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Abstract
This study revisits the application of density-based topology optimization to fluid-structure-interaction problems. The
Navier-Cauchy and Navier-Stokes equations are discretized using the finite element method and solved in a unified
formulation. The physical modeling is limited to two dimensions, steady state, the influence of the structural deformations
on the fluid flow is assumed negligible, and the structural and fluid properties are assumed constant. The optimization is
based on adjoint sensitivity analysis and a robust formulation ensuring length-scale control and 0/1 designs. It is shown,
that non-physical free-floating islands of solid elements can be removed by combining different objective functions in a
weighted multi-objective formulation. The framework is tested for low and moderate Reynolds numbers on problems similar
to previous works in the literature and two new flow mechanism problems. The optimized designs are consistent with respect
to benchmark examples and the coupling between the fluid flow, the elastic structure and the optimization problem is clearly
captured and illustrated in the optimized designs. The study reveals new features of topology optimization of FSI problems
and may provide guidance for future research within the field.

Keywords Topology optimization · Fluid-structure-interaction · Adjoint sensitivity analysis · The robust formulation ·
Objective functions · Flow mechanisms

1 Introduction

Fluid-structure-interaction (FSI) is a multi-physics problem
which concerns the interaction between a moving fluid
and an elastic or rigid, movable or constrained structure.
FSI is a strongly coupled phenomenon, which means that
the structural deformations depend on the fluid flow and
the fluid flow may depend on the structural deformations.
FSI is an interesting and important phenomenon as it is
relevant for a large number of engineering applications and
natural phenomena such as airfoils (Dowell and Hall 2001;
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Farhat et al. 1998), engines (Shangguan and Zhen-Hua 2004),
compressors (Wu and Wang 2014), moving containers
(Kolaei et al. 2016), the human blood flow system (Gerbeau
et al. 2005; Gerbeau and Vidrascu 2003), the human lung
system (Tezduyar et al. 2008), among many more.

Over the past decades, a considerable international
research effort has been addressing FSI problems; in 2015
alone more than 400 FSI journal papers were published.
Despite the large research effort, only a small number
of papers has been concerned with structural topology
optimization of FSI problems, see e.g. Yoon (2010), Kreissl
et al. (2010), Yoon et al. (2014a, b), g. Jenkins and
Maute (2015, 2016) and Picelli et al. (2015, 2017). The
motivation and aim of the present study is to contribute
to the development of the topology optimization approach
for FSI problems, which in the future may be used to
analyze and optimize industrially relevant problems, such as
bridges, turbines or compliant component designs.

The optimization framework presented in this work is
based on topology optimization which is a material dis-
tribution method for finding optimized structural layouts
subjected to some specified design constraints. Topology
optimization was originally suggested for elastic problems
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by Bendsøe and Kikuchi (1988), and the methodology
has ever since its introduction been developed and matured
within structural elasticity and a large number of mul-
tiphysic problems. Topology optimization may have an
advantage compared to other optimization approaches, such
as sizing or shape optimization as topology optimization
allows internal holes to occur in the structure during the
optimization process, and a qualified initial guess is generally
not required for obtaining well-performing designs.

Topology optimization can be utilized in all problems
modeled by partial differential equations, and therefore the
methodology has proven its relevance in a large range of
multiphysics applications, such as acoustics (Dühring et al.
2008), electrostatics (Yoon and Sigmund 2008), fluid-
structure-interaction in poroelasticity (Andreasen and Sig-
mund 2011), photonics (Jensen and Sigmund 2011), fluid
dynamics (Borrvall and Petersson 2003), thermal trans-
port (Andreasen et al. 2009; Alexandersen et al. 2014)
among many more. For an extensive introduction to topology
optimization, please consult e.g. Sigmund and Maute
(2013), Chen (2016), and Bendsøe and Sigmund (2003).

Topology optimization of fluid dynamical problems was
pioneered by Borrvall and Petersson (2003). Inspired by
lubrication theory, Borvall and Petersson introduced a
Brinkman-type penalization term in the Stokes equations,
which hereby allowed the amount of dissipated energy in
a Stokes flow problem to be minimized using a topology
optimization approach. Topology optimization for flow
problems was later extended with a similar approach to the
Navier-Stokes equations by Gersborg-Hansen et al. (2005).
The Brinkman approach has within the last 10-12 years been
used in a large sequence of multi-physic fluid flow problems
such as transport problems (Andreasen et al. 2009), reactive
flows (Okkels and Bruus 2007), transient flows (Deng et al.
2011; Kreissl et al. 2011), flow driven by constant body
force (Deng et al. 2013), among many more.

The field of topology optimization of FSI problems was
initiated by Yoon (2010), who minimized the structural
compliance of an elastic structure subjected to a fluid flow
in a channel. Yoon solved the Navier-Stokes equations and
the linear Navier-Cauchy equations in a unified formulation.
This unified formulation employs that the deformations of
the elastic structure and the velocity and pressure fields of
the fluid flow are solved simultaneously in the hole model-
ing domain. The dependency between the structural defor-
mations and the fluid flow (from hereon denoted the defor-
mation dependency) was taken into account in the frame-
work presented in Yoon (2010). The same author presented
a topology optimization framework for a passive valve flap
optimization problem in Yoon (2014a). The topology of a
valve flap was optimized with deformation dependency for
two different Reynolds numbers. In the papers by Picelli
et al. (2015, 2017), a bi-directional evolutionary (BESO)

topology optimization method was used to optimize struc-
tural compliance problems under design-dependent pressure
loads. In this framework the deformation dependency was
neglected. Most recently Jenkins and Maute (2016) demons-
trated an optimization framework for an immersed method
with explicit boundary representation (IMwEBR) method
using the extended finite element method and an
explicit level set method. In the works by Yoon (2010) and
Jenkins and Maute (2016) the deformation dependency was
taken into account, and full-scale topological changes were
observed for compliance optimization problems. Further-
more, Jenkins and Maute (2016) studied a heart valve
inspired problem where the objective was to minimize the
average maximum shear stress in the fluid.

Topology optimization of FSI problems is to some extend
related to pressure loaded acoustic problems (Yoon et al. 2007;
Vicente et al. 2015) and FSI for porous flow problems (And-
reasen and Sigmund 2013), though in structure-acoustic prob-
lems the structural forces are imposed by the acoustic pressure.

In this work, the deformation dependency is neglected,
which means that the finite element analysis, sensitivity
analysis and the optimization problem are carried out in the
undeformed structural configuration.

In this study, we devote our primary focus on various
design problem formulations. We refine several aspects of
the field of density-based topology optimization for FSI
problems, which provide new insight and may provide
guidance for future research within the field. The study takes
basis in the work of Yoon (2010) however the study includes
several new features and reveals several new findings in
relation to TO of FSI problems. The new findings and
features have been summarized in the following list:

1. The coupling between the fluid flow, the elastic
structure and the optimization problem is clearly
captured and demonstrated for six objective functions
and three numerical examples. The optimized designs
are consistent with respect to benchmark problems
and cross-check tables. The presented framework is
tested and compared with well-know problems from
the literature and two new challenging problems are
proposed that procure new insight in the field of
topology optimization for FSI problems.

2. The derivation of the unified finite element formulation
of the fluid-structure-interaction problem is elaborated,
and an additional term in the coupling between the fluid and
the structure is included in the TO and FSI formulations
compared to the equivalent formulations in Yoon (2010).

3. A robust optimization formulation is added, which
ensures length-scale-controlled well-performing and
binary optimized designs, and may make the optimiza-
tion process less sensitive to the choice of interpolation
function parameters, model parameters, and penaliza-
tion and continuation strategies.
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4. The importance of choosing a “sufficiently” high
structural impermeability is highlighted.

5. A methodology to ensure a monotonic relationship
between the objective functions and the design vari-
ables. A monotonic relationship between the objective
functions and the design variables may ensure well-
performing designs and smooth and stable optimization
processes.

6. Non-physical free-floating islands of solid elements
(FFIOSE), which also have been encounted in other
works, can be removed from the optimized designs by
combining different objective functions with different
features and weights.

The paper is organized as follows. The governing
equations and assumptions are introduced in Section 2, the
finite element formulation is introduced in Section 3, the
topology optimization problem is introduced in Section 4,
the implementation details is covered in Section 5,
numerical examples are presented in Section 6, Section 7
contains discussions and Section 8 contains conclusions.

2 Governing equations

2.1 The Navier-Stokes and Navier-Cauchy equations

The weak form of the governing equations are defined
in domain, �. The domain � consists of a solid sub-
domain �S and a fluid sub-domain �F which initially are
clearly segregated and non-overlapping with the interface
�SF . The segregated sub-domains fulfill that � ∈ �S ∪
�F . The Navier-Cauchy equations are assumed linear
elastic, the Navier-Stokes equations are limited to constant
and incompressible fluid properties, and the physics are
modeled assuming steady state. Shear stresses on the
interface between the fluid and the structure are neglected.
The strong form of the partial differential equations can be
written as (e.g. Cook et al. 1991, Farhat and Roux 2002,
White and Corfield 1991)

∂σ s
ij

∂xj

+ fi = 0 in �Sσ s
ij = Cijklεkl (1a)

εs
kl = 1

2

(
∂dk

∂xl

+ ∂dl

∂xk

)

uj

∂ui

∂xj

− ∂σ
f
ij

∂xj

= bi in �F σ
f
ij = 2

Re
ε̇
f
ij − δijp (1b)

ε̇ij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)

∂uj

∂xj

= 0 in �F (1c)

σ s
ij nj = σ

f
ij nj on �SF (1d)

where σ s is the Cauchy stress tensor, xj is the spatial
variables, fi is the external applied loads, Cijkl is the
structural stiffness tensor, εs

kl is the structural strains, dk

is the structural displacements, ui is the fluid velocity,
σ

f
ij is the fluid stress tensor, bi is the fluid body forces,

Re is the Reynolds number, ε̇f is the fluid strain rate,
δij is Kronecker’s delta, p is the fluid pressure and nj

is the normal vector to the surface �. The tensor indices
i, j, k, l have two entries, x and y, which refer to the spatial
directions x and y. The Reynolds number is defined as Re =
Umaxρ

f L/μ, where Umax is a maximum fluid velocity in
the inlet, ρf is the fluid density, μ is the fluid viscosity and
L is the width in the inlet.

The boundary conditions of the governing equations in
(1a–d), are:

No-slip fluid: ui = u0
i = 0 on �u0 (2a)

Fluid inflow: ui = u∗
i on �u∗ (2b)

Fluid outflow: p = p0 = 0 on �p0 (2c)

Structual displacement: di = d0
i = 0 on �d0 (2d)

where �∗ indicates a boundary condition with a prescribed
non-zero magnitude, and �0 indicates a boundary condition
with a prescribed zero magnitude.

3 Finite element formulation

The segregated formulation of the governing equations in
(1a–d) is inadequate for density-based topology optimiza-
tion, so the equations are rewritten to a unified domain
formulation, see Fig. 1.

The unified formulation is obtained by introducing
a design variable field, 0 ≤ ρ ≤ 1; adding a
Brinkman penalization term, bi = −α(ρ)ui , to the Navier-
Stokes equations in (1b); and introducing design-dependent
material parameters for the structural stiffness E = E(ρ)

and the permeability of the Brinkman penalization term,
α = α(ρ), see e.g. Borrvall and Petersson (2003) and Yoon

Fig. 1 A schematic of an arbitrary FSI domain � relaxed by the design
variable field ρ
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(2010) for more details. In the unified formulation, elements
with unity design variable, ρ = 1, are mainly governed by
the structural equations; elements with zero design variable,
ρ = 0, are mainly governed by the fluid equations; and
intermediate design variables, 0 < ρ < 1, are in an
intermediate state between the fluid and the solid structure.

The finite element discretized equations of the Navier-
Cauchy equations are obtained by multiplying the weak
form of the equations, (1a), with a suitable test function;
integrating over the domain; assuming that the forces on
the structure and the fluid are in equilibrium, i.e. σ

f
ij nj =

σ s
ij nj (see (1d)); performing integration by parts of higher

dimensions on the boundary load terms; and introducing
the design dependent pressure-coupling filter function 
 =

(ρ) on the pressure coupling terms:∫

�

∂wh
i

∂xj

σ
s,h
ij (ρ)dV

Structural stiffness

=
∫

�


(ρ)wh
i

∂ph

∂xi

dV

Pressure coupling 1

+
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�


(ρ)
∂wh
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∂xi

phdV
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∫

�

wh
i fidV

External load

(3)

where �h denotes that the term has been discretized and
wh

j denotes the basis functions. Details on the derivation of
(3) can be found in Appendix A.1. The design dependent
pressure-coupling filter function, 
, ensures that the unified
formulation of the domain-integrals of the pressure load in
(3) for 0/1 designs is equal to the segregated formulation of
the pressure load in (1d). The pressure load is interpolated
in intermediate designs for which reason the pressure load
in the unified formulation may differ from the equivalent
surface integral in the segregated formulation.

The Pressure-Stabilising Petrov-Galerkin (PSPG) and the
Streamline-Upwind Petrov-Galerkin (SUPG) methods are
used to suppress oscillations in the pressure and velocity
fields due to first order shape functions which are used
to descretize the fluid velocity and the fluid pressure field
(Hughes et al. 1986; Tezduyar 1991; Brooks and Hughes
1982). The weak form of the momentum equations in (1b)
are hereby written as:∫
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where τSU is the SUPG stabilization parameter. The weak
form of the unified continuity equations, (1c), is written as:

−
∫
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PSPG Brinkman penalization

= 0 (5)

where τPS is the PSPG stabilization parameter. For
more information on the PSPG and SUPG stabilization
parameters see e.g. Alexandersen et al. (2014) and the
references therein.

The Brinkman penalization term α, the pressure coupling
filter function ψ and the elastic structural stiffness E are
interpolated between solid and fluid via the design variables
by the following interpolation functions:

α(ρ) = αmax + (αmin − αmax)(1 − ρ)(1 + pα)

((1 − ρ) + pα

(6a)

E(ρ) = Emin + (Emax − Emin)ρ
pE (6b)

ψ(ρ) = ψmin + (ψmax − ψmin)ρ
p
 (6c)

The symbol �min denotes the minimum of the parameter,
and �max denotes the maximum of a parameter.

4 Topology optimization

4.1 Problem definition

To ensure length-scale-control and robustness with respect
to manufacturing errors, the optimization problem is
formulated in a min-max form for k = {

1, 2, ..., Nk
}

projected realizations of the design variable field (Wang
et al. 2011b). The optimization problem reads:

min.
ρ

max
k

(
f k

)
s.t. �Rk(

�̃̄
ρk, �Sk) = �0k

g(
�̃̄
ρNk

i ) = ∑Ne

i
¯̃ρNk

i vi/V ≤ V f ∀ρi ∈ �D

0 ≤ ρi ≤ 1 ∀ρi ∈ �D

(7)

where f k is the objective function of the k’th realization
of the design field (the superscripted k denotes the design

realizations); �Rk is the residual equations; �̃̄
ρk is the filtered

and projected design field realization; �Sk is the state field
vectors; g is the volume inequality constraint; Ne is the
number of elements in the design domain, �D; vi is the
volume of element i, V is the total volume of the �D and
V f is the volume fraction. The optimization problem in (7)
is in the rest of this paper denoted as the robust formulation.
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The optimization problem in (7) is solved for three
projected realizations of the designs variable field which are
denoted the eroded, the nominal and the dilated designs,
respectively. Design solutions are throughout this paper
plotted for the nominal design realization. The volume
fraction for the dilated design is updated every 20 design
iteration so the volume of the intermediate design becomes
equal a prescribed value, please confer Wang et al. (2011b)
for more details.

The robust formulation was suggested by Sigmund
(2009) in linear elasticity problems to provide manufactur-
ing tolerant design. Later the methodology was improved
and applied to heat problems (Wang et al. 2011b), opti-
cal problems (Wang et al. 2011a), acoustics problems
(Christiansen et al. 2015), time dependent fluid problems
(Nørgaard et al. 2016), elasticity problems with spatially
varying manufacturing errors (Schevenels et al. 2011),
among many more.

4.2 Adjoint sensitivities

Gradients of the objective function with respect to the
design variable field, in this study denoted sensitivities, are
required in order to solve the optimization problem in (7).
The sensitivities of the k’th design realization, dLk/ d �ρ,
where L is the general Lagrangian functional, are computed
by the discrete adjoint approach, see Michaleris and Vidal
(1994) and Bendsøe and Sigmund (2003), which reads:
(

∂ �Rk

∂ �Sk

)T

�λk =
(

∂f k

∂ �Sk

)T

(8)

where �λk is the vector of adjoint variables and �T denotes
the transpose. The sensitivities can now be computed by the
following expression:

dLk

d �ρ = ∂f k

∂ �ρ −
[�λk

]T ∂ �Rk

∂ �ρ (9)

where d�
d� denotes the total derivative and ∂�

∂� denotes the
partial derivative.

4.3 Filters and projection strategy

The physical design variables used in the finite element
analysis, ¯̃ρk

i , are obtained by imposing the projection filter
(10):

¯̃ρk
i = tanh(βηk) + tanh(β(ρ̃i − ηk))

tanh(βηk) + tanh(β(1 − ηk))
(10)

where β is the Heaviside projection parameter, ηk is
the projection filter threshold value, k is the design
realization, and ρ̃i is the density filtered design variables.
The density filtered design variables ρ̃i are obtained from

the mathematical design variables by the following filter
operation:

ρ̃i =
∑

j∈Ni
w(�xj )vjρj∑

j∈Ni
w(�xj )vj

(11)

where vj is the area of the j th element, Ni is the index set of
the design variables which is within the radius R of design
variable i, w(�x) is the filter weighting function, ρj is the
mathematical design variables and �xj is the spatial location
of the element j . The filter weighting function is given by:

w(�xj ) =
{

R − |�x| ∀|�x| ≤ R ∧ �x ∈ �D

0 otherwise
(12)

where R is the filter radius, |�x| = xi − xj and w(�xj ) is a
weighting function.

The field sensitivities are obtained by utilizing the chain
rule twice:

∂f

∂ρi

=
∑

j∈�D

∂f

∂ ¯̃ρk
j

∂ ¯̃ρk
j

∂ρ̃j

∂ρ̃j

∂ρk
i

(13)

4.4 Design-dependent loads

If a design problem takes design dependent loads into
account, it implies that the interaction between the fluid
and the structure depends on the topology of the design.
This framework takes design dependent loads into account,
as the pressure loads are transfered from the fluid to the
structure through the pressure coupling terms in (3). The
pressure coupling terms enter the sensitivity analysis in (8)–
(9) entailing that the design problem and FSI problem are
implicitly related though the sensitivities as L = L(ρ).
Design dependent loads are also seen in the work of Yoon
(2010, 2014a), Jenkins and Maute (2016), Picelli et al.
(2015, 2017).

5 Implementation

The finite element equations and the sensitivities for the
TO FSI framework are derived in the mathematical software
Maple and implemented in the scripting programming
language Matlab. The Matlab framework is parallelized to
the extend where multiple processors are used to evaluate
the finite element matrices which may constitute a minor
speed up for some problems.

5.1 Finite element formulation

The finite element equations are solved using rectangular
elements and linear basis functions for the fluid velocity
field, the fluid pressure field and the structural displacement
field. Each finite element consists of one design variable
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and four nodes with five degrees of freedom (DOF). The
DOF are: Two structural displacements, one fluid pressure
and two fluid velocities. The residual equation is written as:
�R(�S, �ρ) = �M(�S, �ρ)�S − �F = �0, where �R is the residual

vector, �F is the force vector, �M is the system matrix,
�S =

{ �U, �P , �D
}

is the state variable vector, where �U is the

fluid velocity vector, �P is the fluid pressure vector, �D is
the structural displacements vector. The residual equation is
solved by a combination between the undamped Newton’s
method (see e.g. Deuflhard 2014) and Pichard iterations.
Newton iterations have relative to Pichard iterations fast
convergence for initial guesses close to the solution, where
Pichard iterations have relatively to Newton steps fast
convergence for initial guesses far away from the solution.

5.2 Optimization parameters

The optimization problem is solved using the method
of moving asymptotes (MMA) (Svanberg 2006) with the
standard settings and a move limit of 0.1. The Heaviside
projection parameter, β, is updated every 100th design
iteration following the scheme: β = {4, 8, 16, 32, 64}.
The optimization algorithm is stopped when the maximum
difference between the design variables in iteration i and
i − 1 is less than 0.1% and β = 64. The projection
filter threshold values η for the eroded, nominal and dilated
designs are, unless otherwise stated, ηk = {0.3, 0.5, 0.7},
respectively. The initial density distributions for all design
problems presented in this study are �ρ = V f . The density
filter radius R is chosen to be R = 4/75N

y
C where N

y
C is the

number of elements in the Y direction. This density filter
radius, combined with the robust formulation, corresponds
to a length scale of ≈ 0.05.

5.3 Brinkman penalization

The Brinkman penalization parameter (BPP) for void and
solid are {αmin, αmax} = {

0, 109
}
, respectively. The BPP

is chosen relatively large compared to previous work in the
literature (Borrvall and Petersson 2003; Gersborg-Hansen
et al. 2005; Yoon 2010, 2014a; Andreasen et al. 2009;
Alexandersen et al. 2014), as it turns out that the correctness
of the FE modeling of the pressure field and the validity
of the optimized designs are conditioned by a large BPP.
Designs optimized for e.g. {αmin, αmax} = {

0, 105
}

may
be unphysical and meaningless, however, design problems
with low αmax may be better posed compared to design
problems optimized with high αmax. The pressure modeling
issue was discovered during numerical studies with the
TO FSI framework. It turned out that the optimization
algorithm took advantage of the poorly resolved pressure
field to provide physically meaningless but well-performing

designs (note: well-performing with respect to the poor
physical model) for some problems. To avoid a similar
pitfall, we suggest researchers always to validate all
designs with a body fitted mesh and a segregated solver
configuration. This will ensure that the performances of
the optimized designs are caused by the features of
the optimized designs and not caused by poor physical
modeling. Interested readers are referred to Appendix A.4,
where a detailed description of the issue and numerical
examples can be found.

5.4 Interpolation function parameters

The interpolation function parameters (IFP) in(6a–c) are
p
 = 1, pE = 1 and pα = {

5.25 · 10−6, 2.75
·10−6, 1 · 10−6, 2.5 · 10−7, 9.2 · 10−7

}
for problems with

Re = {1, 5, 10, 40, 100}, respectively. The pressure
coupling filter function parameters are {
min, 
max} =
{0, 1} and the structural stiffness of the void and the solid
are {Emin, Emax} = {

1 · 10−5, 1 · 105
}
.

The degree of well-posedness of a density-based TO
FSI design problem is very dependent of the choice of
interpolation functions (IF) and IFP. Numerical studies with
the TO FSI framework have suggested that a poor choice
of IF and IFP provides ill-posed optimization problems
and poorly performing optimized designs. However, a good
choice of IF and IFP provides well-posed optimization
problems and well-performing optimized designs.

The determinations of the IF and IFP take basis in a
systematic comparison between the topology sensitivities
and the shape sensitivities for a simple elastic problem
and a simple FSI problem. By tuning the IF and IFP,
such that the topology gradients resemble of the shape
gradients for intermediate design variables, we obtain
well-performing and well-posed optimization problems.
A detailed description and numerical examples of this
approach can be found in Appendix A.3.

5.5 Units of physical parameters

All equations have been derived in non-dimensional form
and all physical parameters are given in SI base units, e.g.
pressure is given in [Pa], displacements in [m], velocity in
[m/s], dissipated energy in the flow in [W/kg], structural
compliance in [1/Pa], the BBP in [m2], and so forth.
Optimization parameters such as β, ηk , p
 , pE and pα are
given in non-dimensional form and are mesh independent.

5.6 The assumption of neglecting the shear stress

In Fig. 2, we have sketched what we call the Hungry Horse
(HH) problem, which has been used to validate the unified
FSI framework. The HH problem is a good benchmark
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Fig. 2 Schematic of the hungry horse problem

example due to its simple design and many focal FSI
relevant features such as internal holes, boundaries with
high pressure and low fluid velocity and boundaries with
low fluid velocity and high pressures.

The HH problem is subject to the following BCs: A
parabolic fluid flow with maximum velocity of unity enters
the channel on �W and the fluid exits on �E . No-slip
boundary conditions are imposed on �N and �S , and the
structural deformations in all DOF are fixed on �S . A
prescribed p = 0 is imposed on the �E which models the
outflow condition.

The pressure field, the velocity field and the flow
streamlines for Re = 1 have been plotted in Fig. 3. The
relationship between the pressure and shear stress along the
outer boundary (sketched with the red line in Fig. 2) have
been plotted in Fig. 4. The integrated absolute pressure and
shear stress along the outer boundary of the HH problem
are 411.15 N and 29.72 N, respectively. The shear stress is

(a)

(b)

Fig. 3 State fields of the Hungry Horse problem

Fig. 4 The shear stress and pressure along r for the HH problem

large compared to the pressure near boundaries where the
velocity and its gradients are large and the pressure is low,
such as in and between points F and G. The ratio between
shear stress and pressure depends on the problem. However
in detailed computations the shear forces should always be
taken into account. Shear forces may be difficult to model
with a density-based Brinkman penalization approach as the
porous media in the intermediate design variables penalizes
the fluid velocity and hereby the fluid shear stresses.
Penalization of the fluid flow velocity implies that the
shear stress may be poorly resolved during the optimization
process when intermediate design variables are present.
IMwEBR for FSI problems may be better suited for building
frameworks in which effects such as shear stresses are taken
into account.

6 Numerical examples

6.1 The wall

The first example concerns a well-known problem from the
literature, which we call the wall problem. The wall problem

Fig. 5 Schematic of the wall problem



976 C. Lundgaard et al.

was originally suggested by Yoon (2010) and later revisited
for slightly different problem layout and flow properties
by Picelli et al. (2017), Jenkins and Maute (2015), and
Jenkins and Maute (2016). The aim of the wall problem is
to minimize the structural compliance of a wall subjected to
a fluid flow in a channel.

In this work, the wall problem has, compared to the
problem layout presented by Yoon, Picelli and Jenkins,
a smaller ratio between the length and the height of
the computational domain and a relatively larger design
domain. We believe, that the larger design domain yields
a higher level of design freedom, a more pronounced
fluid-structure-interaction, and hence facilitates a more
challenging optimization problem.

To provide guidance for future research within the field
of TO of FSI problem and to demonstrate the new features
and the stronger approximations of present framework, we
have revisited the exact wall problems presented in Yoon
(2010), Jenkins and Maute (2016) and Picelli et al. (2017)
in Appendix A.2.

The problem layout and the corresponding boundary
conditions are as illustrated in Fig. 5 for the wall problem
investigated in this work. �D , and the fixed domain, �I ,
are non-overlapping, and the design variables in �I are
all fixed to unity. The sub-domains I and D are non-
overlapping for all problems but all sub-domains are part of
the computational domain. The domain �I is referred to as
the wall.

A parabolic fluid flow with maximum velocity of unity
enters the channel on �W and exits on �E . No-slip boundary
conditions are imposed on �N and �S of the channel, and
the structural deformations in all DOF are fixed on �S .
A prescribed p = 0 is imposed on the �E modeling the
outflow condition.

The objective of the wall problem is to minimize the
structural compliance, fC , in �D and �I . The compliance
function for the wall flow problem is given by:

fC =
∫

�ID

εs
ij σ

s
ij dV (14)

� is discretized into
{
Nx

C, N
y
C

} = {300, 150} elements,
where Nx

C and N
y
C refer to the number of elements in the x

and y directions in the computational domain, respectively.
The domain �D consists of

{
Nx

D, N
y
D

} = {210, 120}
elements, where Nx

D and N
y
D refer to the number of elements

in the x and y directions in �D , respectively. The total
number of state DOF is 227,255 and the maximum allowed
volume fraction is V f = 0.1.

The problem is investigated for four Reynolds numbers,
Re = {1, 5, 10, 40} and the optimized designs and relevant
state fields are plotted in Figs. 6, 7, 8 and 9. The pressure
coupling forces are the discrete vectors of the pressure
coupling terms 1 and 2 in (3) obtained in the finite element

(a)

(b)

(c)

(d)

Fig. 6 Optimized designs and the state field plots for Re = 1

discretization and are plotted in Figs. 6a, 7,a 8a and 9a.
The blue arrows in the pressure force coupling plot illustrate
the direction and the magnitude of the reaction forces of
the structure against the fluid pressure. These are plotted
in the FE nodes and each arrow has contributions from the
neighboring elements for which reason they may appear
non-perpendicular to the surfaces of the elements in some
instances.
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(a)

(b)

(c)

(d)

Fig. 7 Optimized designs and the state field plots for Re = 5

The fluid pressure field and the fluid flow streamlines,
seeded along �W , have been plotted in Figs. 6b, 7b, 8b
and 9b. The normalized fluid flow velocity and the fluid
flow streamlines, seeded along �W , have been plotted
in Figs. 6c, 7c, 8c and 9c. The scaled deformed and
undeformed configuration of the optimized structures have
been plotted in Figs. 6d, 7d, 8d and 9d. In plots with the
deformed and undeformed configuration of the optimized

(a)

(b)

(c)

(d)

Fig. 8 Optimized designs and the state field plots for Re = 10

designs, the deformation of the deformed configurations
have been scaled so that the maximum deformation occur
with the same magnitude in all plots. However, recall
that the deformations of the designs are not taken into
account in the optimization process, so the plots of the
deformed configurations are only for illustrative purposes.
The internal pressures of the holes in the optimized designs
in Figs. 6a, 7,a 8a and 9a are physical reasonable, as we
assume that the structures are leaking through the finite
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(a)

(b)

(c)

(d)

Fig. 9 Optimized designs and the state field plots for Re = 40

permeability of the solid regions. The leaking features of the
structure allow fluid to enter and pressurize internal holes.
Optimized designs and relevant state field plots follow a
similar setup as the wall flow presented in Figs. 6–9 in the
rest of this paper.

The relationships between the normalized fD and
iteration number, k, for the eroded, the dilated and the
nominal designs in the design in Fig. 6 have been plotted
in Fig. 10. Snapshots of the design evolution for every 100
iteration have been plotted in Fig. 11.

Fig. 10 Convergence plot for the nominal, the dilated and the eroded
design for the wall flow problem with Re = 1

To determine how much significance one may attribute
to the features of the optimized designs, one can consider
a cross-check table, which contains the evaluations of the
objective function for all combinations of model parameters
(the Reynolds number in the present problem) and the
optimized designs. A design optimized for one model
parameter is required to outperform designs optimized
for other model parameters if one shall attribute any
significance to the features of the design solutions.

The objective values of the four designs for the four
Reynolds numbers have been listed in Table 1. The
design optimized for one Reynolds number outperforms the
designs optimized for other Reynolds numbers (the lowest
objective values are in the diagonal), confirming that the
designs indeed have superior performance for the Reynolds
number they are optimized for.

All objective functions in this work are evaluated for
projected binary (0/1) designs using ˜̄ρ = 0.5 as threshold
value. This sharp thresholding is carried out to ensure that
the improved performances of the optimized designs are
not governed by nonphysical intermediate design variables
that may be present. However, the difference between
the thresholded designs and the design which contain
intermediate design variables are less than 1% for all cases.

Visual inspection of Fig. 6–9 and analysis of the cross-
check table shows that the optimized designs are dependent
on the choice of Re and that the coupling between the fluid
flow, the elastic structure and the optimization problem is
captured. The amount of material placed in the upstream
area of the wall and the degree of asymmetry around the
axis (x, y) = (x = 1, y) increases as Re increases.

The optimization process is governed by two main,
and possibly conflicting, features: (1) Minimization of the
drag of the structure and (2) maximization of the stiffness
of the structure. To determine which of the features that
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Design evolution for the Re = 1 wall flow design problem

governs the design process is non-trivial, but an interesting
observation is made when evaluating the design solutions
in Figs. 6–9 for dissipated energy in the flow, fE (see
(17)). Tables 1 and 2 suggest that fE for the designs placed
in the diagonal is positively correlated with fC ; a small
amount of dissipated energy in the fluid is connected to a
small structural compliance and vice versa. The drag on the
structure is not explicitly stated in fC , but the correlation
between fC and fE seems to be an inherent feature of this
optimization problem.

Jenkins and Maute (2016) reported on FFIOSE during
their optimization process. We did not observe such
phenomenon in this optimization problem, which may be
explained by the continuous relationship between the design
variables and the element stiffnesses in the density-based
topology optimization approach.

6.2 The flow obstacle

The aim of the second numerical example and optimization
problem is to minimize the downstream deformations of the
center of a plate in a channel by optimizing the material

distribution in the proximity of the plate, see Fig. 12.
A prescribed fluid flow with a parabolic velocity profile
enters the computational domain at �W and the fluid exits
through �E . No-slip boundary conditions are imposed on
�N , �S and �E has a prescribed zero pressure condition.
The domain �D is placed in the center of the channel
(light grey area) and contains a vertical solid domain with
prescribed unity design variables, �I , and a square volume,
�S , which is encircled by red lines. All structural DOF in
�S are supported by linear springs with stiffness ks = 105

in both x and y directions. The springs in �S constitute the
only structural constraints of the problem.

The symmetry around (x, y) = (x, 0.5) is exploited in
the state and optimization problems, to discretize � into{
Nx

C, N
y
C

} = {400, 100} finite elements. The domain �D

consists of
{
Nx

D, N
y
D

} = {240, 80} finite elements. The
total amount of state DOF is 202,505, the volume fraction is
V f = 0.3 and the Reynolds number is Re = 1. The volume
constraint was chosen so high that it was inactive for all final
optimized designs.

In FSI optimization problems, it may be non-trivial to
determine which features of a design solution that have been

Table 1 Cross-check between fC and Re for the designs optimized for fC in Figs. 6–9

Design Evaluated for

optimized for Re = 1 Re = 5 Re = 10 Re = 40

Re = 1 1.1579 · 10−8 3.1559 · 10−9 5.1549 · 10−10

Re = 5 2.8373 · 10−7 3.0552 · 10−9 4.7432 · 10−10

Re = 10 2.9226 · 10−7 1.1478 · 10−8 4.3669 · 10−10

Re = 40 3.8645 · 10−7 1.4423 · 10−8 3.5304 · 10−9
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Table 2 Cross-check between fE and Re for the designs optimized for
fC in Figs. 6–9

Design Evaluated for

optimized for Re = 1 Re = 5 Re = 10 Re = 40

Re = 1 2.4596 1.1428 0.2542

Re = 5 23.670 1.1346 0.2492

Re = 10 24.001 2.4904 0.2475

Re = 40 26.454 2.7234 1.1425

governed by maximizing structural stiffness, minimizing
the fluid drag, or exploiting features of the fluid-structure-
interaction. With basis in the flow obstacle problem and six
different objective functions, we may find a road to a better
understanding of the interaction between these possibly
conflicting objectives.

6.2.1 Structural displacements in the spring-domain

The overall aim of the plate optimization problem is to
minimize the average of the x-directional displacements in
�S . The domain �S is non-overlapping with �I and �D ,
and the displacement objective function, fD , is given by:

fD =
∫
�S

dx dV∫
�S

dV
(15)

The optimized designs and the pressure coupling reaction
forces, the pressure field and the fluid flow streamlines, and
the deformed and undeformed configuration (from now on
denoted the relevant state fields) for fD have been plotted
in Fig. 13. The pressure fields of the flow obstacle problem
are plotted on the same scale for easier comparison.

The optimized design for fD is non-physical due to
the FFIOSE. The objective function fD does not put any
requirements on the stiffness of the structure and nothing
inherent in the optimization formulation removes the non-
physical FFIOSE. The FFIOSE may or may not occur if

Fig. 12 Schematic of the problem layout and the boundary conditions
of the flow obstacle problem

(a)

(b)

(c)

(d)

Fig. 13 fD optimized designs and the state field plots

the dependency of the structural deformations was taken
into account. In the simplified model, the FFIOSE exploit
several features of the interaction between the fluid and
the structure, such as: The pressure difference between the
upstream surface and the downstream surface of the �I is
reduced; the fluid flow is lead past the �I to reduce the fluid
dynamical drag force; and a high fluid pressure is build up
in the proximity of the upstream FFIOSE which generates
a negative x-directional pressure-force contribution on the
structure.
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Jenkins and Maute (2016) reported on a similar issue
with FFIOSE in similar fC optimization problems which
included the deformation dependency. Jenkins and Maute
dealt with the issue of FFIOSE by solving an additional heat
transport problem. The FFIOSE were excluded from the
finite element analysis based on the heat transport problem
and the corresponding temperature field. A similar approach
to ensure manufacturable designs in linear elastic topology
optimization problems was presented in Liu et al. (2015).

(a)

(b)

(c)

(d)

Fig. 14 fC -optimized designs and the state field plots

Physically realistic designs are characterized by a
connected topology where all solid elements are connected
to �S . As an alternative to the indicator models, we
investigate several objective functions which put different
requirements on the stiffness of the optimized structure.
An appropriately chosen objective function may provide
inherent features of the optimization process, which avoid
FFIOSE, while the design maintains a good performance for
fD .

(a)

(b)

(c)

(d)

Fig. 15 fE-optimized designs and the state field plots
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6.2.2 Structural compliance

The problem in Fig. 12 is now optimized with respect to
minimum structural compliance, fC , in the domain �IDS .
The objective function reads:

fC =
∫

�IDS

εs
ij σ

s
ij dV (16)

The optimized design and the state fields of the structural
compliance problem are plotted in Fig. 14. This objective
results in a connected structure since islands could result in
very large strain energies in the void domains between �S

and the islands. However, this objective does not provide a
satisfactory performance in the original fD objective.

6.2.3 Dissipated energy in the flow

The optimization problem in Fig. 12 is minimized with
respect to the amount of dissipated energy in the fluid flow,
fE , in the full domain �. The objective function reads:

fE =
∫

�

1

Re

(
∂ui

∂xj

+ ∂uj

∂xi

)
dV +

∫
�

αui dV (17)

The fE-optimized design and the state fields are plotted
in Fig. 15. The optimized design corresponds to the
minimum surface solution as fE for highly viscous flows,
Re = 1, are positively correlated with the surface area of the
structure; a small surface area is connected with a small fE .
The optimized design has the smallest surface area possible
for this optimization problem.

6.2.4 Structural free bodymotion

The aim of the fourth optimization problem is to minimize
the free-body-motion of the intermediate and solid elements
(i.e. ρ > 0) in the x and y-directions in �IDS (from now on
denoted the free-body motion objective function). The free
body motion objective function, fF , is given by:

fF =
∫
�IDS

ρdidi dV∫
�IDS

ρ dV
(18)

The optimized design with respect to fF and the
corresponding state fields are plotted in Fig. 16.

The holes in the upstream part of the design have
a relatively high internal pressure. The high internal
pressure constitutes a negative x-directional pressure-load
component which may explain the occurrence of the holes.
The design optimized for fF has, compared to the design
optimized for fC in Fig. 14, a lower drag force and exhibits
a smaller pressure loss.

(a)

(b)

(c)

(d)

Fig. 16 fF -optimized designs and the state field plots

6.2.5 Structural displacement variance

The optimization problem in Fig. 12 is minimized with
respect to the variance between the average of the x-
directional structural displacements in �S and the x-
directional structural displacements of the solid elements in
�ID . The objective function is denoted fV and referred to
as the structural displacement variance objective function.
Designs optimized for fV seeks a topology in which all
non-zero density elements undergo the same structural
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displacement with respect to direction and magnitude. This
formulation may provide a well performing fD and a
connected topology of the solid elements. The displacement
variance function objective function is formulated as:

fV =
∫
�ID

ρ(dx − d̄x)(dx − d̄x) dV∫
�ID

ρ dV
(19)

where dx is the x-directional displacement and d̄x is the
average of the x-directional displacements in �S :

d̄x =
∫
�S

dx dV∫
�S

dV
(20)

The optimized design and the state fields are plotted in
Fig. 17. The upstream part of the design is a compromise
between fluid dynamic properties (low drag force) and
structural free-body motion of the solid elements in �D .
The fluid dynamical properties of the design (lower drag
force) may be improved by increasing the amount of the
material in the upstream part of �I and �S . A larger amount
of solid in the upstream part of �I and �S may cause a
larger pressure drop over the design and hereby cause a
larger imposed pressure-coupling force, which decreases the
performance of the design.

The downstream part of the design is primarily serving
fluid dynamical purposes, such as minimizing the drag force.

6.2.6 Multi-objective function

The objective functions in (16)–(18) provide physically
meaningful optimized designs, but the introduction of new
objective functions does not put any requirements on
the performance of fD . The sixth optimization problem
takes basis in a multi-objective function, which combines
different objectives with different weights, a1 and a2.
The multi-objective function may ensure that non-physical
features of fD-optimized designs are avoided, while the
design maintains a good performance in fD . The multi-
objective function, fM , contains a combination of (15) and
a general version of (19) and is given by:

fM = (1 − a)
∫
�S

dx dV∫
�S

dV

+a
∫
�D

ρ
(
(dx − d̄x)(dx − d̄x)

)
dV∫

�D
ρ dV

+a
∫
�D

ρ
(
(dy − d̄y)(dy − d̄y)

)
dV∫

�D
ρ dV

(21)

where

d̄x =
∫
�S

dx dV∫
�S

dV
and d̄y =

∫
�S

dy dV∫
�S

dV
(22)

(a)

(b)

(c)

(d)

Fig. 17 fV -optimized designs and the state field plots

The optimization problem seeks a design which fulfills
two conditions: (1) fD is minimized and (2) the x and y

directional displacements variance are minimized. The fM -
optimized design and the relevant state fields have been
plotted in Fig. 18. The optimized design is obtained for the
weight of a = 0.01.

The x and y directional displacement variance terms in
(21) penalize the free-floating island of solid elements in the
displacement design in Fig. 13. The design optimized for
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(a)

(b)

(c)

(d)

Fig. 18 fM -optimized designs and the state field plots

fM outperforms all other designs in fD except the design
optimized purely for fD .

6.2.7 Comparison of the optimized design

The optimized designs for the objective functions in (15)–
(21) have been cross-checked in Table 3. The cross-check
table reveals that all designs optimized for one objective
have superior performance in that objective compared to
designs optimized for other objectives. This demonstrates

that the coupling between the fluid flow, the elastic structure
and the optimization problem indeed is captured. The fE-
optimized design is not defined for the fV objective due to
division by zero as all design variables are equal to zero.

Multi-objective functions can be formulated from arbi-
trary combinations of (15)-(18). Different sets of multi-
objective functions provide different characteristics of the
optimized designs. We have tried several combinations of
different objective functions, and to our experience, (21),
provides the best results.

6.3 The fluid gripper

The aim of the third numerical example is to optimize
a gripper mechanism which is capable of converting
the pressure load caused by the moving fluid into a
structural force in a spring. The design problem is inspired
by the linear elastic structural mechanism which was
presented by Sigmund (1997), and later extended to include
stress constraints (De Leon et al. 2015), manufacturing
error tolerances (Schevenels et al. 2011), large structural
displacements (Pedersen and Buhl 2001), among others.

The aim of the optimization problem is to maximize the
structural y-directional displacement of a spring with spring
stiffness k using only the pressure load cased by the fluid
flow. The problem layout and the boundary conditions of
the optimization problem have been sketched in Fig. 19. The
objective function, fP , reads:

fP =
∫

�P

dy dV (23)

The spring point (a single node) is denoted �P and
is placed in the center of a squared domain, �I , which
has fixed unity design variables. The objective function is
defined in a single node instead of a domain, as we aim on
defining a problem which resembles as much as possible of
the original gripper problem in Sigmund (1997). The fluid
flow boundary conditions of the fluid gripper problem are
similar to the boundary conditions presented for the flow
obstacle problem in Fig. 12, but fixed structural boundary
conditions in all DOF have been imposed along �S and �D

has been enlarged so solid elements can connect from �P

to �S .
The domain � is discretized into

{
Nx

C, N
y
C

} =
{200, 100} elements. The total number of state DOF is
101,505 and the maximum allowed volume fraction is
V f = 0.2. The problem is investigated for Re = {1, 100}
and for the spring stiffness of k = 1013.

The optimized design and the relevant state fields of the
fluid gripper optimization problem in (23) have been plotted
in Figs. 20 and 21.
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Table 3 Cross-check between the objectives in (15)–(21)

Design optimized for Evaluated for

fD fC fE fF fV fM

fD 3.254 · 10+5 1.653 · 101 1.601 · 10+13 1.606 · 109 8.871 · 1012

fC 1.183 · 10−6 1.237 · 101 1.423 · 10−4 1.311 · 10−8 5.706 · 10−6

fE 1.128 · 10−6 3.137 · 10−2 4.173 · 10−2 −− 1.258 · 10−3

fF 1.185 · 10−6 1.500 · 10−3 1.314 · 101 1.562 · 10−8 9.278 · 10−6

fV 1.199 · 10−6 4.011 · 10−3 1.432 · 101 8.393 · 10−4 5.953 · 10−5

fM 1.098 · 10−6 2.261 · 10−3 1.380 · 101 4.037 · 10−4 4.479 · 10−8

The cross-check table in Table 4 confirms that the design
optimized for one Re indeed has superior performance
compared to the design optimized for the other Re.

The optimized designs consist of four main parts:
A horizontal superjacent bar; a pivot which converts
positive y-directional fluid pressure loads working on the
superjacent bar into negative y-directional motion in �P ; a
vertical bar which connects the pivot and the superjacent bar
to �P ; and a foundation structure which connects the pivot
to the structural constraints along �S .

The foundation structures are robust to ensure that the
pressure load is converted into a force in �P . Designs
optimized for a too low ks may cause a “fragile” optimized
designs with poor conversion of pressure loads into spring
forces.

The horizontal superjacent bars have two purposes: (1)
the y-directional vertical pressure forces on the horizontal
superjacent bars are converted into a clockwise moment
around the pivot. The moment around the pivot is
transferred to �P through the vertical bar which connects
�P and the pivot. (2) the input velocity of the fluid flow
is fixed, and the optimization problem does not put any
requirements on the maximum allowed pressure drop. A
large drag force of the optimized design causes a large
pressure drop between the �W and �E and hereby a large
pressure load on the superjacent bar. The large pressure load

Fig. 19 Schematic of the problem layout and the boundary conditions
of the fluid gripper

(a)

(b)

(c)

(d)

Fig. 20 Optimized designs and the state field plots for Re = 1
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(b)

(a)

(c)

(d)

Fig. 21 Optimized designs and the state field plots for Re = 100

causes a large pivoting moment and hereby a large force on
�P .

The vertical superjacent bar of the Re = 1 design is
longer than the vertical superjacent bar of the Re = 100
design. The difference in lengths between the superjacent
bars may be explained by the difference in the pressure loss
between the two optimized designs. Due to the difference
in the viscous forces of the fluid, the pressure loss over the
vertical superjacent bar of the Re = 1 design is significantly
lower than the pressure loss over the vertical superjacent

Table 4 Cross-check between fP and Re

Design Evaluated for

optimized for Re = 1 Re = 100

Re = 1 −3.847 · 10−5 −9.294 · 10−7

Re = 100 −3.557 · 10−5 −9.767 · 10−7

bar of the Re = 100 design. The lower pressure loss of
the Re = 1 design makes the downstream part of the
superjacent bar efficient, as it contributes to the clockwise
moment around the pivot.

The superjacent bar for the Re = 1 design is straight,
where as the superjacent bar of the Re = 100 design
has a small concave (with respect to an observer on �N )
feature in the upstream tip. The concave feature of the
tip of the Re = 100 design generates a low pressure in
the northern proximity of the superjacent bar which sucks
the superjacent bar upwards and hereby contributes to the
clockwise moment around the pivot.

The cross-checks in Table 4 indicate that the topology
of the optimized designs and the fluid properties are
significantly correlated and adequately captured by the
optimization algorithm, and that a design optimized for one
Re indeed have superior performance compared to designs
optimized for the other Re.

(a)

(b)

Fig. 22 Normalized sensitivity fields for the optimized fluid gripper
designs



Revisiting density-based topology optimization for fluid-structure-interaction problems 987

To provide guidance for future research within TO of
FSI problems, we have plotted the normalized sensitivity
fields and the 0/1 contour for the optimized fluid gripper
designs in Fig. 22. Negative values of the sensitivities
advice a decrease in design variable density and positive
values of the sensitivities advice an increase in design
variable density. The design evolution is solely driven by
the convective response as the shear stresses of the flow are
neglected in the physical model. High positive sensitivity
values are observed in the pivots for the both Re = 1
and Re = 100 designs. This indicates the urge for thinner
and more flexible pivots which, however, is hindered by
the minimum length scale strongly imposed by the robust
design formulation.

7 Discussion

7.1 Interaction between fluid, structure
and the optimization problem

The passed cross-checks in Tables 1, 3 and 4 prove that
the coupling between the fluid problem, the structural
problem and the optimization problem is appropriately and
consistently captured. The cross-checks strongly indicate
that the various optimized designs are governed by the
changes in the model parameters, and not caused by poor
local minima.

7.2 The choice of interpolation functions
and parameters

The choice of interpolation functions and their parameters is
crucial in order to obtain well-posed optimization problems.
For a specific set of discretized equations, the choice of
interpolation functions and their parameters determine the
relationship between the objective function and the design
variables. Appendix A.3 demonstrates that a monotonic
relationship between the design variables and the objective
function may provide a better performing and smoother
optimization process.

The density-based topology optimization approach is
sensitive to the interactions between various interpolation
functions. The introduction of the design field and poorly
chosen interpolation functions may cause non-monotonic
relationships between the objective function and the
design variables and well-performing design consisting of
intermediate design variables for standard density methods.
A well-performing topology optimization based framework
supported by monotonic relationship between the objective
function and design variables. Other topology optimization
approaches such as explicit boundary controlled methods

may not encounter these kinds of issues, as the sensitivities
for such methods always point in the correct direction.

7.3 The robust formulation

The robust formulation and the continuation scheme in
the projection filter threshold may make the optimization
framework, apart from providing manufacturing robustness
and length-scale-control, less sensitive to non-monotonic
relationships between the objective function and the design
variables. The robust formulation uses several realizations
of the designs, and the probability for the optimizer to find
a non-physical, but well-performing, intermediate state is
hereby reduced.

7.4 The choice of Brinkman penalization parameter

A very high Brinkman penalization parameter, e.g. αmax =
109, in the solid elements is crucial in order to model
the pressure field correctly. The underlying physical model
is incorrect (compared to the segregated approach) for
problems in which the Brinkman penalization is too small
as the pressure field is incorrectly modeled. Designs
optimized for too low Brinkman penalization may perform
poorly in segregated models, as the optimized designs
may contain features which take advantage of the too
permeable structure. The large Brinkman penalization
is most important when the objective function or the
optimization constraints are directly related to the fluid
pressure field, such as in FSI problems.

7.5 Free floating island of solid elements

The multi-objective formulation for the fD optimization
problem in (15) constitutes an alternative to the auxiliary
indicator method presented in the work of Jenkins and
Maute (2016). The multi-objective approach requires a
tuning of an additional parameter as the choice of a2 is
important to obtain an adequate ratio between the influence
of the multiple objective functions. The approach has
shown promising results in removing FFIOSE from the
flow obstacle problem, however comparison between the
performance of the indicator method and the multi-objective
approach requires more studies.

Jenkins and Maute (2016) reported on FFIOSE for com-
pliance problems; such issues were not observed in com-
pliance problems in this study. The absence of FFIOSE in
compliance problems may be explained by the continuous
nature of the design variables in the density-based topol-
ogy optimization approach. Elements disconnected from the
main structure are removed continuously during the opti-
mization process as the void elements connected between
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the FFIOSE and the structural constraints undergo large
structural compliance. Void elements with large structural
compliance are inefficient for the design performance for
which reason the FFIOSE are removed.

7.6 The displacement dependency

The displacement dependency significantly increases the
non-linearity of the design problem. A design framework
which takes the displacement dependency into account
could identify design concepts which may not be encoun-
tered when neglecting the displacement dependency. To
demonstrate the influence of the deformation dependency,
we suggest future research to include a comparison between
an optimized design which complements the deformation
dependency and an optimized design which neglects the
deformation dependency.

7.7 Topology optimization with immersed versus
density-basedmethods

Immersed methods with explicit boundary representation
(IMwEBR) have a well defined boundary between the
fluid and the structure, which resolves the physics cor-
rectly though the entire optimization process. Intermediate
design variables in density-based methods rely in interpo-
lation functions, which do not guarantee correct physical
modeling during the optimization process unless a com-
plete 0/1 design is present. We showed that adequate choice
of interpolation function parameters provided well-posed
optimization problems. IMwEBR may generally have an
advantages compared to density-based topology optimiza-
tion approaches for fluid-structure-interaction, as IMwEBR
have a well defined boundary between the fluid and the
structure whereas density-based methods are prone to a
complex interplay between the fluid and the structure in the
intermediate design variables.

7.8 Shear stress

In the Hungry Horse problem in Section 5.6, we demon-
strated that the shear stress may be significant magnitude
compared to the pressure for some problems. Shear stresses
should therefore be taken into account in detailed com-
putations. Shear forces may be difficult to model with
a density-based Brinkman penalization approach as the
porous media in the intermediate design variables penal-
izes the fluid velocity and hereby the fluid shear stresses.
IMwEBR for FSI problems may be better suited for taking
such effects into account as IMwEBR always have well-
defined boundaries, which avoid issues with non-physical
intermediate design variables.

7.9 Future work

Future developments in the field of topology optimization
for FSI problems may concern: (1) Taking the deformation
dependency in the finite element model and the sensitivity
analysis into account to demonstrate the connection
between optimized topology and the magnitude of the
structural deformations. (2) Investigation of the dependency
between the optimized topology of various mechanism
problems and the choice of input spring stiffnesses, pressure
drop constraints and Reynolds numbers. (3) A three
dimensional and time dependent implementation of the
framework in a parallel code to optimize for more realistic
problems. (4) The influence of the shear stress for low
Reynolds number flows.

8 Conclusion

The density-based topology optimization approach is
revisited, and the framework is tested for low and
moderate Reynolds numbers on benchmark problems, well-
know design problems from the literature, and two new
challenging design problems. The framework takes basis
in the finite element discretization of the Navier-Cauchy
and Navier-Stokes equations which are solved in an unified
formulation. The physical modeling is limited to two
dimensions, steady state, the influence of the structural
deformations on the fluid flow is assumed negligible, and
the structural and fluid properties are assumed constant.

The derivation of the unified finite element formula-
tion is elaborated, where an additional term in the coupling
between the fluid and the structure is included compared to
the equivalent formulations in the literature. Critical imple-
mentation details concerning the Brinkman penalization
parameter and the interpolation functions and parameters
are provided.

The framework is built on basis of a robust formulation,
which ensures length-scale-controlled well-performing and
binary optimized designs and makes the optimization
process less sensitive to the choice of interpolation
function parameters, model parameters, and penalization
and continuation strategies. The coupling between the fluid
flow, the elastic structure and the optimization problem
is clearly captured and demonstrated with comprehensive
numerical studies and cross-check tables.

By combining different objective functions with different
features and weights, non-physical free-floating islands of
solid elements (FFIOSE) can be removed during the design
process.

The study procures new insight in the field of topology
optimization for fluid-structure-interaction problems, and
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may provide guidance for future research within topology
optimization for fluid-structure-interaction problems.
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Appendix

A.1 Details on the derivation of (3)

The Navier-Cauchy equations are given by:

∂σ s
ij

∂xj

+ fi = 0 in �S (24)

σ s
ij = Cijklεkl

εs
kl = 1

2

(
∂dk

∂xl

+ ∂dl

∂xk

)

The coupling between the fluid and the structure is given
by (Farhat and Roux 1991; Yoon 2014a)

σ s
ij nj = σ

f
ij nj on �SF (25)

The weak form of (24) is given by:
∫

�S

wh
i

∂σ s
ij

∂xj

dV +
∫

�S

wh
i fi dV = 0 (26)

where wh
i is a suitable basis function. Integration by parts of

higher dimensions on the first term of (26), yields:
∫

�SF

wh
i σ s

ij nj dS −
∫

�S

∂wh
i

∂xj

σ s
ij dV

+
∫

�S

wh
i fi dV = 0 (27)

Shear stresses on the interface between the fluid and the
structure are neglected for which reason (25) can be written
as σ s

ij nj = −pni on �SF , where p is the pressure on the
interface surface. Equation (27) is now rewritten as:
∫

�SF

wh
i phni dS −

∫
�S

∂wh
i

∂xj

σ s
ij dV

+
∫

�S

wh
i fi dV = 0 (28)

Integration by parts of higher dimensions on the first term
of (28), yields:

∫
�S

∂wh
i

∂xi

ph dV +
∫

�S

wh
i

∂ph

∂xi

dV

−
∫

�S

∂wh
i

∂xj

σ s
ij dV +

∫
�S

wh
i fi dV = 0 (29)

Equation (29) may now be rewritten from the segregated
domains �S to a unified domain �, by introducing a design
variable field 0 ≤ ρ ≤ 1 and the following interpolation
function:

Cijkl = E(ρ)C0
ijkl (30)

Correct integration of the fluid pressure on the elastic
structure is ensured by introducing the filter function 
(ρ):∫

�S

� dV =
∫

�


(ρ)� dV (31)


(ρ) is a function which is unity for ρ = 1 and zero
for ρ = 0. Inserting (30) and (31) into (29), we arrive at
the following expression for the Navier-Cauchy equation
defined in a unified domain �:∫

�


(ρ)

(
∂wh

i

∂xi

ph + wh
i

∂ph

∂xi

)
dV

+
∫

�

wh
i fi dV =

∫
�

E(ρ)
∂wh

i

∂xj

σ
s0
ij dV (32)

A.2 Benchmark examples

To demonstrate the features of the present framework, we
have revisited the wall flow design problems presented
in the works of Yoon (2010) and Picelli et al. (2017)
and Jenkins and Maute (2016). These, what we call,
benchmark designs problems are solved with the same
physical parameters as in the respective papers but with
our framework. The design solution, obtained with the
framework presented in this study, to the design problem
presented in Jenkins and Maute (2016) has been plotted
in Fig. 23. The design solution shown in Jenkins and
Maute (2016) and our design solution in Fig. 23 are by
visual comparison quite similar. The small difference in
the design solutions suggests that the internal pressure,
the displacement dependency and /or the shear stress may
have minor effects for this specific optimization problem.
However, more studies and other optimization problems are
required to fully understand the influence of the different
modeling approaches and assumptions.

In Figs. 24 and 25, the Yoon (2010) and Picelli
et al. (2017) benchmark design problems, solved by our
framework, have been plotted for Re = 0.004 and Re =
12. The designs have been optimized for the full pressure
coupling formulation in (3). It is unclear whether the design
solutions in Yoon (2010) are solved for pressure-coupling
term 1 or pressure-coupling term 1 and 2. In Yoon (2010),
it is seen that an increased Reynolds number causes the
wall support to move to the downstream part of the design
domain. This tendency is conflicting with the tendencies
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(a)

(b)

(c)

(d)

Fig. 23 Design solution for the wall flow problem in (Jenkins and
Maute 2016) with Re = 10

observed in Picelli et al. (2017) and in Figs. 24–25. In these
design problems, it is observed that an increased Reynolds
number causes the wall support to move to the upstream
part of the design domain. As far as we are aware there does
not exist any crosschecks between the Reynolds number and
the optimized designs in the mentioned papers, for which
reason it is challenging to assess how much significance we

(a)

(b)

(c)

(d)

Fig. 24 Design solutions for the wall flow problem stated in (Yoon
2010; Picelli et al. 2017) with Re = 0.004

can attribute to the features of the optimized designs in Yoon
(2010) and Picelli et al. (2017). However, please notice that
our optimized designs in Figs. 24–25 pass a crosscheck.

A.3 Details on the determination of interpolation
functions

TO for FSI problems are highly non-linear, ill-posed
and non-convex. Several model parameters influences the
design processes and the design solutions, which require a
significant amount of parameter tuning due to the deepness
of the design space. Numerical experiments with the frame-
work presented in this work, have suggested that the design
process is highly dependent on the choice of interpolation
functions, α(ρ), E(ρ) and 
(ρ) (abbreviated: H{α,E,
}),
and the choice of interpolation function parameters, pα ,
pE and p
 (abbreviated: p{α,E,
}). It is our experience
that adequate choices of p{α,E,
} and H{α,E,
} are crit-
ical to obtain well-performing and 0/1 design solutions.
As p{α,E,
} and H{α,E,
} are key to carry out success-
ful optimization problems, we will in this section present
a methodology which can be used to determine adequate
p{α,E,
} and H{α,E,
} and hereby formulate well-posed
optimization problems.

IMwEBR are based on shape sensitivities which may
be better suited for TO for some multi-physics problems.
IMwEBR have a well-defined boundary between the
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(a)

(b)

(c)

(d)

Fig. 25 Design solutions for the wall flow problem in Yoon (2010) and
Picelli et al. (2017) with Re = 12

different types of physics, which ensures that the physics
are resolved correctly throughout the entire design process,
as no sub-domains are dependent on the quality of the
interpolation functions of the intermediate design variables.
In density-based methods the correctness of the physical
modeling rely, among many other aspects, on the choice
of p{α,E,
} and H{α,E,
}. The hypothesis is that topology
sensitivities, ∂f/∂ρd , may obtain the same well-behaving
features as shape sensitivities, ∂f/∂ρs , if some adequate
H{α,E,
} and p{α,E,
} are chosen.

To determine adequate sets of H{α,E,
} and p{α,E,
}, we
compare ∂f/∂ρs and ∂f/∂ρd for two different problems:
(1) a purely elastic problem and (2) an FSI problem. The
problem layouts and the boundary conditions have been
sketched in Fig. 26. To carry out the study, we compare
four different objective functions, fE , fC , fT and fP

(abbreviated: f{E,C,T ,P }):

1. Dissipated energy in the flow, fE , see (17).
2. Structural compliance fC , see (16)
3. The y-displacement of the tip of the beam in point

{x, y} = {2, 0.45}:

fT = 1∫
�T

dV

∫
�T

dy dV (33)

(a)

(b)

Fig. 26 Problem layouts and boundary conditions used to compare the
topology sensitivities and the shape sensitivities

4. The pressure induced y-directional force on the beam:

fP =
∫

�B

pnj dS (34)

The relationship between f{E,C,T ,P }, ρS and ρD is
determined with basis in a simple problem where a beam
separates a channel into two regions of the same size. The
problem is modeled in the unified framework. The beam
separating the channel, �I , has fixed unity design variables
and the tip of the beam is loaded with a force fy . With
reference to Fig. 26, we consider two different problems: (a)
An elastic problem where u∗

x = 0 and fy = 10, and (b) an
FSI problem where u∗

x = 1 and fy = 0.
With reference to Fig. 26a, the topology sensitivities of

various objective functions are computed by changing the
design variables of the lowest line of elements of the vertical
beam. With reference to Fig. 26b, the shape gradients of
various objective functions are computed by changing the
position of the nodes on the lower boundary of the beam.
The position of the boundary is varied over the length of one
element, entailing that ∂f/∂ρd and ∂f/∂ρs are comparable
in material usage.

The relationship between f{C,P }, f{C,P }, ρd and ρs for
the elastic problem have been compared in Fig. 27. The
relationships are different but can be characterized by the
following attribute: f{C,T }(ρs) and f{C,T }(ρd) are strictly
monotonic entailing that ∂f{C,T }/∂ρs and ∂f{C,T }/∂ρd are
strictly monotonic. Well-versed and crisp 0/1 designs and
smooth optimization processes are obtained for a large
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(a)

(b)

Fig. 27 The relationship between fC , fP and ρd/ρs for various
choices of H{α,E,
} and p{α,E,
}

number of TO for elastic problems, see e.g. (Bendsøe
and Sigmund 2003). The hypothesis in this study is,
that the well-posed properties of linear elastic problems
are explained by the strictly monotonic features of the
∂fC/∂ρd .

We now point out attention to the FSI problem, where
we investigate the monotonicity of f{E,C,T ,P }(ρs) and
f{E,C,T ,P }(ρd). The relationships have been plotted in
Fig. 28, and are characterized by:
1. f{E,C,T ,P }(ρs) are strictly monotonic in all cases, which

entail that ∂f{E,C,T ,P }/∂ρs are strictly monotonic in all
cases.

2. f{E,C,T ,P }(ρd) are strictly monotonic for some choices
of p{α,E,
} and H{α,E,
}.

3. The relationship between f{E,C,T ,P }(ρd) seem to be
very sensitive with respect to the choice of pα , as a
small change in pα may disrupts the monotonicity for
all f{E,C,T ,P }.

To demonstrate the importance of the monotonicity of
f{E,C,T ,P }(ρ) we have included a numerical example where
we compare two design optimized for two different pα .
In Fig. 29, fD have been optimized for the flow obstacle
problem (see Section 6.2) for pα = 0.5 · 10−6 and pα =
10−6. The design optimized with a strictly monotonic fD

perform much better than the design optimized for non-
monotonic f{D}. We notice that a small change in pα

significantly influences the topology and the performance
of the design solutions.

Fig. 28 The relationship
between fE , fC , fP , fT and
ρd/ρs for various choices of
H{α,E,
} and p{α,E,
}

(a) (b)

(c) (d)
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(a)

(b)

Fig. 29 Optimized designs for the flow obstacle problem in Fig. 12 for
two different interpolation function parameters

We suggest that the correlation between the monotonicity
of the objective functions and the well-posedness of the
design problems is likely to generalize to all multiphysics
topology optimization problems.

A.4 Details on the Brinkman penalization parameter

Numerical experiments with the framework suggested that
αmax should be chosen high (e.g. αmax = 109) to model
the pressure field correctly. A low αmax, e.g. αmax = 105,
provides a more well-posed optimization problem, however
the pressure field is not modeled correctly. Modeling
the pressure field incorrectly may provide unintuitive and
physically meaningless optimized designs, as the coupling
from the fluid to the structure is transfered through the

Fig. 30 Design used to evaluate the pressure

Fig. 31 The pressure as function of x for various αmax

pressure field. To demonstrate the relationship between
the pressure field and the magnitude of αmax, we have
plotted the pressure field along the line {x, y} = {x, 0.34}
for the design shown in Fig. 30 in Fig. 31. The pressure
fields for the COMSOL composite model and the unified
model with αmax = 109 is closely correlated. However, for
small αmax, a large difference between the composite model
and the unified model is observed. As a final remark, the
minor difference between the fields is caused by different
finite element discretizations of the segregated and unified
models.

To demonstrate the occurrence of unintuitive optimized
topologies for design problems with too low αmax, we
consider two different design problems. The design in
Fig. 32a has been optimized for αmax = 105 and the design

(a)

(b)

Fig. 32 Design solutions for the flow obstacle problem in Fig. 12 for
various αmax
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in Fig. 32b has been optimized for αmax = 109. The designs
provide superior performance for the model parameters
under which the designs were optimized. However, the
design optimizd for αmax = 105 does not performing well in
a segregated FSI formulation. The too low αmax causes poor
resolvement of the pressure field which causes unintuitive
optimized designs. For comparison we have plotted the
design optimized for αmax = 109 in Fig. 32b. This design
performs well in a segregated model.

The coupling between the structure and the fluid is
carried out through the pressure field, for which reason
adequate modeling of the pressure field is crucial in FSI
problems. Previous work on topology optimization for fluid
problems has used magnitudes of αmax which do not resolve
the pressure field correctly. Non-intuitive designs may not
have been observed in these studies because the pressure
fields were not directly related to the objective functions or
the constraints of the optimization problems.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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