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Abstract
In this study, a new approach based on the polynomial-type extrapolation methods is applied to the approximate structural
reanalysis under multiple and large changes in the initial design. In this approach, the sequences of approximate displacement
of the modified structure are constructed by using a fixed-point iteration method. These sequences are then further analyzed by
two polynomial-type vector extrapolation methods to find the approximate response of the modified structure more accurately,
namely, the minimal polynomial extrapolation (MPE) and the reduced rank extrapolation (RRE). Based on a single initial design,
the MPE and RRE methods approximate the displacement vector of the modified structure by solving a least-squares problem
which is much smaller than the original system of equations of the exact analysis. The accuracy and efficiency of this reanalysis
approach is evaluated on three large scale structural reanalysis problems under multiple and large changes in their initial designs.
The obtained reanalysis results demonstrate that the MPE and RRE methods not only yield accurate results, but also are
computationally efficient.

Keywords Reanalysis .Minimal polynomial extrapolation . Reduced rank extrapolation . Large scale structures

1 Introduction

Usually, the structural optimization process requires numerous
repeated analyses in order to satisfy code requirements, ensur-
ing safety, and minimizing constructional costs (Jalili et al.
2016a; b; Jalili and Talatahari 2017). For each of the modified
structure, a set of finite element equations should be resolved
which makes the optimum design procedure very time con-
suming and computationally expensive. As a matter of fact, it
is possible to calculate the response of the modified structure
by using approximate structural reanalysis methods without
solving the complete set of modified equations. These
methods are able to calculate the response of the modified
structure with a certain level of accuracy. Typically, the avail-
able structural reanalysis methods are classified into two cat-

egories: 1) local or single point approximation methods and 2)
global or multipoint approximation methods.

As its name suggests, the local or single point approxima-
tion methods, such as binomial series expansion and the first
order Taylor series expansion about a given initial design,
approximate the response of the modified structure based on
available information from a single initial design. Although
the application of these methods showed good accuracy in
approximation of exact response under small changes in the
initial design, they were not able to function well on reanalysis
problems with relatively larger changes in the design space,
and unstable computational results have been observed
(Barthelemy and Haftka 1993). On the other hand, global or
multipoint approximation methods, such as a polynomial
fitting or the reduced basis method (Fox and Miura 1971;
Haftka et al. 1987; Noor 1994), calculate the response of the
modified structure by considering multiple initial designs.
Although, it has been shown that the global methods perform
well on the reanalysis problems with a relatively larger chang-
es in the design space, they also have some shortcomings.
These methods neglect the higher order terms of series expan-
sion at every initial design point which reduce the accuracy of
reanalysis results (Zuo et al. 2012). Moreover, they may
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require much computational effort in reanalysis problems with
a large number of design variables (Wu et al. 2003).

To remedy abovementioned drawbacks of the local and
global approximation methods, Kirsch (2000, 2003; Kirsch
and Papalambros 2001a) developed a combined approxima-
tion (CA) method, which attempts to provide global qualities
to the local approximations. By assuming a single initial de-
sign, the CAmethod combines the reduced basis method with
the first terms of series expansion to approximate the response
of the modified structure. The numerical results in previous
studies indicate that the CA method performs well in various
reanalysis problems and is able to approximate the response of
the modified structure under relatively large changes in the
design space (Amir et al. 2008; Kirsch 2010; Kirsch and
Bogomolni 2004; Kirsch et al . 2006; Kirsch and
Papalambros 2001b; Leu and Huang 2000). Kirsch et al.
(2002) proved that the CA method and preconditioned conju-
gate gradient (PCG) method of using the initial stiffness ma-
trix as the preconditioner are computationally equivalent and
they provide theoretically identical results. There have been
some studies to improve the accuracy and efficiency of the CA
method in structural reanalysis (Sun et al. 2014; Zheng et al.
2015; Zuo et al. 2012). For example, Zuo et al. (2012) pro-
posed a hybrid Fox and Kirsch’s reduced basis method for
static structural reanalysis. The hybrid method combines the
merits of Fox’s polynomial fitting reanalysis and combined
approximation to achieve more accurate results. Although
the hybrid method achieves significantly accurate results than
the CA method, it requires more computational effort (Zuo
et al. 2012). In another work, Sun et al. (2014) developed an
adaptive Kirsch method to structural reanalysis. The authors
used a K-condition number technique to determine minimum
number of basis vectors.

Accuracy and efficiency are two important factors in eval-
uating the performance of a structural reanalysis method.
Most of the available reanalysis methods approximate the re-
sponse of the modified structure by constructing a series ex-
pansion about an available initial design. Usually, they pick a
certain terms of constructed series expansion and calculate the
approximate response of the structure. However, in most of
the reanalysis problems, these series expansions converge to
their limits very slowly or even diverge. In this situation, con-
sidering higher order terms of series can not only guarantee
the accuracy of the results but also lead to computationally
expensive solution process. In this context it is necessary to
develop new reanalysis procedures based on computational
approaches able to find high quality results with fewer com-
putational efforts. Frommathematical viewpoint, one practical
way to make a given sequence converge more quickly is to
apply to them a suitable convergence acceleration method (or
equivalently extrapolation method). This paper joins this line
of research by using a new structural reanalysis approach
based on the polynomial-type extrapolation methods. In this

approach, the sequences of approximate displacement of the
modified structure are constructed by using a fixed-point iter-
ation method. These sequences are then further analyzed by
two polynomial-type extrapolation methods to find the ap-
proximate response of the modified structure more accurately,
namely, the minimal polynomial extrapolation (MPE) and the
reduced rank extrapolation (RRE). The performance of this
reanalysis approach is evaluated on three large scale static
structural reanalysis problems under multiple and large chang-
es in their initial designs. Numerical results confirm that the
new polynomial-type extrapolation-based reanalysis approach
is capable of yielding accurate results with fewer amount of
computational efforts.

The subsequent sections of this paper are organized as fol-
lows. In Section 2, mathematical formulation of static reanal-
ysis problem is presented. Then, details of the new reanalysis
approach are introduced in Section 3. In Section 4, the perfor-
mance of the proposed approach is demonstrated through
three large scale structural reanalysis problems. Finally,
Section 5 presents the concluding remarks and directions for
future research.

2 Problem formulation

The main aim of the static structural reanalysis problem is to
calculate the response of the modified structure without re-
solving complete set of modified equations in such a way that
the required computational effort is minimized. Now, let us
assume a given initial structural design with ndof degree of
freedoms (DOFs), stiffness matrix K0∈ℂndof�ndof , and load
vector F0∈ℂndof . In reanalysis problems, it is assumed that
the initial displacement vector r0∈ℂndof for initial design has
been calculated from the initial analysis as follows:

K0r0 ¼ F0 ð1Þ
where it is assumed that the decomposed form of initial stiff-
ness matrix K0 is given as follows:

K0 ¼ UT
0U0 ð2Þ

in which U0 denotes a upper triangular matrix.
Now, if we assume that some changes are occurred in the

initial structural design, the new stiffness and load vectors for
the modified structure can be simply written as:

K ¼ K0 þ ΔK ; K;ΔK∈ℂndof�ndof ð3Þ
F ¼ F0 þ ΔF; F;ΔF∈ℂndof ð4Þ
where K and F are the stiffness matrix and load vector for the
modified structure, respectively. Generally speaking, the
changes in the stiffness matrix ΔK are a function of cross-
sectional properties, length, and material properties of
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structural elements, while the changes in the load vector ΔF
depend on the loading conditions as well as geometrical and
physical properties of structure (Kirsch 2000). By assuming
these changes in the initial structural design, the purpose of a
static reanalysis problem is to calculate the displacement vec-
tor r∈ℂndof of the modified structure without solving follow-
ing complete set of modified equations:

Kr ¼ F ð5Þ

If the displacement vector of the modified structure is giv-
en, the stress in the members of structure can be obtained
accordingly.

3 Methodology

In this section, we present a new structural reanalysis ap-
proach based on the polynomial-type extrapolation methods.
Since in the numerical investigations we compare the perfor-
mance of our approach with the well-known combined ap-
proximation (CA) method, we first provide a brief review of
the CA method and then explain details of the new reanalysis
approach.

3.1 Combined approximation (CA) method

The combined approximation (CA) is a reanalysis method
developed by using the reduced basis vectors and the first
terms of series expansion. In the CAmethod, the displacement
vector of the modified structure r is approximated as a linear
combination of s linearly independent basis vectors as fol-
lows:

r ¼ y1r1 þ y2r2 þ⋯þ ysrs

¼ rBy; rB∈ℂndof�s; y∈ℂ s ð6Þ

rB ¼ r1; r2;…; rs½ �; y ¼
y1
y2
⋮
ys

8>><
>>:

9>>=
>>;

ð7Þ

where rB is a matrix consisting of s basis vectors, and y is a
vector containing unknown coefficients that should be deter-
mined. Substituting (6) in (5) and premultiplying resulting
equations by rTB, we can write:

KRy ¼ FR; KR∈ℂs�s; FR∈ℂ s ð8Þ

where KR ¼ rTBKrB and FR ¼ rTBF are the reduced order
stiffness matrix and load vector, respectively. When s ≪ ndof,
the approximate displacement vector of the modified structure
can be calculated by solving a system of equations with the

size of s × s for y which is much smaller than the original
system of equations with the size of ndof × ndof. Then, the
approximate displacement vector r can be easily calculated
by (6).

In the CA method, the basis vectors are obtained based on
the binomial series. Back to the load-displacement relation of
the modified structure, (5) can be simply written in term of the
corresponding changes in stiffness matrix as follows:

K0 þ ΔKð Þr ¼ F ð9Þ

By rearranging (9), we obtain a recurrence relation as fol-
lows:

K0r kþ1ð Þ ¼ F−ΔKr kð Þ ð10Þ
where r(k + 1) indicates the value of r in the kth iteration. By

assuming an initial vector r 1ð Þ ¼ K−1
0 F, following Neumann

series is obtained:

r ¼ I−Bþ B2−⋯þ Bs−1� �
r 1ð Þ; B∈ℂndof�ndof ; r 1ð Þ∈ℂndof

ð11Þ

where B ¼ K−1
0 ΔK . The basis vectors are thus given by:

r1 ¼ r 1ð Þ ¼ K−1
0 F; r2 ¼ −Br1;…; rsþ1 ¼ −Brs ð12Þ

As can be seen from above equation, if the initial stiffness
matrix is given in the decomposed form of (2), the calculation
of basis vectors requires only forward and backward
substitutions.

We can now state the step-by-step procedure of the CA
method for structural reanalysis as follows:

Step 1: Calculate the stiffness matrix of the modified
structure: K =K0 + ΔK.
Step 2: Calculate (ndof × s) matrix of basis vectors
rB = [r1, r2,…, rs] by (12).
Step 3:Calculate the reduced stiffness matrixKR and load
vector FR: KR ¼ rTBKrB, FR ¼ rTBF.
Step 4: Solve the reduced system of equations (8) for y.
Step 5: Calculate the approximate displacement vector of
the modified structure by (6).

3.2 New reanalysis approach based
on the polynomial-type extrapolation methods

In many problems of engineering approximation, computing
the limits of the vector sequences is an essential task. However
on many cases of practical interest, due to slow convergence
properties of such sequences to their limits, direct using of
them to approximate their limits is computationally expensive
or even impossible. In mathematical science, the limits of
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slowly converging sequences or even diverging sequences can
be approximated by applying convergence acceleration
methods (or equivalently extrapolation methods). From a giv-
en vector sequence, extrapolation methods produce a new
vector sequence that converges to the former’s limit more
quickly when this limit exists. In a certain condition, when
the limit of the original vector sequence does not exist, the
convergence acceleration methods are able to produce new
sequence that either diverge more slowly than former se-
quence or converges to a meaningful quantity (Sidi 2003).
This is a characteristic feature of the extrapolation methods.
In this study, we use such an idea to solve static structural
reanalysis problems.

Minimal polynomial extrapolation (MPE) developed by
Cabay and Jackson (1976) and reduced rank extrapolation
(RRE) developed by Kaniel and Stein (1974), Eddy (1979),
and Mešina (1977) are two efficient polynomial-type methods
for convergence acceleration of vector sequences. Since their
emergence, the MPE and RRE methods have been success-
fully applied to different areas of science and engineering
(Bertelle et al. 2011; Duminil et al. 2014, 2015; Loisel and
Takane 2011). Some excellent reviews about the polynomial-
type extrapolation methods can be found in Refs. (Sidi 2012;
Sidi et al. 1986; Smith et al. 1987). In addition, their conver-
gence and stability properties have been investigated by Sidi
(1986, 1994), Sidi and Bridger (1988), and Sidi and Shapira
(1992, 1998). In the following, we present our reanalysis ap-
proach based on the MPE and RREmethods. We only explain
those equations which will be used in our approach. For de-
tailed derivations and related mathematical proofs, the inter-
ested reader may refer to Ref. (Sidi 2012).

Let us consider the load-displacement relation of the mod-
ified structure (5) in term of the corresponding change in the
stiffness matrix as follows:

K0 þ ΔKð Þr ¼ F ð13Þ
by rearranging above equation, we can write it as a recurrence
formula as follows:

rnþ1 ¼ Trn þ b; b; rn∈ℂndof ; T∈ℂndof�ndof ð14Þ
where

T ¼ −K−1
0 ΔK ;b ¼ K−1

0 F ð15Þ
and, rn + 1 and rn denote the displacement vector of the mod-
ified structure at the (n + 1)th and nth iterations, respectively.
It should be noted that calculating T and b requires only for-
ward and backward substitutions. Writing (14) in the form (I
− T)r = b, it becomes clear that the uniqueness of the solution
is guaranteed when the matrix I − T is nonsingular or, equiv-
alently, when T does not have 1 as its eigenvalue. In other
words, the convergence of (14) will take place from any r0

sufficiently close to rexact provided ρ K−1
0 ΔK

� �
< 1, where

ρ(A) is the spectral radius of the square matrix A. When ρ

K−1
0 ΔK

� �
is closer to zero, the convergence speed of the series

in (14) is fast. However, the convergence speed of the series is

very slow when ρ K−1
0 ΔK

� �
becomes closer to 1. We refer the

reader to the book by Süli andMayers (2003) for more details.
In this situation, the obtained series in (14) has a unique solu-
tion as rexact ¼ lim

n→∞
rn. Now, let us consider the displacement

vector of the initial design r0∈ℂndof as an initial vector and
generate the sequence {rn} as follows:

rnþ1 ¼ Trn þ b; n ¼ 0; 1;… ð16Þ

Let us also define

un ¼ rnþ1−rn; n ¼ 0; 1;…; un∈ℂndof ð17Þ

3.2.1 Minimal polynomial extrapolation (MPE)

For vector sequence {rn} inℂ
ndof , assume an arbitrary positive

integer k that is usually much smaller than the number of
DOFs of the structure (k ≪ ndof). Then, construct the matrix
Uk − 1 as follows:

U k−1 ¼ u0 u1j ⋯j uk−1j½ �∈ℂndof�k ð18Þ
where un is defined in (17). Let assume that c′ denotes the
least-squares solution of the following overdetermined linear
system:

U k−1c
0 ¼ −uk ; c

0 ¼ c0; c1;⋯; ck−1½ �T∈ℂk ð19Þ

In other words, c′ is a solution of the following minimiza-
tion problem:

c0; c1;⋯
min

; ck−1 ∑
k−1

j¼0
c ju j þ uk

�����
����� ð20Þ

Set ck = 1 and calculate γMPE
0 ; γMPE

1 ;⋯; γMPE
k via

γMPE
j ¼ c j

∑k
i¼0ci

; j ¼ 0; 1;⋯; k ð21Þ

It is worth mentioning that ∑
k

i¼0
ci≠0 (Sidi 2012). Now, the

MPE approximation to rexact ¼ lim
n→∞

rn, denoted by ~rMPE
k , is

obtained as follows:

~r
MPE

k ¼ ∑
k

j¼0
γMPE
j r j ð22Þ

where rj represents the displacement vector of the modified
structure at the jth iteration obtained from (16).
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3.2.2 Reduced rank extrapolation (RRE)

Back to the vector sequence {rn} inℂ
ndof , assume an arbitrary

positive integer k that is usually much smaller than the number
of DOFs of the structure (k ≪ ndof). Then, construct the matrix
Uk as follows:

U k ¼ u0 u1j ⋯j ukj½ �∈ℂndof�kþ1 ð23Þ

Let assume that γ denotes the least-squares solution of the
following overdetermined linear system:

U kγ ¼ 0; γ ¼ γ0; γ1;⋯; γk½ �T∈ℂkþ1 ð24Þ

subjected to the constraint ∑k
j¼0γ j ¼ 1. In other words, γ is

the solution of the following constrained minimization prob-
lem:

Table 1 The number of algebraic operations (NAOs) required by the CA, MPE, and RRE methods during the reanalysis process

Operation NAOs Comments

Combined Approximation (CA)

rs = −Brs − 1

rB = [r1|r2|…|rs]
s(4ndof

2 + ndof) By using decomposed form of K0 ¼ UT
0U0, calculation of each basis vector requires:

• Forward and backward substitutions with 2ndof
2 operations.

• One matrix-vector multiplication with 2ndof
2 operations.

• Negative multiplications with ndof operations.

KR ¼ rTBKrB 2sndof
2 + 2ndofs

2 • One matrix-matrix multiplication between two matrices with sizes of (s × ndof) and
(ndof × ndof).

• One matrix-matrix multiplication between two matrices with the sizes of (s × ndof) and
(ndof × s), respectively.

FR ¼ rTBF 2sndof One matrix-vector multiplication between a matrix and a vector with sizes of (s × ndof) and
(ndof × 1), respectively.

Solve KRy =FR
1
3 s

3 þ 2s2 Solving (s × s) system of equations by Cholesky decomposition method

r = rBy sndof One matrix-vector multiplication between a matrix and a vector with the sizes of (ndof × s) and
(s × 1), respectively.

Total: 6sndof 2 þ 2s sþ 1ð Þndof þ 1
3 s

3 þ 2s2

Minimal Polynomial Extrapolation (MPE)

b ¼ K−1
0 F 2ndof

2 Forward substitution with ndof
2 operation and backward substitution with ndof

2 operations.

rn + 1 = Trn + b (k + 1)(4ndof
2 + 2ndof) MPE method requires k + 1 vector sequences. By using decomposed form of K0 ¼ UT

0U0,
calculation of each vector sequence requires:
• One matrix-vector multiplication with 2ndof

2 operations.
• Forward and backward substitutions with 2ndof

2 operations.
• Negative multiplications with ndof operations.
• One vector addition with ndof operations.

Uk − 1 = [u0|u1|…|uk − 1] kndof k subtractions of vectors with the size of (ndof × 1)

Solve Uk − 1c
′ = − uk 2ndofk

2 Least square solution of the overdetermined linear system with size of (ndof × k)

γMPE
j ¼ c j

∑k
i¼0ci

; j ¼ 0; 1;…; k 2(k + 1) k + 1 scalar additions and k + 1 scalar subtractions

~rMPE
k ¼ ∑

k

j¼0
γMPE
j r j 2(k + 1)ndof k + 1 vector multiplications and k + 1 vector additions

Total: (4k + 6)ndof
2 + (2k2 + 5k + 2)ndof + 2(k + 1)

Reduced Rank Extrapolation (RRE)

b ¼ K−1
0 F 2ndof

2 Forward substitution with ndof
2 operations and backward substitution with ndof

2 operations.

rn + 1 = Trn + b (k + 1)(4ndof
2 + 2ndof) RRE method requires k + 1 vector sequences. By using decomposed form of K0 ¼ UT

0U0,
calculation of each vector sequence requires:
• One matrix-vector multiplication with 2ndof

2 operations.
• Forward and backward substitutions with 2ndof

2 operations.
• Negative multiplications with ndof operations.
• One vector addition with ndof operations.

Uk = [u0|u1|…|uk] (k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)

Solve Ukγ
RRE = 0 2(k + 1)2ndof Least square solution of the overdetermined linear system with size of (ndof × k + 1)

~rRREk ¼ ∑
k

j¼0
γRREj r j 2(k + 1)ndof k + 1 vector multiplications and k + 1 vector additions

Total: (4k + 6)ndof
2 + (2k2 + 9k + 7)ndof
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γ0; γ1;⋯
min

; γk ∑
k

j¼0
γ jμ j

�����
�����

Subject to : ∑k
j¼0γ j ¼ 1

ð25Þ

If the solution of minimization problem defined in (25) is
denoted by γRREj , then the RRE approximation to

rexact ¼ lim
n→∞

rn, denoted by ~rRREk , is obtained as follows:

Fig. 1 Schematic of 942-bar
tower structure: a 3D view, b side
view, and c top view

Fig. 2 Design groups in different
sections of 942-bar tower
structure: a section 1, b section 2,
c section 3
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~r
RRE

k ¼ ∑
k

j¼0
γRREj r j ð26Þ

where rj represents the displacement vector of the modified
structure at the jth iteration obtained from (16). For both of the
MPE and RRE methods, it can be seen that the approximate
structural response is constructed from the knowledge of the
k + 1 vectors of iteration r0, r1, …, rk + 1. In the proposed
reanalysis process, the complete set of equations of exact anal-
ysis with the size of ndof × ndof is reduced to the linear least-
squares problems with the sizes of ndof × k and ndof × k + 1 for
the MPE and RRE methods, respectively.

Before leaving this section, we are interested to compare
the number of algebraic operations (NAOs) required by the
MPE, RRE, and CA methods to compute approximate re-
sponse of the modified structure. To this end, the approximate
total NAOs (multiplications and additions) required by each
method are listed in Table 1. As can be seen from the table, the
total NAOs for the MPE and RRE methods depend on the
value of parameter k. On the other hand, the amount of
NAOs for the CA method is mainly related to the number of
considered basis vectors (s). In the condition of equal compu-
tational effort, we can find the approximate relationship be-
tween the parameters of k and s. By setting equality between
NAOs of theMPE, RRE, and CAmethods, we can see that for
the values k and s satisfying the relation k≅ 3

2 s−1ð Þ, the men-
tioned methods are computationally equivalent. Our initial
investigations show that the both of the MPE and RRE
methods are able to produce satisfactory results for very

Fig. 3 Modified parts of 942-bar tower structure

1.00E+06
6.00E+06
1.10E+07
1.60E+07
2.10E+07
2.60E+07
3.10E+07

2 3 4 5 6 7 8 9 10

N
A

O
s

k or s

CA MPE RRE

Fig. 4 Comparison of the
required computational efforts by
the MPE, RRE, and CA methods
for different values of parameters
k and s in 942-bar tower structure
problem

Table 2 Reanalysis results of the MPE, RRE, and CAmethods for 942-
bar tower structure problem (k = 3, s = 3)

Method EAv. (%) EMax (%) ERelative

α = 0.2

CA 0.0338 3.4255 1.1660 × 10−4

MPE 4.5623 × 10−4 0.0339 9.6869 × 10−7

RRE 4.5742 × 10−4 0.0341 9.6877 × 10−7

α = 0.4

CA 0.2298 16.3720 9.4482 × 10−4

MPE 8.6764 × 10−3 0.6006 1.8138 × 10−5

RRE 8.7065 × 10−3 0.6012 1.8150 × 10−5
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smaller values of k. In our experiments presented in the next
section, we compare the required NAOs by each method for
different values of k and s.

Now we are ready to summarize main steps of the MPE
and RRE methods for the static structural reanalysis as
follows:

& MPE method:

Step 1: Select an appropriate value for parameter k in such
a way that k ≪ ndof and generate the vectors r0, r1,…, rk + 1
by (16).
Step 2: Calculate the vectors u0, u1,…, uk − 1by (17) and
construct the matrix Uk − 1 with the size of ndof × k using
(18).
Step 3: Calculate c′ = [c0, c1,⋯, ck − 1]

T by solving the
overdetermined linear system of (19) in the least-square
sense.
Step 4: Set ck = 1 and compute γMPE

0 ; γMPE
1 ;⋯; γMPE

k via
(21).
Step 5:Calculate theMPE approximation of the displace-

ment vector of the modified structure ~rMPE
k by using (22).

& RRE method:
& Step 1: Select an appropriate value for parameter k in such

a way that k ≪ ndof and generate the vectors r0, r1,…, rk + 1
by (16).

& Step 2: Calculate the vectors u0, u1, …, uk by (23) and
construct the matrix Uk with the size of ndof × (k + 1).

& Step 3: Calculate γRRE ¼ γRRE0 ; γRRE1 ;⋯; γRREk

� �T
by

solving the overdetermined linear system of (25) in the
least-square sense.

& Step 4: Calculate the RRE approximation of the displace-

ment vector of the modified structure ~rRREk by using (26).

4 Numerical tests and computational results

4.1 Comparison criteria

In this section we evaluate the efficiency and robustness of the
presented reanalysis approach based on the MPE and RRE
methods against the well-known CA method through a set
of three large scale structural reanalysis problems under mul-
tiple types of changes in their initial designs. In the investigat-
ed test examples, the exact results are obtained by Matlab
software. Numerical tests are conducted to asses each method
from accuracy and computational viewpoints as described in
following subsections.

4.1.1 Accuracy

In the investigates test examples, the accuracy of the MPE,
RRE, and CA methods are compared in terms of the average
and maximum reanalysis errors occurred in each DOF of the
structure. The reanalysis error occurred in each DOF of the
structure is evaluated as follows:

EDOFi ¼
rexacti−~ri
rexacti

�����
����� ; for i ¼ 1; 2;…; ndof ð27Þ

Table 4 Comparison of
computational efforts required by
the CA, MPE, and RRE methods
for 942-bar tower structure
problem

Method NAOs Speed-up ratio Saving in NAOs CPU time (s)

k = 3, s = 3

Exact 113,353,344 – – 1.2647

CA 8,736,219 12.98 – 0.0481

MPE 8,743,855 12.96 −0.08% 0.0488

RRE 8,755,680 12.94 −0.22% 0.0496

k = 8, s = 8

CA 23,352,490 4.85 – 0.069

MPE 18,526,145 6.12 20.66% 0.059

RRE 18,551,880 6.11 20.56% 0.061

Savings in NAOs is calculated based on the required computational effort by the CA method

Table 3 Reanalysis results of the MPE, RRE, and CAmethods for 942-
bar tower structure problem (k = 8, s = 8)

Method EAv. (%) EMax (%) ERelative

α = 0.2

CA 5.6313 × 10−8 4.8465 × 10−6 1.6933 × 10−10

MPE 8.7425 × 10−10 7.8951 × 10−8 1.1568 × 10−12

RRE 8.6352 × 10−10 7.9780 × 10−8 1.1648 × 10−12

α = 0.4

CA 4.2157 × 10−6 3.6515 × 10−4 1.1418 × 10−8

MPE 4.4798 × 10−7 2.1612 × 10−5 6.6890 × 10−10

RRE 4.5093 × 10−7 2.2172 × 10−5 6.9739 × 10−10
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where EDOFi indicates the reanalysis error occurred in evalu-
ating displacement of the ith DOF of the structure, rexacti and~ri
denote the exact and approximated displacements of the ith
DOF of the structure, respectively, and ndof is the total number
of DOFs of the structure. For a given reanalysis problem, the
average error (EAv.) and the maximum error (EMax) obtained
from each of the reanalysis method can be calculated as fol-
lows:

EMax ¼ max EDOFið Þ ð28Þ

EAv: ¼ ∑ndof
i¼1EDOFi

ndof
ð29Þ

Besides, we compared the quality of the approximate dis-
placement vector obtained from each reanalysis method by

using following error measuring criteria:

ERelative ¼
rexact−~r

��� ���
rexactk k ð30Þ

where ERelative indicates the relative error, ‖.‖ is the L2 norm,
rexact denotes the exact displacement vector, and ~r is the ap-
proximate displacement vector obtained from a reanalysis
method. As was already mentioned that, the computational
efforts required by the MPE and RRE methods are mainly
depend on the value of parameter k. To conduct a fair
comparison between the proposed approach and the CA
method, we investigated the performance of each method by
considering different values for parameters k and s. It should
be noted that the appropriate values for the parameters k and s
depend on the size of the reanalysis problem and required
level of accuracy. In this study, the values of these
parameters are selected by a purely trial and error procedure.

4.1.2 Computational consideration

In order to compare the reanalysis methods in term of the
computational efficiency, researchers compare the required
NAOs by the reanalysis method with the required NAOs by
a given exact method. For example, Zuo et al. (2016) defined a
speed-up ratio for reanalysis procedure. In this study, the
speed-up ratio is also used to compare the efficiency of each
method. If the displacement of the modified structure in (5) is
obtained by Cholesky decomposition method, the required

NAOs is equal to ndof 3

3 þ 2ndof 2. Therefore, the speed-up ratio
(η) for each reanalysis method can be calculated as follows:

ηCA ¼ TDirect

TCA
≈

ndof 3

3
þ 2ndof 2

6sndof 2
ð31Þ

ηMPE ¼ ηRRE ¼ TDirect

TMPE
≈

ndof 3

3
þ 2ndof 2

4k þ 6ð Þndof 2 ð32Þ
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Fig. 5 Comparison of the relative
errors obtained from the MPE,
RRE, and CA methods for
different values of parameters k
and s in 942-bar tower structure
problem (α = 0.4)

Fig. 6 Schematic of 4802-bar tower structure: a 3D view, b side view, c
top view, and d elements pattern for first two stories of the structure
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where ηCA, ηMPE, and ηRRE represent the speed-up ratio for the
CA, MPE, and RRE methods, respectively, TDirect, TCA, and
TMPE are the required NAOs by the direct, CA, and MPE
methods, respectively. It should be noted that the required
NAOs by both of the MPE and RRE are approximately same.

4.2 A 942-bar tower structure

Figure 1 shows a 942-bar tower structure as the first investi-
gated test example. This structure consists of 244 nodes and
732 DOFs. As displayed in Fig. 2, the structural members are
divided into 59 independent design groups. The loading con-
dition for this tower is as follows: 1.12 kips acting in the X and
Y directions and −6 kips acting in the Z direction at all nodes
of the tower. In the initial design, it is assumed that the all of
the structural members have constant Young’s modulus (E0

i )

and cross-sectional area (A0
i Þ equal to 10,000 ksi and 60 in2,

respectively. Then, we assume a set of multiple changes in the
initial design as follows: increasing the cross-sections of de-
sign groups 1 through 8 and design groups 12 through 28, and
decreasing the Young’s modulus of design groups 47 through
59. Figure 3 shows the modified parts of 942-bar tower struc-
ture. To evaluate the performance of the reanalysis methods
under different levels of changes in initial design, we consid-
ered the modified design as follows:

Modified design :

Ai ¼ 1þ αð ÞA0
i for i ¼ 1; 2;…; 8

Ai ¼ 1þ αð ÞA0
i for i ¼ 12; 13;…; 28

Ai ¼ A0
i otherwise

Ei ¼ 1−αð ÞE0
i for i ¼ 47; 48;…; 59

Ei ¼ E0
i otherwise

8>>>><
>>>>:

ð33Þ

where Ai and Ei represent the modified cross-sectional area
and Young’s modulus for the ith design group, respectively,
and α ∈ [0.2, 0.4] is a constant parameter defined to consider
different ranges of the modifications in the structure.

As was already mentioned, the convergence of series gen-
erated by (16) will take place from any r0 sufficiently close to
rexact provided ρ K−1

0 ΔK
� �

< 1. In this test example, ρ

K−1
0 ΔK

� �
is equal to 0.20 and 0.40 for the cases of α = 0.2

and α = 0.4, respectively. Therefore, the convergence of series
obtained from (16) is guaranteed.

For different values of k and s, Fig. 4 compares the NAOs
required by the MPE, RRE, and CAmethods to solve 942-bar
tower structure problem. As can be seen, all reanalysis
methods require a same amount of NAOs when k = s = 3.
While for larger values of k and s, both of the MPE and
RRE methods requires significantly fewer amount of NAOs
than the CA method. Therefore, to conduct a fair numerical
comparison between different methods, we investigate the
performance of the MPE and RRE methods against the CA
method by considering two cases as follows: k = s = 3 and k =
s = 8.

Fig. 7 Modified parts of 4802-bar tower structure
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When k = s = 3, the reanalysis results obtained from the
MPE, RRE, and CA methods are summarized in Table 2.
From the results of Table 2 we can see that the accuracy of
the MPE and RRE methods is significantly better than the CA
method in different levels of changes in design variables. In
the all cases, we can see that both of the MPE and RRE
methods have a relatively same accuracy and their average,
maximum, and relative errors are significantly smaller than
the corresponding values yielded by the CA method. The
efficiency of the proposed methods is more observable in the
cases of larger changes. For example, when the changes in the
design variables is 40% (α = 0.4), it can be see that both of the
MPE and RRE methods are able to provide accurate results,
while the results yielded by the CA method indicate relatively
large errors. Back to Table 2, we can see that the maximum
error obtained by the CA method is about 16%. While this
value is about 0.6% for both of the MPE and RRE methods,
which are far less than that is given by the CA method.

For the case of k = s = 8, the reanalysis results have been
summarized in Table 3. From the results of Table 3 it can be
seen that all of the MPE, RRE, and CA methods obtain more
accurate results than the case of k = s = 3. However, accuracy
of the MPE and RRE methods is still better than the CA
method.

Table 4 compares the required computational efforts by
each of the reanalysis method for this test example. From
the results of Table 4 we can see that in the case of k = s = 3,
a relatively same amount of computational effort is required
for all of the MPE, RRE, and CA methods. However, the
situation for the case of k = s = 8 is different and both of the
MPE and RRE methods are computationally efficient than the
CA method. This computational efficiency of the MPE and
RRE methods and their accuracy observed in Tables 2 and 3
reveal the distinguished performance of the MPE and RRE
methods in the reanalysis process.
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Fig. 8 Comparison of the
required computational efforts by
the MPE, RRE, and CA methods
for different values of parameters
k and s in 4802-bar tower
structure problem

Table 5 Reanalysis results obtained by the MPE, RRE, and CA
methods for 4802-bar tower structure problem (k = 3, s = 3)

Method EAv. (%) EMax (%) ERelative

α = 0.2

CA 0.0011 0.2113 1.2493 × 10−6

MPE 6.2422 × 10−5 0.0111 6.1321 × 10−8

RRE 6.2083 × 10−5 0.0107 6.3299 × 10−8

α = 0.4

CA 0.0102 2.2142 1.0378 × 10−5

MPE 0.0011 0.2249 1.0117 × 10−6

RRE 0.0010 0.1867 1.2471 × 10−6

α = 0.6

CA 0.0407 10.2732 3.8409 × 10−5

MPE 0.0069 1.5761 7.2112 × 10−6

RRE 0.0059 0.9150 1.1455 × 10−5

α = 0.8

CA 0.1272 36.2713 1.1710 × 10−4

MPE 0.0344 8.0969 5.1646 × 10−5

RRE 0.0284 3.1613 8.5175 × 10−5

Table 6 Reanalysis results obtained by the MPE, RRE, and CA
methods for 4802-bar tower structure problem (k = 8, s = 8)

Method EAv. (%) EMax (%) ERelative

α = 0.2

CA 9.1540 × 10−4 0.18422 5.9439 × 10−7

MPE 1.7460 × 10−6 3.5349 × 10−5 1.3905 × 10−8

RRE 1.7460 × 10−6 3.5349 × 10−5 1.3905 × 10−8

α = 0.4

CA 0.0133 2.9403 1.7871 × 10−5

MPE 1.6636 × 10−6 2.9840 × 10−5 1.1237 × 10−8

RRE 1.6636 × 10−6 2.9842 × 10−5 1.1237 × 10−8

α = 0.6

CA 0.0150 4.0955 1.0037 × 10−5

MPE 2.3738 × 10−6 7.2139 × 10−5 1.4989 × 10−8

RRE 2.3742 × 10−6 7.2034 × 10−5 1.4991 × 10−8

α = 0.8

CA 4.9290 × 10−4 0.1492 9.2727 × 10−7

MPE 3.0447 × 10−6 2.3094 × 10−4 1.3446 × 10−8

RRE 3.1931 × 10−6 2.7157 × 10−4 1.3633 × 10−8
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In order to make comparison more clearly, the relative er-
rors yielded by the MPE, RRE, and CA methods are illustrat-
ed in Fig. 5 for the case k = s and α = 0.4. From Fig. 5, we can
see that both of the MPE and RRE are capable of yielding
more accurate results than the CA method.

4.3 A 4802-bar tower structure

The second test example is a large scale tower structure with
100 stories, 4802 members, 1212 nodes, and 3636 DOFs. The
3D, side, and top views as well as configuration pattern for the
first two stories of the structure are illustrated in Fig. 6. The
loading condition for this tower is as follows: 1.12 kips acting
in the X and Y directions and −6.74 kips acting in the Z
direction at all nodes of the tower. For the initial design, it is
assumed that the all of the structural members have constant

Young’s modulus (E0
i ) and cross-sectional area (A0

i Þ equal to
10,000 ksi and 80 in2, respectively. Then, we consider a set of
multiple changes in the initial design as follows: increasing the
Young’s modulus of structural members in stories 1 through

20 as Ei ¼ 1þ αð ÞE0
i , increasing the cross sectional areas of

structural members in stories 40 through 60 as

Ai ¼ 1þ αð ÞA0
i , and decreasing the cross sectional areas of

structural members in stories 91 through 100 as

Ai ¼ 1−αð ÞA0
i . In this test case, we consider the changes in

the design variables within the range 20%–80% (α = 0.2, 0.4,
0.6, 0.8). With these modifications, 2400 structural members
(about 50% of total members of the structure) are modified in
different directions. The modified parts of the structure are
displayed in Fig. 7.

For the changes considered in this test example, the value

of ρ K−1
0 ΔK

� �
is equal to 0.2, 0.4, 0.6, and 0.8 for the cases of

α = 0.2, α = 0.4, α = 0.6, and α = 0.8, respectively. Hence, the
series generated from (16) will converge.

For different values of k and s, Fig. 8 compares the required
NAOs by each of the reanalysis methods. Once again, we can
see that all of the MPE, RRE, and CA methods require same
amount of NAOs for the case of k = s = 3. To reveal the capa-
bilities of the reanalysis methods, like previous test examples,
we have compared the performance of the mentioned methods
in two different cases of k = s = 3 and k = s = 8.

When k = s = 3, reanalysis results in terms of the average,
maximum, and relative errors are reported in Table 5. Once
again, the results of Table 5 demonstrate that both of the MPE
and RRE methods provide more accurate results than the CA
method. With increasing the amount of changes in the design
variables, it can be see that the errors obtained by the CA

Table 7 Comparison of
computational efforts required by
the CA, MPE, and RRE methods
for 4802-bar tower structure
problem

Method NAOs Speed-up ratio Saving in NAOs CPU time (s)

k = 3, s = 3

Exact 15,577,920,000 – – 3.1400

CA 233,366,427 66.75 – 0.1812

MPE 233,406,007 66.74 −0.01% 0.1887

RRE 233,467,200 66.72 −0.04 0.1891

k = 8, s = 8

CA 622,598,698 25.02 – 0.3638

MPE 493,092,017 31.59 20.80% 0.3012

RRE 493,225,200 31.58 20.78% 0.3115

Savings in NAOs are calculated based on the required computational effort by the CA method
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Fig. 9 Comparison of the relative
errors obtained from the MPE,
RRE, and CA methods for
different values of parameters k
and s in 4802-bar tower structure
problem (α = 0.8)
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method growmore rapidly. While theMPE and RREmethods
exhibit a good performance in terms of average, maximum,
and relative errors. For example, when the change in the de-
sign variables is 80% (α = 0.8), the maximum error obtained
by the CA method is more than 36%, while it is about 8% and
3% for the MPE and RRE methods, respectively.

For the case of k = s = 8, reanalysis results have been sum-
marized in Table 6. Results demonstrate that the accuracy of
the MPE, RRE, and CA methods is significantly improved by
increasing parameters k and s. However, the efficiency of the
MPE and RRE methods is also remarkable in comparison to
the CAmethod for this case. For example, when the change in
the design variables is 60% (α = 0.6), the maximum errors
yielded by the MPE and RRE methods are about 7 × 10−5%,
while it is about 4% for the CA method.

Table 7 compares the required amount of computational
efforts by each method. From this table, we can see that the
MPE and RRE methods are cheaper than CA method for the
case of k = s = 8. Finally, for the case of k = s and α = 0.8, Fig.
9 compares the relative errors obtained by theMPE, RRE, and
CA methods. With increasing parameters k and s, we observe
that the difference between the accuracy of the MPE and RRE
in comparison with the CA method is more significant.

4.4 A 3D bracket with hole

In the last test example, we investigate a 3D bracket with a
hole as shown in Fig. 10. The finite element model of the
bracket consists of 40,092 nodes, 24,200 elements, and
120,276 DOFs. The back face of the bracket is considered as
fixed in all directions (see Face 4 in Fig. 10a) and thickness of
the horizontal plate is equal to 1 cm. In the initial design, it is
assumed that the Young’s modulus (E0) and Poisson’s ratio
(ν0) are equal to 200 GPa and 0.3, respectively. In addition, a
distributed load with magnitude of 1 MPa is applied to the
front face of the bracket (see Face 8 in Fig. 10a) in negative z-
direction. Then, we assume a set of multiple changes in initial
design as follows: decreasing Young’s modulus to E = 0.7E0,
increasing Poisson’s ratio to ν = 1.25ν0, and applying a dis-
tributed load with magnitude of 1MPa to the horizontal plate
in negative z-direction (see Face 7 in Fig. 10a). With these
modifications, the stiffness matrix and load vector are modi-
fied simultaneously. Figure 11 compares the displacements of
the initial and modified structures in z-direction. As it can be
seen, the maximum displacement in z-direction for the initial
structure is equal to −0.45 cm, while it is equal to −3.05 cm for
the modified structure.
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For the changes considered in this test example, the value

of ρ K−1
0 ΔK

� �
is equal to 0.73. Once again, the convergence of

series obtained from (16) is guaranteed for this test example.
Fig. 12 compares the accuracy of the MPE, RRE, and CA

methods in term of the relative error obtained from each meth-
od for different values of parameters k and s. As we expected,
due to large number of DOFs for this problem, the larger
values for parameters k and s are needed to achieve adequate
level of accuracies. For small values of parameters k and s, it
can be seen that accuracy of mentioned methods are relatively
same. However, when the values of constant parameters are
increased, accuracy of the MPE and RRE methods is signifi-
cantly better than the CA method. For the case of k = s = 30,
the reanalysis results obtained from the mentioned methods
are listed in Table 8. As can be seen, unlike the CA and RRE
methods, the MPE method can obtain the modified displace-
ment vector with significantly higher level of accuracy. From
Table 8, we can see that the maximum error for the MPE
method is about 0.02%, which is an appropriate level of accu-
racy form engineering point of view. However, both of the CA
and RRE methods are not able to predict exact displacement
values in some DOFs of the structure and some instabilities
are observed in their results (see maximum error values). In
addition, Fig. 13 compares the required NAOs by each reanal-
ysis method for different values of parameters k and s.

4.5 Application of the proposed reanalysis methods
in structural optimization

As it is mentioned in introduction, attaining optimum designs
for structures requires numerous structural analyses during the
optimization process. In recent decades, the research toward

using meta-heuristic optimization techniques for optimum de-
sign of skeletal structures has been increasing enormously
(Allen et al. 2013; Jivotovski 2000; Sawada et al. 2011;
Stolpe 2016). In comparison to the classical optimization tech-
niques, they are able to solve complex structural optimum
design problemswithout using any gradient information about
the objective function and design constraints. However, meta-
heuristics do not always guarantee discovering globally opti-
mal solutions in finite time and require thousands of finite
element analyses to reach an optimum design. In this subsec-
tion, we are interested to know how the proposed reanalysis
methods can be employed to reduce the computational time
required by meta-heuristics for optimum design of a large
scale structure. To this end, we consider 942-bar tower struc-
ture shown in Fig. 1 as an optimum design problem. As an
efficient meta-heuristic optimization technique, we employed
the league championship algorithm (LCA) (Jalili et al. 2016b)
to find optimum design for this structure. The optimum design
problem of 942-bar tower structure is defined as follows.

Find A ¼ A1;A2;…;Ane½ �
To minimizeW Að Þ ¼ ∑ne

i¼1γiAiLi
ð34Þ

where A is the vector containing design variables, ne is the
number of members making up the structure, W(.) is the
weight of the structure, γi is the material density of member
i, and Ai is the cross-sectional area of the member i. We as-
sume that the Young’s modulus is 30,450 ksi and the yield
stress of steel is 58.0 ksi. The tower is subjected to the single
loading condition as follows: 1.12 kips acting in the X and Y
directions and −6.0 kips acting in the Z direction at all nodes
of the tower. In addition, the range of permitted cross sectional
areas varies from 10 in2 to 100 in2. As design constraints, the
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Fig. 12 Comparison of the
relative errors obtained from the
MPE, RRE, and CA methods for
different values of parameters k
and s in 3D bracket problem

Table 8 Reanalysis results obtained by the MPE, RRE, and CA methods for 3D bracket problem (k = 30, s = 30)

Method EAv. (%) EMax (%) ERelative Speed-up ratio Saving in NAOs CPU time (s)

CA 19.9156 125,590.6471 5.8757 × 10−8 197.56 – 204

MPE 1.3679 × 10−6 0.0205 4.4943 × 10−15 282.22 30.00% 134

RRE 0.0230 120.08 6.21 × 10−11 282.21 29.98% 139

Savings in NAOs are calculated based on the required computational effort by the CA method
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optimum design problem is subjected to the following stress
and displacement constraints:

(1) Stress constraint (according to the AISC ASD code
(Construction 1989)):

σþ
i ¼ 0:6Fy for σi≥0

σ−
i for σi < 0

�
ð35Þ

where σ−
i is calculated according to the slenderness ratio:

1−
λ2
i

2C2
c

	 

Fy

� �
=

5

3
þ 3λi

Cc
−

λi
3

8Cc
3

	 

for λi < Cc

12π2E

23λ2
i

for λi≥Cc

8>>><
>>>:

ð36Þ

where E = the modulus of elasticity; Fy = the yield stress of
steel; CC = the slenderness ratio (λi) dividing the elastic and

inelastic buckling regions CC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=

p
Fy

� �
; λi = the

slenderness ratio (λi = kLi/ri); k = the effective length factor;
Li = the member length; and ri = the radius of gyration.

(2) For all free nodes, the maximum nodal displacements are
limited to 3.15 in in all directions.

By using the exact and approximate reanalysis methods
during the optimization process, optimal designs obtained

through the exact, MPE, RRE, and CAmethods are presented
in Table 9. The optimization process is terminated when the
maximum number of structural analyses is reached. The max-
imum structural analyses is set to 20,000. These results are
obtained by assuming k = s = 8. From Table 9, it can be seen
that the reanalysis techniques can significantly reduce com-
puting time of the optimization process. It is worth mentioning
that the exact result is obtained by MATLAB software which
is extremely fast. Moreover, from the results of Table 9 we can
see that both of the MPE and RRE methods are more efficient
than the CA method in terms of the accuracy and required
CPU time.

5 Concluding remarks

In this study, a new approach based on the polynomial-type
extrapolation methods is applied to solving static structural
reanalysis problems under multiple and large changes in the
initial design. In the proposed approach, the sequences of
approximate displacement of the modified structure are con-
structed by using a fixed-point iteration method. These se-
quences are then further analyzed by two polynomial-type
extrapolation methods to find the approximate response of
the modified structure more accurately, namely, the minimal
polynomial extrapolation (MPE) and the reduced rank extrap-
olation (RRE). Based on a single initial design, the MPE and
RRE methods approximate the displacement vector of the
modified structure by solving a least-squares problem which
is much smaller than the original system of equations of the
exact analysis. To check the efficiency of the MPE and RRE
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Fig. 13 Comparison of the
required computational efforts by
the MPE, RRE, and CA methods
for different values of parameters
k and s in 3D bracket problem

Table 9 Optimum designs
obtained for 942-bar tower
structure by using different
reanalysis methods during the
optimization process

Type of analysis Weight (lb) Error measure for the optimum weight CPU time (sec) Speed-up ratio

Exact 545,479.23 – 2784 –

CA 568,182.82 4.16% 1816 1.53

MPE 565,445.01 3.66% 1030 2.70

RRE 563,306.77 3.27% 1033 2.70
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methods, a set of three large scale structural reanalysis prob-
lems are investigated under multiple and different levels of
changes in their initial designs. In the investigated test exam-
ples, the accuracy of theMPE and RREmethods are evaluated
against well-known combined approximation (CA) method.
Numerical results indicate that both of the MPE and RRE
methods are able to provide more accurate results than the
CA method for the investigated test examples. Moreover, the
computational efforts required by the MPE, RRE, and CA
methods are investigated in term of the number of algebraic
operations (NAOs). For the same level of accuracy, our inves-
tigations show that the MPE and RRE methods are computa-
tionally cheaper than the CA method. Besides, application of
theMPE and RREmethods in optimum design of a large scale
tower structure was also investigated. The results indicate that
both of the MPE and RRE methods can significantly reduce
computing time of the structural optimization process.
Although the MPE and RRE methods were used to static
structural reanalysis, their definition is totally independent of
the way in which vector sequences are generated. Therefore,
the MPE and RRE methods can be used to (hopefully) solve
other types of reanalysis problems such as nonlinear, vibra-
tional, and dynamic reanalysis problems under different types
of changes.
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