
RESEARCH PAPER

Global kriging surrogate modeling for general time-variant
reliability-based design optimization problems

Lara Hawchar1 & Charbel-Pierre El Soueidy1 & Franck Schoefs1

Received: 24 November 2017 /Revised: 15 January 2018 /Accepted: 6 February 2018 /Published online: 16 April 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
While design optimization under uncertainty has been widely studied in the last decades, time-variant reliability-based design
optimization (t-RBDO) is still an ongoing research field. The sequential and mono-level approaches show a high numerical
efficiency. However, this might be to the detriment of accuracy especially in case of nonlinear performance functions and non-
unique time-variant most probable failure point (MPP). A better accuracy can be obtained with the coupled approach, but this is
in general computationally prohibitive. This work proposes a new t-RBDO method that overcomes the aforementioned limita-
tions. The main idea consists in performing the time-variant reliability analysis on global kriging models that approximate the
time-dependent limit state functions. These surrogates are built in an artificial augmented reliability space and an efficient
adaptive enrichment strategy is developed that allows calibrating the models simultaneously. The kriging models are conse-
quently only refined in regions that may potentially be visited by the optimizer. It is also proposed to use the same surrogates to
find the deterministic design point with no extra computational cost. Using this point to launch the t-RBDO guarantees a fast
convergence of the optimization algorithm. The proposed method is demonstrated on problems involving nonlinear limit state
functions and non-stationary stochastic processes.

Keywords Reliability-baseddesignoptimization .Time-variant reliability .Krigingsurrogatemodel .Active-learning .Stochastic
process

1 Introduction

The goal of engineering design is to conceive structures that
meet the requirements for performance and safety with the
minimum lifecycle cost. The design process is challenging
because of inherent uncertainties in the material properties,
geometry and loadings. In the last three decades, design opti-
mization under uncertainty has been widely studied and vari-
ous methods for reliability-based design optimization

(RBDO) were developed (Aoues & Chateauneuf, 2010).
The RBDO verifies the reliability of structures under static
loads and thus does not consider the aging process.
However, civil engineering structures have often fixed design
capacities and long service lives. They may be subjected to
environmental dynamic loads (e.g. winds, waves, earthquake,
traffic loads) and may lose strength over time due to material
degradation (e.g. corrosion, fatigue, creep, wear). Therefore,
and in spite of the conceptual and numerical complexity in-
troduced by the time-variability, it is necessary to perform a
time-variant reliability-based design optimization (t-RBDO)
in order to ensure the safety level throughout the service life
of the structure (Singh et al., 2010). The general problem of t-
RBDO can be formulated as follows:

Minimize C d;θxdð Þ
Subject to

Prob Gi d;Xd;Xc;Y tð Þ; tð Þ < 0f g≤p*i ; j ¼ 1;…; npc
H j d;θxdð Þ≤0 ; j ¼ 1;…; ndc

� ð1Þ

and the optimal design is denoted by . In

the above equation, C is the cost function (also called
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objective function) to be minimized with respect to the
design parameters that might be either deterministic d, or sta-
tistical moments θXd (i.e. mean value μXd

or standard devia-
tion σXd ) of the design random variables Xd. Xc is the vector
of classical random variables whose parameters are
predefined. Y(t) is the vector of stochastic processes and
t ∈ [0, T] is the parameter time that varies between zero and
the prescribed service life T of the structure. The optimal de-
sign should verify the npc probabilistic constraints and the ndc
deterministic constraints. Gi (i = 1, …, npc) represents the ith

time-dependent performance function where p*i is the maxi-
mum allowable probability of failure. Hj (j = 1,…, ndc) is the
jth deterministic soft constraint that usually allows to bound
the admissible design space and is inexpensive to evaluate.

So far, few methods have been developed in the literature
for t-RBDO (Kuschel & Rackwitz, 2000; Jensen et al., 2012;
Wang &Wang, 2012; Hu&Du, 2016). The progress has been
hampered by the inclusion of time-variant loads and degrada-
tion phenomena. In particular, the problem of design optimi-
zation under non-stationary loadings is still not appropriately
addressed. For instance, the sequential optimization and reli-
ability analysis (SORA) method (Du & Chen, 2004) is ex-
panded in (Hu & Du, 2016) to consider stationary stochastic
processes by introducing the new concept of equivalent most
probable point (MPP). In (Aoues et al., 2013), a sequential
optimization and system reliability analysis method, also in-
spired from SORA is proposed. It was extended to t-RBDO
problems (Aoues, 2008) by combining it with the PHI2 meth-
od (Andrieu-Renaud et al., 2004) given that PHI2 relies on a
parallel system reliability analysis. The sequential approach
was also extended to non-probabilistic RBDO in (Meng
et al., 2016). In (Kuschel & Rackwitz, 2000), a mono-level
t-RBDO method that uses the out-crossing approach for the
time-variant reliability analysis is developed for only non-
intermitted stationary stochastic processes. Another method
is proposed in (Jensen et al., 2012) for high dimensional prob-
lems, based on a nonlinear interior point algorithm and a line
search strategy. In (Rathod et al., 2012) the probabilistic be-
havior of degradation phenomena is modeled and incorporat-
ed into RBDO. An optimal preventive maintenance method-
ology is proposed in (Li et al., 2012) to optimize the lifecycle
cost while considering degradation phenomena. These
methods are developed to be numerically efficient, but some-
times to the detriment of accuracy. For instance, sequential
and mono-level approaches may not be provably convergent
and may have some accuracy issues, yielding spurious opti-
mal designs (Agarwal, 2004). More reliable results can be
obtained by adopting a straightforward double-loop (i.e.
coupled) optimization procedure that consists in embedding
the time-variant reliability analysis in an optimization algo-
rithm. The coupled t-RBDO usually incurs a prohibitive com-
putational cost. This is mainly due to the iterative nature of the
optimization procedure that requires performing repetitive
time-variant reliability analyses of complex structures,

knowing that a single analysis can be itself computationally
expensive.

Developing efficient and accurate time-variant reliability
approaches is still a very active research field. In the liter-
ature, some methods (Andrieu-Renaud et al., 2004; Hu &
Du, 2013) are proposed based on the out-crossing ap-
proach, first introduced by Rice (Rice, 1944). Even though
computationally efficient, these methods may yield errone-
ous results in case of nonlinear Limit State Functions
(LSF). To overcome this issue, a time-variant reliability
analysis method based on stochastic process discretization
(Jiang et al., 2014) was proposed that avoids the calculation
of the out-crossing rates. As well, a response surface meth-
od was developed in (Zhang et al., 2017) with an iterative
procedure for generating the sample points using the
Bucher strategy and a gradient projection technique.
Another class of methods focuses on the extreme response
search and define the cumulative probability of failure as
the probability that the extreme value exceeds a given
threshold (Wang & Wang, 2013; Hu & Du, 2015; Wang
& Chen, 2017). In this context, a nested extreme response
surface (NERS) method is proposed in (Wang & Wang,
2013). It uses, first, an efficient global optimization
(EGO) technique (Jones et al., 1998) to extract samples
of the extreme response. Then, it uses the kriging technique
to build a nested time prediction model that allows to pre-
dict the time at which the extreme response occurs. Thus,
any time-independent reliability method (MCS, FORM, etc)
can be performed considering only the extreme response.
This method was also extended to t-RBDO by embedding
it in a double-loop procedure (Wang & Wang, 2012).
However, it is noted that for time-dependent problems in-
volving stochastic processes, the structural response often
presents several peaks over the time dimension. This dra-
matically increases the computational demand on the global
optimization that may not converge and get stuck at local
extrema. In addition, the discretization of the stochastic
processes using techniques such as Expansion Optimal
Linear Estimation (EOLE) (Li & Der Kiureghian, 1993),
Orthogonal Series Expansion (OSE) (Sudret & Der
Kiureghian, 2000) and Karhunen-Loève (KL) expansion
(Huang et al., 2001) increases the dimension of the surro-
gate modeling problem (i.e. the total number of input ran-
dom variables). This makes it difficult to use kriging that is
known to be numerically impractical in case of high dimen-
sional problems. To overcome these issues, a SIngle-Loop
Kriging-based (SILK) approach is developed in (Hu &
Mahadevan, 2016a; Hu & Mahadevan, 2016b). This meth-
od considers the time parameter as an input random vari-
able uniformly distributed over [0,T]. Therefore at a given
sampled instant, a stochastic process can be represented by
a single random variable. SILK is based on the idea that
the reliability assessment does not necessarily require an
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accurate approximation of the extreme response value, but
rather a classification of the response trajectories between
safe or failing according to the sign of the time-dependent
response.

In this work, we propose a kriging-based t-RBDO method
in a coupled framework. The aim is to develop an accurate and
affordable numerical tool that can handle general time-variant
problems, even when non-stationary stochastic processes are
involved. First, the computational efficiency of the coupled
approach is considerably improved by replacing the time-
dependent performance functions with global kriging surro-
gate models that are built and refined in an artificial augment-
ed reliability space (Taflanidis & Beck, 2009). This allows to
cover all the design space while also accounting for the un-
certainty of the input variables. These models can then be
repeatedly used throughout the optimization algorithm for a
fast assessment of the time-variant reliability regardless of the
position of the design point. Second, for the construction of
these kriging surrogates, a classification technique inspired
from SILK is proposed. It is worth noting here that SILK
was originally developed for component reliability analysis,
whereas in the context of t-RBDO we are likely to have mul-
tiple time-dependent probabilistic constraints that should be
satisfied together. This can be viewed as a series system reli-
ability problem. Therefore and in contrast to most methods in
the literature where the surrogate models are refined indepen-
dently and sequentially, we propose an enrichment scheme
that allows the refinement of the kriging surrogates of the
seve ra l t ime-dependen t pe r fo rmance func t ions
simultaneously. Accordingly, the kriging model of a probabi-
listic constraint does not need to be refined in the regions
where at least one other constraint is surely violated. The
computational cost related to the construction of the global
surrogate models is therefore reduced.

Furthermore, once the surrogate models are defined, they
are used throughout a gradient-based optimization algorithm
(in particular, Polak-He (Polak, 1997)) along with the score
function (Wu, 1994) for a fast stochastic reliability analysis. In
this work, we also propose to use these same surrogate models
to firstly find the time-dependent Deterministic Design Point
(DDP) previous to the optimization procedure. Due to the
global feature of the surrogates, the deterministic optimization
problem can be performed without any additional computa-
tional cost. Using the DDP as initial design point for the
Polak-He algorithm guarantees a fast convergence of the op-
timization and thus further contributes to reduce the overall
computational effort of the t-RBDO.

The herein proposed t-RBDO method will be referred to as
TROSK (Time-variant Reliability-based design Optimization
using Simultaneously refined Kriging models) in the sequel.
This paper is organized as follows: In Section 2, the method
for building the global kriging surrogate models simultaneous-
ly in the augmented reliability space is presented. Then, the

search for the deterministic design point for launching the
coupled t-RBDO is detailed in Section 3. In Section 4, two case
studies are selected to compare TROSK with some recent t-
RBDO approaches and to demonstrate its effectiveness for
problems involving non-stationary stochastic processes.
Finally, a concluding summary is given in Section 5.

2 Kriging surrogate modeling for stochastic
time-dependent performance functions

2.1 Augmented reliability space

In RBDO problems, it is common to use the structural
weight as the objective function to be optimized with
respect to various geometry parameters. These design pa-
rameters are often considered as deterministic variables or
mean values of the distribution functions of random var-
iables, knowing the standard deviation or the coefficient
of variation. In the latter case, the probability density
functions (PDF) of the design random variables vary over
the design space, as shown in Fig. 1. Therefore, approx-
imating each time-dependent performance function with a
different surrogate model after each update of the values
of the design variables would be quite ponderous. To cir-
cumvent this issue, a unique surrogate model can be built
in an augmented reliability space (Taflanidis & Beck,
2009). This consists in defining an augmented PDF that
allows to account simultaneously for instrumental (related
to the value of the design variable) and aleatory (related to
the aleatory character of the random variable) uncer-
tainties of the design random variables. Examples of aug-
mented PDF for two types of probability distributions
(normal and lognormal) are depicted in Fig. 1 by thick
red lines. These functions are obtained by artificially con-
sidering that the design parameters (θ) are uncertain with
a uniform distribution π(θ) over the admissible design
space Dθ. Thus, for each design random variable follow-
ing a PDF fX(x), corresponds an (artificial) augmented
PDF hX(x), expressed as follows:

hX xð Þ ¼ ∫Dθ f X xjθð Þπ θð Þdθ ð2Þ

In this work, we propose to perform the time-variant reli-
ability analysis on global kriging surrogate models that are
built and refined in the augmented space. In order for these
models to be accurate for the evaluation of the probabilistic
constraints regardless the position of the design point, the
input sampling should uniformly span a sufficiently large con-
fidence region of the augmented PDF. To this end, a lower and
upper quantiles (resp. q−X i

and qþX i
) are defined to bound the
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confidence interval of each design random variable Xi, ensur-
ing a minimum reliability level β0, i. q−X i

and qþX i
are deter-

mined as follows (Dubourg et al., 2011):

q−X i
¼ min

θ∈Dθ F−1
X i

Φ −β0;i

� �jθ� �
qþX i

¼ max
θ∈Dθ F−1

X i
Φ þβ0;i

� �jθ� �
8><
>: ð3Þ

where F−1
X i
is the quantile function of themargin ofXi, andΦ is

the cumulative distribution function of the standard normal
distribution. In practice, the choice of β0, i depends on the
order of magnitude of the target probability of failure

(β0;i≥Φ−1 1−p*i
� �

). The lower is p*i , the higher β0, i should
be in order to cover the low probable values of Xi.

2.2 Simultaneous refinement of the global kriging
models

A major advantage of kriging is that it provides a local error
measure. This allows the use of active learning techniques to
adaptively refine the surrogate model under construction.
Many RBDO methods are proposed based on kriging. They
usually consist in approximating independently each perfor-
mance function with a kriging surrogate model. However, this
incurs unnecessary evaluations of the performance functions
that are, in general, described with complex and heavy
models. Once the surrogate model of a performance function
is built and refined, it can be used to determine the failure zone
associated to this function. Subsequently, it would be particu-
larly inefficient to refine the surrogate model of another func-
tion over this zone. This requires the enrichment of the asso-
ciated Experimental Design (ED) in regions we know will
never be visited by the optimizer.

To circumvent this issue, we develop in this paper a strat-
egy to build and refine the surrogate models simultaneously.
First, an initial reduced experimental design ED0 is used to
build kriging models of the performance functions. At this
step, the experimental design of the ith performance function

EDi ≡ ED0, i = 1, …, npc. Then at each iteration of the refine-
ment process, the proposed algorithm determines which LSF
should be enriched next and detects the best next point to be
added to the corresponding ED. This algorithm is explained in
what follows.

2.2.1 Construction of the initial kriging surrogate models

For the sake of clarity, let us introduce the vector X = {d,Xd,
Xc} that groups the three types of variables so as the perfor-
mance functions can be expressed as Gi(X,Y(t), t), i = 1, …,
npc. First, the time interval of study [0, T] is discretized into Nt

equidistant time nodes. Then, Nmcs samples of X and Nmcs

trajectories ofY(t) are generated over the predefined augment-
ed space. This serves as a validation set for the refinement of
the global kriging models under construction. This step re-
quires the discretization of the input stochastic processes. In
this work, we adopt the KL expansion (Huang et al., 2001) as
being both efficient and easy to implement and because it
allows to discretize general stochastic processes (i.e. station-
ary and non-stationary, Gaussian and non-Gaussian) (Phoon
et al., 2005; Hawchar et al., 2017). However, other
discretization techniques might also be used (e.g. OSE,
EOLE). Let Y(t) be a stochastic process defined by its mean
function μY(t), standard deviation σY(t) and autocorrelation
function ρY(ti, tj). The KL expansion consists in approximat-
ing Y(t) as follows:

Y tð Þ ¼ μY tð Þ þ ∑
M

q¼1

ffiffiffiffiffi
λq

p
ξq f q tð Þ ð4Þ

whereM is the truncation order and {ξq, q = 1,…M} is a set of
uncorrelated zero-mean random variables of the same distri-
bution function as Y(t). λq and fq(t) are respectively the eigen-
values and eigenfunctions of the autocovariance function de-
fined as Ci, j(ti, tj) = σY(ti)σY(tj)ρY(ti, tj) with ti, tj ∈ [0, T]. This
discretization allows to represent a stochastic process with a
vector ξ of M independent random variables.

Fig. 1 Example of augmented
PDF of a lognormal and b normal
design random variables
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For the construction of the initial experimental design, N0

samples (N0 ≪Nmcs) of X, ξ and t are generated using a space
filling technique such as the Latin Hypercube Sampling (LHS)
over the augmented reliability space. By replacing ξ and t in
(4), we obtain N0 values of Y(t). The training points of ED0 are
denoted by P(m, n) = [X(m),Y(m)(tn), tn] withm = 1,…, N0 and n
∊ [1,Nt]. For each point, the exact responses Gi(P

(m, n)), i = 1,
…, npc are computed by evaluating the original models describ-
ing the time-dependent performance functions. Then, an initial
kriging metamodel is built for each function using the corre-
sponding ED defined by ED0 = {P,Gi}. In this case, the dimen-
sion of the surrogate modeling problem is equal to NX +NY + 1
where NX and NYare respectively the sizes ofX andY, and the
additional dimension corresponds to the time variable. Note
here that the discretization of the input stochastic processes
does not affect the dimensionality of the metamodeling prob-
lem. According to the classical kriging method, the evaluation
of the surrogate model at a new trial point (X∗,Y∗(τ), τ), τ ∊ [0,
T] yields a normal random variable whose mean value μĜ

X*;Y* τð Þ; τ� �
represents the surrogate model approximation,

and whose variance σ2
Ĝ

X*;Y* τð Þ; τ� �
measures the local un-

certainty of the prediction (Jones et al., 1998; Echard et al.,
2011). The kriging method is briefly reviewed in the appendix.

When the initial surrogate models are defined, they can
be used to predict the Nmcs trajectories of the npc time-
dependent performance functions. In what follows, we de-
fine the global safe zone Sg regarding the t-RBDO problem
as the intersection of the safe zones Si; i ¼ 1;…; npc þ ndc

o f a l l t h e cons t r a i n t f unc t i ons Sg ¼ ⋂npcþndc
i¼1 Si

� �
.

Consequently, the global failure zone F g is defined as the
union of the failure zones F i; i ¼ 1;…; npc þ ndc

F g ¼ ⋃npcþndc
i¼1 F i

� �
. Note that Sg⋂F g ¼ ∅ and Sg⋃F g

returns the predefined augmented space. The global LSF is
then delimited by the interface between these two regions.
In the proposed TROSK approach, we only focus on the
estimation of this interface and thus no particular effort is
made to accurately estimate the values of the performance
functions over Sg or F g. Therefore, we aim to classify the
samples [X(m), ξ(m)], m = 1, …, Nmcs of input random vari-
ables into three categories: surely belongs to Sg , surely be-
longs to F g and unsure otherwise. For this purpose, the
learning function U, first introduced by (Echard et al.,
2011), is here used. It is defined as follows:

Ui X mð Þ;Y mð Þ tnð Þ; tn
� �

¼ μĜ̂i X
mð Þ;Y mð Þ tnð Þ; tn

� �
σĜ̂i X

mð Þ;Y mð Þ tnð Þ; tn
� � ; i ¼ 1;…; npc ð5Þ

In practice, if |U| ≥ 2, then the estimator μĜ is supposed to
be accurate (this corresponds to an error of 0.023). For each
input sample point of the validation set [X(m), ξ(m)],m = 1,…,

Nmcs, the learning function is evaluated for the npc kriging
surrogates and at the Nt time nodes. These points can then
be classified as follows:

– surely belongs to Sg: if ∀n∈ 1;Nt½ �;∀i∈ 1; npc
� 	

: μĜi

X mð Þ;Y mð Þ tnð Þ; tn
� �

≥0 and U(X(m), Y(m)(tn), tn) ≥ 2.
Their number is denoted by NS.

– surely belongs to F g: if ∃n∈ 1;Nt½ �;∃i∈ 1; npc
� 	

: μĜi

X mð Þ;Y mð Þ tnð Þ; tn
� �

< 0 and U(X(m),Y(m)(tn), tn) ≤ − 2.
Their number is denoted by N F.

– unsure: otherwise. Their number is denoted by N* ¼
Nmcs− NS þ N Fð Þ and from which N*

F points falls po-

tentially in the failure zone (0≤N*
F ≤N* ). For such a

p o i n t ,

∃n∈ 1;Nt½ �;∃i∈ 1; npc
� 	

: μĜi
X mð Þ;Y mð Þ tnð Þ; tn
� �

< 0.

The cumulative probability of failure over [0, T] can then
be approximated as follows:

P̂̂ f ;c 0; Tð Þ ¼ N F þ N*
F

Nmcs
ð6Þ

and its maximum percentage error is computed by (Hu &
Mahadevan, 2016a):

εmax ¼ max
n*F∈ 0;N*

� 	 N*
F−n*F



 


N F þ N*

F
� 100%

� �
ð7Þ

All surrogate models are considered well trained
when εmax becomes lower than a preset target error rate
(e.g εmaxtgt ¼ 0:1% ). Otherwise, the kriging surrogates

need to be refined.

2.2.2 Refinement of the kriging surrogate models

The herein proposed refinement strategy consists in adding

one point per iteration. The new training point P mnew;nnewð Þ ¼
X mnewð Þ;Y mnewð Þ tnnewð Þ; tnnew
� 	

is selected among the « unsure »
points of the third category as the one yielding the lowest
value of the learning function, denoted by UMIN. This results
in the best improvement of the approximation. This point is
identified as follows:

mnew ¼ arg min
m∈ 1;Nmcs½ �

min
n ¼ 1;…;Nt

i ¼ 1;…; npc

U i X mð Þ;Y mð Þ tnð Þ; tn
� �


 




8><
>:

9>=
>; ð8Þ

and

nnew ¼ arg min
n∈ 1;Nt½ �

min
i¼1;…;npc

Ui X mnewð Þ;Y mnewð Þ tnð Þ; tn
� �


 


� �

ð9Þ
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P mnew;nnewð Þ is then used to enrich the ED of the probabilistic
constraint corresponding to this minimum value UMIN. The
index i of the ED is identified as follows:

i ¼ arg min
i∈ 1;npc½ �

Ui X mnewð Þ;Y mnewð Þ tnnewð Þ; tnnew
� �


 


 ð10Þ

Furthermore, and in order to avoid the clustering issue, the
correlation between the new training point and the current EDi

is evaluated. This allows to discard points that are highly
correlated with EDi, since adding such points only increase
the computational demand, without necessarily improving the
representativeness of the sample (Hu & Mahadevan, 2016a).

Therefore, P mnew;nnewð Þ should also verify the following condi-
tion:

max
Pi∈EDi

ρ P mnew;nnewð Þ;Pi

� �n o
< ρmax ð11Þ

where Pi denotes the set of points of the EDi at the current
iteration. ρmax is the maximum value of correlation above

which P mnew;nnewð Þ is considered highly correlated with EDi

(e.g. ρmax = 0.95).

Once EDi is enriched with P mnew;nnewð Þ, the corresponding

kriging surrogate model Ĝi is updated while the others remain
unchanged. This step allows to refine the approximation of the
ith LSF and consequently Sg and F g. The global refinement
strategy converges when εmax < εmaxtgt . At convergence, the

final sizes of EDi, i = 1, …, npc are not necessarily equal.
They are automatically determined throughout this enrich-
ment algorithm.

The final kriging models provide an accurate approxima-
tion of the sign of the performance functions over the time
space and the augmented reliability space. They can thus be
used for the assessment of the reliability throughout a time-
variant reliability-based design optimization. It is noted how-
ever, that the local accuracy of the kriging surrogates is sys-
tematically checked throughout the TROSK algorithm for
each new position of the design point and further refinement
can be made if needed.

3 Reliability-based design optimization

3.1 Gradient-based optimization procedure

By substituting the complex performance functions with
the kriging surrogates, it is made numerically affordable
to solve (1) using a coupled approach. In this work, the
Polak-He algorithm (Polak, 1997) is retained for the opti-
mization procedure. It was first developed to efficiently
solve deterministic optimization problems with inequality
constraints by penalizing the most violated constraint.

Providing an initial design point , each
iteration (k = 1, 2,…) consists in finding the descent di-
rection δ(k) and the correspondent step size s(k) so that

. Determining δ(k) and s(k) re-
quires the calculation of the gradients of the cost function,

is the gradient operator with respect to the design
parameters) and also of the failure probabilities,

via a stochastic sensitivity analysis. The latter
is, in general, a source of computational burden. However,
the use of the so-called score function (Dubourg et al.,
2011) allows to estimate with the same
Nmcs evaluations of the metamodel that had been before-
hand used to estimate Pf, c(0, T). This considerably re-
duces the numerical effort of the stochastic sensitivity
analysis. The rth coordinate of is approximat-
ed as follows:

where is the score function that can be analytically
obtained as follows:

In this optimization algorithm, only the safe region is investi-
gated (i.e. all the design points throughout the optimization
algorithm belong to Sg such that all constraints are met).
Hence, convergence occurs when the relative variation of
the cost function with respect to the previous iteration be-

comes lower than a given threshold (e.g. εtgtcost ¼ 10−3 ).

3.2 Selection of the initial design point

The effectiveness of the optimization method highly de-
pends on the topology of the design space and the choice
of the initial design point. Therefore, in some cases the
gradient-based optimization algorithm risks getting stuck
in local optima (minima). Hence, it would be of great
utility to use the DDP as initial design point in RBDO.
However, finding this point is in itself an optimization
problem that requires additional evaluations of the origi-
nal models. For this reason, the starting point is often
chosen arbitrary or at the centre of the design intervals
(Wang & Wang, 2012; Dubourg et al., 2011).

In this work, we propose to find the DDP using the
predefined surrogate models with no extra computational
cost. This is made possible due to the construction of the
kriging surrogate models in the augmented reliability

(12)

(13)
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space. In time-variant problems, finding the DDP ( )
consists in solving the following optimization problem:

Minimize C d; xdð Þ
Subject to

Ĝ̂i d; xd; xc; ~Y tð Þ; t
� �

≥0 ; j ¼ 1;…; npc
H j d; xdð Þ≤0 ; j ¼ 1;…; ndc

(
ð14Þ

The deterministic problem is formulated by replacing in (1)
the random variables x by deterministic values x. Assuming
that all random variables are independent, each variable is
replaced by its median x, given that the median is a value for
which Prob X ≤xð Þ ¼ Prob X ≥xð Þ ¼ 0:5. As well, a stochastic

process is replaced by a representative trajectory ~Y tð Þ around
its median value. When the LSFs are time-dependent, the
feasible zone is defined by the set of points d; xdf g for which

∀τ∈ 0; T½ �;∀i∈ 1; npc
� 	

;∀ j∈ 1; ndc½ � : Ĝi d; xd; xc; ~Y τð Þ; τ� �
≥0

and H j d; xdð Þ≥0. Equation (14) can be solved using any nu-
merical discretization method.

The optimum solution of TROSK is expected to be located
not far from , inside the feasible region Sg

� �
so that the

prescribed reliability level is attained. Given that is a point
on the contour of Sg having the lowest cost, then at the first

iteration the cost can only decreases .

Therefore, the Polak-He algorithm is slightly modified so as the
search for exclusively is conducted only in the direction of

. For the next iterations, is de-

termined by considering both gradient vectors

and .
The proposed initial design point and the privilege given to

in the first iteration lead to a fast conver-

gence of the optimization algorithm toward the reliability-
based optimal design after only few iterations. Finally, it is
worth to be noted that the determination of the DDP does
not necessarily need to be highly accurate. The aim here is
to approach the cheapest zone inside Sg in order to launch the
reliability-based optimal design search. The TROSK approach
is summarized in the flowchart of Fig. 2.

Illustration on a numerical example In this paragraph, the
influence of the choice of the initial design point as explained
previously is highlighted. However, and for the sake of clarity
of the illustration, static LSFs are considered as we focus here
on the gradient-based optimization procedure. The following
numerical example has been also studied in (Lee & Jung,
2008; Dubourg, 2011). The optimization problem is defined
as follows:

Minimize C μx1 ;μx1

� � ¼ μx1−3:7
� �2 þ μx2−4

� �2
Subject to Prob Gi Xð Þ≤0ð Þ≤Φ −2ð Þ; i ¼ i; 2

ð15Þ

where X = {X1, X2} is the vector of two normal random vari-
ables: X 1∼N μX 1

; 0:1
� �

and X 2∼N μX 2
; 0:1

� �
, with μX 1

∈

0; 3:7½ � and μX 2
∈ 0; 4½ �. The two performance functions are

defined as follows:

G1 Xð Þ ¼ −X 1sin 4X 1ð Þ−1:1X 2sin 2X 2ð Þ ð16Þ
G2 Xð Þ ¼ X 1 þ X 2−3 ð17Þ

Figure 3 depicts the real LSFs as well as their kriging ap-
proximates. An initial experimental design of size N0 = 5 is
used. It is represented by the black dots. LSF1 is highly nonlin-
ear and is denoted by purple dashed line, whereas LSF2 is linear
and is denoted by blue dashed line. The construction of the two
surrogate models in the augmented reliability space using the

Generate the validation set of size 

over the augmented reliability space 

(Section 2.1)

Generate the initial experimental design of 

size  and build the initial kriging 

surrogate models (Section 2.2.1) 

Refine the kriging models simultaneously 

(Section 2.2.2) until the prescribed 

accuracy  is reached 

Perform a deterministic design optimization 

to find (Section 3.2)

Perform a coupled optimization algorithm 

considering and the global kriging 

models to find ∗

(Section 3.1)

Fig. 2 Flowchart of the TROSK approach

Fig. 3 Comparison between the real limit state functions and their kriging
surrogates
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global refinement strategy presented in Section 2.2 requires the
enrichment of ED1 with 26 new sample points, represented by
the red diamonds. The final experimental design procures a
very accurate approximation of the global LSF and thus of
Sg , represented by the white area. Note that LSF1 is not accu-
rate over all the design space, in particular over F 2. This is a
particularity of the herein proposed strategy of simultaneous
enrichment of the EDs that avoids the refinement of the global
kriging models in regions that will never be visited by the
optimizer.

The initial design point is determined by applying a numer-
ical discretization algorithm, resulting in the convergence to-
ward as shown in Fig. 4. The contours
of the quadratic objective function are denoted by grey solid
lines that decrease up and to the right. In order to guarantee the
convergence toward the optimal point, more than one

discretization schememay be performed considering, for exam-
ple, different discretization steps or interpolation techniques.

In (Dubourg, 2017), the Polak-He algorithm was also used
to solve this RBDO problem, but it was launched with an
arbitrary initial design point . Fig. 5 shows
that in both cases, the optimization algorithm converges to-
ward the optimal design point around [2.8230,3.2491].
However starting from requires 11 iterations,
whereas considering the proposed initial design point allows
convergence after only 3 iterations. It is noted as well that for
different arbitrary starting points, the algorithm may converge
even more slowly or gets stuck in a local optimum.

4 Application examples

In this section, two case studies are used to demonstrate the
accuracy and high performance of TROSK, in particular in case
of (1) nonlinear LSF and (2) non-stationary stochastic loads.

Fig. 4 Search for the deterministic optimal design point using numerical
discretization

Fig. 5 Convergence of the
optimization algorithm
considering different initial
design points

Fig. 6 Evolution in time of the limit state functions
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The first case study involves three nonlinear LSFs and has
been already used in (Wang & Wang, 2012). It consists in a
two-dimensional benchmark problem, allowing graphical rep-
resentations of the results. The second case study consists of a
two bar frame structure (Hu &Du, 2016) subject to a stationary
Gaussian stochastic load. It is then extended to consider a non-
stationary and non gaussian stochastic process to highlight the
applicability of the herein proposed method to such a problem.

In order to demonstrate the numerical efficiency of
TROSK, we provide the total number of calls to the determin-
istic model (Nfunc) and the relative error of the failure proba-
bilities. This error is only significant for violated constraints
and is defined as follows:

ε ið Þ
% ¼

PMCS
f ;c 0; Tð Þ ið Þ−p*i




 



PMCS

f ;c 0; Tð Þ ið Þ � 100% ð18Þ

where i is the index of the violated constraint. PMCS
f ;c 0; Tð Þ is

the cumulative probability of failure computed with the

classical Monte-Carlo simulation method performed at the
optimal design point.

4.1 Case study 1: numerical example

The first case study consists in a mathematical problem that
involves two normal random variables: X 1∼N μ1; 0:6ð Þ and
X 2∼N μ2; 0:6ð Þ. The design vector is d¼ μ1;μ2f g. The study
is carried out over the time interval [0, 5] and the optimization
problem is formulated as follows:

Minimize C μ1;μ2ð Þ ¼ μ1 þ μ2

Subject to
Prob Gi X 1;X 2; tð Þ < 0f g≤p*i ; i ¼ 1; 2; 3
0≤μ j≤10 ; j ¼ 1; 2

� ð19Þ

where p*i ¼ 0:1 i ¼ 1; 2; 3ð Þ. Figure 6 depicts the three time-
dependent LSFs that are given by:

G1 X 1;X 2; tð Þ ¼ X 2
1X 2−5X 1t þ X 2 þ 1ð Þt2−20

G2 X 1;X 2; tð Þ ¼ X 1 þ X 2−0:1t−5ð Þ2
30

þ X 1−X 2 þ 0:2t−12ð Þ2
120

−1

G3 X 1;X 2; tð Þ ¼ 90

X 1 þ 0:05tð Þ2 þ 8 X 2 þ 0:1tð Þ−sin tð Þ þ 5
� � −1

8>>>>><
>>>>>:

ð20Þ

Fig. 7 Approximated time-dependent limit state functions

Fig. 8 Enriched experimental designs of the three performance functions

Fig. 9 Search for the deterministic design point

Table 1 Comparative results of NERS and TROSK

NERS TROSK

Initial Design [5.0000, 5.0000] [2.5000, 4.3555]

Optimal Design [3.6290, 4.0352] [3.7495, 4.0050]

Optimal Cost 7.6642 7.7545

PMCS
f ;c 0; 5ð Þ 1ð Þ 0.1216 0.1030

PMCS
f ;c 0; 5ð Þ 2ð Þ 0.0836 0.0998

PMCS
f ;c 0; 5ð Þ 3ð Þ 0 0

Nfunc 336 72

NIteration 4 4
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In order to perform TROSK, first the augmented PDF
of X1 and X2 are defined. The three global kriging surro-
gate models are built from an initial ED0 of size N0 = 10
and then are simultaneously refined using the algorithm
presented in Section 2.2 until the target accuracy εmaxtgt ¼ 5

% is reached. This requires adding 14, 8 and 20 data
points to ED1, ED2 and ED3, respectively. This procures,
as shown in Fig. 7, a very good approximation of the
global LSF without necessarily accurately estimating the
performance functions all over the time dimension and the
augmented space. Fig. 8 depicts the initial experimental
design (ED0) as well as the enriched EDs of each time-
dependent performance function (ED1, ED2 and ED3).
This figure shows that the data points are indeed generat-
ed around the global LSF.

T h e i n i t i a l d e s i g n p o i n t i s f o u n d t o b e
as shown in Fig. 9. The grey

solid lines represent the contours of the objective function
that decreases down and to the left. Table 1 compares the
results of TROSK to those obtained using NERS (Wang &
Wang, 2012). Fig. 10 depicts the various positions of the
design point throughout the optimization algorithm for both

methods, and Fig. 11 gives the evolution of the cumulative
probabilities of failure. These numerical and graphical re-
sults show that when applying NERS, the first LSF is vio-
lated and the allowable probability of failure is exceeded

with an error ε 1ð Þ
% ¼ 12:16%. Whereas, with TROSK, the

algorithm converges to the optimal design point
at which both LSF1 and LSF2 are

violated with errors ε 1ð Þ
% and ε 2ð Þ

% lower than 3%. Note as

well that TROSK requires 72 function evaluations compared
to 336 using NERS. This represents a gain in the computa-
tional cost of 76%.

4.2 Case study 2: two-bar frame structure

Let us consider the two-bar frame sketched in Fig. 12, already
studied in (Hu & Du, 2016). The frame is subjected to a
stochastic load F(t), and its bars have random lengths (L1
and L2), diameters (D1 and D2) and yield strengths (S1 and
S2). The distribution parameters of the input random variables
are given in Table 2.

Fig. 10 Convergence of the
optimization algorithm using
NERS and TROSK

Fig. 11 Evolution of the three
probabilities of failure throughout
the optimization algorithm
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Let X = {D1,D2, L1, L2, S1, S2} denotes the vector of
random variables. The reliability of the structure is ver-
ified over 10 years, and the t-RBDO problem is defined
as follows:

Minimize C μD1
;μD2

� � ¼ πμL1μ
2
D1

4
þ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
L1 þ μ2

L2μ
2
D2

q
4

Subject to
Prob Gi X1; F tð Þ; tð Þ < 0f g≤p*i ; i ¼ 1; 2; 3
0:07≤μD j

≤0:25 ; j ¼ 1; 2

� ð21Þ

where p*1 ¼ 0:01, p*2 ¼ 0:001. The time-dependent per-
formance functions are expressed by:

G1 X; tð Þ ¼ π
4
D2

1S1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 þ L22

q
L2

F tð Þ

G2 X; tð Þ ¼ π
4
D2

2S2−
L1
L2

F tð Þ

8>>><
>>>:

ð22Þ

In the sequel, two assumptions are made regarding the
behavior of F(t).

4.2.1 Case of a stationary gaussian stochastic load

We first consider the case where F(t) is modeled with a sta-
tionary Gaussian stochastic process with an exponential
square autocorrelation function given by (23). Its mean value

and standard deviation are, respectively, μF = 2.2 × 106 N and
σF = 2 × 105 N.

ρF ti; t j
� � ¼ exp −

t j − ti
0:1

� �2
� 


ð23Þ

In order to perform TROSK, F(t) is discretized over 10
intervals of one year using the KL expansion technique. An
initial experimental design (ED0) of size N0 = 50 is used to
build the initial kriging metamodels, then 167 and 180 sam-

ples are added to refine Ĝ1 and Ĝ2, respectively. ED0 as well
as the final experimental designs (ED1 and ED2) are depicted
in Fig. 13 where the shaded green area represents the global
failure zone F g.

T h e i n i t i a l d e s i g n p o i n t i s f o u n d t o b e
as shown in Fig. 14. The grey

solid lines represent the quadratic contours of the objective
function that decreases down and to the left. The various
positions of the design point throughout the optimization
algorithm are also presented in this figure. The results of
TROSK and t-SORA are summarized in Table 3 where
the exact optimal design is also given. These results show
that TROSK procures a very accurate solution of the t-

Table 2 Random parameters of the two-bar frame structure

Parameter Distribution Mean Standard deviation

D1 Normal μD1
1 × 10−3 m

D2 Normal μD1
1 × 10−3 m

L1 Normal 0.4 m 1 × 10−3 m

L2 Normal 0.3 m 1 × 10−3 m

S1 Lognormal 1.7 × 108 Pa 1.7 × 107 Pa

S2 Lognormal 1.7 × 108 Pa 1.7 × 107 Pa

Fig. 12 A two-bar frame under a stochastic load

Fig. 13 Enriched experimental designs of the two performance functions
(case of a stationary Gaussian stochastic load)

Fig. 14 Convergence of the optimization algorithm using TROSK (case
of a stationary Gaussian stochastic load)
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RBDO problem involving a stochastic process. Its efficien-
cy is proven by the low number of function calls required
by the surrogate modeling technique (38% less than t-
SORA), and as well, by the low number of iterations
required by the optimization algorithm.

4.2.2 Case of a non-stationary Gumbel stochastic load

We now model F(t) as a non-stationary Gumbel (i.e. type I
extreme value distribution) stochastic process with the follow-
ing autocorrelation function:

ρF ti; t j
� � ¼ exp 0:2 t j−ti



 

2� �
ð24Þ

The time-dependent mean value and standard deviation are
expressed as follows:

μF tð Þ ¼ 2:2� 106exp t=20ð Þ ð25Þ

σF tð Þ ¼ 2� 105exp t=20ð Þ ð26Þ

In this case, and due to the non-stationary behavior of the
stochastic process, the feasible region of this problem shrinks.
As the optimal design is supposed to be higher than the pre-
vious case, the admissible design space is enlarged and thus
0:10≤μD j

≤0:40; j ¼ 1; 2. The same target reliability levels

are considered. The proposed method is performed with
N0 = 50, then 117 and 113 samples are adaptively added to
improve the accuracy of LSF1 and LSF2, respectively. These
points are depicted in Fig. 15. The gradient green color
representing the failure zone shows how the two LSFs evolve
in time.

T h e i n i t i a l d e s i g n p o i n t i s f o u n d t o b e
and is represented with a red

dot in Fig. 16. The convergence of the design point to-
wards its optimal position is also depicted. The numerical
results of TROSK are given in Table 4, as well as the real
optimal solution. It is noted here that t-SORA could not

Fig. 15 Enriched experimental designs of the two performance functions
(case of a non-stationary Gumbel stochastic load)

Table 4 Convergence of TROSK (case of a non-stationary Gumbel
stochastic load)

NIteration

Design Point Cost PMCS
f ;c 0; 10ð Þ

1ð Þ
PMCS

f ;c 0; 10ð Þ
2ð Þ Nfunc

TROSK

0 [0.2117;
0.1894]

0.0282 0.5200 0.5191 –

1 [0.2639;
0.2470]

0.0458 0.0019 0.0003 –

2 [0.2622;
0.2403]

0.0443 0.0023 0.0010 –

3 [0.2517;
0.2401]

0.0425 0.0098 0.0010 330

Analytical optimum

[0.2515;
0.2405]

0.0426 0.0100 0.0010 –

Fig. 16 Convergence of the optimization algorithm using TROSK (case
of a non-stationary Gumbel stochastic load)

Table 3 Convergence of TROSK and comparison with t-SORA (case
of a stationary Gaussian stochastic load)

NIteration

Design
Point

Cost PMCS
f ;c 0; 10ð Þ

1ð Þ
PMCS

f ;c 0; 10ð Þ
2ð Þ Nfunc

TROSK
0 [0.1770;

0.1580]
0.0196 0.5306 0.5439 –

1 [0.2083;
0.1926]

0.0282 0.0024 0.0004 –

2 [0.2065;
0.1894]

0.0275 0.0040 0.0010 –

3 [0.2026;
0.1897]

0.0270 0.0103 0.0009 447

t-SORA
[0.2102;

0.1964]
0.0290 0.0094 0.0009 715

Analytical optimum
[0.2027;

0.1894]
0.0270 0.0100 0.0010 –

966 L. Hawchar



be applied as it is not applicable to problems involving
non-stationary stochastic processes. It is observed that the
results obtained with TROSK after only 3 iterations are

very close to the analytical solution (ε 1ð Þ
% ¼ 2% and ε 2ð Þ

% is

nul), with a total number of 330 function calls.

5 Conclusion

This paper presents an efficient method for time-variant
reliability based-design optimization, referred to as
TROSK. The efficiency of this method is mainly due to:
(1) performing a classification-based adaptive kriging
technique in an augmented reliability space; (2) refining
the surrogate models of the several time-dependent limit
state functions simultaneously; and (3) finding the deter-
ministic design point with no extra computational cost
and using it as initial design point for the t-RBDO algo-
rithm. The effectiveness of the proposed method is dem-
onstrated on benchmark problems of which one involves
stationary and non-stationary stochastic loads. The obtain-
ed results show that TROSK outperforms some recent
methods from the literature.

However, it is noted that TROSK being based on
kriging, it inherits the drawbacks of this technique.
Indeed and for high dimensional problems (10–100 in-
puts), the method is very likely to require large experi-
mental designs. In such case, the covariance matrix of the
kriging model dramatically increases in size and its inver-
sion becomes computationally expensive. The improve-
ment of this aspect as well as the application of the pro-
posed method to a complex civil engineering problem is
currently under investigation.

Appendix: Kriging technique

The kriging technique consists in approximating a function
G(x) that depends on a vector of input variables x = {x1, x2,
…, xm} as a sum of a regression model and a Gaussian sto-
chastic process. This can be expressed as follows:

Ĝ̂ xð Þ ¼ f xð Þtβþ σ2
ZZ xð Þ ð27Þ

where f(x) = {f1(x), f2(x),…, fp(x)}
t is a vector of regression

functions, β is a vector of unknown coefficients and f(x)tβ is
the mean value of the Gaussian process, also known as the
trend. σ2

Z is the Gaussian process variance and Z(x) is a sta-
tionary Gaussian process with zero mean and unit variance.
Z(x) is completely described by its user-defined

autocorrelation function R(x(i), x(j), θ) where θ = {θ1, θ2,
…, θd} represents the vector of unknown correlation parame-
ters to be determined.

Given an experimental design {x(i),G(x(i))}, i = 1,…, n, β
and σ2

Z can be approximated as follows (Jones et al., 1998):

β̂̂ θð Þ ¼ FtR−1F
� �−1

FtR−1G ð28Þ

and

σ̂̂2Z θð Þ ¼ 1

n
G−Fβð ÞtR−1 G−Fβð Þ ð29Þ

where F is a matrix of size n × p and of general term Fij =
fj(x

(i)). And G = {G(x(1)),G(x(2)),…,G(x(n))}t is the response
vector.

Note that β and σ2
Z both depend on the correlation param-

eters θi. The optimal values of θ can be determined by maxi-
mum likelihood estimation (Marrel et al., 2008):

θopt ¼ argmin
θ

σ̂̂2 detRð Þ1=n

� �
ð30Þ

Once the kriging parameters are determined, they can be
used to predict the model response at a new trial point x∗ as a
Gaussian random variable of mean μĜ x*ð Þ and variance σ2

Ĝ

x*ð Þ (Jones et al., 1998) defined as follows:

μĜ̂ x*
� � ¼ f x*

� �t
βþ r x*

� �t
R−1 G−Fβð Þ ð31Þ

and

σ2Ĝ̂ x*
� � ¼ σ2

Z 1− f x*
� �t

r x*
� �th i 0 Ft

F R

� �
f x*
� �
r x*
� �� �� 


ð32Þ

where r(x∗) is the correlation vector between x∗ and the inputs
of the experimental design: ri(x

∗) = R(x(i), x∗,θopt).
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