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Abstract
Distributed compliant mechanisms are components that use elastic strain to obtain a desired kinematic behavior. Compliant
mechanisms obtained via topology optimization using the standard approach of minimizing/maximizing the output
displacement with a spring at the output port, representing the stiffness of the external medium, usually contain one-node
connected hinges. Those hinges are undesired since an ideal compliant mechanism should be a continuous part. This work
compares the use of two strategies for stress constrained problems: local and global stress constraints, and analyses their
influence in eliminating the one-node connected hinges. Also, the influence of spatial filtering in eliminating the hinges is
studied. An Augmented Lagrangian formulation is used to couple the objective function and constraints, and the resulting
optimization problem is solved by using an algorithm based on the classical optimality criteria approach. Two compliant
mechanisms problems are studied by varying the stress limit and filtering radius. It is observed that a proper combination of
filtering radius and stress limit can eliminate one-node connected hinges.

Keywords Compliant mechanisms · Topology optimization · Hinges · Stress constraint · Filter

1 Introduction

Compliant mechanisms are mechanical components formed
by one or more parts, using elastic strain to obtain a
desired kinematic behaviour (Lau et al. 2001). According
to Midha et al. (1994), there are two main categories of
compliant mechanisms: partially compliant mechanisms,
consisting of rigid links and flexible parts, and fully
compliant mechanisms, composed by flexible members
or joints. Fully compliant mechanisms can be further
classified in two categories: lumped and distributed
compliant mechanisms. In lumped compliant mechanisms,
the flexibility is provided in localized areas, and in
distributed compliant mechanisms, the compliance is
distributed through most of the mechanism.

An effective way to design compliant mechanisms
is through a topology optimization problem. Topology
optimization addresses the optimal distribution of one
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or more materials within a prescribed design domain in
order to obtain the best structural performance respecting
the design requirements (Sigmund and Maute 2013). The
design variables of a topology optimization problem, known
as densities or relative densities (in order to not be confused
with the usual material density), are associated to the
effective material properties of each point of the design
domain.

A common approach to address the optimal design of
compliant mechanisms is proposed by Sigmund (1997),
where a spring is used to represent the stiffness of the
external medium. The objective is to minimize/maximize
the output displacement exerted on this spring, with some
displacement constraints to enforce the kinematic behavior.
Despite its apparent simplicity, this approach is broadly
used since it is very general and can be easily extended to
multi-physics and non-linear problems (Liu et al. 2017).

Nevertheless, this formulation, as well as other similar
approaches, have the undesirable tendency to introduce one-
node connected hinges into the final topology, as depicted
in Fig. 1. As discussed in Cardoso and Fonseca (2004)
and Yin and Ananthasuresh (2003), the appearance of one-
node connected hinges can be seen as a model problem,
since the maximization of the output displacement conflicts
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Fig. 1 One-node hinge in a symmetric analysis of an inverter
mechanism

with the storage of strain energy expected in structures with
distributed compliance. Thus, the optimizer uses the artifice
of (almost) rigid links connected by one-node connections,
taking advantage of the lack of rotational stiffness in the
traditional elasticity equations. Also, Wang et al. (2011)
show that this effect is so prominent that even the Heaviside
filter alone is not sufficient to hinder its appearance.

Thus, the use of simple filtering cannot fix this shortcom-
ing in the traditional approach to design of compliant mech-
anisms using topology optimization. In order to circumvent
this problem, many authors proposed alternate formulations,
use of alternate material parametrizations, addition of phys-
ical constraints, addition of geometric constraints and the
consideration of uncertainties, to name a few.

One of the first proposals for circumventing one-
node connected hinges as well as checkerboards was
proposed by Poulsen (2002). In this geometric approach,
a global constraint associated to the pattern of black
and white elements around the one-node connected hinge
is imposed. This simple and elegant solution avoids the
appearance of hinges, but those are transformed in very thin
reinforcements as the mesh is refined, since this approach is
not mesh-independent. Wang and Zhang (2012) also address
the design of hinge-free compliant mechanisms using an
optimization problem based on pairs of curves and solved
by a genetic algorithm. Saxena and Mankame (2007) use
hexagonal cells for domain discretization, ensuring edge-
connectivity between subregions throughout the domain and
thus circumventing the hinges. The use of multiresolution in
the framework of isogeometric analysis applied to topology
optimization is proposed by Lieu and Lee (2017), where a
single example of an inverter mechanism with no hinges is
presented.

Many works also use the level set method applied to
design hinge-free mechanisms through shape and topology
optimization, like Luo et al. (2008) and Zhu et al. (2013).
Xia and Shi (2016) propose a multi-objective optimization
problem, where the compliance of two additional load cases
are considered alongside the displacement at the output port.
A similar approach is proposed by Li and Zhu (2016), also

using the level set method and by Zhu et al. (2014), using
the traditional SIMP parametrization.

In the realm of alternate formulations, Cardoso and
Fonseca (2004) propose the maximization of a measure of
the strain energy stored in solid elements. The kinematic
behavior of the compliant mechanisms is prescribed by
a set of displacement constraints for both the input and
output ports. The obtained topologies are free from hinges,
but this formulation is not as direct as the traditional
formulation. Mechanisms with distributed compliance were
also achieved by Yin and Ananthasuresh (2003), where two
formulations are discussed: one based in the distortional
energy of a given patch around each element and one based
in the relative rotation between diagonals around each node.
Lee and Gea (2014), propose the use of a strain based
topology optimization method, reducing localized high
strain in compliant joints, thus hindering the appearance of
hinges.

Sigmund (2009) and Lazarov et al. (2011) propose the
use of both erode and dilate operators to simulate the
uncertainties associated to the fabrication of compliant
mechanisms, as a worst case design problem. The results
have no hinges and no gray regions. This formulation
is further enhanced by Lazarov et al. (2012) where the
geometrical uncertainties are modeled using a stochastic
field. The results are also free of hinges. Kogiso et al. (2008)
consider uncertainties in applied loads to design compliant
mechanisms, by means of mutual compliances. For the
data case presented, it seems that the formulation does not
eliminates hinges. Chen et al. (2010) use level set with
consideration of random field uncertainty in loading and
material properties. This is one of the few works addressing
3D results as well. The results presented in this reference
are hinge-free and robust. Maute and Frangopol (2003) also
consider uncertainties in both material parameters, loading
and boundary conditions. The results show the importance
of considering uncertainties in topology optimization,
although the topologies contain hinges.

The use of filtering to avoid the appearance of hinges
is also discussed in the literature. As already mentioned,
Wang et al. (2011) show that the use of the traditional
Heaviside filter is not sufficient to prevent hinges. Enhanced
approaches are also presented in the literature, as for
example, Zhou et al. (2015) propose the use of geometric
constraints in a filtering-threshold topology optimization
(three-field scheme). The results are hinge-free. Li and
Khandelwal (2015b) discuss the use and performance
of continuation methods and volume preserving filtering
and the results, besides eliminating one-node connetions,
present very thin regions. Li and Khandelwal (2015a)
also propose the consideration of microstructural effects,
indicating an important effect on optimal designs. Some
of the results are hinge-free. Carstensen and Guest (2013)
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discuss the use of two-phase projection filters and the results
contains thin connections instead of one-node connected
elements.

A natural approach to the design of hinge-free distributed
compliant mechanisms is the consideration of stress
constraints. This physical set of constraints should, ideally,
avoid the appearance of one-node connections. Lopes and
Novotny (2016) study the use of the Topological Derivative
to enforce stress constraints in the design of compliant
mechanisms. The stress constraint is expressed as a set
of von Mises stress penalty functions and the hinges are
replaced by thin compliant connections. A global stress
constraint is used in de Leon et al. (2015) in order
to alleviate one-node hinges, also resulting in very thin
compliant regions replacing the hinges. Thus, the simple use
of stress constraints alone does not solve the problem.

Those results indicate that, in order to obtain hinge-
free geometries, the use of stress constraints plus high
order elements and fine meshes could be applied at the
optimization problem, but it would be computationally
inefficient and may not eliminate the solid hinges entirely
(Sigmund 2007). Also, the use of global stress constraints
seems to result in thin reinforcements, indicating the use of
localized flexibility and thus a lumped distributed compliant
mechanism. In regards to filtering, the results found in the
literature suggest that the use of simple filtering techniques
alone cannot avoid the appearance of hinges.

Thus, the main objective of this work is to study the
joint use of local stress constraints and proper filter radius
to design distributed compliant mechanisms. Also, the
performance of both local and global stress constraints are
compared and discussed. To this end, both formulations
are written as an Augmented Lagrangian formulation
and solved by using the traditional first order optimality
criteria proposed by Bendsøe and Kikuchi (1988). The
material parametrization used for the design of compliant
mechanisms is the traditional SIMP (Solid Isotropic
Material with Penalization) and the effective stress tensor
is parametrized using the qp approach (Bruggi 2008).
The filter used in this study is the traditional spatial
neighborhood density filtering method applied directly to
the relative density (as summarized by Sigmund (2007)).

2 Stress evaluation

The topology optimization with stress constraint formula-
tion is highly nonlinear with respect to the design variables,
and faces some difficulties (Yang and Chen 1996). The first
difficulty is related to the fact that stress is a local measure,
leading to a large number of constraints. Second, due to
the material parameterization, the solution space is irregular
(singularity problem) (Bruggi 2008).

The singularity problem appears due to the fact that the
use of a consistent material parametrization makes the stress
independent of the relative densities (Duysinx and Bendsøe
1998). In order to smooth the feasible design space some
relaxation methods were developed, such as ε-relaxation
(Cheng and Guo 1997) and qp-relaxation methods (Bruggi
2008). At qp-relaxation the effective stress tensor at the
superconvergent point k of an element e can be defined by

σ e,k = ρ
p−q
e σ 0

e,k

p > q,
(1)

where ρe is the relative density of element e, p and
q are respectively the SIMP penalization and the stress
relaxation parameter and σ 0

e,k is the stress tensor evaluated
by considering the base material. The exponent p − q

operates on elements with intermediate relative density,
since the elements with relative density equals to 1 have
their original constitutive tensor unmodified, as well as
happens with SIMP. Actually, q must be equal to p, but this
would not relax the solution space (Duysinx and Bendsøe
1998). Values p > q give no discontinuity of the stress
measure at elements with relative density close to zero, thus
relaxing the design space.

As the stress is a local measure, an optimization
problem with stress constraints can have a high number of
nonlinear constraints. Thus, a common approach presented
in the literature is to transform the large number of
stress constraints in a single one or in few groups. Those
constraints are known as global constraints (Yang and Chen
1996; Le et al. 2010; Holmberg et al. 2013). A global stress
constraint using the P -norm is written as

‖σ eq‖P ≤ σ̄ , (2)

where σ eq is a vector containing the equivalent stresses in
all the superconvergent points of the mesh. For P → ∞,
‖σ eq‖P → max(σ eq). Since the use of large values of P

lead to numerical problems and prevents the use of gradient
based methods, Le et al. (2010) propose the use of

ci‖σ eq‖P ≤ σ̄ , (3)

with

ci =
max

(
σ i−1

eq

)

‖σ i−1
eq ‖P

, (4)

where max
(
σ i−1

eq

)
is the maximum equivalent stress of

the previous iteration. Thus, as the number of iterations
increases, the ratio between the actual norm to the previous
norm tends to one, such that the global constraint can be

read as max
(
σ i−1

eq

)
≤ σ̄ . Other approach to include a

global measure is the use of aggregation formulations, such
as the K–S function, for example (Luo et al. 2013; Oest and
Lund 2017).
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Another approach is to independently consider all the
stress constraints. This can be implemented by the selection
of a set of active constraints, as in Duysinx and Bendsøe
(1998), where the local stress constraints are replaced
by one or several integrated stress criteria. However the
disadvantage is that it is difficult to find a general procedure
able to control efficiently the local peak values. Other
authors effectively consider all the stress constraints by
using the Augmented Lagrangian technique, (Fancello
2006; Emmendoerfer and Fancello 2014; da Silva and
Cardoso 2017). This approach is discussed in the following
section.

To better represent the bending behavior and also to
better evaluate the stress, a nonconforming finite element
is used in this work. The formulation is based in Pian
and Wu (2005), where the traditional four node bilinear
isoparametric element is modified by the inclusion of two
additional “bubble” or incompatible functions, associated to
new degrees of freedom α. The element is then condensed
to an equivalent four-node element with the same number of
degrees of freedom of the traditional bilinear finite element.

Of special interest to the forthcoming equations is the
matrix A, mapping the local 8 degrees of freedom of an
element to a 12 × 1 vector containing the usual degrees of
freedom plus 4 additional incompatible degrees of freedom.
Thus, considering the the qp parameterization and the
inclusion of the incompatible functions, the effective stress
tensor at the superconvergent point k of an element e can be
re-written as

σ e,k = ρ
p−q
e D0

eBe,kAeqe, (5)

where D0
e is the original constitutive tensor of element

e, Be,k contains the derivative of the traditional plus
the incompatible interpolation functions at k and qe is
the nodal displacement vector of the element e. This
formulation has the additional benefit that this element has
4 superconvergent stress points (k = 1..4).

Note that by using an homogeneous mesh where all
elements are equal, D0

e , Be,k and Ae have the same value for
all elements, such that (5) becomes

σ e,k = ρ
p−q
e D0BkAqe. (6)

The equivalent von Mises stress is written as

σeqe,k
= (σ T

e,kMσ e,k)
1/2, (7)

where

M =
⎡
⎣

1 −1/2 0
−1/2 1 0
0 0 3

⎤
⎦ , (8)

for plane stress problems.

3 Optimization strategy

Considering that stress is a local quantity, a large number
of constraints must be considered in the optimization
problem, leading to a large computational cost (da Silva and
Cardoso 2017). Such large number of constraints greatly
reduces the effectiveness of many popular optimizers.
Thus, a suggested procedure is the use of the Augmented
Lagrangian formulation, which can easily deal with a
large number of constraints without being computational
expensive (Emmendoerfer and Fancello 2014; da Silva
and Cardoso 2017). For the application of the Augmented
Lagrangian formulation, consider the generic topology
optimization problem with volume constraint

Min/Max f (ρ)

S.t
gk(ρ) ≤ ḡk k = 1..Ng

V ≤ V̄ ,

0 < ρe ≤ 1 e = 1..Ne

(9)

where f (ρ) is the objective function, gk(ρ) ≤ ḡk is an
inequality constraint k, Ng is the number of inequality
constraints, V is the volume of the optimized structure, V̄ is
the volume limit and Ne is the number of design variables
(elements).

An alternative formulation for the optimization problem
stated in (9) can be written as

Min L(ρ, μ, r) = f (ρ) + r
2

{∑Ng

k=1

〈
μk

r
+ gk(ρ) − ḡk

〉2}

S.t
V ≤ V̄ ,

0 < ρe ≤ 1 e = 1..Ne

(10)

where μ are the Lagrange multipliers associated to the
inequality constraints, r is a penalty parameter and 〈a〉
is defined as max(a, 0). Note that the objective function
of (10) is the Augmented Lagrangian formulation of the
optimization problem defined in (9) without the volume
constraint.

A very important variable when using Augmented
Lagrangian formulation is the penalty parameter r . Due
to the magnitude of displacement and stress constraints,
two separated penalizations may be adopted (one for
each constraint type), if necessary. Defining the penalty
parameters is not an easy task. For achieving consistent
geometries, a good reference is to define the penalization
value as

r = 10f (ρ)
∑Ng

k=1

〈
gk(ρ)

ḡk
− 1

〉 , (11)

which was defined after tests using different conditions and
resulted in a good proportion between objective function
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and the constraint term of the Augmented Lagrangian
formulation. Using an excessively large penalization will
result in complex geometries due to bad local optima caused
by high non-linearity. Very small penalization values make
it hard to satisfy the constraints.

The Lagrange multipliers update for the next iteration of
the external loop (j + 1) are defined by

μ
j+1
k =

〈
μ

j
k + rj (gk(ρ) − ḡk)

〉
, (12)

and the penalty update in the external loop is

rj+1 = γ rj , γ > 1. (13)

The design variables are updated using the Optimality
Criteria, as proposed in (Bendsøe and Sigmund 2004). Here,
a Lagrangian function Q is formed by the Augmented
Lagrangian function of the optimization problem (L) and
the volume constraint

(
V − V̄

)
, resulting in

Q(ρ, ψ) = L + ψ
(
V − V̄

)
, (14)

where ψ is the Karush-Kuhn-Tucker multiplier for the
volume constraint.

The optimality criteria optimization algorithm, as
explained in Bendsøe and Sigmund (2004), is used to obtain
the optimal solution of the problem defined in (14). It should
be stressed that the problem defined in (10) can be solved by
using any appropriate optimization algorithm, but there is a
good rationale the present choice: this method is known to
work well with similar topology optimization problems, that
is, a large number of bounded design variables and a single
linear constraint. As it will be discussed in the result section,
the performance of this optimization algorithm is highly
dependent on the degree of non linearity of the problem,
since it is based on the first order optimality conditions.

The traditional density filter, Bruns and Tortorelli (2001),
is used in this work to study the influence of a simple
filtering procedure in the elimination of the one-node
connections when used with stress constraints. This method
changes the definition of the design variables in order
to approximately impose a minimum length scale to the
desired topology. Using the traditional linear weights and
centroidal distances, this change of variables can be defined
as

ρ̃i =
∑

j∈Nei

wjiρj

wji

, (15)

where ρ̃i is the filtered relative density of central element i,
Nei are the elements situated in the neighbourhood area of
the central element (including i) and wji is a linear weight
function,

wij = 1.0 − dij

R
, (16)

where dij is the centroidal distance between element i and
element j and R is the filtering radius from the centroid of
the central element.

The gradient computed with filtered relative density must
be evaluated with respect to the original design variables as
well. Thus, for a general function L, the gradient can be
corrected by

dL
dρm

= dL
dρ̃i

dρ̃i

dρm

. (17)

It is assumed throughout this text that the relative density are
properly filtered and that all quantities and their sensitivities
are evaluated with respect to these filtered variables. Also,
it is assumed that the optimization problem is solved with
respect to the design variables ρ and that all the sensitivities
are properly converted, as shown in (17).

4 Compliant mechanisms design with local
stress constraint

The local stress constraint is defined by

σeqe,k
(ρ) ≤ σ̄ , (18)

where σ̄ is the stress limit.
The classical approach for the design of compliant

mechanism using topology optimization, (Sigmund 1997),
consists on the minimization or maximization of a set of
output displacements, while constraining a set of input
displacements. Adding local stress constraints, the standard
form of the optimization problem can be written as

Min
∑Nout

i=1 Uouti Souti

S.t
V ≤ V̄(

Uinj
− Ūinj

)
Sinj

≤ 0 j = 1..Nin

σeqe,k
− σ̄ ≤ 0 e = 1..Ne, k = 1..4

0 < ρi ≤ 1, i = 1..Ne

(19)

where Nout and Nin are the number of output and input
displacements,Uout is the displacement in the output region,
V is the volume, V̄ is the volume limit established for the
optimization problem, Uin is the input displacement, Ūin

is the input displacement limit, as shown in Fig. 2, Ne

and k are respectively the number of element in the finite
elements mesh and the number of superconvergent points
at the element e and Souti and Sinj

are the displacement
directions, such that

Souti =
{

1 for minimization
−1 for maximization ,

(20)

and

Sinj
=

{
1 for ≤ constraint

−1 for ≥ constraint .
(21)
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Fig. 2 Compliant mechanism design domain (adapted from (Sigmund
1997))

The Augmented Lagrangian formulation without the
volume constraint is

L(ρ, φ, μ, rd , rs)=
Nout∑
i=1

Sout iL
T
out iU+ rd

2

Nin∑
j=1

〈
μj

rd
+

(
LT

inj
U

Ūinj

−1

)
Sinj

〉2

+ rs

2

Ne∑
e=1

4∑
k=1

〈
φe,k

rs
+ σeqe,k

σ̄
−1

〉2
+ λT (KU−F),

(22)

where rs and rd are penalty parameters for stress and
displacement constraints, φ and μ are Lagrange multipliers
for stress and displacement constraints, SoutiL

T
outi

U =
Uouti Souti and Sini

LT
ini

U = Uini
Sini

. λ is the adjoint
vector, K is the global stiffness matrix and F is a design
independent force vector. There are two distinct penalty
parameters in order to avoid numerical problems, since even
if the constraints are normalized, the sums change the order
of magnitude of each kind of constraint.

The gradient of the Augmented Lagrangian function,
(22), with respect to a design variable ρm is

dL
dρm

= rs

4∑
k=1

[〈
φm,k

rs
+ σeqm,k

σ̄
−1

〉
σT

m,kM(p−q)ρ
(p−q−1)
m D0BkAqm

σeqm,k
σ̄

]

+λT
mpρ

(p−1)
m K0

mqm, (23)

where the global adjoint vector λ is defined by

KT λ = −
Nout∑
i=1

SoutiLouti −rd

Nin∑
j=1

[〈
μj

rd
+

(
Uinj

Ūinj

−1

)
Sinj

〉
Linj

Sinj

Ūinj

]

−rs

Ne∑
e=1

4∑
k=1

[〈
φe,k

rs
+ σeqe,k

σ̄
−1

〉
σT

e,kMρ
(p−q)
e D0BkAHe

σeqe,k
σ̄

]T

,

(24)

where He is a localization matrix such that HeU = qe.

In the end of each external loop (n) the Lagrange
multipliers are updated by

μ
(n+1)
j =

〈
μ

(n)
j + r

(n)
d Sinj

(
Uinj

Ūinj

− 1

)〉
, (25)

and

φ
(n+1)
e,k =

〈
φ

(n)
e,k + r(n)

s

(σeqe,k

σ̄
− 1

)〉
, (26)

and the penalties are updated by

r
(n+1)
d = γdr

(n)
d , (27)

and

r(n+1)
s = γsr

(n)
s , (28)

where γd and γs are the penalty update factors.

5 Compliant mechanisms design with global
stress constraint

The consideration of a global measure of stress constraint
on the previous formulation is straightforward. Using (3),
the optimization problem becomes

Min
∑Nout

i=1 Uouti Souti

S.t
V ≤ V̄(

Uinj
− Ūinj

)
Sinj

≤ 0 j = 1..Nin.
ci ||σ eq ||P − σ̄ ≤ 0

0 < ρ ≤ 1

(29)

The Augmented Lagrangian formulation without the vol-
ume constraint is

L(ρ, φ, μ, rd , rs) =
Nout∑
i=1

SoutiL
T
outi

U+ rd

2

Nin∑
j=1

〈
μj

rd
+

(
Uinj

Ūinj

−1

)
Sinj

〉2

+ rs

2

〈
φs

rs
+ ci ||σ eq ||P

σ̄
− 1

〉2
+ λT (KU − F).

(30)

The gradient of the Augmented Lagrangian function with
respect to a design variable ρm is

dL
dρm

= rs

〈
φs

rs
+ ci ||σ eq ||P

σ̄
− 1

〉
ci

σ̄ ||σ eq ||P
4∑

k=1

[
σ (P−2)

eqm,k
σ T

m,kM(p−q)ρ
(p−q−1)
m D0BkAqm

]
+λT

mpρ
(p−1)
m K0

mqm,

(31)
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where the global adjoint vector λ is defined by

Kλ=−
Nout∑
i=1

SoutiLouti − rd

Nin∑
j=1

[〈
μj

rd
+

(
Uinj

Ūinj

− 1

)
Sinj

〉
Linj

Sinj

Ūinj

]

−rs

〈
φs

rs
+ ci ||σ eq ||P

σ̄
−1

〉
ci

σ̄ ||σ eq ||P
Ne∑
e=1

4∑
k=1

[
σ (P−2)

eqe,k
σ T

e,kMρ
(p−q)
e D0BkAHe

]
. (32)

In the end of each external loop (n) the Lagrange multipliers
are updated by (25) and

φ(n+1)
s =

〈
φ(n)

s + r(n)
s

(
ci ||σeq||P

σ̄
− 1

)〉
, (33)

and the penalties are updated according to (27) and (28).

6 Results

For better understanding the influence of local stress
constraint, global stress constraint and filtering radius
regarding one-node connected hinges, some studies were
performed and the results are shown in this section. Two
problems of compliant mechanisms designed by topology
optimization are analyzed. Few works in the literature
expose all necessary information to replicate the problems
and very few of them use real material properties. So the
studies were based on Cardoso and Fonseca (2004) and
adapted to be applied in the presented formulation. The
material is Nylon, with Young’s modulus E = 3 GPa
and Poisson’s coefficient ν = 0.4. A plane stress model
is used and the thickness of the domain is 5 mm. The
problems are symmetric, such that only half of the domains
are considered.

The internal problem is solved by using Optimality
Criteria, with tolerance of 1 × 10−10 and fixed moving

Table 1 Parameters used in the optimization problems

Variable Value Description

E 3 GPa Young’s modulus

ν 0.4 Poisson’s coefficient

Fin 200 N Input force

Kout 1 × 105 N/m Output spring stiffness

Ūin 2 mm Input displacement limit

V̄ 25% Volume fraction

p 3 SIMP penalization

q 1.5 Stress relaxation

γ 1.1 Penalization update factor

limits of ±2%. This small moving limit is used in order to
allow the comparison of two different problems in regards
to the non linearity. As it will be shown, the global stress
constraint is more non linear than the local stress approach.
This can be explained by the fact that in the local approach
just few constraints are active at the optimum, such that
most multipliers are zero. On the other hand, the global
approach is a P norm of a large number of stress points and
it is always active. Numerical experiments performed for
this research indicate that the optimality criteria can easily
handle the local stress constraint even for larger values of
moving limits, but this is not true for the global approach.

The number of external loops, 12, in the Augmented
Lagrangian approach was defined according to tests per-
formed in order to obtain well defined and stable topologies.

Other parameters are shown in Table 1. The exponent q

has been set after tests aiming to achieve geometries without
significant stress values in void regions.

The usual greyscale palette is used to represent both
relative density and equivalent stress fields in this section.
In relative density images, white represents the lower
density and black the base material. In equivalent stress
images, white represents low stress magnitudes, where
black represent the larger values of equivalent stress.

6.1 Inverter mechanism

Consider the design domain shown in Fig. 3. The input
force and output spring are distributed along 5 mm

Fig. 3 Design domain and boundary conditions used in the inverter
mechanism design. Only half of the domain is used, due to the
symmetry. Dimensions in mm
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Fig. 4 Topologies and equivalent stress distribution obtained for the inverter mechanism without stress constraint and increasing filtering radius
for two different mesh sizes

Fig. 5 Topologies obtained for
the stress constrained inverter
mechanism with the 50 × 100
mesh and 1.2 mm filter radius.
The first row refers to the local
stress constraint approach and
the other rows refer to the global
stress constraint approach, with
different P values

Fig. 6 Stress distribution for the
results in Fig. 5
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Fig. 7 Topologies obtained for
the stress constrained inverter
mechanism with 150 × 300
mesh and 1.2 mm filter radius.
The first row refers to the local
stress constraint approach and
the other rows refer to the global
stress constraint approach, with
different P values

Fig. 8 Stress distribution for the
results in Fig. 7

Fig. 9 Topologies and equivalent stress distributions obtained for the local stress constrained inverter mechanism with minimum filtering radius
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Table 2 Results summary for the inverter mechanism

Inverter mechanism

Coarse mesh Fine mesh

Increasing filtering radius only Hinge free Hinge free

Local stress constraint + filtering (1.2 mm) Hinge free Hinge free

Global stress constraint (P = 22) + filtering (1.2 mm) Hinge free only for high stress limits Hinge free only for high stress limits

Global stress constraint (P = 36) + filtering (1.2 mm) Hinge free only for high stress limits Hinge free only for high stress limits

Local stress constraint and minimum filtering radius Hinge free Hinge free

length, as well as the input displacement constraint and
output displacement used as objective function. Fixed solid
elements are imposed in these regions, with one element
width.

To evaluate the influence of filter radius and mesh
size in eliminating one-node connected hinges for this
problem, two different mesh sizes and three different radii
are analyzed. Figure 4 shows that, for this problem, it
is possible to avoid one-node connected hinges without
imposing any stress constraint. Also, it can be seen that as
the mesh is refined, there is a clear tendency to concentrate
larger stresses in very small regions, indicating that those
results can be classified as lumped distributed compliant
mechanisms. Those results also show an undesirable effect
of using a simple filtering technique, since for a larger radius
there are many elements with intermediate relative density
along the contour (blurred contour effect). Projection filters
may reduce the gray scale at contour when using a large
filtering radius (Guest et al. 2004).

For this problem, it is also possible to hinder the
appearance of hinges by imposing stress constraint, even
without increasing the radius of the filter. Figure 5 shows
the effect of both local and global stress constraints for a
coarse mesh and 1.2 mm radius. Rows with values of P are
the results for global stress constraint. Figure 6 shows the
equivalent stress distributions associated to the topologies
in Fig. 5, where it is clear that the larger stresses occur in
the new flexible regions substituting the hinges. Also, the
smaller the limit stress, the larger the width of this flexible
region, as expected. Thus, for this problem and this mesh
size, it is possible to hinder the appearance of hinges and
control the width of the compliant link with the local stress
constraint and simple filtering.

Table 3 Percentage of the average geometrical advantage for the
topologies depicted in Fig. 8

50 MPa 40 MPa 30 MPa

Local 75.96 75.91 75.32

P = 22 74.04 73,24 68.17

P = 36 74.73 72.41 69.87

The same study is performed with a finer mesh and the
same filter radius, as shown in Figs. 7 and 8. The refinement
increases the degree of non linearity associated to the
global constraint, imposing difficulties to the optimizer.
Nonetheless, all the topologies have no hinges and respect
the stress limit.

Finally, to test the effectiveness of the local stress
constraint in eliminating one-node connections even for the
smallest filter radius allowable (just to avoid checkerboard),
that is, 10% larger than the element edge size, two mesh
sizes and different stress limits are studied. Figure 9 shows
both the topologies and equivalent stress distributions. The
inverter case studied is a particular case where the local
stress constraint alone can hinder the appearance of one-
node hinges.

Table 2 shows the summary of all previous results for the
inverter compliant mechanism. The strategies of increasing
filtering radius and applying local stress constraint were
able to achieve hinge-free geometries. The global stress
constrained problems did not result in well defined
geometries when the stress limits are low, although hinge-
free topologies were achieved for higher stress limits. This
seems to be a particularity of the optimization algorithm
used.

The average geometrical advantage (ratio between the
average output and the average input displacements) is used

Fig. 10 Design domain and boundary conditions used in the gripper
mechanism design. Only half of the domain is used, due to the
symmetry. Dimensions in mm
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Fig. 11 Topologies and equivalent stress distributions obtained for the gripper mechanism without stress constraint and increasing filtering radius
for different mesh sizes

to asses the effectiveness of each solution and to compare
the kinematic behavior of the different stress constraints.
The average values are used since there are more than one
input and output ports. Table 3 show the results obtained
for the topologies depicted in Fig. 8. From these results, it
can be stated that the local stress constraint has a slightly
better kinematic performance when compared to the global
approach, for the data set studied in this work. Also, there is
a decrease in the geometrical advantage as the stress limit is
decreased, as expected.

6.2 Gripper mechanism

Consider the design domain shown in Fig. 10. The gripper
mechanism transforms an input in the horizontal direction

to an output in the vertical direction. All the optimization
parameters are the same as used in inverter compliant
mechanism problems.

Figure 11 shows relative densities and stress distribution
obtained by varying mesh size and increasing filtering
radius, without stress constraint. As it can be seen in this
figure, only the combination of a fine mesh plus a large
radius was able to provide a thicker connection, although
blurred.

Figures 12 and 13 show the topologies and equivalent
stress distributions obtained with different stress constraints
for the coarse mesh and 1,2 mm radius. Different than
the inverter case, the use of stress constraint alone does
not seem to hinder the appearance of hinges. The same
situation is analyzed for a finer mesh and the same filter

Fig. 12 Topologies obtained for
the stress constrained gripper
mechanism with the 50 × 100
mesh and 1.2 mm filter radius.
The first row refers to the local
stress constraint approach and
the other rows refer to the global
stress constraint approach, with
different norm values (P )
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Fig. 13 Stress distribution for
the results in Fig. 12

Fig. 14 Topologies obtained for
the stress constrained gripper
mechanism with the 150 × 300
mesh and 1.2 mm filter radius.
The first row refers to the local
stress constraint approach and
the other rows refer to the global
stress constraint approach, with
different norm values (P )

Fig. 15 Stress distribution for
the results in Fig. 14
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Fig. 16 Topologies and equivalent stress distributions obtained for the local stress constrained gripper mechanism with minimum filtering radius

radius, as shown in Figs. 14 and 15. The results obtained
with the local approach show very thin connections and,
for the smaller stress limit, can be considered a satisfactory
solution.

Again, to test the effectiveness of the local stress
constraint in eliminating one-node connections even for the
smallest filter radius allowable (just to avoid checkerboard),
that is, 10% larger than the element edge size, two mesh
sizes and different stress limits are studied for the gripper.
Figure 16 shows both the topologies and equivalent stress
distributions. It can be stated that for the data set used in this
work, the gripper is much more challenging than the inverter
with respect to eliminating the hinges.

Table 4 shows the summary of the results obtained for the
gripper compliant mechanism. Different from the inverter
mechanism problem, in this case is very hard to obtain

topologies without one-node connected hinges. The best
strategy to obtain hinge-free gripper mechanisms is to apply
local stress constraint using a proper filtering radius. The
other studied strategies were not able to achieve hinge-free
geometries or resulted in misshaped topologies.

Again, the average geometrical advantage (ratio between
the average output and the average input displacements)
is used to asses the effectiveness of each solution and
to compare the kinematic behavior of the different stress
constraints. Table 5 shows the results obtained for the
topologies depicted in Fig. 15. From these results, it can
be stated that the local stress constraint has a slightly
better kinematic performance when compared to the global
approach, for the data set studied in this work. Also, there is
a decrease in the geometrical advantage as the stress limit is
decreased, as expected.

Table 4 Results summary for the gripper mechanism

Gripper mechanism

Coarse mesh Fine mesh

Increasing filtering radius only Connections with intermedi-
ate relative densities

Connections with intermedi-
ate relative densities

Local stress constraint + filtering (1.2 mm) Hinges Hinge free

Global stress constraint (P = 22) + filtering (1.2 mm) Hinges Hinges

Global stress constraint (P = 36) + filtering (1.2 mm) Hinges Hinges

Local stress constraint and minimum filtering radius Hinges Very thin connections
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Table 5 Percentage of the average geometrical advantage for the
topologies depicted in Fig. 15

50 MPa 40 MPa 30 MPa

Local 75.74 75.31 73.94

P = 22 69.15 68.99 60.83

P = 36 69.94 69.75 63.27

7 Conclusions

Stress constrained topology optimization is thoughtfully
discussed in the literature. However, local stress constrained
problems are less common when compared to global strate-
gies, due to difficulties that some traditional optimization
techniques face. The use of an Augmented Lagrangian for-
mulation together with Optimality Criteria seems to be very
efficient when dealing with high number of constraints.
This optimization framework was also used with a global
stress constraint approach, although the results indicate the
need for a more robust optimization algorithm to cope
with the degree of non linearity associated to the P norm.
Nonetheless, regardless of the optimizer, the use of a global
constraint approach in conjunction with the Augmented
Lagrangian technique is not discussed in the literature.

Hinge-free compliant mechanisms can be achieved by
many ways as shown in literature. Each strategy studied in
this work could achieve hinge-free mechanisms for at least
one combination of parameters. The best strategy found to
obtain hinge-free compliant mechanisms is the combination
of a proper value of radius of filtering, a refined mesh and
the consideration of local stress constraint.

Observing that properly modeled one-node connected
hinges are regions with high stress, applying stress
constraint to the design of compliant mechanisms tends to
eliminate the solid hinges, replacing it by a (thin) solid
connection. The filter acts as a minimum length control over
this thin reinforcements and, as result, the joint use of these
techniques can prevent the appearance of one-node hinges.

With the consideration of stress constraints the stress
distribution along the final geometry is improved, as well
as the reliability of the design. Also, for the data set and
optimizer considered in this work, it is observed that the
local stress constraint approach present better kinematic
behavior (geometrical advantage) when compared to the
global constraint approach, specially when considering low
stress limits.
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