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Abstract
To teach multidisciplinary design optimization (MDO) to students effectively, it is useful to have accessible software
that runs quickly, allowing hands-on exploration of coupled systems and optimization methods. Open-source software
exists for low-fidelity aerodynamic or structural analysis, but there is no existing software for fast tightly coupled
aerostructural analysis and design optimization. To address this need, we present OpenAeroStruct, an open-source low-
fidelity aerostructural analysis and optimization tool developed in NASA’s OpenMDAO framework. It uses the coupled
adjoint method to compute the derivatives required for efficient gradient-based optimization. OpenAeroStruct combines a
vortex lattice method and 1-D finite-element analysis to model lifting surfaces, such as aircraft wings and tails, and uses
the coupled-adjoint method to compute the aerostructural derivatives. We use the Breguet range equation to compute the
fuel burn as a function of structural weight and aerodynamic performance. OpenAeroStruct has proved effective both as an
educational tool and as a benchmark for researching new MDO methods. There is much more potential to be exploited as
the research community continues to develop and use this tool.

Keywords Aerostructural design optimization · Wing design · Multidisciplinary design optimization · Project-based
learning · Python

1 Summary

In this paper, we discuss OpenAeroStruct,1 an open-source
coupled aerostructural analysis and design optimization
tool. OpenAeroStruct couples the vortex-lattice method
(VLM) and finite-element analysis (FEA) using six degree-
of-freedom (DOF) spatial beam elements with axial,
bending, and torsional stiffness. It is mostly implemented
in Python, but some of the more intensive computations use
Fortran.

1https://github.com/mdolab/openaerostruct
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OpenAeroStruct is developed within the OpenMDAO
framework (Heath and Gray 2012), a NASA-developed
open-source software framework for multidisciplinary
design optimization (MDO). OpenMDAO facilitates deriva-
tive computation for gradient-based optimization using the
modular analysis and unified derivatives (MAUD) architec-
ture (Hwang and Martins 2018), which unifies the adjoint
method with the chain rule and all other methods for
computing discrete derivatives (Martins and Hwang 2013).
OpenAeroStruct computes derivatives for the aerostruc-
tural system using the coupled adjoint method (Martins
et al. 2005; Kenway et al. 2014). The aerodynamic forces
and structural displacements are transferred between dis-
ciplines in a consistent and conservative manner. This
process is simplified because the aerodynamic and struc-
tural meshes have the same spanwise discretization, so
no interpolation is necessary to transfer the loads or dis-
placements. A variety of solvers can be used to con-
verge the coupled aerostructural system, including block
Gauss–Seidel, GMRES, or LU decomposition for the lin-
ear system, and nonlinear block Gauss–Seidel or Newton
for the nonlinear system. The standard aerostructural opti-
mization problem is a fuel-burn minimization using the
Breguet range equation, and the design variables consist of
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twist distribution, spar thickness distribution, and planform
variables. The constraints ensure that lift equals weight
and the structural spar does not fail. The modular imple-
mentation in OpenMDAO makes it easy to reformulate the
optimization problem, e.g., to minimize the sum of direct
operating cost and acquisition cost, and to subsequently
update the derivative computation.

OpenAeroStruct is unique because of its modular imple-
mentation and the efficient coupled gradient computation.
The model is decomposed into many low-level compu-
tations. Each of these computations is implemented as
an OpenMDAO component, and OpenMDAO computes
the overall model-level derivatives given component-level
derivatives of the outputs with respect to the inputs of
each component. The components use symbolic differen-
tiation or automatic differentiation (AD) to compute their
partial derivatives (Mader et al. 2008). We include multiple
visualization tools to examine the wing model and design
variables during the optimization. Figure 1 shows a view
from the included interactive GUI-based visualization tool.

The main objective of OpenAeroStruct is to provide
a physically meaningful multidisciplinary model that can
be used to obtain low-order approximations of aircraft
performance or to compare solution algorithms.We evaluate
on-design aerostructural performance using the Breguet
range equation to approximate fuel burn. OpenAeroStruct is
useful for a variety of educational areas, including aircraft

design, MDO, uncertainty quantification, and numerical
solution algorithms.

This paper caters to three different sets of users:

1. For educators, this paper presents OpenAeroStruct
as a hands-on learning tool for the classroom. The
modular implementation within a framework, the
coupling within the disciplines, and the simplicity of
the physics make it a practical teaching tool, as we
have already demonstrated in the classroom setting
at two universities. The individual aerodynamic and
structural models are well known, but the way that they
are coupled to provide analytic coupled derivatives is
novel. Educators should read Section 4 for examples of
classroom usage and may wish to read Section 3 for an
understanding of the methodology.

2. For researchers, this paper presents OpenAeroStruct
as a physics-based multidisciplinary model that is
computationally inexpensive and uses the adjoint
method to compute the coupled derivatives. This
yields scalability that makes OpenAeroStruct useful for
benchmarking in MDO research (Cook et al. 2017;
Friedman et al. 2017; Bons et al. 2017; Chauhan et al.
2017), where it has been used to test solvers, MDO
architectures, uncertainty quantification (UQ) methods,
etc. Researchers should see Section 5 for examples
of research insights gained from OpenAeroStruct.

Fig. 1 Screenshot of interactive visualization tool included in OpenAeroStruct. Users can explore the optimization history by stepping through
each iteration and examining the wing model, design variables, and output function values
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Researchers may also be interested in Section 3, which
explains the underlying system setup and capabilities.

3. For students, this paper serves as a reference for the
aerodynamic and structural theory of OpenAeroStruct.
We document the equations for the VLM and FEA
analyzes in the model, the equations describing the
consistent and conservative load and displacement
transfer schemes, and the numerical solvers. Detailed
code documentation, examples, and tutorials can be
found in the online documentation linked in the GitHub
repository. Students will find the background theory in
Section 2 and the details of the coupled system setup in
Section 3 helpful.

This paper is organized as follows. First, we detail
the existing theory and our implementation for the
aerodynamic and structural models (Section 2). Then we
explain the coupled aerostructural solver implementation
and the optimization problem formulation in Section 3. In
Section 4, we present results from research applications of
OpenAeroStruct and from its use in graduate courses. We
review the research and educational outcomes achieved to
date using OpenAeroStruct in Section 5.

2 Background

2.1 Motivation

In aircraft wing design, aerodynamics and structures are two
of the most important disciplines. Increasing span reduces
aerodynamic drag but increases structural weight, so a well-
designed wing needs to balance these two trends. Changing
the twist distribution to concentrate the lift inboard may hurt
aerodynamic efficiency but improves structural efficiency.
For wing design, it is important to account for the
aerostructural coupling because the aerodynamic loads
affect the structural deflections, which in turn affect the
aerodynamic loads. The true deflected shape of the wing
is thus different from the shape found by applying the
aerodynamics loads computed based on the undeflected
shape. In addition to finding the true shape of the wing, we
must also consider design tradeoffs between wing shape and
structural sizing. This is a quintessential multidisciplinary
design problem that motivated the development of MDO
in both low-fidelity (Haftka 1977) and high-fidelity studies
(Kenway and Martins 2014; Liem et al. 2015).

The interactions between aerodynamics and structures
can be captured with inexpensive physics-based mod-
els, such as the VLM for aerodynamics and 1-D FEA
for structures. A coupled 1-D VLM–FEA model enables
optimization of the spanwise distribution of the aerody-
namic twist, planform, and structural thicknesses. However,

computationally efficient aerodynamic and aerostructural
optimization software is not freely available, even for low-
fidelity models.

Existing free low-fidelity aerodynamic analysis tools
have limited capabilities. XFOIL (Drela 1989) is restricted
to 2-D problems, Tornado (Melin 2000) does not compute
derivatives, and AVL (Drela and Youngren 2004) does not
natively interface well with optimizers. Similarly, freely
available tools for structural analysis, such as Frame3DD
(Gavin 2010) and Calculix (Dhondt and Wittig 1998), do
not provide derivatives and interface poorly with optimizers.
High-fidelity tools for aerostructural design optimization
have been developed, but they require the use of parallel
high-performance computing platforms (Kenway et al.
2014; Kennedy and Martins 2014). Although software
exists for lower fidelity aerodynamic or structural analysis
alone, no open-source tool is able to perform coupled
aerostructural analysis and design optimization.

In the gradient-based optimization of multidisciplinary
systems, computing the coupled derivatives efficiently and
accurately is critical and requires significant effort (Kenway
et al. 2014). Gradient-based optimization scales well (often
linearly) with the number of design variables because it
uses the gradient information to find an efficient path
from the initial point to the optimum. The adjoint method
computes the gradient in a given optimization iteration at
a cost that is comparable to that of the analysis, and that
does not increase with the number of design variables.
However, implementing the adjoint method is time- and
effort-intensive because it requires modification of the
source code for a model, in contrast to methods such as
finite differences that treat the model as a black box.

We designed OpenAeroStruct as an MDO model that
uses gradient-based optimization to solve a physically
meaningful problem. The code is entirely open-source, so
users can examine exactly what it is doing and expand its
capabilities by building on the existing components. Ana-
lytic gradients are provided for each analysis component
to enable efficient gradient-based optimization through the
adjoint method, which has not previously been done for
open-source wing design tools. The code is written using
the OpenMDAO framework, so users can quickly and easily
change the optimization formulation, the optimizer, and the
system solvers. The fully functioning pure Python imple-
mentation means that the code can be used without worrying
about dependencies or complicated installation procedures;
OpenAeroStruct works on macOS, Windows, and Linux.

2.2 Aerodynamics model

The aerodynamics model uses a VLM (Anderson 1991)
to compute the aerodynamic loads acting on the lift-
ing surfaces. This combines multiple modern numerical
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lifting-line theory (LLT) models, as described by Phillips
and Snyder (2000). The VLM model is more general than
the LLT model because it models low aspect ratio wings,
swept wings, and delta wings more accurately (Anderson
1991). The theory of VLM is well established, and we cre-
ate and use our own implementation so that we can easily
obtain the relevant derivatives.

To set up the model, we follow the process outlined by
Anderson (1991). A complete derivation of the theory is
not provided here, but we summarize the important points
below. Given a structured mesh defining a lifting surface,
we can compute the aerodynamic properties by examining
the circulation distribution. We do this by modeling the
lifting surface using horseshoe vortices to represent the
vortex system of a wing. Each horseshoe vortex consists of
a bound vortex in the spanwise direction and two trailing
vortices that extend into the freestream direction. Figure 2
shows a single horseshoe vortex on a lifting surface. We now
examine the mathematical formulation used to calculate the
wing circulation.

A vortex filament induces a flow field in the surrounding
space. The strength of a vortex filament is its circulation,
which produces lift on a surface. The Biot–Savart law
relates the velocity of the flow field at an arbitrary point P

caused by a segment dl of a vortex filament with circulation
strength � via

dV = �

4π

dl×r
|r|3 .

Integrating over a semi-infinite straight vortex filament,
we obtain

V = �

4πh
,

where h is the distance from point P to the finite start point
of the vortex filament.

Helmholtz’s vortex theorems (Anderson 1991) state that:

1. The strength of a vortex filament is constant along its
length.

2. A vortex filament cannot end in a fluid; it must extend
to the boundaries of the fluid (which can be ±∞) or
form a closed path.

As Fig. 2 illustrates, a horseshoe vortex is comprised of
semi-infinite vortices extending from point b to point a and
from c to d, and a bound vortex extending from b to c. The
circulations for each of these vortex segments are of equal
magnitude and have consistent directions.

To model a lifting surface, we superimpose multiple
horseshoe vortices over the span. This corresponds to a
Weissinger LLT model, where there is only one horseshoe
element in the chordwise direction. VLM is the Weissinger
LLT method extended to allow multiple sets of horseshoe
vortices in the chordwise direction.

The panel in Fig. 2 from the mesh of the lifting surface
corresponds to the dashed lines, while the horseshoe vortex
associated with that panel is drawn with solid lines. For a
panel of length l, the bound vortex is at a distance of 1

4 l from
the front of the panel. Additionally, we define a control point
at the centerline of the panel 3

4 l from the front of the panel.
We enforce a flow tangency condition at this control point
that specifies that the velocity normal to the panel must be
zero. Physically, this means that flow cannot go through
the lifting surface. By imposing flow tangency conditions at
each of the control points for all of the horseshoe vortices
on the lifting surface, we obtain the linear system

A� = −V∞ · n,

where A is the aerodynamic influence coefficients matrix,
V∞ is the freestream velocity, and n is the normal to
the panel. We can solve this linear system to obtain the
circulation strengths for each of the horseshoe vortices.

Now that we have the circulation strengths of the
vortices, we can compute the aerodynamic forces acting on
each individual panel using

Fi = ρ�i(V∞ + vi ) × li ,

where vi is the induced velocity at the center of the bound
vortex, and li is the bound vortex vector. The length and

Fig. 2 Single horseshoe on a
lifting surface (Anderson 1991)
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direction of the bound vortex directly influence the forces
and allow for different width horseshoe vortices across the
span.

With the sectional panel forces we can compute the
lift, drag, and other lifting surface metrics. The lift and
drag correspond to the components of the force vector
in the upward and freestream directions, respectively. We
also compute the skin friction drag using flat-plate-based
estimates (Raymer 2012, Sec. 12.5.3). This skin friction
drag estimate is based on the airfoil thickness-to-chord ratio,
the Reynolds number, and other aircraft and flow properties.
The drag estimate is adjusted using a form factor, which
accounts for pressure drag due to flow separation. The semi-
empirical models used for drag estimation are considered
valid up to the drag-divergence Mach number.

2.3 Structural model

For the structural model, we use a finite element method
(FEM) approach that uses spatial beam elements, resulting

in six DOFs per node. The spatial beam element is a
combination of truss, beam, and torsion elements, which
means that it simultaneously carries axial, bending, and
torsional loads. We implement our own structural model
using well-established theory so we can easily obtain the
relevant derivatives.

Each spatial beam element has 12 DOFs in total, as
shown in Fig. 3. At each end of the beam, there are three
translational displacements in the x, y, and z directions,
and three rotational DOFs with respect to the x, y, and
z axes. The displacements and rotations shown in Fig. 3
are in the local coordinate frame of the element. The axial
DOFs are u1 and u2; the z-plane bending DOFs are v1, v2,
αz1, and αz2; the y-plane bending DOFs are w1, w2, αy1,
and αy2; and the torsion DOFs are αx1 and αx2. During
the assembly of the global stiffness matrix, transformation
matrices are used to convert the element stiffness matrix
from the local frame to the global frame aligned with the x,
y, and z axes. The stiffness matrix for a single element is
given by

[k]e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 0 0 0 0 0 −k1 0 0 0 0 0
0 12kz

2 0 0 0 6kz
2l 0 −12kz

2 0 0 0 6kz
2l

0 0 12ky

2 0 −6ky

2 l 0 0 0 −12ky

2 0 −6ky

2 l 0
0 0 0 k3 0 0 0 0 0 −k3 0 0
0 0 −6ky

2 l 0 4ky

2 l2 0 0 0 6ky

2 l 0 2ky

2 l2 0
0 6kz

2l 0 0 0 4kz
2l

2 0 −6kz
2l 0 0 0 2kz

2l
2

−k1 0 0 0 0 0 k1 0 0 0 0 0
0 −12kz

2 0 0 0 −6kz
2l 0 12kz

2 0 0 0 −6kz
2l

0 0 −12ky

2 0 6ky

2 l 0 0 0 12ky

2 0 6ky

2 l 0
0 0 0 −k3 0 0 0 0 0 k3 0 0
0 0 −6ky

2 l 0 2ky

2 l2 0 0 0 6ky

2 l 0 4ky

2 l2 0
0 6kz

2l 0 0 0 2kz
2l

2 0 −6kz
2l 0 0 0 4kz

2l
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

k1 = EA

L
, kz

2 = EIz

L3
, k

y

2 = EIy

L3
, k3 = GJ

L
,

Fig. 3 6-DOF spatial beam element (Pesare 2016)

andE is the Young’s modulus,A is the beam cross-sectional
area, L is the beam length, G is the shear modulus, J is the
polar moment of inertia, and the I s are the second moments
of area about the three local coordinate directions.

In OpenAeroStruct, spatial beam elements are always
connected end-to-end in a single sequence, so the resulting
global stiffness matrix exhibits a banded structure where
stiffness submatrices are added on block diagonals. Once
the stiffness matrix has been assembled, OpenAeroStruct
solves the linear system Ku = f, where K is the global
stiffness matrix, u is the vector of displacements and
rotations at the nodes, and f are the forces and moments
acting at the nodes.

3Methodology

The aerodynamic and structural models described in the
previous section are well known. In this section, we describe
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our implementation of the coupled solver derivative
computation for these two disciplines. The implementation
relies on the OpenMDAO, so we include a brief overview of
this framework. Then we explain the load and displacement
coupling as well as the implementation of the aerostructural
system. Finally, we detail the aerostructural optimization
formulation.

3.1 OpenMDAO framework

We first provide an overview of the OpenMDAO framework
since it is the computational modeling software within
which OpenAeroStruct is built. OpenMDAO is an open-
source NASA-developed framework for multidisciplinary
design, analysis, and optimization with a focus on gradient-
based approaches (Heath and Gray 2012). It is unique
because it facilitates the efficient computation of the
derivatives needed for optimization using methods such as
the adjoint method.

As with other software frameworks, its primary function
is to enable the modular construction of computational
models, where a larger, more complex model is decomposed
into smaller units of code, called components, that are
simpler and more portable. The components are partitioned
into groups that can in turn be part of other groups,
forming a hierarchy tree. OpenMDAO performs data
transfers between components, potentially across processors
in parallel settings, and includes nonlinear and linear
solvers with support for matrix-free or sparse linear algebra.
Any nonlinear or linear solver can be applied in each
group or component in the hierarchy tree. This means
that OpenMDAO in general uses hierarchical solution
approaches: e.g., a Newton solver can be used in a
component while the group containing that component can
use a nonlinear block Gauss–Seidel solver that calls its
children in sequence, including the component with the
Newton solver.

A unique and extremely useful feature of OpenMDAO
is its ability to compute derivatives using a wide range
of methods including the adjoint method. It does this via
the MAUD architecture (Hwang and Martins 2018), which
enables the computation of total (model) derivatives using
a unified equation (Martins and Hwang 2013). This matrix
equation unifies the chain rule, the direct method, the
adjoint method, a coupled form of the chain rule, and
hybrid methods. For OpenAeroStruct, the significance of
the unification is that our task is limited to computing the
partial derivatives of each component’s outputs or residuals
with respect to its inputs. If we then specify the appropriate
linear solvers, OpenMDAO solves the unified equation
to compute the needed derivatives. This amounts to the
adjoint method if we set up a purely aerodynamic or purely
structural OpenAeroStruct model, or the coupled adjoint

method if we include both disciplines (Martins et al. 2005;
Kenway et al. 2014). If, in a different setting, we set up a
model that has no states and residuals, solving the unified
equation would be equivalent to applying the chain rule to
assemble the partial derivatives to form total derivatives.

3.2 Load and displacement transfer

In OpenAeroStruct, the load and displacement transfer
is simplified by the assumption that the same spanwise
discretization is used for the aerodynamic and structural
models. The nodes of the structural mesh and the spanwise
sections of the aerodynamic mesh are computed from the
same wireframe mesh used for the wing. The structural
nodes have the same spanwise discretization as the
wireframe mesh and are placed a distance from the leading
edge in the chordwise direction based on a specified
percentage of the local chord. Likewise, each spanwise
section of the aerodynamic mesh is obtained by uniformly
splitting the corresponding section of the overall wireframe
mesh into the desired number of edges.

The load and displacement transfer scheme used in
OpenAeroStruct satisfies the requirements of being consis-
tent and conservative (Martins et al. 2005). Consistency
states that the sum of the nodal forces and moments obtained
via the load transfer must be equal to the forces and moment
resultants computed from the continuous pressure and shear
force distributions on the element. Since the resultants are
computed by integrating over a region, an infinite number of
choices of nodal forces and moments provide consistency.
Conservativeness states that the virtual work done by the
forces over virtual displacements on the aerodynamic and
structural meshes are equal. We now explain the load and
displacement transfer schemes and then show that they are
consistent and conservative.

For the load transfer, our objective is to transfer the
traction T from each panel to the structural nodes, as shown
in Fig. 4. The traction is assumed to be uniformly distributed
over the panel, where the net force is equal to that computed
by the VLM. Since the edges of the panels are aligned with
the structural nodes, half of the traction on the panel is
applied to each of the two structural nodes. The nodal force
and moment vectors on either the left or right structural node
are given by

Fs,i =
∫
panel

1

2
TdS = 1

2
TS (1)

Ms,i =
∫
panel

ri × 1

2
TdS = 1

2
rcp,i × TS, (2)

where the subscript s indicates that the quantity is on the
structural mesh, i = 1, 2 indicates the left or right node, S

is the panel area, ri is the vector pointing from the structural
node to a point on the panel, and rcp,i points from the
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Fig. 4 Load transfer from a
panel on the aerodynamic mesh
to adjacent structural nodes.
Since the force is assumed to be
uniformly distributed on the
panel, we can compute the
resultant moments on the nodes
using the vectors pointing to the
aerodynamic centers of pressure

structural node to the aerodynamic center of pressure for
the panel. We consider the center of pressure to be at the
middle of the panel in the spanwise direction and a quarter-
length of the panel from the front in the chordwise direction.
With the Fs,i and Ms,i obtained using this load transfer
scheme, consistency is satisfied by construction because the
nodal forces and moments are defined to be the equivalent
resultants from the traction field.

For the displacement transfer, our goal is to transfer
the computed displacements on the structural mesh,
us,i , to deflections on the aerodynamic mesh, ua . The
structural displacements are partitioned into translational
displacements, ds,i , and rotations, θ s,i . The displacement
transfer is given by

ua = 1

2

2∑
i=1

(
ds,i + θ s,i × ri

)
, (3)

where again, ri is a vector pointing from the left or right
structural node to the point on the aerodynamic mesh
corresponding to ua . A constant factor of one-half is used,
since we average the contributions from the left and right
structural nodes no matter where we are in the panel. We
can do this since we evaluate the aerodynamic mesh only at
the midpoint in the spanwise direction.

We now verify that our load and displacement transfer
scheme is conservative. The virtual work done on the struc-
tural mesh by the nodal forces and moments corresponding
to a panel is

δWs =
2∑

i=1

(
Fs,i · δds,i + Ms,i · δθ s,i

)
. (4)

Inserting Fs,i = 1
2TS andMs,i = 1

2rcp,i × TS, we obtain

δWs = 1

2

2∑
i=1

(
T · δds,i + rcp,i × T · δθ s,i

)
S. (5)

The virtual work done on the aerodynamic mesh by the
traction is

δWa =
∫
panel

T · δuadS. (6)

Inserting ua from (3), we obtain

δWa = 1

2

2∑
i=1

∫ (
T · δds,i + T · δθ s,i × ri

)
dS. (7)

Since T, ds,i , and θ s,i are constant over the panel, the
integration yields

δWa = 1

2

2∑
i=1

(
T · δds,i + T · δθ s,i × rcp,i

)
S. (8)

By vector algebra, we have

T · δθ s,i × rcp,i = δθ s,i × rcp,i · T
= δθ s,i · rcp,i × T = rcp,i × T · δθ s,i . (9)

Therefore, from (5), (8), and (9), we conclude that δWa =
δWs , which proves that our load and displacement transfer
scheme is conservative.

3.3 Aerostructural system

We now couple the aerodynamic and structural systems
described above to solve the aerostructural system. We
can think of the aerodynamics and structures as two
separate groups that receive inputs and produce outputs.
The aerodynamics group receives a mesh and outputs
aerodynamic loads, whereas the structural group receives
aerodynamic loads and outputs structural displacements.

The default setting within OpenAeroStruct uses Gauss–
Seidel fixed-point iterations to converge the multidisci-
plinary analysis (MDA). This means that each analysis is
run using the most recent output from the other analysis
until a consistent set of state variables is returned. However,
it is possible to use Newton’s method to converge the cou-
pled aerostructural system: the same partial derivatives used
in implementing the adjoint method are used in computing
the Newton step at every iteration.

One important feature of OpenMDAO is the ability
to subdivide a problem into components that have a
small number of inputs and outputs and contain relatively
simple analyzes. An advantage of this decomposition is
that the component-level partial derivatives are simpler to
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symbolically differentiate if they are not done with AD.
We can reorganize the components within the system,
and OpenMDAO automatically computes the correct total
coupled derivatives using the MAUD architecture (Hwang
and Martins 2018). Additionally, we can simply add a few
lines of code to obtain derivatives with respect to a new
output.

Now that we have presented the underlying theory for
the aerodynamic and structural models, we examine how
the internal components within OpenAeroStruct pass data;
see Fig. 5. The prob vars component contains information
about the airflow around the lifting surfaces. Just below
this, we have the wing group, which contains geometric
information about the lifting surface and structural spar.
There is one such group for each lifting surface, with a
user-defined name (the default name is wing).

We then have a coupled group that solves for the aero-
dynamic and structural state values. Within this coupled
group, the aero states group assembles the aerodynamic
influence coefficient (AIC) matrix and computes the aero-
dynamic loads acting on each panel of the lifting surfaces.
There is only one aero states group no matter how many

lifting surfaces are defined by the user. The struct states
group computes the structural displacements based on the
aerodynamic loads.

Next, there is a wing perf group, which calculates the
lift and drag performance of the lifting surface. Again, there
is one perf group for each lifting surface defined by the
user. Lastly, the total perf group calculates aerostructural
performance metrics for the entire aircraft, such as fuel burn
and coefficient of moment.

We now offer some ideas for modifications to the
model. Currently the structural mesh and aerodynamic
mesh must have the same spanwise discretization, but it
is possible to use interpolation to allow different spanwise
discretizations. To do so, a consistent and conservative
load and displacement transfer method must be used.
Additionally, a different FEA model could be used in
place of the tubular spar. A past user of OpenAeroStruct
implemented a structural model that computes the cross-
sectional properties of a wingbox to obtain more realistic
wing deflection properties. Because of the code modularity,
the user was able to do this cleanly and quickly by replacing
the existing tubular spar with his wingbox model.

Fig. 5 Component layout for aerostructural analysis and optimization; this hierarchy and data-passing diagram is automatically produced by
OpenMDAO for debugging and educational purposes



Open-source coupled aerostructural optimization using Python 1823

Fig. 6 XDSM diagram (Lambe
and Martins 2012) for default
aerostructural optimization. The
x vectors are design variables
and the y vectors are states,
where ∗ represents the values at
the design optimum. The default
solver for the MDA is
Gauss–Seidel within
OpenAeroStruct, shown here

3.4 Aerostructural optimization

For aerostructural optimization, we can use any combina-
tion of the previously discussed design variables. We also
have two aerostructural outputs: fuel burn computed via the
Breguet range equation, and a constraint ensuring that lift
equals weight. The Breguet range equation is given by

Wf = (W0 + Ws)

[
exp

(
R · SFC

V

(
L

D

)−1
)

− 1

]
,

where Wf is the fuel weight, W0 is the aircraft empty
weight, Ws is the structural weight, R is the range, V is the
velocity, and SFC is the specific fuel consumption.

Users can easily add their own objective functions
or constraints by creating an OpenMDAO component
that computes the desired quantities. Because the total
derivatives are computed using the unified chain rule
and the adjoint method, the user simply needs to supply
partial derivatives for the calculations done in the new
component, which makes introducing new outputs a
straightforward process. Since the software is open-source,
these components can be added to the main repository
to expand the capabilities of OpenAeroStruct. Figure 6
shows the XDSM diagram corresponding to aerostructural
optimization. Here, the input and output vectors, x and
y, respectively, vary depending on the design variables,
objectives, and constraints selected.

OpenMDAO can use a number of optimization algo-
rithms through the pyOptSparse interface (Perez et al.
2012).2 The optimization algorithm used to solve the
aerostructural design optimization problem is SNOPT, a
sequential quadratic programming approach that efficiently

2https://bitbucket.org/mdolab/pyoptsparse

solves large sparse nonlinear constrained optimization prob-
lems (Gill et al. 2002).

4 Education

OpenAeroStruct has been used in courses at ISAE-
SUPAERO (the University of Toulouse’s Institute for Aeros-
pace Engineering) and the University of Michigan. These
were graduate-level MDO courses taken by students whose
previous exposure to Python ranged from none to using it
in their daily research. Most of the students had experience
only with Matlab or C/C++, but they were able to easily
use OpenAeroStruct because of its simple run scripts
and detailed documentation. The course prerequisites
were not demanding: basic calculus, linear algebra, and
programming skills. The students appreciated being able
to test theories and hypotheses quickly by running tightly
coupled aerostructural optimizations in minutes on their
personal computers.

4.1 ISAE-SUPAERO

At ISAE-SUPAERO, the students used OpenAeroStruct to
learn about structural optimization, MDA, and MDO over
the span of a few hours. They worked in small groups
and examined the effects of mesh size, algorithmic options,
and component grouping on the overall optimization
performance. The students were given problem sets
instructing them to run the existing OpenAeroStruct model
in various configurations and draw conclusions based on
the results. To aid in their understanding of the different
models and the problem hierarchy, we developed an
interactive program to visualize the optimization history
and wing model. A sample visualization for an optimized
aerostructural model was shown in Fig. 1. In both years in
which OpenAeroStruct was used, the problem sets consisted

https://bitbucket.org/mdolab/pyoptsparse
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of a progression from structural optimization to MDA and
finally to MDO.

In the structural optimization section, the students
interpreted the optimization problem, discussed the optimal
thickness distributions, and looked at the effect of increasing
the mesh size. The goal here was to have the students work
with a simple hands-on numerical optimization problem that
they could interpret and evaluate using their knowledge of
physics.

In the MDA section, the students ran aerostructural
analyzes, assigning their own nonlinear and linear solvers
to converge the coupled systems. They were instructed
to compare fixed-point iteration (nonlinear block Gauss–
Seidel), Newton, and a hybrid approach where fixed-point
iteration is used as a start-up strategy for the Newton
iterations, effectively providing globalization. They were
also instructed to look at various linear solvers for Newton’s
method, including direct methods, linear block Gauss–
Seidel, Krylov subspace methods, and Krylov subspace
methods with preconditioning.

In the MDO section, the students performed aerostruc-
tural optimization. They were instructed to compare the
effect of the derivative computation method (finite differ-
ences and the adjoint method) on the computation time and
the number of optimization iterations. They interpreted the
optimized thickness and twist distributions, and they were
encouraged to experiment with different solver choices and
options to minimize the total optimization time.

A theme throughout the assignments was the emphasis
on the benefits of modularity, especially when it comes
to gradient computation using the adjoint method. Using
OpenMDAO’s model structure visualization, shown earlier
in Fig. 5, the students were able to see how the
overall OpenAeroStruct model decomposes into geometry,
aerodynamics, structures, load and displacement transfer,
and performance. In fact, the students were asked to
add their own component in the MDO section. The
aerostructural optimization was given to them as a fuel-
burn minimization problem, but they were instructed to
write a new component, one that computes range for a
given fuel burn, enabling them to reformulate the fuel-burn
minimization for a fixed range into a range maximization
for a fixed amount of fuel. They were responsible for
deriving and computing the partial derivatives of their
new component, but, as they saw first-hand, the modular
approach can update the total derivative computation
without any additional effort from the user.

4.2 University of Michigan

OpenAeroStruct was also used as a basis for the final project
in the MDO course at the University of Michigan. The
students worked individually to set up an aircraft of their

choice within OpenAeroStruct and performed aerodynamic,
structural, and aerostructural analysis and optimization.
They produced Pareto fronts of the fuel burn and aircraft
weight, and they examined how sequential optimization
compared to the multidisciplinary design feasible (MDF)
architecture (Cramer et al. 1994; Martins and Lambe 2013).
The students evaluated aircraft ranging from small-scale
UAVs to the AN-225 and compared the results from
OpenAeroStruct with real-world values. This allowed them
to combine their aircraft design knowledge with hands-
on experience of optimization methods, leading to a more
intuitive understanding of MDO. Previous assignments in
this course asked the students to implement optimization
methods from scratch. Using OpenAeroStruct allowed them
to explore different multidisciplinary solvers and design
variables much more rapidly.

Figure 7 appeared in a student’s final report. Because
OpenAeroStruct uses OpenMDAO, the students can easily
change the nonlinear solver used to converge the coupled
aerostructural system to investigate convergence trends
and computational costs, as shown in Fig. 7. Here,
the student compares the time to converge the coupled
system using different nonlinear solvers for decreasing
spar thicknesses, which increases wing flexibility and thus
coupling strength. Because of the short wall times, the
students can perform many aerostructural optimizations
with different formulations to compare relative aircraft
performance. We see that NLBGS generally requires less
time to solve the coupled system, but it cannot converge the
most strongly coupled systems that Newton can handle. As

Fig. 7 Comparison of different solvers for the solutions of the coupled
aerostructural system for level flight (1 g) and a pull-up maneuver
(2.5 g). As spar thickness decreases, the system becomes more strongly
coupled, and nonlinear block Gauss–Seidel (NLBGS) without Aitken
relaxation cannot converge the coupled system as well as Newton’s
method (Chauhan et al. 2017)
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the spar thickness decreases, the coupling strength decreases
and all solvers require less time to converge the system.

For the MDO course project, the first author compared
designs produced by sequential optimization and MDO
for a small-scale flying-wing unmanned aerial vehicle.
Figure 8 shows that the Pareto front for the MDO optima
always dominates the sequential optimization results. For
the sequential optimization, we follow the method presented
by Chittick and Martins (2008). First, we size the structure
based on fixed aerodynamic loads to obtain a structural
weight estimate, and then we calculate the optimal twist
distribution through an aerodynamic optimization based on
the fixed structural weight. We repeat this process until
the results converge. We run sequential optimizations at
multiple fixed span values to obtain the different points on
the Pareto front. The optimizer in the MDO approach can
control span, twist, and structural spar thickness.

5 Research applications

OpenAeroStruct has also proved useful for research and
has been used as a realistic testbed application by Bons
et al. (2017), Cook et al. (2017), and Friedman et al.
(2017). Because all of the internal analysis and derivative
computations are exposed to the user, invasive methods
can be implemented, including advanced methods for
robust optimization, reliability-based design optimization,
and conditional value-at-risk optimization.

Cook et al. (2017) used OpenAeroStruct to benchmark
a new method for optimization under uncertainty called
horsetail matching, which is a flexible approach to
optimization under a mix of probabilistic and interval
uncertainties. Horsetail matching minimizes the difference

Fig. 8 The MDO-obtained Pareto front always dominates the
sequential-optimization Pareto front

between the expected values of a quantity of interest
and a desired target. This allows designers to perform
robust optimization to try to minimize the chance of
failure for the majority of operating cases. Cook et al.
used OpenAeroStruct to easily and quickly compare their
proposed method with other optimization-under-uncertainty
methods using a physical problem representative of
larger systems of interest. Compared to a deterministic
optimization, their robust optimization resulted in a higher
angle of attack and a less aggressive aerodynamic twist for
better performance under uncertain conditions.

Friedman et al. (2017) used OpenAeroStruct as a test case
to quantify the effects of model discrepancy (uncertainty
associated with the fact that no model is perfect). Complex
multidisciplinary systems often consist of multiple pre-
existing physics-based models, which each have their
own associated uncertainty. Friedman et al. compared
different formulations of model discrepancy in coupled
systems and performed a pattern search optimization to
minimize the difference between each variable’s marginal
and conditional distributions. The coupled aerostructural
model in OpenAeroStruct was evaluated thousands of times
using a Gibbs sampler, which would not be tractable with a
more expensive coupled model.

As another example of OpenAeroStruct’s usefulness
in research, we present an aerostructural optimization
study that shows some of the fundamental tradeoffs in
wing aerostructural design. Table 1 shows the problem
formulation for the optimization problems in this study,
where β is a fixed weighting parameter that combines the
functions of interest. For each β value, the optimized result
is the same regardless of the initial planform.

Figure 9 shows three optimized wing planform shapes
and the corresponding structural thickness, twist, and
lift distributions. The leftmost column shows the initial
planform for the optimizations and the legend for the plots.
The next three columns show the optimization results for
different objective functions, where the leftmost is a fuel-
burn minimization, the rightmost is a structural spar weight
minimization, and the middle one corresponds to an equally
weighted optimization. Because fuel burn and spar weight
are of the same order and have the same units, we do not
nondimensionalize the weighted objective function.

For the fuel burn minimization, the optimizer increases
the span and decreases the root chord to produce a more
aerodynamically efficient wing. Additionally, the optimized
wing twist is positive for most of the wing, except at the
tip. Aerodynamic considerations dominate the design of
this specific wing, so the lowest fuel burn results in a
lift distribution that is close to elliptical. The optimized
thickness is greatest at the root and gradually decreases as
we approach the tip, as expected. This optimization results
in a lower total aircraft weight than that obtained from
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Table 1 Sample aerostructural
optimization problem
formulation within
OpenAeroStruct

Function/variable Description Size

Minimize βFB + (1 − β)Wstruct Objective function 1

w.r.t. Thickness Structural spar thickness ncp

Twist Aerodynamic twist ncp

α Angle of attack 1

Root chord Root chord 1

Taper Taper ratio 1

Subject to L = W Lift equals weight 1

KS
(
σ2.5g

) ≤ σyield Aggregated spar failure 1

FB stands for fuel burn. ncp corresponds to the number of control points for the B-spline interpolation
that controls the spanwise distribution of the variables. The numbers of thickness and twist control
points do not necessarily need to be the same. The structural failure constraint is aggregated using a
Kreisselmeier–Steinhauser (KS) function (Kreisselmeier and Steinhauser 1979; Lambe et al. 2017)

the structural spar weight minimization. When minimizing
structural spar weight, the optimizer reduces the span and
tries to minimize the thickness of the spar throughout.
To avoid structural failure, it twists down the outboard
section of the wing to unload the tip, as shown in the lift
distribution. In this case, the optimizer does not consider the
aerodynamic performance, except for its effect on the lift
constraint.

We have observed these same trends when using high-
fidelity analyzes in aerostructural optimization (Kenway
and Martins 2014), but we can explore the design
space much more quickly using OpenAeroStruct. This
ability to rapidly explore the wing design space was
especially valuable in the work of Bons et al. (2017),
where OpenAeroStruct enabled the rapid exploration
of multimodality in aerodynamic planform optimization,
helped explain the physics of this multimodality, and
provided promising starting points for much more costly

design optimizations based on the solution of the Reynolds-
averaged Navier–Stokes equations.

6 Conclusions

We have presented OpenAeroStruct, an educational open-
source low-fidelity aerostructural analysis and optimization
tool that uses NASA’s OpenMDAO framework. Its modular
implementation and efficient derivative computation make
it a unique tool for teaching the adjoint method and solution
methods for MDA and MDO.

OpenAeroStruct has already proved useful in both edu-
cational and research settings. It is straightforward to install
and use because it is open-source and well-documented.
Students can learn MDO techniques through realistic air-
craft design problems while experimenting with opti-
mization formulation and problem size. Additionally, it

Fig. 9 Optimized planforms, twist, lift, and thickness distributions for
three aerostructural optimizations with three different objective func-
tions. The first column shows the initial shape and provides a legend
for the plot. The second column is the result from a fuel burn mini-
mization and the rightmost column corresponds to a structural weight
minimization. The column between them shows the optimized result

for an equally-weighted combined objective function. Each case took
under a minute to run on a desktop computer. Multiple different start-
ing points were tested, but each starting point converged to the same
optimum for a given objective function, so we only show the results
from one starting point here
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produces simple MDO problems with variable levels of
fidelity that allow state-of-the-art MDA solvers and uncer-
tainty quantification methods to be tested quickly. Because
OpenAeroStruct captures some of the same trends as high-
fidelity analyzes, it can also be used to explore the design
space before resorting to more computationally expen-
sive methods for design refinement and better accuracy.

The modular nature of OpenAeroStruct encourages the
addition of more features through collaboration. Going
forward, we will expand OpenAeroStruct’s capabilities for
a variety of purposes, including stability-constrained UAV
optimization, multifidelity optimization, and trajectory
optimization.
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