one using stochastic equivalent transformation.
The input domains of three Kriging models gK1, gK2, and
gK3 are defined as W1 =W3 = [X1, X2,], W2 = [X1, X2, Y1’,
Y2’], respectively, where the PDFs of Y1′ and Y2’ are obtained
as introduced in Subsection 2.3. Then the Latin Hypercube
sampling method (LHS) is utilized to generate 20 initial sample
points, and they are combined with seven sample points that
evaluated during deterministic design for constructing initial
Kriging models. By setting the deterministic optimum design
dd as the initial design point in tRBDO, the optimum design
dopt = [6.7733, 3.3718] is obtained after 8 iterations. The itera-
tive history of reliabilities for three constraints, design points,
and cost function values are summarized in Table 1. It is worth
noting that the reliabilities are estimated by the updated Kriging
models, denoted by R1

SKM, R2
SKM, and R3

SKM, respectively.
During the tRBDO process, the design-driven adaptive

sampling scheme is triggered to identify 57 samples and 9
samples for updating the Kriging model gK2 and gK3,

respectively. There is no need to update gK1 since the target
CCLt can always be satisfied in the design optimization pro-
cess. Figure 7 shows the sample points for constructing the
Kriging models, including 20 LHS samples, 7 samples eval-
uated during deterministic design optimization, and the addi-
tional nine samples identified through design-driven adaptive
sampling for gK3. The comparison between true limit state
functions (dashed lines) and estimated results (solid lines) by
updated Kriging models is shown in Fig. 8, where the time-
variant limit state function G2 is depicted at Y1(t) = 0 and
Y2(t) = 1.8813. A high accuracy level of Kriging model gK2
can be obtained in the area near to the optimum design

Fig. 7 Samples for constructing gK1 and gK3 Kriging models

Table 1 tRBDO design history for case study I

Iterations Design variables Reliabilities Cost

X1 X2 R1
SKM R2

SKM R3
SKM

1 8.5770 1.4294 0.9995 0.2714 0.4990 2.8524

2 7.3334 3.0961 1 0.9771 0.8649 5.7627

3 7.0291 3.2763 1 0.9844 0.9497 6.2472

4 6.8607 3.3431 1 0.9851 0.9765 6.4824

5 6.7868 3.3676 1 0.9850 0.9839 6.5807

6 6.7732 3.3721 1 0.9850 0.9849 6.5989

7 6.7732 3.3720 1 0.9850 0.9849 6.5988

8 6.7733 3.3718 1 0.9850 0.9849 6.5985

Fig. 8 Approximated limit state functions by Kriging model vs. true limit
state functions

Fig. 9 Iterative design points in tRBDO
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dopt = [6.7733, 3.3718] because the most useful samples se-
lected by the design-driven adaptive sampling scheme are
located in the critical area of interest as needed.

The overall tRBDO process is shown in Fig. 9, where the
first three designs are marked with numbers and point ‘1’ is
the deterministic optimum design point. The convergence of
design points with respect to design iterations is detailed in
Fig. 10 while the time-variant reliabilities for three constraints
also converge to the target reliability 0.9850 within 8 design
iterations as shown in Fig. 11.

For the purpose of comparison, the simulation-based time-
variant reliability analysis approach SPCE (Hu et al. 2013),
together with the first-order score function method (SF) for
sensitivity analysis, are employed to solve the same tRBDO

problem, denoted as SPCE&SF. Furthermore, direct Monte
Carlo simulation is utilized to verify the accuracy of the pro-
posed method. As shown in Table 2 where the reliability R1,
R2, and R3 are verified through direct MCS, the SPCE&SF
approach obtains an optimum design after 17 iterations while
requiring 459 function evaluations in total. However, the
resulting optimum design violates the probabilistic constraints
as the reliability R2 and R3 are less than the target 0.985 and
the error of time-variant reliability for performance function
G2 is 6.36%. With the proposed SKM approach, the optimum
design is close to the optimum solution obtained from direct
MCS and satisfies the reliability requirements. In addition, it is
observed that the proposed SKM approach only needs 147
function evaluations to obtain an accurate optimum design,
including 27, 84, and 36 function calls for Kriging model
gK1, gK2, and gK3, respectively. The results demonstrate that
the proposed approach can efficiently handle stochastic pro-
cesses and solve time-variant RBDO problems effectively.

3.2 Case study II: a cantilever beam design problem

In the second study, a cantilever beam under an external load
is introduced as shown in Fig. 12. The material of the beam is
assumed to be SAE-1008, a standard grade carbon steel which
is widely used in auto manufacture, oil drum, and

Fig. 10 Design history at each iteration

Fig. 11 Reliabilities of three constraints at each design iteration

Table 2 Comparison of optimum results for case study I

Optimum R1 R2 R3 Cost #F

SKM [6.7733, 3.3718] 1 0.9839 0.9849 6.5984 147

SPCE&SF [6.9540, 3.0661] 1 0.9224 0.9831 6.1122 459

MCS [6.7634, 3.3883] 1 0.9850 0.9850 6.6249 3*106

Fig. 12 Geometry of cantilever beam
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transformer’s tank panel. The length L is fixed to 500 mm
while height h and width b are treated as two design variables,
denoted as d = [h, b]. An external loadF(t) is applied on the tip
of this beam and depicted as a stationary Gaussian stochastic
process with 170 kN mean and 10 kN standard deviation. The
time interval of interest is [0, 1], and all random variables and
stochastic process are detailed in Table 3.

For this cantilever beam, the stress at position x can be
expressed as

S xð Þ ¼ 6⋅F tð Þ⋅ L−xð Þ
bh2

ð43Þ

According to the geometry of the beam, the maximum
stress at x = 0 can be expressed as

Smax ¼ S 0ð Þ ¼ 6F tð ÞL
bh2

ð44Þ

Given the yield strength of SAE-1008 Sy = 275 MPa, the
limit state function of this beam is defined as

G d; F tð Þð Þ ¼ Sy−Smax ð45Þ

Thus, for any time instant t within [0, 1], G(d, F(t)) < 0
indicates failure due to plastic deformation. The size of cross

section is formulated as an objective function, and the bound-
aries of the two design variables are given as 1) the height h
should be within [140, 180] in millimeters and 2) the width b
should be within [50, 150] in millimeters. Therefore, the can-
tilever beam tRBDO problem is formulated as

Minimize : Cost dð Þ ¼ hþ b
subject to : Pf 0; 1ð Þ ¼ Pr ∃t∈ 0; 1½ �;G d; F tð Þð Þ≤0ð Þ≤1−Rt

d ¼ h; b½ �
where G ¼ Sy−

6000⋅F tð Þ⋅500
h2⋅b

ð46Þ

In this study, a target reliability is set to Rt = 0.985 and
a target cumulative confidence level CCLt is set to 0.999.
The deterministic design starts with the mean value of the
design variables d0 = [160, 100] and terminates at the

Table 3 Cantilever beam specifications

Random variable Distribution Mean value Standard deviation

Length, L / 500 mm /

Width, b Normal b 3.436 mm

Height, h Normal h 3.436 mm

External Load F(t) Normal 170 kN 10 kN

Fig. 13 High fidelity of the updated Kriging model at h, b design space Fig. 15 Design history at each iteration

Fig. 14 Sample points for constructing Kriging model
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deterministic optimum design dd = [154.7946, 77.3973],
while 11 points are evaluated during the deterministic op-
timization process. By employing the stochastic equiva-
lent transformation, the stochastic process F(t) is trans-
formed to a random variable F′, which follows a normal
distribution with 170 kN mean and 10 kN standard devi-
ation since F(t) is a stationary Gaussian process. By
discretizing the time interval into 100 time nodes, 106

random realizations are obtained as introduced in
Section 2.2. To solve the tRBDO problem, a total number
of 20 initial samples points are generated by Latin hyper-
cube sampling scheme and evaluated for the performance
function. The initial Kriging model is then constructed
based on the available 31 samples, and 106 random real-
izations of the stochastic process F(t) are generated for the
time-variant reliability analysis. The tRBDO process starts
with the deterministic optimum design dd, and it con-
verges to an optimum design dopt = [166.1193, 87.4383]
after 14 iterations. As shown in Fig. 13, the approximated
limit state function is compared with the true responses
while the stochastic load is fixed to 170 kN. It shows that
the high-fidelity Kriging model is able to accurately ap-
proximate limit state functions.

In the SKM approach, the Kriging model is automatically
updated through the design-driven adaptive sampling at each
design iteration and a total number of 35 most useful sample
points are identified during the overall tRBDO process. All
the selected samples for constructing the Kriging model are
plotted in Fig. 14, where black nodes represent the initial
points and red stars denote the most useful samples. As shown
in the figure, almost all the selected samples are located on the
failure surface, ensuring an efficient Kriging updating proce-
dure. Figure 15 shows the iterative history of design variables
during tRBDO process while Table 4 provides the reliabilities
RSKM, design points, and cost at each design iteration.

For the comparison purpose, the SPCE&SF method and
direct MCS method are also employed to solve the tRBDO
problem for the cantilever beam case study, and the optimum
solutions and number of function evaluations from three
methods are listed in Table 5. To verify the optimum designs
obtained by the SKM and SPCE&SF,MCSwith 106 samples is
employed as the reference to compute the reliabilities. An opti-
mum design is obtained after 40 iterations by SPCE&SF as
[167.7387, 85.6917], while 400 function evaluations are re-
quired to construct a SPCE model in design optimization. The
result shows that both SKM and SPCE&SF approach can ac-
curately solve the time-variant reliability-based design optimi-
zation problem involving stationary Gaussian process.
However, the SKMapproach is more efficient as it only requires
66 functions evaluations for achieving the optimum design.

3.3 Case study III: aircraft tubing design

In industry, tubing assemblies have been widely integrated in
many subsystems, for example, fuel system and hydraulic
system. Catastrophic system failure can be caused by the po-
tential failure of aircraft tubing, and determining the optimized
geometry of tubing under the time-variant uncertainties be-
comes extremely important in the early design stage. In this
study, a twisted tubing design problem is solved by employing
the proposed SKM approach.

A twisted tube made of steel (E = 200 GPa, v = 0.27) is
shown in Fig. 16. The inner diameterD, thickness T, the radius

Table 4 tRBDO design history for case study II

Iterations Design variables RSKM Cost

h b

1 154.7946 77.3973 0.0363 232.1919

2 180.0000 112.2090 1.0000 292.2090

3 179.3359 111.2309 1.0000 290.5669

4 176.0155 106.3408 1.0000 282.3563

5 164.3941 89.2254 0.9789 253.6194

6 164.7613 89.5981 0.9841 254.3594

7 165.1484 89.3034 0.9848 254.4517

8 167.2207 86.9177 0.9852 254.1384

9 170.7791 83.0660 0.9840 253.8451

10 169.8417 84.0105 0.9849 253.8523

11 165.1435 88.1642 0.9830 253.3078

12 166.5170 87.0030 0.9847 253.5200

13 166.1181 87.4380 0.9850 253.5561

14 166.1193 87.4383 0.9850 253.5576

Table 5 Comparison of optimum results for case study II

Optimum Reliability Cost #F

SKM [166.1193, 87.4383] 0.9856 253.5576 66

SPCE&SF [167.7387, 85.6917] 0.9848 253.4304 400

MCS [168.4629, 84.9994] 0.9850 253.4623 106

Fig. 16 Geometry of twisted aircraft tubing
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of bending for two bended tube R1 and R2 are design variables
that follow normal distributions, detailed in Table 6.

The tube will experience time-variant pressure P(t) during
the operation, which is applied on the inner surface of the
twisted tube. The inner pressure is modeled as a stationary
Gaussian process with 30 MPa the mean and 1 MPa standard
deviations respectively. The time interval of interest is [0, 1]
and the autocorrelation function of P(t) is the same as shown
in (41). A finite element model has been developed in ANSYS
to obtain the maximum von Mises stress of the tube. A failure
is defined as the maximum vonMises stress is greater than the
yield strength σy = 235 MPa, and the design objective is to
minimize the total volume of the twisted tube, expressed as

Cost D; T ;R1;R2ð Þ

¼ π
D
2
þ T


 �2

−
D
2


 �2
( )

30þ 40þ 2πR1

4
þ 2πR2

4


 �

ð47Þ

Thus, the tRBDO problem for the aircraft tubing design is
formulated as,

Minimize : Cost dð Þ
subject to : Pf 0; 1ð Þ ¼ Pr ∃t∈ 0; 1½ �;G d;P tð Þð Þ≤0ð Þ≤1−Rt;

d ¼ D; T ;R1;R2½ �
where G d;P tð Þð Þ ¼ σy−Maxstress d;P tð Þð Þ

ð48Þ

In this study, both the targets of reliability and the cumula-
tive confidence level are set to 0.98. Starting with the design
[15, 2.3, 15, 15], a deterministic design optimization problem
is first solved to obtain the initial design point for tRBDO. By
using the finite difference method to provide the sensitivity,
the deterministic solution dd = [14, 2, 14.5420, 14.4637] is
obtained after 10 iterations, and 50 samples points are evalu-
ated during the deterministic design process. In the SKM ap-
proach, the time-variant limit state function with stochastic
processes is first converted into time-independent counterpart
through the stochastic equivalent transformation. To construct
surrogate model for the finite element simulation, an Kriging
model is trained based on the 50 sample points that evaluated
in deterministic optimization and 40 random samples gener-
ated by Latin hyper cube sampling. The time interval [0, 1] is
evenly discretized into 100 time nodes, then 106 random real-
izations of the stochastic process P(t) is generated for time-
variant reliability analysis. The optimum design is achieved
after 14 iterations as dopt = [14.0000, 2.2215, 15.7457,
15.7297], and the iterative design history for the four design
variables is shown in Fig. 17. The convergence of the time-
variant reliability and the total volume of the twisted tube are
plotted in Fig. 18.

The design-driven adaptive sampling scheme is
employed in the tRBDO to ensure that the CCL of the
Kriging model satisfies the target value, and 145 most useful

Table 6 Aircraft tubing
specifications Design variable Distribution Mean value STD Boundary

Inner diameter, D Normal μD 0.1 mm [14 mm, 16 mm]

Thickness, T Normal μT 0.05 mm [2 mm, 2.6 mm]

Radius of bending, R1 Normal μR1 0.1 mm [14 mm, 16 mm]

Radius of bending, R2 Normal μR2 0.1 mm [14 mm, 16 mm]

Fig. 18 Reliability and total volume in tRBDOFig. 17 Design variables in tRBDO
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samples are identified until the optimum design is obtained.
With a total number of 235 function evaluations in the
tRBDO, the total volume of the twisted tube is minimized to
13,522.173 mm3 while the reliability is approximated as
0.9803. Figure 19 shows the stress contour of the optimum
design in ANSYS while the inner stress is set to 30 MPa.

4 Conclusion

This paper presents a sequential Kriging modeling ap-
proach to accurately evaluate time-variant reliability and
efficiently carry out the time-variant RBDO involving
stochastic processes. To reduce the high dimensionality
associated with time-variant uncertainties, the SKM ap-
proach first converts time-variant limit state functions to
time-independent counterparts using stochastic equiva-
lent transformation, and then build Kriging surrogate
models to predict the responses of time-variant limit
state functions. To enhance the accuracy of time-
variant reliability approximations in tRBDO, a design-
driven adaptive sampling scheme is developed to update
surrogate models by identifying most useful sample
points within time-variant random space. As a result,
the system failures can be captured with the high-
fidelity Kriging models to predict the time-variant reli-
ability in MCS. With the sensitivity information obtain-
ed by the first-order score function, sequential quadratic
programming (SQP) is adopted as an optimizer to
search for optimal solutions iteratively. The results of
three case studies indicate that the sequential Kriging
modeling approach is capable of effectively handling
tRBDO problems involving stochastic processes.
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