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Abstract
The article proposes an optimal design approach to minimize the mass of load carrying structures with discrete design
variables. The design variables are chosen from catalogues, and several variables are assigned to each part of the structure.
This allows for more design freedom than only choosing parts from a catalogue. The problems are modelled as mixed 0–1
nonlinear problems with nonconvex continuous relaxations. An algorithm based on outer approximation is proposed to find
optimized designs. The capabilities of the approach are demonstrated by optimal design of a space frame (jacket) structure
for offshore wind turbines, with requirements on natural frequencies, strength, and fatigue lifetime.

Keywords Structural optimization · Outer approximation · Offshore wind turbines · Jacket structures · Discrete variables

1 Introduction

Computer-aided optimal structural design procedures can
explore a large set of designs much faster than a classical
design process. Numerical structural optimization is thus
popular in design processes in for example automotive
and aeroplane industries (Zhu et al. 2016). However, these
applications often consider continuous design variables, and
the methods are not directly applicable to design problems
with discrete design variables. The aim of this paper is to
propose a heuristic and a method to solve optimal design
problems with several discrete design variables per part and
to illustrate their capabilities on industrially relevant design
problems.

Optimal design of structures is often focused on
minimizing mass by allowing large design freedom by
continuous design variables. In practice the cost benefit is
often larger if the structural components can be picked from
a catalogue instead of being tailor-made Chang and Wysk
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(1997). One such example is the offshore wind turbine
support structure. In one wind farm, there can be several
hundred structures with a steel mass of more than a thousand
tons each. To avoid high manufacturing costs, it is important
that these designs are mass-manufacturable. This can be
achieved for example by assembling mass-manufactured
parts which are available in product catalogues.

The specific example which illustrates the modelling and
is the basis for the numerical experiments is design of a
jacket support structure, as illustrated in Fig. 1. The jacket
structure under consideration is a four-legged space frame
structure welded together from steel pipes in X- and K-
joints. Here the tubular members are considered as parts,
and the outer diameter and wall thickness are the two
variables associated with each part. The number of degrees
of freedom in the analysis model can be kept reasonable
low since Timoschenko beam elements can be used for the
structural analysis. The main issue in optimization is the
size of the catalogues from which the dimensions of the
parts should be chosen. These catalogues are in general
rather large for the considered application. This difficult
situation can partly be resolved by adding constraints on
the geometric variation of the structure. Examples of such
geometric constraints include that dimensions in braces
must be smaller than dimensions in legs, and the diameter
to thickness ratio is also limited.

Numerical structural optimization of frames is an
extension of truss optimization, and many of the same
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Fig. 1 The jacket support structure. To the left is a jacket support
structure for an offshore wind turbine at 50 m water depth. To the right
are close-ups of welded X- and K-joints. The figure is made in the
in-house software JADOP

methods and challenges are encountered. The mathematical
properties of truss optimization with discrete design
variables are discussed in Yates et al. (1982), and the
complexity of finding an optimal solution is emphasized.
The segmental method presented in Templeman and Yates
(1983) avoids the combinatorial problem, but also gives
no guarantee for a global optimal solution. Structural
optimization with continuous design variables has seen a
variety of applications. Optimization of truss structures
with continuous design variables as well as joint position
variables is applied to practical problems in Svanberg
(1981) and Pedersen and Nielsen (2003). Minimum mass
of a frame is presented in (Pedersen and Jørgensen 1984),
where Euler-Bernoulli and Timoshenko elements are shown
to yield different solutions for non-slender beams. Emphasis
on joint modelling and optimization in frame structures
is given in Cameron et al. (2000) and Fredricson et al.
(2003). Optimal design of frame structures for crash-
worthiness in transient analysis is given in Pedersen (2004).
Using the solution to the continuous problem to find an
optimal design in discrete variables, however, is certainly
not easy Templeman (1988). The review article Arora and
Wang (2005) discusses problem formulations for structural
optimization problems and emphasizes that while most
formulations are focused on the truss element, they need to
be extended to other complex structures.

Optimal design of support structures for offshore wind
turbines is a non trivial task Muskulus and Schafhirt
(2014). This is mainly due to the the advanced simulations
required to obtain the structural response. Specialized aero-
servo-elastic software are necessary to obtain accurate

results, and these do not yet provide analytical design
sensitivities. Several approaches to support structural design
optimization are therefore based on gradient-free methods,
using the specialized analysis software tools as black boxes
as in Zwick et al. (2012). A ground structure approach with
frame elements was used in Martens et al. (2015) to perform
topology optimization of a jacket with a genetic algorithm.
A genetic algorithm was also used in (Pasamontes et al.
2014) for combined joint-location and sizing optimization
of a jacket. It is argued that this method can also be
used for discrete dimensions, but this is not demonstrated.
Improvements to Pasamontes et al. (2014) are presented
in Schafhirt et al. (2014), but without the joint location
variables. Another approach is to use simplified function
evaluations, for example by assuming the rotor loads to be
design independent, so that a regular finite element analysis
can be used to compute the structural response. An offshore
jacket sizing tool using simplified loads and limit states
is developed at NREL and described in Damiani et al.
(2017) and Damiani (2016). Design of a jacket structure
with gradient based optimization was performed in Oest
et al. (2017) and Chew et al. (2016) with quasi-static and
dynamic analysis, respectively. Constraints were placed on
the natural frequencies, ultimate stresses, and fatigue in the
welded joints.

Fatigue in the welded joints is considered the most
important design constraint for the jacket structure for
offshore wind turbines. Due to the cyclic nature of the
loading from the rotor, fatigue limit state is more often
the design driver than ultimate limit states. Welded joints
are the most critical locations, as stress concentrations in
the weld significantly impact the fatigue performance. A
method for fatigue stress evaluation in welded joints, called
the hot spot method, is given in the recommended practice
DNVGL (2014). Only axial stresses are assumed to be
contributing, and the fatigue is computed for eight evenly
spaced locations, or hot spots, along the perimeter of the
pipe. A design dependent stress concentration factor (SCF)
is multiplied with the stress prior to the fatigue computation.
The SCF factors for these structures are in the range 1-6. A
geometric validity range is given for the hot spot method, as
explained in Remark 2.

In some situations, structural optimization problems with
discrete design variables can be reformulated as mixed 0-
1 linear or convex quadratic problems. These reformulation
techniques are especially well-developed for truss and frame
structures, see e.g. Stolpe and Svanberg (2003), Stolpe
(2007), Faustino et al. (2006), and Mela (2014). Many type
of structural requirements fit into this modelling approach,
including limits on stresses, displacements, mass, etc. The
main advantage is that the problems can be solved to global
optimization using e.g. branch-and-cut methods. These
reformulation techniques are however not always possible.
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This is for example the case when the problem includes
limits on eigenfrequencies or if the the nonlinearities
coupling the discrete design- and the continuous state-
variables are too complicated. In these situations it is
therefore necessary to resort to methods and heuristics for
mixed 0-1 nonlinear optimization. This field is covered in
e.g. the review articles Arora et al. (1994) and Grossmann
(2002).

One possible method for mixed integer nonlinear opti-
mization is Outer Approximation (OA) which was introduce
in Duran and Grossmann (1986) for problems which are
linear in the integer variables. Outer approximation is fur-
ther developed and analyzed in Fletcher and Leyffer (1994)
for problems with nonlinearities in the integer variables.
Outer approximation techniques have been used for applica-
tions in structural optimization. Two- and three-dimensional
truss topology optimization problems with discrete vari-
ables are solved to global optimality by outer approximation
in Stolpe (2014). The objective function was mass of the
truss while the constraints limited the compliances under
several load cases. The design variable were discrete and
indicated choices of cross-section areas from catalogues.
Outer approximation was also used to solve minimum com-
pliance truss topology optimization problems in Muñoz and
Stolpe (2011).

Outer approximation is chosen for optimal design of
offshore support structures for several reasons. First, it
is relatively easy to implement on top of a software
which is capable of performing structural optimization
with continuous design variables and which is capable
of computing analytical design sensitivities. Second, outer
approximation generates a sequence of designs which
satisfies the linear constraints and which are taken
from the catalogue of values. This implies that the
nonlinear functions are only called when the structure
satisfies necessary requirements (e.g. from standards and
recommended practices) to be well-defined. Thirdly, outer
approximation solves a sequence of mixed 0-1 linear
problems and therefore generates a sequence of designs
that satisfy the requirements that the design variables
should be from catalogues. Although these sub-problems
are difficult to solve in general there are robust and
in practice often efficient global optimization methods
and heuristics implemented with parallel computation
capabilities allowing for problems of industrially relevant
size to be solved. Finally, the strong theoretical properties
from the convex case suggests that it could behave very well
as a heuristic for nonconvex problems.

The overall purpose is proposing mass-manufacturable
designs by structural optimization. The continuous problem
is used to find a good starting point for the discrete problem,
and then an outer approximation algorithm is used to
propose designs in the discrete variables. The presented

method is then used to propose designs of an offshore wind
turbine jacket based on four different catalogues of available
diameters and thicknesses.

This article is organized as follows. The next section
presents the general problem formulation and a reformu-
lation which is suitable for numerical optimization. The
section additionally presents modelling of the application
in optimal design of offshore support structures for wind
turbines. Section 4 presents the outer approximation tech-
niques for the optimal design problem and additionally
suggests a heuristic technique for finding candidate designs
satisfying the requirements on discrete design variables.
The following two sections describe the implementation
of the algorithms and the numerical experience obtained
in designing offshore jacket structures. The article ends in
Section 7 with conclusions and a list of future possible
generalizations.

2 Problem formulations

The problem formulations are classical in structural opti-
mization in the sense that the structural analysis is based on
the assumptions of linear elasticity coupled with the finite
element method applied to frame structures. The objec-
tive and constraint functions model limitations on mass (or
cost), local stresses, and fundamental eigenfrequencies. For
problems with continuous design variables, these classes of
problems are well-studied and the literature is rich, rang-
ing from fundamental mathematical theory to industrial
applications, see e.g. the textbooks Bendsøe and Sigmund
(2003) and Christensen and Klarbring (2008). The situa-
tion that the design variables are associated with dimensions
of parts and that several discrete design variables are asso-
ciated with the parts is however much less studied. The
design parametrization imposes enormous challenges on the
optimization algorithms but do also provide possibilities of
advanced modelling and more realistic optimized design
approaches with regards to the industrial requirements.

2.1 Design parametrization

In the design parametrization the design variable vectors
vi ∈ R

ni , related to part (member or module) i of the
structure, have the form

vi = (
vi,1 · · · vi,ni

)T

where ni is the number of design variables related to
member i. The elements of vi ∈ R

ni are to be chosen from
catalogues of values, i.e.

vi,j ∈ Wj = {w1
j , . . . , w

mj

j }, for j = 1, . . . , ni .
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For simplicity it is assumed that Wj �= ∅ and that the values
in the sets Wj are unique and ordered, i.e.

0 < w1
j < w1

j < · · · < w
mj

j < +∞ for all j .

The member design variables are collected into the
(structural) design variable vector v ∈ R

N

v = (
vT
1 · · · vT

n

)T

where n is the total number of parts considered in the
optimal design problem and the total number of variables

N =
n∑

i=1

ni .

It is also assumed that the catalogues are the same for all
parts and that the number of design variables per part is also
the same. These situations can of course be generalized, but
will complicate both the notation and the presentation.

Remark 1 The application presented is sizing optimization
of jacket support structures for offshore wind turbines, see
Fig. 1. The wall thickness of the members in part i in the
jacket design example is given by ti and the outer diameter is
given by di . Associated with each part is the variable vector

vi =
(

ti
di

)
∈ R

2.

We assume that the variables must be chosen from a finite
set of catalogues of available values, i.e.

ti ∈ {t1, t2, . . . , tm1}
and

di ∈ {d1, d2, . . . , dm2}
for all i = 1, . . . , n. Identification thus gives that

W1 = {t1, t2, . . . , tm1}, and W2 = {d1, d2, . . . , dm2}
for the considered application.

2.2 Structural analysis

The structural analysis is herein done by the finite element
method (see e.g. Cook et al. 2007). In the application
Timoschenko beam elements are used. Other analysis
methods (or finite elements) are of course possible if
they comply with the format described below. The section
outlines the structural analysis used in the numerical
experiments but other, more advanced, models could also be
used.

2.2.1 Static and dynamic analysis

The stiffnessK(v) and massM(v) matrices for the structure
described by the design variables v are assumed to be in the
form1

K(v) = K0 +
n∑

i=1

Ki (vi )

and

M(v) = M0 +
n∑

i=1

Mi (vi )

where K0 = KT
0 ∈ R

d×d and M0 = MT
0 ∈ R

d×d are
given positive semidefinte matrices (possibly equal to the
zero matrix) that do not depend on the design variables,
and d is the number of non-fixed degrees of freedom. Each
of the Ki (vi ) ∈ R

d×d and Mi (vi ) ∈ R
d×d are in turn

(and for a fixed variable vector) assembled by the element
stiffness and mass matrices for the finite elements belonging
to the part. The matrices Ki (vi ) andMi (vi ) are all assumed
to be both symmetric and positive semidefinite for given
values on the design variables which are within the bound
constraints. It is throughout assumed that the sensitivity
analysis of mass and stiffness matrices can be provided, i.e.
that

∂K(v)
∂vi,j

,
∂M(v)
∂vi,j

can be stated analytically and efficiently computed.
This assumption is certainly satisfied for the application
presented in Remark 1 if the finite element model is based
on Timoschenko beam elements. It is additionally assumed
that the matrix values functions K(v) and M(v) are at least
continuously differentiable.

The nodal displacements ul satisfy the equilibrium
equations

K(v)ul − fl = 0, for l = 1, . . . , L

where fl is some static external load and L is the number of
loads.

Limits on natural eigenfrequencies are modelled through
inequality constraints in the form

λmin
k ≤ λk(K(v),M(v)) ≤ λmax

k

1This assumption is by no means critical for the optimal design
approach in this article. It is commonly encountered for similar
modelling situations in structural optimization e.g. for multi-material
topology optimization Bendsøe and Sigmund (1999) and discrete
material optimization, see e.g. Lund and Stegmann (2005) and
Stegmann and Lund (2005).
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where λk is the kth lowest natural eigenvalue of the structure
described by the design variables. The eigenfrequency ωk in
Hz is found from the eigenvalue λk

ωk =
√

λk

2π
.

The eigenvalues satisfy the the generalized eigenvalue
problem

K(v)zk = λkM(v)zk

where zk ∈ R
d is the kth eigenvector. It is assumed that the

fundamental eigenvalue is unique. In the case of multiple
eigenvalues, the treatment is more complex, as described in
e.g. Seyranian et al. (1994).

The above mentioned assumptions are sufficient to
ensure that it is possible to compute sensitivities of static
displacements, compliance, local stresses, eigenfrequencies,
and eigenmodes.

2.2.2 Cost andmass

The cost and the mass of the structure are assumed to have
forms similar to those of the stiffness and mass matrices, i.e.
the cost is given by

c(v) = c0 +
n∑

i=1

ci(vi )

while the mass is given by

m(v) = m0 +
n∑

i=1

mi(vi )

where ci(vi ) andmi(vi ) are the cost and mass of the ith part,
respectively. Again it is assumed that sensitivity analysis of
the mass and cost functions can be computed analytically.

2.3 Problem formulation

Geometrical constraints on the design variables are mod-
elled through the linear constraint bl ≤ Av ≤ bu, where
A is a given matrix and bl , bu are given vectors. Similarly,
requirements imposed by limitations in design standards
and recommended practices are also assumed to be mod-
elled by linear constraints.

Remark 2 Relevant geometric constraints for the jacket
sizing problem mentioned in Remark 1 are the SCF-validity
ranges DNVGL (2014). For a joint where a brace member,
b, is welded onto a leg member, l, the dimensions should
satisfy the linear inequalities

dl

5
≤ db ≤ dl

tl

5
≤ tb ≤ tl ,

and that for all parts, the following should hold

16ti ≤ di ≤ 64ti , i = 1, ..., n.

The considered structural optimization problem is

where f (v) is the objective function (such as mass or
cost), and g(v) contains the functions defining the nonlinear
constraints (e.g. stiffness and strength requirements). It
is throughout assumed that these functions are at least
continuously differentiable. This assumption is satisfied for
the structural models outlined above. The lower and upper
bounds on the nonlinear constraints are defined by the given
vectors l and u of appropriate dimensions, respectively.
If li = ui for some i then the ith constraint is viewed
as an equality constraint. The situation that the inequality
constraints are one-sided (i.e. either li = −∞ or ui = +∞)
is also allowed.

With the assumptions stated on the catalogues Wj

problem (P) becomes a sizing problem, i.e. no parts are
allowed to vanish from the structure. This restriction has
some positive side-effects. First of all, the stiffness and mass
matrices are positive definite for all designs suggested by
the algorithm. Secondly, modelling of e.g. stress constraints
is simplified compared to the situation that the topology is
allowed to change. For sizing problems, stress constraints
are no longer design-dependent2 Achtziger and Kanzow
(2008) and issues with the so-called singularity problem, see
e.g. Rozvany (1996) and Rozvany (2001), are thus avoided.

Note that (P) can, after reformulation, be classified as
a mixed integer nonlinear program. The natural continuous
relaxation of (P) is obtained if the discrete variables are
replaced by continuous variables with lower and upper
bounds, i.e. the problem

Both the discrete problem (P) and the continuous relaxation
(R) are in general non-convex. Additionally, both problems
can be infeasible if the technical requirements are too
stringent.

2This term refers to constraints which should be removed from the
problem formulation if the corresponding part is not in the structure
described by the current design variables.
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3 Problem reformulations

There are several possibilities to reformulate problem (P)
to a form which is acceptable for modern optimization
methods and heuristics. The first step is to model the
problem with binary variables. This can be achieved in
more than one way. We focus on only one of the possible
reformulations. The reformulation technique is chosen to
keep the number of binary variables relatively low, for its
ease in implementation, and since we anticipate to be able
to solve3 the continuous relaxation (R). We first introduce
the binary variables xijk ∈ {0, 1} with the interpretation

xijk =
{
1 if value k is chosen fromWj for part i,
0 otherwise.

This definition of the new variables together with the
generalized upper bound constraints
∑

k

xijk = 1 for all (i, j)

ensure that exactly one of the catalogue values are chosen
for each part and design variable. The design variables vi,j

can thus be replaced by the linear expression

vi,j (x) =
∑

k

xijkw
k
j for all (i, j).

In short, we write

v(x) = Vx

for some appropriately chosen matrix V. Note that the
introduction of the binary variables xijk ”absorb” many of
the nonlinearities that potentially exist in the functions c(v),
m(v), K(v), and M(v).

The set X is introduced to model the linear constraints
and the 0-1 requirements on the variables, i.e.

X = {x ∈ {0, 1}J |
∑

k

xijk = 1, ∀ (i, j),

bl ≤ AVx ≤ bu}
where J is the total number of 0-1 variables.

Problem (P) is equivalent to the mixed 0-1 nonlinear
problem

Note that the objective function and the displacements
constraints in (Px) are in general nonlinear functions in
the binary variables x and that (Px) in general is a 0-1
non-convex problem. The continuous relaxation of (Px) has
both more variables and more constraints compared to (R)

3Solve should, in this context, be interpreted as finding a point
numerically satisfying the first-order optimality conditions.

and therefore (R) is favoured in the implementation and
numerical experiments.

4 Outer approximationmethod

For pure nonlinear 0-1 problems an outer approximation
algorithm is similar to sequential linear programming
(SLP) (see e.g. Chin and Fletcher 2003) for continuous
problems. The sub-problem in outer approximation, from
now on called the master problem, is however a mixed 0-1
linear problem. Another difference between SLP and outer
approximation is that the approximations of the objective
and constraint functions generated at each iteration are
saved in outer approximation.

The master problem in a basic outer approximation
algorithm applied to (Px) becomes

where the set T l contains the outer approximation iterations
for which the found design is feasible with respect to both
the linear and the nonlinear constraints, i.e.

T l = {k | k ≤ l, l ≤ g(v(xk)) ≤ u}.
The set S l , on the other hand, contains the iterations for
which at least one of the nonlinear constraints is violated,
i.e.

S l = {k | k ≤ l, gi(v(xk)) > ui or
gi(v(xk)) < li for some i}.

The two sets T l and S l are initially empty and then updated
at each iteration of the Outer Approximation algorithm
depending on the feasibility status of the current iterate xk .
The sets T l and S l are used to define the constraints in the
master problem. For iterates that are feasible with respect
to the nonlinear constraints both the objective function
and the constraint functions are linearized and included in
the master problem. For iterates that violate one or more
constraints only the nonlinear constraints are linearized and
appended to the master problem. The master problem (Mx)
can of course be infeasible or unbounded. The considered
objective functions, i.e. mass or cost, are bounded from
below by zero and (Mx) can correctly be augmented with
η ≥ 0. Unboundedness of the objective function is, with this
modelling, not an issue.
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A standard outer approximation4 algorithm for (Px) takes
the form described in Algorithm 1. The algorithm is adopted
from Fletcher and Leyffer (1994). Note that since (Px) is a
pure 0–1 problem there is no need for a feasibility problem
as is used in the outer approximation methods outlined in
e.g. Fletcher and Leyffer (1994).

If (Mx) is infeasible in Algorithm 1 then one of two
possible events occur. Either the upper bound is < +∞
in which case at least one design feasible to (Px) has
been found, or no feasible point has been found. The latter
situation does, due to non-convexity, however not guarantee
that (Px) is infeasible.

Our computational experience shows that the outer
approximation method behaves better if it is supplied with
a reasonably good starting point which is feasible to the
original problem. This point and the optimal solution from
the continuous relaxation are used to generate the first
set of linear inequalities in the master problem (Mx). We
propose a heuristic which is relatively easy to implement
and which is based on rounding of the design obtained
from the continuous relaxation. Similar rounding heuristics
have proven to work well on truss topology optimization
problems with discrete design variables in e.g. Achtziger

4The outer approximation property is generally not maintained for
non-convex problems such as (Px ). The algorithm should therefore be
considered as a heuristic.

and Stolpe (2007, 2009). The idea is to use the optimal
design found by solving the continuous relaxation and then
apply rounding to satisfy the linear constraints and the
requirements on the 0-1 variables. This is achieved by
solving a least-square problem modelled as a mixed 0-1
linear problem. Chances to find feasible designs increase if
the design is rounded to values upwards in the catalogues
and we therefore introduce a scaling parameter α which
is set to a value greater than one. In the implementation
α = 1.2.

Problem (H) in Algorithm 2 does not need to be solved
to optimality. Finding a feasible point to (H) is sufficient
for the heuristic in Algorithm 2 to be successful. In the
implementation problem (H) is modelled as mixed 0-1
linear program and solved to global optimality to within the
default tolerances of the solver.

The user provides the catalogues for the design variables,
the type of constraints and associated bounds, the matrix
and vector defining the geometric constraints, and routines
for structural analysis and sensitivity analysis.

A software called JADOP (JAcket Design OPtimization)
for solving the considered problems with continuous design
variables has been developed at DTU Wind Energy.
This software implements both structural analysis and
sensitivity analysis required for the applications. JADOP
is implemented in Matlab (MathWorks Inc. 2016) and
includes interfaces to several modern methods for nonlinear
optimization. The continuous relaxation (R) is solved using
the open source interior point solver IPOPT version 3.11.8
(Wächter and Biegler 2006), where non-default parameters
are listed in Table 1. IPOPT is compiled with the MUMPS
library (Amestoy et al. 2001).
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Table 1 Parameters and tolerances used when solving the continuous jacket sizing problem by IPOPT

Description Notation Value

Barrier update strategy mu strategy ’adaptive’

Technique for scaling nlp scaling method ’none’

Hessian information hessian approximation ’limited-memory’

Convergence tolerance tol 10−5

5 Implementation

The outer approximation implementation is called YAOAM
(Yet Another Outer Approximation Method). This collection
of Matlab scripts and functions is the main driver of the
optimization process and calls the user supplied analysis
and sensitivity analysis routines when required. The outer
approximation algorithm and associated heuristics and the
finite elements are implemented in Matlab. The most
important parameters and tolerances used in the outer
approximation method are listed in Table 2. The mixed 0-1
linear programs are solved by the commercial branch-and-
cut solvers in IBM ILOG CPLEX (IBM Corporation 2014).
The non-differentiable problem (H) is modelled as a mixed
0-1 linear problem and solved by IBM ILOG CPLEX. IBM
ILOG CPLEX is assigned 20 threads for all problems. The
non default parameters and tolerances used in IBM ILOG
CPLEX are listed in Table 3.

6 Numerical results

The outer approximation algorithm is applied to sizing
optimization problems of four legged jacket structures for
offshore wind turbines as illustrated in Fig. 1. We first apply
the rounding procedure form Algorithm 2 and then attempt
to solve the discrete problem by the outer approximation
method described in Algorithm 1. The optimized design
from the discrete problem is compared to the optimized
design from the continuous problem for four different cata-
logue sizes. The problems are solved on a machine with two
Intel Xeon E5-2680v2 ten-core CPUs running at 2.8 GHz,
with 64 GB memory.

Table 2 Parameters and tolerances used in the outer approximation
algorithm

Description Value

Feasibility tolerance 10−6

Integrality tolerance 10−6

Relative optimality gap 10−4

Absolute optimality gap 10−4

6.1 Structural model

The analysis model consists of jacket, transition piece and
tower, modelled as a frame structure. Moreover, the analysis
assumes thin-walled tubular elements. A two-noded Timo-
shenko 3D beam finite element with constant shear correc-
tion factor of 0.52 is used throughout the structure Cook
et al. (2007). Nodal displacements of element e in load case
l is described in the element displacement vector uel ∈ R

12.
The element rotation matrix Te ∈ R

12×d maps from global
to local coordinates, uel = Teul . The axial stress in ele-
ment e is computed as σe(v, γ h) = Eb(v, γ h)uel , where
γ h = (ξh, ηh, ζh) is the location in the element expressed in
element coordinates and b(v, γ h) is the strain-displacement
vector for axial stress. In fatigue load cases, stress concentra-
tion factors are implemented in the strain-displacement vector.

The jacket is meshed with 524 finite elements, and at
least six finite elements in each member. The number of
elements and unconstrained degrees of freedom in the full
structure are 580 and 3087, respectively. The stiffness and
mass matrices of the tower and transition piece constitute
the main part of the non-zero entries of the constant matrices
K0 and M0. The whole structure is modelled as steel with
material properties as listed in Table 4.

At the top of the tower is a non-structural mass matrix
which includes the masses and inertias of the rotor-nacelle-
assembly (RNA). Although the RNA does not contribute
with stiffness to the structure, it is necessary to model the
mass and inertia in order to get correct natural frequencies.
The non-structural mass matrix MRNA ∈ R

6×6 contains
only diagonal terms and is included in the constant mass
matrix M0. Along the displacement degrees of freedom
are the combined mass of the whole RNA, and along the

Table 3 Parameters and tolerances used in IBM ILOG CPLEX

Description Value

Max computation time [s] 36000

Relative optimality gap 10−4

Absolute optimality gap 10−4
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Table 4 Material properties

Description Notation Value Unit

Density ρ 7800 kg/m3

Modulus of elasticity E 210 GPa
Poisson’s ratio ν 0.3 –
Yield strength σy 355 MPa

rotation degrees of freedom are the equivalent moments
of inertia around the tower top node, Ixx , Iyy , and Izz.
Furthermore, the density of the tower elements is increased
with eight percent to account for secondary steel and
equipment, which will also influence the frequency. These
modelling approaches are adopted from the DTU 10 MW
Reference wind turbine report Bak et al. (2013) and the
INNWIND.EU Reference jacket report Borstel (2013). The
hub heigh, and tower dimensions are taken from Bak et al.
(2013), and the RNA properties, and the overall dimensions
of the jacket and transition piece are taken from Borstel
(2013).

6.2 Load computations and fatiguemodel

According to Seidel et al. (2016), a weighted sum of tower
top damage equivalent loads can be used to estimate the
fatigue limit state in a jacket support structure for conceptual
design purposes. This methodology is applied here, and
a 1 Hz damage equivalent load is computed individually
for thrust, overturning moment, and torsion. A standard
rainflow counting method, ASTM (2013), is used to count
the number of cycles nwi at each load amplitude 
Pwi .
This is done for each wind speed w, with probability of
occurrence pw. Each damage equivalent load P ∈ R is
computed from

P =
(

1

ns

nw∑

w=1

pw

q∑

i=1

nwi
P m
wi

) 1
m

,

where m is the slope of the high-cycle SN-curve for
tubular steel joints in seawater with cathodic protection from
DNVGL (2014), and ns is the number of seconds of the
original load time series. The original loads used for the
numerical examples are based on the DTU 10MW reference
wind turbine in a turbulent wind field. The simulations are
performed with a clamped tower top in the specialized aero-
elastic software Flex5 for a sample of wind speeds w in the
operational range, 4 : 2 : 24m/s. The time series are 600s
long, with a constant time step of 0.02s. The wind speed
probability distribution pw represents north sea conditions,
as described in Fischer et al. (2010). The 1 Hz harmonic

load applied over a lifetime of 20 years accumulates to 630
million cycles, which on the SN-curve corresponds to a
stress amplitude of 11.5 MPa. The advantage of using a da-
mage equivalent load, is that an approximated structural res-
ponse can be obtained from only one static load case. This
is at least three orders of magnitudes faster than solving the
equations of motions in the time-domain, and gives a good
indication of fatigue damage for these types of structures.

6.3 Jacket sizing optimization

The jacket is partitioned into four sections which are stacked
on top of each other, see Fig. 2. The design parametrization
follows Remark 1, and the geometric constraints follow
Remark 2.

The objective function is the mass of the jacket

f (v) = ρ

n∑

i=1

ai(vi )li (1)

where ai(vi ) and li are the length and cross sectional area
of part i, and ρ is the density of steel, as given in Table 4.
Nonlinear constraints include global frequencies and local
stresses, with bounds given in Table 5. There are three load
cases for modelling the ultimate limit state, and four load
cases for modelling the fatigue limit state. All seven load
cases are static, and include an applied load at the thrust,
overturning moment, and torsion degrees of freedom at the

Fig. 2 Illustration of the design parametrizations used in this article



2070 M. Stolpe, K. Sandal

Table 5 Constraint limits used
in the jacket optimization
examples

Description Notation Lower bound Upper bound

First bending eigenfrequencies ω1, ω2 0.17 Hz 0.27 Hz

First twisting eigenfrequency ω3 0.52 Hz ∞
ULS stress σu

i −350 MPa 350 MPa

FLS stress σ
f
i −11.5 MPa 11.5 MPa

Diameter D 600 mm 1400 mm

Thickness T 15 mm 80 mm

tower top. Ultimate limit state (ULS) stress is constrained in
eight locations of each finite element in the design domain
for each of the three ULS load cases. Fatigue limit state
(FLS) stress is constrained in eight locations of each finite
element in the design domain for each of the four FLS load
cases. The diameter and thickness of all members are also
bounded from below and above, as shown in Table 5.

The discrete problem was solved for four different
catalogue sizes, ranging from small to extra large. The
catalogues are defined as

W1 = {15, 15 + 
t, . . . , 80}
and

W2 = {600, 600 + 
d, . . . , 1400}.
The small catalogues have diameter and thickness steps of

d = 100 and 
t = 10 mm, respectively, and the extra
large catalogue has steps of only 
d = 10 and 
t = 1 mm,
respectively. The upper and lower bound on the diameter
and thickness is the same for all catalogues and all members.
The characteristics of the problem is given in Table 6.

6.4 Results and discussion

Figure 3 illustrates how the optimized designs from the
discrete problem (Px) compares with the optimized design
from the continuous problem (R). From a visual inspection
of this particular example, it seems that the solution to the
discrete problem approaches the solution to the continuous

Table 6 Optimal design problem characteristics

Descriptions Value

Number of elements 580

Number of unconstrained DOF 3078

Number of variables 16

Number of nonlinear constraints 42444

Number of linear constraints 32

problem when the catalogue size increases. Since the
computational cost increases rapidly with larger catalogue
sizes, it is not possible to check whether there is an actual
convergence when the catalogue size goes to infinity. The
similarity between the two results can also in part be caused
by the fact that the optimal design from the continuous
problem is chosen as the initial design for the discrete
problem.

Table 7 summarises the statistics of the four discrete
jacket sizing problems, and compares the optimized masses
with the one from the continuous problem. All problems
successfully met the tolerances placed on the relative
optimality gap in the outer approximation algorithm. As
expected, a problem instance with a larger catalogue size
gives lower mass than a small one. Actually, the designs
found to the discrete problems (Px) seem to approach the
design found from the continuous problem (R) when the
catalogue size becomes sufficiently large.

The interior point method used to solve the continuous
relaxation requires 57 iterations and 63 objective and
constraint function evaluations. The number of objective
gradient and constraint Jacobian evaluations is 58. The
outer approximation method on top of that requires as
many function and gradient evaluations as iterations. The
computation time for solving the mixed 0-1 linear problem
(H) is very modest. The main bulk of computation time
is instead spent in solving the mixed 0-1 linear programs
(Mx), i.e. the outer approximation master problems. Partly
this is because of the large number of constraints which
additionally increases with the number of iterations and
partly because of the problem class and the requirement
to solve the problem to global optimality. The latter
requirement can in fact be relaxed since the branch-and-
cut methods provide correct lower bounds on the objective
function value. This value could replace the optimal
value and the optimality tolerances could be increased
substantially leading to much less computational efforts for
the master problems.

The numbers of outer approximation iterations reported
in Table 7 are remarkably low. This is due to several reasons.
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Fig. 3 Optimized cross section areas from the discrete problems compared with the optimized cross sections from the continuous problem (dashed)

Table 7 Convergence study on
catalogue size using the Outer
Approximation method

Catalogue size Small Medium Large X-Large Continuous

Number of choices for D 9 17 41 81 –
Number of choices for T 7 14 33 66 –
Number of 0–1 variables 128 248 592 1176 –
Number of OA iterations 3 3 4 4 –
CPU-time [hrs:mins] 0:08 0:27 7:33 20:47 0:09
Optimized mass [tons] 929 843 806 790 773

First, the objective function value from the continuous
relaxation is not too far away from the final objective
value found by outer approximation. Second, the heuristic
outline in Algorithm 2 finds designs which are feasible for
all problem instances. Finally, the problem instances have
many more local constraints than design variables which
generates many linearizations and hence convergence is
promoted.

6.5 Benchmark with a genetic algorithm

The considered structural optimization problem (P) was
also solved with the genetic algorithm (GA) implemented
in the Matlab Global Optimization Toolbox version 3.4
(MathWorks Inc. 2016). Default settings were used, such
that the population size was 200, the crossover fraction was
0.8, and the elite count was 10. For each catalogue size, the
genetic algorithm was run with 30 different seeds. Figure 4
compares the performance of the genetic algorithm with
YAOAM, and Table 8 shows the performance statistics of
the genetic algorithm. YAOAM consistently performs better
than the average genetic algorithm seed, although for the
smallest catalogue size the difference is rather small. The

Fig. 4 Comparison of the performance of YAOAM with the genetic
algorithm implemented in the Matlab Global Optimization Toolbox
(MathWorks Inc. 2016)
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Table 8 Performance statistics for the genetic algorithm

Catalogue size Small Medium Large X-Large

Average CPU-time [hrs:min] 27:16 32:05 41:49 43:53
Average number of function evaluations 22904 26491 34124 35177
Average objective function value 955 896 847 827
Minimum objective function value 899 837 807 785

genetic algorithm is able to find good feasible designs, but
at a higher computational cost. For catalogue sizes medium
and larger, the GA solver requires two to three orders of
magnitude more CPU time, and four orders of magnitude
more function evaluations to find designs that can compete
with those from YAOAM.

7 Conclusions and future work

A method for structural optimization with multiple discrete
variables per part has been presented and demonstrated.
The initial feasible point is found by a rounding procedure
of the solution to a related continuous problem, and an
outer approximation algorithm is used to propose improved
designs for the discrete problem.

As industrial design often is based on a discrete catalogue
of products, the presented method can improve the way
structural optimization is used in practice. An application
for sizing optimization of the tubular members in an
offshore wind turbine jacket support structure is presented.
When the catalogue size is large, the solution to the discrete
problem closely resembles the solution to the continuous
problem, and good results are found for smaller catalogue
sizes as well.

Future work includes extension of the modelling and
the methods to include transient analysis to better capture
fatigue. This leads to much more expensive analysis
and sensitivity analysis and problems with very many
constraints. If the observation from the outer approximation
approach from this manuscript is still valid then these
problems will also require just a handful of iterations which
is favourable.

The computational time of outer approximation can
potentially be reduced if the number of constraints in
the master problems could be decreased. Introducing an
elaborate working-set approach could prove advantageous
for the practical performance of the algorithm. However, the
very efficient pre-processing routines which are included
in modern software for mixed 0-1 linear problems prove
very efficient in reducing the problem size and the effects
of an working-set approach might therefore be limited.
An alternative to reduce the computational time in outer
approximation is to relax the requirement that the master

problem is solved to global optimality and use the lower
bound estimates by the solver rather then the optimal
objective function value. This can be achieved by relaxing
the optimality tolerances in the branch-and-cut solvers.
Care must be taken to ensure that this approach generates
sequences of improving upper and lower bounds. This
approach will without any doubt increase the number
of outer approximation iterations but likely reduce the
computational time per master problem drastically.
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