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Abstract
For structural reliability analysis with time-consuming performance functions, an innovative design of experiment (DoE) strategy of
the Kriging model is proposed, which is named as the stepwise accuracy-improvement strategy. The epistemic randomness of the
performance value at any point provided by theKrigingmodel is used to derive an accuracymeasure of the Krigingmodel. The basic
idea of the proposed strategy is to enhance the accuracy of the Kriging model with the best next point that has the largest
improvement with regard to the accuracymeasure. An optimization problem is developed to define the best next point. The objective
function is the expectation that quantifies how much an untried point could enhance the accuracy of the Kriging model. Markov
chainMonte Carlo sampling and Gauss–Hermite quadrature are employed to make several approximations to solve the optimization
problem and get the best next point. A structural reliability analysis method is also constructed based on the proposed strategy and the
accuracy measure employed. Several examples are studied. The results validate the advantages of the proposed DoE strategy.

Keywords Structural reliability analysis . Design of experiments . The adaptive Krigingmodel . Monte Carlo simulation

1 Introduction

For a given engineering structure, the relationship be-
tween inputs and outputs is generally treated as a deter-
ministic function, called the performance function.
Without loss of generality, this study supposes the output
is a scalar value. The input variables are usually affected by
uncertain factors, which results in the uncertainty of the out-
put. Structural reliability theory treats the input variables as
random variables. The failure probability of a structure can be
defined by

Pf ¼ ∫IG≤0 xð Þ f X xð Þdx ð1Þ

where

IG≤0 xð Þ ¼ 1 G xð Þ≤0
0 G xð Þ > 0

�

G(x) is the performance function, and X = [X1,X2,…,XM]
T

is the random vector containing all basic input variables. fX(x)
is the joint probability distribution function (PDF) of X. A
fundamental and troublesome task of structural reliability
analysis(SRA) is to calculate the multiple integral shown in
(1). Several kinds of methods have been developed, mainly
including: (1) the first-order reliability method (FORM) and
second-order reliability method (SORM) (Zhao and Ono
1999); (2) random-simulation-based methods such as Monte
Carlo simulation (MCS) (Owen 2000; Zhang et al. 2010; Saha
and Naess 2010), importance sampling (IS) (Melchers 1990;
Cornuet et al. 2012; Owen and Zhou 2000), line sampling
(LS) (Pradlwarter et al. 2007) and subset simulation (SS)
(Au and Beck 2001; Au 2016; Neal 2003); and (3) surrogate
model-based methods (Gayton et al. 2003; Schueremans and
Van Gemert 2005; Kaymaz 2005). Several surrogate models,
including quadratic polynomial response surface (Pedroni
et al. 2010), sparse polynomial chaos expansion (Blatman
and Sudret 2011; Roussouly et al. 2013), moving least-
square regression (Salemi et al. 2016; Li et al. 2012), neural
networks (Schueremans and Van Gemert 2005), support vec-
tor machine (Song et al. 2013; Alibrandi et al. 2015), and
Kriging (Kaymaz 2005), are widely employed.

This study focuses on surrogate model-based methods and
employs the Kriging model to perform SRA. As an exact
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interpolation model, the Kriging model provides not only an
estimate of the performance value at any point but also the
corresponding mean squared error of the estimate, which is
called the Kriging variance. Kaymaz (2005), Gaspar et al.
(2014) and Shi et al. (2015) have already demonstrated its
advantage over polynomial response surface.

In recent years, Kriging has been applied to global optimi-
zation (Jones et al. 1998), sensitivity analysis (Zhang et al.
2015), stochastic simulation (Kleijnen 2009; Beers and
Kleijnen 2003) and SRA (Kaymaz 2005). Usually, the models
used for these engineering problems are time-consuming.
Kriging is used to reduce the computational cost and acquire
results with acceptable accuracy. Efficient DoE (the design of
experiments) strategy is needed to achieve the goal. Various
kinds of adaptive DoE strategies have receivedmuch attention
(Jones et al. 1998; Bichon et al. 2008; Echard et al. 2011; Lv
et al. 2015; Yang et al. 2015). To identify the area of
interest and targetedly enhance the accuracy of the
Kriging model, the statistical information provided by the
Kriging estimate and variance is used. For examples, Jones
et al. (1998) construct the expected improvement function
(EIF) for efficient global optimization. EIF measures how
much a point can improve the optimal value of a target
function in the sense of expectation.

For SRA, it is only necessary to fit the limit state of the
performance function, instead of the whole variable space.
Therefore, Bichon et al. (2008) propose the expected fea-
sibility function (EFF), which is used to search for points
in the vicinity of limit state. Echard et al. (2011) propose an
active learning reliability method by combining Kriging
and MCS (AK-MCS) and an innovative learning function
to measure the probability of grouping a point into the
wrong domain. By employing the learning function pro-
posed in (Echard et al. 2011), several Kriging-based reli-
ability methods, e.g., AK-IS (Echard et al. 2013), AK-SS
(Huang et al. 2016), AK-SSIS (Tong et al. 2015), PC-
Kriging-based reliability method (Schöbi et al. 2014),
Kriging-based system reliability methods (Fauriat and
Gayton 2014; Perrin 2016) and Kriging-based time-variant
reliability method (Hu and Mahadevan 2016a), have been
constructed. Tong et al. (2015), Gaspar et al. (2017) and
Fauriat and Gayton (2014) realize that the stopping criteri-
on in Ref. (Echard et al. 2011) may be too conservative for
engineering applications and propose modified ones. Ref.
(Jian et al. 2017) investigates the accuracy measures of the
Kriging model and derives the mean squared error of the
Kriging-based estimate of failure probability, which is
helpful to construct suitable stopping criterion. Yang
et al. (2015) define the expected risk function (ERF), and
Lv et al. (2015) propose a new learning function according
to information entropy. Dubourg et al. (2011) and Wen
et al. (2016) notice that it could be more timesaving to
refresh the DoE of the Kriging model with several selected

points at a time (e.g. employing parallel computing), and
construct their adaptive DoE strategies with remarkably
low number of iterations.

According to the definition of the failure probability, the
importance of a point in the vicinity of the limit state depends
on the joint PDF value. It is more rational that the adaptive
DoE strategy takes it into consideration. Picheny et al. (2010)
adapt the weighted IMSE (integrated mean square error) to the
failure probability estimation to measure the accuracy of the
Kriging model, and refresh DoE with the minimum point of
the weighted IMSE criterion. The stepwise uncertainty
reduction strategy proposed by Bect et al. (2012) also aims
at the improvement of the accuracy of a failure probability
estimation. More straightforward, Wang andWang (2014) de-
fine an estimated improvement sampling criterion and succes-
sively select its maximum point which is expected to maxi-
mize the accuracy enhancement of the Kriging-based reliabil-
ity estimation.

Ref. (Sun et al. 2017) proposes a global accuracy measure
of the Kriging model and a learning function LIF. LIF is an
overall compromise among the Kriging variance, the estimate
of the performance value, and the joint PDF of input variables.
It is designed to approximately quantify how much an untried
point could improve the accuracy of the Kriging model in the
sense of the proposed measure. However, the derivation of
LIF is based on two hypotheses, i.e. an untried point is able
to remarkably improve the accuracy of the Kriging model in a
spherical neighborhood (the center is the untried point and
the radius is proportional to the absolute value of its per-
formance function) and its contribution to the remaining
domain is neglected. In another word, to acquire an explicit
learning function, Ref. (Sun et al. 2017) considers only
the local accuracy enhancement of the Kriging model,
which underestimates the contribution of an untried point.
Therefore, the best next point defined by LIF may be not
good enough, and the adaptive DoE strategy proposed in
Ref. (Sun et al. 2017) is still improvable by weakening or
removing the hypotheses.

To further reduce the computational cost of SRA, this
study proposes a new DoE strategy, which is named as the
stepwise accuracy-improvement strategy. The basic idea is
to refresh the DoE with the point that is potential to en-
hance the accuracy of the Kriging model most, i.e. the best
next point. The accuracy measure proposed in Refs. (Jian
et al. 2017; Sun et al. 2017) is employed to quantify the
accuracy of the Kriging model. By introducing pseudo
Kriging model, the expectation that any untried point could
enhance the accuracy of the Kriging model is derived.
Then, an optimization problem is constructed to define
the best next point in an easily understandable way, i.e.
the maximum point of the expectation. To acquire more
accurate position of the best next point, this study directly
solves the optimization problem rather than deriving an
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explicit learning function under hypotheses. To remarkably
shorten the searching time of the best next point, some
simplifications are used, i.e. approximating the accuracy
measure of the Kriging model, reducing the candidates of
the best next point and employing Gauss–Hermite quadra-
ture to calculate the expectation. A procedure for SRA is
developed, in which the stepwise accuracy-improvement
strategy is employed. And the stopping criterion takes the
accuracy of the Kriging model (or the relative error of the
Kriging-based estimate of failure probability) into account.

The remainder of this study is organized as follows.
Section 2 reviews the theory of the Kriging model and
MCS. Section 3 constructs the stepwise accuracy improve-
ment strategy, which is followed by the SRA method in
Section 4. To demonstrate the advantage of the proposed
strategy and the proposed reliability analysis method, four
examples are analyzed in Section 5. Section 6 presents the
conclusion.

2 Kriging model and MONTE Carlo simulation

2.1 Review of the Kriging model

The Kriging model was developed by Krige for geostatistics
and improved by Matheron (1973). When used as a surrogate
model, it is supposed that the studied performance function
G(x) consists of two parts,

G xð Þ ¼ F β; xð Þ þ z xð Þ ¼ gT xð Þβþ z xð Þ ð2Þ
where F(β,x) is the deterministic part and z(x) is a realization
of a stochastic process. g(x) is the basis function of F(β,x). A
first-order polynomial is preferred as the basis function g(x) in
this study. β is the vector of regression coefficients, estimated
with generalized least squares. z(x) is a realization of a station-
ary Gaussian stochastic process with zero mean. The covari-
ance between two points (xi and xj) in the space X is defined
as,

Cov z xið Þ; z x j
� �� � ¼ σ2R xi; x j;θ

� � ð3Þ

where σ2 is the variance of the Gaussian process and R(xi,xj;θ)
is the correlation function with parameter vector θ. Among
several existing correlation functions, the anisotropic squared-
exponential function (also called the Gaussian correlation
function) selected in this study is the most widely used. It is
defined as

R xi; x j;θ
� � ¼ ∏

M

m¼1
exp −θm xmi −x

m
j

� �2	 

ð4Þ

where xmi and θm are the mth components of xi and θ,
respectively.

Given a DoE with N points SDoE = [x1,x2,…,xN] and their
performance valuesY = [y1,y2,…,yN]

T, the best linear unbiased
predictor ofG(x) and its corresponding mean squared error are
defined as follows.

μG;N xð Þ ¼ Ĝ̂N xð Þ ¼ gT xð Þβ̂̂þ r xð ÞTγ ð5Þ

σ2
G;N xð Þ ¼ σ̂̂2 1þ uT xð Þ GTR−1G

� �−1
u xð Þ−rT xð ÞR−1r xð Þ

� �
ð6Þ

where

β̂̂¼ GTR−1G
� �−1

GTR−1Y
γ ¼ R−1 Y−Gβ̂̂

� �
r xð Þ ¼ R x1; x;θð Þ;…;R xN ; x;θð Þ½ �T

σ̂̂2 ¼ 1

N
Y−Gβ̂̂
� �T

R−1 Y−Gβ̂̂
� �

u xð Þ ¼ GTR−1r xð Þ−g xð Þ
R ¼ R xi; x j;θ

� �� �
N�N

G ¼ g x1ð Þ; g x2ð Þ;…; g xNð Þ½ �T

The subscript N in (5) and (6) represents the number of
points in the DoE. σ2

G;N xð Þ equals zero if and only if x ∈
SDoE; thus, Kriging is an interpolation meta-model.
Equations (5) and (6) are dependent on the correlation pa-
rameter θ through R and r(x). Both cross-validation and
maximum likelihood estimation can be employed to obtain
θ. The latter is used here:

θ̂̂¼ argmax
θ

−N ln σ̂̂2
� �

−ln det Rð Þ½ �� �

2.2 Monte Carlo simulation

According to the estimator of G(x) in (5) and the formulas for
the failure probability in (1), the failure probability estimate
can be expressed as

P̂̂ f ;N ¼ ∫I Ĝ̂N<0 xð Þ f X xð Þdx ð7Þ

Since the computational expense of Ĝ xð Þ is quite small,

MCS is adopted to approximately evaluate P̂ f ;N . The approx-

imation of P̂ f is calculated by

P̂̂ f ;N≈~P f ;N ¼ 1

NMC
∑
i¼1

NMC

I Ĝ̂N ≤0 xMC;i
� � ð8Þ

where NMC is the number of i.i.d. random samples, which are

generated from fX(x). The coefficient of variation of ~P f ;N is,

δMC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ~Pf ;N

� �r
~Pf ;N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−~P f ;N

NMC~P f ;N

vuut ð9Þ
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δMC quantifies the accuracy of MCS and can be used to judge
when MCS can stop. Given a threshold level [δ], the MCS of
(8) is terminated when δMC satisfies (10).

δMC≤ δ½ � ð10Þ

Taking (9) into account,

NMC~P f ;N ≥
1−~P f ;N

δ½ �2 ð11Þ

It is notable thatNMC~P f ;N is the failure number of theMCS
random samples. When the failure of the studied structure is a

rare event, one can neglect ~Pf ;N on the right side of (11).
Then, the stopping criterion of MCS reads

NMC~P f ;N ≥
1

δ½ �2 ð12Þ

3 The stepwise accuracy-improvement
strategy

According to the theory of Gaussian processes, given the
model defined by (5) and (6), the real performance value at
a point x (G(x)) can be treated as a normally distributed var-
iable.

G xð Þ∼N μG;N xð Þ;σ2
G;N xð Þ

� �
ð13Þ

where σ2
G;N xð Þ is the Kriging variance. Equation (13) quan-

tifies the epistemic uncertainty of G(x) and the local accuracy
of the Kriging model in terms of the mean squared error. In
addition, the epistemic uncertainty of the sign of G(x) can be
derived from (13).

P IG≤0 xð Þ ¼ 1ð Þ ¼ P G xð Þ≤0ð Þ ¼ Φ
0−μG;N xð Þ
σG;N xð Þ

� 
ð14Þ

P IG≤0 xð Þ ¼ 0ð Þ ¼ P G xð Þ > 0ð Þ ¼ 1−Φ
0−μG;N xð Þ
σG;N xð Þ

� 
ð15Þ

Therefore,

P jI Ĝ̂N ≤0 xð Þ−IG≤0 xð Þj ¼ 1
� �

¼ Φ −UN xð Þð Þ ð16Þ

P jI Ĝ̂N ≤0 xð Þ−IG≤0 xð Þj ¼ 0
� �

¼ Φ UN xð Þð Þ ð17Þ

E jI Ĝ̂N ≤0 xð Þ−IG≤0 xð Þj
� �

¼ Φ −UN xð Þð Þ ð18Þ

where UN(x) is the learning function constructed by Echard
et al. (2011),

UN xð Þ ¼ jμG;N xð Þ=σG;N xð Þj

This section employs the statistical information above to
construct a measure to quantify the accuracy of the Kriging

model and P̂ f ;N , and then derives the expectation that any
given point could enhance the accuracy of the Kriging model
in terms of the employed measure. Furthermore, the maxi-
mum point of the expectation is defined as the best next point.
Several simplifications are employed to fasten the search of
the next best point. Refreshing the DoE with the acquired best
next point is the proposed DoE strategy, named as the step-
wise accuracy-improvement strategy, which aims at building a
sufficient Kriging model while calling the performance func-
tion as few times as possible.

3.1 The accuracy measure of the Kriging model and
P̂ f ;N

Taking both (1) and (7) into consideration, the absolute error

of P̂ f ;N relative to Pf can be calculated by

jP̂̂ f ;N−P f j ¼ j∫I ^ĜN<0
xð Þ f X xð Þdx−∫IG<0 xð Þ f X xð Þdxj

≤∫jI ^ĜN<0
xð Þ−IG<0 xð Þj f X xð Þdx ð19Þ

ĜN xð Þ dividesX space into two domains, i.e., the estimated

safe domain ĜN xð Þ > 0 and the estimated failure domain

ĜN xð Þ≤0. Point x disturbs the accuracy of P̂ f ;N if the signs

ofG(x) and ĜN xð Þ are different. The last term of (19) is equal
to the fraction of points in X space whose performance values
are wrongly predicted with respect to their signs, as shown in

Fig. 1 (domain II). Figure 1 also illustrates the reason why j
P̂ f ;N−P f j is lower than the last integration of (19).

Equation (19) is difficult (even impossible) to calculate in
engineering because G(x) = 0 is unknown. Fortunately, its ex-
pectation can be estimated based on the epistemic uncertainty
of IG ≤ 0(x) ((14)–(18)).

Fig. 1 Illustration of the last term in (19)
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E jP̂̂ f ;N−P f
� �

≤∫E jI ^ĜN<0
xð Þ−IG<0 xð Þj

� �
f X xð Þdx

¼ ∫Φ −UN xð Þð Þ f X xð Þdx
ð20Þ

To simplify, a new symbol is introduced:

EN ¼ ∫Φ −UN xð Þð Þ f X xð Þdx ð21Þ

EN is first proposed by Ref. (Sun et al. 2017), and further
studied by Ref. (Jian et al. 2017). Obviously, it quantifies the
fraction of the whole X space that is classified as domain II
(Fig. 1) in the sense of expectation. It is also an upper bound

for the expectation of the absolute error of P̂ f ;N . This study
employs EN as the accuracymeasure of the Kriging model and

P̂ f ;N .

3.2 The stepwise accuracy-improvement strategy

From Fig. 1 and the definition of EN, jP̂ f ;N−P f j is negligible
with a large probability if EN satisfies a predefined criterion.
Therefore, the best next point is defined as the one that can
most decrease EN in the sense of expectation.

3.2.1 An optimization problem for the best next point

A point x0 is added to the current DoE with y0, and a pseudo
Kriging model is constructed corresponding to the pseudo
DoE [x1,…, xN, x0] and [y1,…, yN, y0]

T. Then, the accuracy
of the pseudo Kriging model can be measured by EN + 1(x0,
y0), whose value depends on both x0 and y0.

ENþ1 x0; y0ð Þ ¼ ∫Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx ð22Þ

The Kriging surrogate model could generally be improved
after adding (x0, y0) in SDoE and Y. The improvement is mea-
sured as follows.

ΔE x0; y0ð Þ ¼ EN−ENþ1 x0; y0ð Þ
¼ ∫Φ −UN xð Þð Þ f X xð Þdx−∫Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx

ð23Þ

ΔE(x0, y0) is also a function of x0 and y0. Before calling to
the target performance function to calculate G(x0), one does
not know how much the Kriging model will be improved by
updating SDoE with x0. A measure that depends only on x0 is
needed to quantify or predict how much x0 could enhance the
accuracy of the Kriging model.

Equation (13) provides the distribution information of
G(x0), which is derived from [x1,…, xN] and [y1,…, yN]

T

in the framework of Kriging theory. Therefore, for given
x0, ΔE(x0,G(x0)) is a function of the normally distributed
variable G(x0). This study proposes the mathematical ex-
pectation of ΔE(x0, G(x0)) as the measure mentioned
above.

Δ x0ð Þ ¼ E ΔE x0; y0ð Þð Þ ¼ ∫þ∞
−∞ΔE x0; y0ð Þ f G x0ð Þ y0ð Þdy0

¼ EN−∫
þ∞
−∞ ENþ1 x0; y0ð Þ f G x0ð Þ y0ð Þdy0

ð24Þ

Then, this study defines the best next point (xN + 1) as the
one that maximizes (24).

xNþ1 ¼ argmaxΔ x0ð Þ ð25Þ

It is worth emphasizing that the feasible region of the
optimization problem of (25) is theoretically the whole
X space.

3.2.2 Approximation of the best next point

To compute the value of Δ(x0), (23) needs to be applied
at least several times, and EN + 1(x0, y0) is not easy to
compute if M ≥ 3. Therefore, optimizing (25) directly
may be too time-consuming for engineering applications.
To overcome this problem and efficiently determine the
approximate location of the best next point, some simpli-
fications are made.

1. Equations (21) and (23) can be rewritten as

EN ¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx
þ ∫UN> U½ �Φ −UN xð Þð Þ f X xð Þdx ð26Þ

ΔE x0; y0ð Þ ¼ ∫Φ −UN xð Þð Þ f X xð Þdx−∫Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx
¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx−∫UN ≤ U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx� �

þ ∫UN> U½ �Φ −UN xð Þð Þ f X xð Þdx−∫UN> U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx� �
ð27Þ

According to (17), the probability that the sign of
G(x) is correctly predicted is Φ(UN(x)). When UN(x) is
above a given threshold value [U], one can almost con-
firm I ĜN<0 xð Þ ¼ IG<0 xð Þ, ignore the epistemic uncertain-

ty of the sign of G(x), and consider that the first integral
in (26) contributes most of EN. Hence, attention is fo-
cused on the region where UN(x) ≤ [U] during the com-
putation of ΔE(x0, y0). As shown by (28), ΔE(x0, y0) is
approximated by ΔE′(x0, y0):

ΔE x0; y0ð Þ≈ΔE
0
x0; y0ð Þ

¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx−∫UN ≤ U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx
ð28Þ

This study proposes [U] = 2, in which situation the proba-
bility that the sign of G(x) is correctly predicted is larger than
0.977 if UN(x) > [U]. The reasonability of the approximation
of (28) is investigated in Section 5.
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2. A new symbol Δ~E x0; y0ð Þ is defined as (29),

Δ~E x0; y0ð Þ ¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xjUN xð Þ≤ U½ �ð Þdx
−∫UN ≤ U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X xjUN xð Þ≤ U½ �ð Þdx

ð29Þ
where fX(x|UN(x) ≤ [U]) is a conditional PDF,

f X xjUN xð Þ≤ U½ �ð Þ ¼
f X xð Þ

∫UN ≤ U½ � f X xð Þdx UN xð Þ≤ U½ �
0 UN xð Þ > U½ �

8<
:

Then,

Δ~E x0; y0ð Þ⋅∫UN ≤ U½ � f X xð Þdx

¼
∫UN ≤ U½ �Φ −UN xð Þð Þ f X

�
xjUN xð Þ≤ U½ �

�
⋅∫UN ≤ U½ � f X xð Þdx

� �
dx

−∫UN ≤ U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X
�
xjUN xð Þ≤ U½ �

�
⋅∫UN ≤ U½ � f X xð Þdx

� �
dx

2
4

3
5

¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx−∫UN ≤ U½ �Φ −UNþ1 xjx0; y0ð Þð Þ f X xð Þdx� �
¼ ΔE

0
x0; y0ð Þ

Therefore,

ΔE
0
x0; y0ð Þ∝Δ~E x0; y0ð Þ

and

ΔE
0
x0; y0ð Þ

Δ~E x0; y0ð Þ
¼ ∫UN ≤ U½ � f X xð Þdx

The domain of the integration of ΔE′(x0, y0) or Δ~E
x0; y0ð Þ is cabined if the Kriging model is with fair accura-
cy. In addition, the failure probability of an engineering
structure is often very small. Both situations make it inef-
ficient to generate i.i.d. random samples from the condi-
tional PDF fX(x|UN(x) ≤ 2) with the ordinary MC method.
The Markov chain Monte Carlo (MCMC) method per-
forms well in generating conditional random samples. By
setting appropriate parameters, one can obtain samples that
depend on each other weakly and seem sufficiently inde-
pendent and identically distributed for engineering appli-
cations. MCMC is employed in this study to approximately
perform the integration of (29).

Δ~E x0; y0ð Þ≈ 1

NE
∑
n¼1

NE

Φ −UN xE;n
� �� �

−
1

NE

� ∑
n¼1

NE

Φ −UNþ1 xE;njx0; y0
� �� � ð30Þ

where NE denotes the number of random samples from
MCMC method. SE ¼ xE;1; xE;2;…; xE;NE

� �
is treated as

an i.i.d. random sample sequence.
Instead of employing or constructing an optimization algo-

rithm to search for the best next point, this study treats {xE, n}
(n = 1,…,NE) as candidates for xN + 1 and chooses the one that

maximizes the expectation of Δ~E x0; y0ð Þ. Then, the optimi-
zation problem of (25) is simplified as

xNþ1 ¼ argmaxΔ x0ð Þ ¼ argmax∫þ∞
−∞ΔE x0; y0ð Þ f G x0ð Þ y0ð Þdy0

≈ argmax∫þ∞
−∞ΔE

0
x0; y0ð Þ f G x0ð Þ y0ð Þdy0

¼ argmax∫UN ≤ U½ � f X xð Þdx⋅∫þ∞
−∞Δ~E x0; y0ð Þ f G x0ð Þ y0ð Þdy0

¼ argmax∫þ∞
−∞Δ~E x0; y0ð Þ f G x0ð Þ y0ð Þdy0

≈ argmax
x0∈SE

~Δ x0ð Þ

ð31Þ
where

~Δ x0ð Þ ¼ ∫þ∞
−∞Δ~E x0; y0ð Þ f G x0ð Þ y0ð Þdy0 ð32Þ

3. According to the Kriging theory, G(x0) is treated as a
normal random variable with mean value μG, N(x0) and
variance σ2

G;N x0ð Þ. Then,

f G x0ð Þ y0ð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σG;N xE;i

� � exp −
y0−μG;N x0ð Þ� �2
2σ2

G;N x0ð Þ

 !

~Δ x0ð Þ ¼ ∫þ∞
−∞Δ~E x0; y0ð Þ f G x0ð Þ y0ð Þdy0

¼ ∫þ∞
−∞Δ~E x0; y0ð Þ 1ffiffiffiffiffiffi

2π
p

σG;N x0ð Þ exp −
y0−μG;N x0ð Þ� �2

2σ2G x0ð Þ

 !
dy0

¼ 1ffiffiffi
π

p ∫þ∞
−∞Δ~E x0;

ffiffiffi
2

p
σG;N xE;i

� �
t þ μG;N xE;i

� �� �
exp −t2
� �

dt

ð33Þ
where

t ¼ y0−μG;N x0ð Þffiffiffi
2

p
σG;N x0ð Þ

Obviously, Gauss–Hermite quadrature is very suitable to
approximately calculate the last integral in (33).

~Δ x0ð Þ≈ 1ffiffiffi
π

p ∑
j¼1

nG

wjΔ~E x0;
ffiffiffi
2

p
σG;N x0ð Þv j þ μG;N x0ð Þ

� �
ð34Þ

where nG is the number of quadrature points, and vj and
wj (j = 1,…,nG) denote the quadrature points and associat-
ed weights, respectively.

In summary, this study approximates the best next point as
follows:

xNþ1 ¼ argmaxΔ x0ð Þ≈ argmax
x0∈SE

~Δ x0ð Þ ð35Þ

where Δ(x0) is defined in Section 3.2.1 (see (22)–(24)),
and (29)–(34) provide the definition and the calculation

of ~Δ x0ð Þ.
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3.2.3 The pseudocode of the stepwise accuracy-improvement
strategy

The pseudocode of the stepwise accuracy-improvement strat-
egy is summarized as follows:

Step 1 Construct the Kriging model based on SDoE = [x1,
x2,…, xN] and Y = [y1, y2,…, yN]

T.
Step 2 Generate a random point set SE ¼ xE;1; xE;2;…;

�
xE;NE � with the MCMC algorithm from the conditional
PDF fX(x|UN(x) ≤ 2).
Step 3 For each candidate point xE, i (i = 1,…,NE)

For each quadrature point vj (j = 1,…,nG).
Construct a pseudo Kriging model based on SDoE = [x1,

x2,…, xN, xE, i] and Y = [y1, y2,…, yN, yE, i, j]
T.

yE;i; j ¼
ffiffiffi
2

p
σG;N xE;i

� �
v j þ μG;N xE;i

� �
ComputeΔ~E xE;i;

ffiffiffi
2

p
σG;N xE;i

� �
v j þ μG;N xE;i

� �� �
accord-

ing to (30).

Step 4 Estimate ~Δ xE;i
� �

(i = 1,…,NE) according to (34).
Step 5 Find the best next point xN + 1 ((35)).

3.3 Discussion of the approximation of (28)

EN, defined by (21), is also a general measure of the probability
that the Kriging model incorrectly predicts the sign of G(X).
As analyzed above, the probability that IG ≤ 0(x) and I Ĝ≤0 xð Þ
are equal is larger than 0.977 if UN(x) > 2. In other words, the
Kriging model is quite accurate in the region UN(x) > 2 for

reliability-analysis applications. ∫UN>2Φ −UN xð Þð Þ f X xð Þdx
(the last term of (26)) would not be significantly diminished
even if a point located in UN(x) > 2 were added to SDoE. In

contrast, ∫UN ≤2Φ −UN xð Þð Þ f X xð Þdx has much more potential
to decrease. Therefore, this study approximates ΔE(x0, y0)
with ΔE′(x0, y0) ((28)) and focuses on the domain UN(x) ≤ 2
when searching for the best next point. For a given coefficient

of variation, the number of i.i.d. points needed to estimateΔ~E
x0; y0ð Þ ((29)) is much lower than that needed to estimate
ΔE(x0, y0). Equation (28) is the key to reducing the computa-
tional burden of the proposed strategy.

4 A Kriging-based structural reliability
analysis method

In this section, a Kriging-based SRA method is constructed.
The DoE for building the Kriging model is adaptively updated
by the best next point from the stepwise accuracy-improvement

strategy proposed in Section 3.2. The failure-probability esti-
mate is calculated with MCS. The stopping criterion of the
reliability analysis procedure is defined based on EN. The main
steps of the SRA method are summarized as follows:

Step 1 Generate the initial DoE with Latin hypercube
sampling (LHS) and use the model of the studied
structure to obtain the corresponding performance
values. It is assumed that the input variables subject
to the standard normal distribution; this is reasonable
since, in engineering, multiple random variables can
usually be represented by a standard normal vector
exactly or approximately. The hypercube for produc-
ing initial DoE samples is [−5,5]M, and the number of
samples is N0.

SDoE ¼ x1; x2;…; xN0½ �
Y ¼ y1; y2;…; yN0

� �T
Step 2 Construct the initial Kriging model ĜN0 xð Þ.
A widely used toolbox, DACE (Kaymaz 2005;
Kleijnen 2009; Marrel et al. 2008; Dellino et al.
2009) in MATLAB, is employed here to construct
the Kriging model and predict performance values.
(t = 0)
Step 3 t = t + 1. Search for the best next point xN0þt based
on the strategy proposed in Section 3. Generate NE

random samples with the MCMC algorithm in the re-
gion UN0þt−1 xð Þ≤ U½ �, and the conditional PDF of
MCMC is defined by f X xjUN0þt−1 xð Þ≤ U½ �ð Þ. Referring
to Section 3.2, locate the best next point xN0þt that sat-
isfies (35). This study sets nG = 5 and [U] = 2. Add xN0þt

to the current DoE and calculate its performance function
value G xN0þtð Þ.
Step 4 Construct the Kriging model ĜN0þt xð Þ associated
with the updated DoE. If t divides a given positive integer
t0 exactly, continue to step 5. Otherwise, return to step 3.
Step 5 Estimate the target failure probability with MCS
and decide whether to terminate the iterative procedure.

Compute the failure probability estimate P̂ f ;N0þt and
EN0þt with the same MCS random samples. If they satis-

fy (37), end the procedure and output P̂ f ;N0þt. Otherwise,
return to step 3.

Continue the procedure of MCS until the coefficient of

variation of P̂ f ;N0þt is no more than [δ]. In this study, [δ] is
defined as

δ½ � ¼ 0:01 ð36Þ
According to (12),

NMCP̂̂ f ;N0þt ≥104
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The condition for stopping MCS is that the number of
failure random samples is no less than 104. SMC = {xMC, i|
i = 1,…,NMC} denotes the random point set of MCS. The
upper bound for the expectation of the absolute error of

P̂ f ;N0þt relative to Pf can be estimated by

EN0þt≈
1

NMC
∑
i¼1

NMC

Φ −UN0þt xMC;i
� �� �

The stopping criterion of the proposed reliability analysis
method is defined as

eε ¼ EN0þt=P̂̂ f ;N0þt ≤ eε½ � ð37Þ

In the proposed method, the computational cost of Step 3
depends on the efficiency of MCMC algorithm, the value of
NE and the programming technique. Among them, NE is the
most influential. This is discussed in detail in Section 5. MCS
may become less effective when the failure of the studied
structure is a rare event. Fortunately, the candidates for the
best next point are generated with MCMC method, while the
estimate of the target failure probability and the evaluation of
the termination criterion for the procedure are performed
based on another random point set from the MC method,
which means that whether or not the stopping criterion is
tested in an iteration has no effect on the quality of the future
best next points. One could neglect Step 5 at the preliminary
stage of the procedure or change the value of t0 as the iterative
procedure proceeds. In addition, both SS and IS have the

potential to replace MCS in Step 5 to calculate P̂ f ;N0þt and eε.

5 Numerical applications

In this section, four benchmark examples are studied to
validate the stepwise accuracy-improvement strategy

developed in Section 3 and the SRA procedure proposed
in Section 4. Three of the examples have explicit perfor-
mance functions with different numbers of input variables
and complexities, and the other is a frame structure with an
implicit performance function.

5.1 A series system

The following series system, which includes four branches, is
widely used in literatures (Echard et al. 2011; Bourinet et al.
2011; Cadini et al. 2014). Its performance function is defined
as

G xð Þ ¼ min

3þ 0:1 x1−x2ð Þ2− x1 þ x2ð Þ=
ffiffiffi
2

p
;

3þ 0:1 x1−x2ð Þ2 þ x1 þ x2ð Þ=
ffiffiffi
2

p
;

x1−x2ð Þ þ 6=
ffiffiffi
2

p
;

x2−x1ð Þ þ 6=
ffiffiffi
2

p
;

8>>><
>>>:

9>>>=
>>>;

ð38Þ

where X1 and X2 are i.i.d. variables that subject to the standard
normal distribution.

The method illustrated in Section 4 is applied to this
analytical example. The initial DoE contains N0 = 6 ran-
dom samples from LHS. To investigate the influence of
the number of conditional candidate points (NE) on the
efficiency of the developed strategy, perform the SRA
procedure three times with the same initial DoE and dif-

ferent values of NE. Figure 2 shows the graphs of P̂ f and
eε when NE equals 1000, 3000 and 10,000. These graphs
indicate that increasing the number of candidate points
does not remarkably increase the speed of convergence

of P̂ f or the decrement of eε.
Table 1 summarizes the results obtained using the

method in this study and other methods based on
learning functions. ERF and H are learning functions
proposed by Yang et al. (2015) and Lv et al. (2015),
respectively. To perform a fair comparison, all results in

Fig. 2 Graphs of P̂ f and eε with
different values of NE for the
series system
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Table 1 are with the same initial DoE. [eε] is the threshold
value of eε. The iterative reliability-analysis procedure is
treated as convergent if eε is no larger than [eε]. Ncall is
the number of calls to the studied performance function

when (37) is satisfied, and P̂ f is the corresponding esti-
mate of the target failure probability. ε represents the rel-

ative error of P̂ f compared with the reference value from
MCS. For values of [eε] listed in Table 1, the proposed
procedure is able to satisfy the corresponding conver-
gence condition with fewer DoE points, and the relative

error of P̂ f is acceptable for engineering applications even
when [eε] = 0.05.

Graphs of P̂ f and eε from different methods are shown in
Fig. 3. According to Fig. 3, the proposed method can roughly
estimate the target failure probability by evaluating (38) ap-
proximately 30 times, outperforming the learning-function-
based methods.

To further investigate the performance of the proposed
stepwise accuracy-improvement strategy, the NMC = 2.5 ×

106 points used to obtain the reference value of Pf are
treated as a test set, and Kriging models from different
methods are compared in terms of the number of signs of
performance function values that are wrongly predicted,
which is denoted by EW (39). The results are listed in
Table 2.

EW ¼ ∑
n¼1

NMC

jIG≤0 xMC;n
� �

−I Ĝ̂≤0 xMC;n
� �j ð39Þ

To test the stability of the proposed method, it is ran-

domly run 5 times. Figure 4 shows graphs of P̂ f and eε.
According to the information provided by Fig. 4, for this

example, P̂ f and eε with different initial DoEs converge
still fast, even though the convergence processes are
random.

As analyzed in Section 3.3, (28) is the key to reducing
the computational burden of the stepwise accuracy-

Table 1 Results of the series system

Method [eε] Ncall P̂ f (10
−3) ε

MCS – 2.5 × 106 4.497 –

AK-MCS+U 0.05 6 + 44 4.42 1.6%

0.01 6 + 62 4.50 <1%

AK-MCS+ EFF 0.05 6 + 54 4.41 2%

0.01 6 + 56 4.49 <1%

AK-MCS+ ERF 0.05 6 + 38 4.45 <1%

0.01 6 + 66 4.49 <1%

AK-MCS+H 0.05 6 + 58 4.38 2.5%

0.01 6 + 60 4.47 <1%

LIF based method
(Sun et al. 2017)

0.05 6 + 32 4.45 1.1%

0.01 6 + 54 4.49 <1%

The proposed method
(NE = 3000)

0.05 6 + 28 4.44 1.4%

0.01 6 + 48 4.47 <1%

Fig. 3 Graphs of P̂ f and eε from
different methods. The imaginary
line in (a) is the reference value of
Pf from MCS. Imaginary lines in
(b) denote different values of [eε]

Table 2 Comparisons ofs methods in terms of the real accuracies of the
Kriging models for the 1st example. EW denotes the number of wrongly
predicted points among 2.5 × 106 test points

Method EW

Ncall = 36 Ncall = 46 Ncall = 56 Ncall = 76

AK-MCS+U 2555 861 204 81

AK-MCS+ EFF 36,490 2761 1275 16

AK-MCS+ ERF 2007 269 215 61

AK-MCS+H 2481 2201 1664 59

LIF based method
(Sun et al. 2017)

805 286 150 27

The proposed method
(NE = 3000)

502 213 87 22
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improvement strategy. Equation (28) is equal to approxi-
mating (26) as follows:

EN ¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdxþ ∫UN> U½ �Φ −UN xð Þð Þ f X xð Þdx
≈ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx

ð40Þ

To investigate the reasonability of (28) and (40), a new
symbol is introduced,

λ ¼ ∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdx
∫UN ≤ U½ �Φ −UN xð Þð Þ f X xð Þdxþ ∫UN> U½ �Φ −UN xð Þð Þ f X xð Þdx

ð41Þ

Apparently, λ is the proportion of the contribution that the
region UN ≤ [U] makes to EN. Figure 5 shows the graphs of λ
from Kriging models with different number of DoE points.
For this example, it is easy to notice that is above 0.95 when
[U] = 2.

5.2 Modified Rastrigin function

Balesdent et al. (2013) and Echard et al. (2011) have al-
ready analyzed the modified Rastrigin function of (42), in
which X1 and X2 are i.i.d. standard normal variables. It is
adopted here to demonstrate that the proposed DoE strate-
gy is qualified to handle a complex non-monotone deter-
ministic function.

G xð Þ ¼ 10− ∑
2

m¼1
x2m−5cos 2πxmð Þ� � ð42Þ

Pf corresponding to (42) is estimated by the proposed
method with N0 = 6. Similar to Fig. 2 in Section 5.1, the
graphs shown in Fig. 6 investigate the dependensce of the
proposed method on NE.

The proposed method is compared with AK-MCS and LIF
based method (Sun et al. 2017) in terms of the number of calls

to the performance function and the relative error of P̂ f .
Results are summarized in Table 3.

According to Table 3, to obtain a Kriging model that
satisfies a given criterion, the procedure proposed in this
study requires fewer calls to the performance function
than learning-function-based methods. Figure 7 shows

in detail the changes in P̂ f and eε during iterations.
Table 4 investigates the real accuracy (EW) of Kriging
models from the proposed DoE strategy and learning
functions with the same test set (NMC = 3 × 105).

As the stepwise accuracy-improvement strategy is based on
MCMC sampling, the result of the proposed SRA method
have some degree of randomness. To investigate the random-
ness, the proposed method is run 5 times. Figure 8 shows the
results.

Fig. 4 Graphs of P̂ f and eε from
the proposed method with
random initial DoE (NE = 3000)

Fig. 5 Graphs of λ to investigate how much the region UN ≤ [U]
contributes to EN
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Figure 9 shows the graphs of λ, which is used to research
the proportion of the contribution the region UN ≤ [U] makes
to EN.

5.3 An uncertain primary-secondary system

Figure 10 shows the two-degree-of-freedom primary-
secondary system. It is characterized by the spring stiff-
nesses (kp and ks), the masses (mp and ms), and the
damping ratios (ξp and ξs). The natural frequencies (ωp

and ωs) of the two oscillators can be computed from (kp,
mp) and (ks,ms), respectively.

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=mp

q
ωs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p

This system suffers a white-noise base excitation
whose intensity is S0. Equation (43) provides the mean-

square relative displacement response of the secondary
spring.

E x2s
� � ¼ πS0

4ξsω3
s

ξaξs
ξpξs 4ξ2a þ θ2

� �þ msξ
2
a=mp

⋅
ξpω

3
p þ ξsω

3
s

� �
ωp

4ξaω4
a

2
4

3
5

ð43Þ
where

ωa ¼ ωp þ ωs
� �

=2
ξa ¼ ξp þ ξs

� �
=2

θ ¼ ωp−ωs
� �

=ωa

The concern in this example is the reliability of the
secondary oscillator, for its peak response is sensitive to
[mp,ms, kp, ks, ξp, ξs]

T. The performance function is de-
fined as

G Xð Þ ¼ Fs−ks max
0< t< τ

jxs tð Þj ð44Þ

where

X ¼ mp;ms; kp; ks; ξp; ξs; S0; Fs
� �T

Fs and τ denote the force capacity of the secondary oscil-
lator and the duration of loading, respectively. According to
(Der Kiureghian 1991), (44) can be rewritten as

G Xð Þ ¼ Fs−ksp
ffiffiffiffiffiffiffiffiffiffiffiffi
E x2s
� �q

ð45Þ

where p represents the peak factor and is set to 3 for sim-
plicity; see (Der Kiureghian 1991) for more details about
this system.

Fig. 6 Graphs of P̂ f and eε with
different values of NE for the
modified Rastrigin function

Table 3 Results of the modified Rastrigin function

Method [eε] Ncall P̂ f (10
−2) ε

MCS – 3 × 105 7.24 –

AK-MCS+U 0.05 6 + 295 5.98 17.4%

0.01 6 + 335 7.23 <1%

AK-MCS+ EFF 0.05 >356 8.73 20.5%

AK-MCS+ ERF 0.05 6 + 310 7.24 <1%

0.01 6 + 350 7.24 <1%

AK-MCS+H 0.05 6 + 320 7.21 <1%

0.01 >356 7.24 <1%

LIF based method
(Sun et al. 2017)

0.05 6 + 285 7.22 <1%

0.01 6 + 345 7.24 <1%

The proposed method
(NE = 3000)

0.05 6 + 215 6.89 4.9%

0.01 6 + 310 7.24 <1%
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All basic variables in this system are independent and
lognormally distributed, and their distribution parameters
are given in Table 5. The complexity of this system has
already been illustrated (Bourinet et al. 2011; Der Kiureghian
1991; Dubourg et al. 2013; Hu and Mahadevan 2016b).
It is adopted here to demonstrate that the performance
of the proposed DoE strategy remains outstanding as the
dimension of the inputs increases.

The proposed reliability-analysis scheme is applied to
this non-linear system with N0 = 20. According to Figs. 2
and 6, using a large number of candidate points(NE) does
not remarkably improve the efficiency of the stepwise
accuracy-improvement strategy. Therefore, the influence
of the value of NE is not investigated in this section. We
set NE = 3000 and randomly run the proposed method
three times. Figure 11 shows the results. To investigate
how much the region UN ≤ [U] contributes to EN, Fig. 12
shows the graphs of λ from Kriging models with differ-
ent number of DoE points.

To perform comparisons, several learning functions are
employed to estimate the failure probability of the

secondary oscillator. They are terminated when the advan-
tage of the proposed method is clear (Ncall = 720).

Figure 13a and b depict the convergence procedure of P̂ f

and the decrease of eε, respectively. Table 6 summarizes all
the results and compares different methods in terms of how
many IG ≤ 0(xMC, i) (i = 1, …, NMC) are wrongly predicted
among NMC = 3 × 106 i.i.d. points.

From Table 6 and Fig. 13, it is concluded that the

accuracy of P̂ f may be significantly better than the ac-

curacy of Ĝ xð Þ ¼ 0, which is easily understood from Fig.
1. For engineering applications, the latter is much more
important because some decisions (such as reliability-
based design) usually need to be made after estimating
the failure probability. This example validates the advan-
tage of the proposed DoE strategy in terms of fittingG(x) =
0 when the performance function is moderately high-
dimensional and sensitive to inputs.

5.4 A frame structure with an implicit performance
function

This example is taken from (Roussouly et al. 2013;
Blatman and Sudret 2010; Nguyen et al. 2009). As
depicted by Fig. 14, this frame structure has 8 finite
elements whose properties, including Young’s modulus
(E), eight moments of inertia (I) and cross section (A),
are listed in Table 7. This example involves 21 input
variables, and Table 8 provides their distribution infor-
mation. The correlation between variables is summarized
as follows:

ρ Ai; I ið Þ ¼ 0:95 i ¼ 1; 2ð Þ
ρ Ai;Aj
� � ¼ ρ I i; I j

� � ¼ ρ Ai; I j
� � ¼ 0:13 i≠ jð Þ

ρ E1;E2ð Þ ¼ 0:9

Fig. 7 Graphs of P̂ f and eε from
different methods for the
modified Rastrigin function

Table 4 Comparisons of methods in terms of the real accuracies of
Kriging models for the 2nd example

Method EW

Ncall = 106 Ncall = 206 Ncall = 306 Ncall = 356

AK-MCS+U 15,202 11,492 4159 127

AK-MCS+ EFF 146,993 66,605 16,516 5083

AK-MCS+ ERF 24,751 13,578 417 114

AK-MCS+H 33,130 14,040 698 165

LIF based method
(Sun et al. 2017)

12,119 2382 329 120

The proposed method
(NE = 3000)

11,242 2206 196 88
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The other variables are mutually independent.
Let s(x) denote the top displacement, as depicted in

Fig. 14. The safety domain of this structure is defined as
the domain in which the modulus of s(x) is less than the
given threshold value, 0.06 m. The performance function
is

G xð Þ ¼ 0:06−js xð Þj ð46Þ

To obtain a reference value of Pf, NMC = 1.3 × 106 i.i.d.
simulations are performed, and 154 of them are failures.
Therefore,

PREF
f ¼ 1:185� 10−4

The 1.3 × 106 i.i.d. points used to compute PREF
f are

also employed to test all the Kriging models constructed
below. In this way, the learning functions and the pro-
posed DoE strategy are fairly compared and the conclu-
sion is not influenced by the coefficient of variation of
PREF

f .

The proposed structural reliability scheme and learning
function-based methods are implemented with N0 = 25. All
procedures are terminated when Ncall reaches 225. Figure 15

Fig. 8 Graphs of P̂ f and eε from
the proposed method with
random initial DoE (the 2nd
example, NE = 3000)

Fig. 9 Graphs of λ based on Kriging models with different DoE points
(the 2nd example)

Table 5 Distribution parameters of input variables of the 3rd example

Variable kp ks mp ms ξp ξs S0 Fs

Mean 1 0.01 1.5 0.01 0.05 0.02 100 15

Standard deviation 0.2 0.002 0.15 0.001 0.02 0.01 10 1.5

Fig. 10 The primary-secondary system
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shows the graphs of λ from Kriging models built according to
the proposed method.

Figure 16 shows plots of P̂ f and eε. From Fig. 16b, the
proposed method satisfies the stopping criterion ([eε] = 0.05)
after calling (46) about 150 times. Table 9 quantifies the ac-

curacies of these methods in terms of EW, P̂ f and eε as Ncall

increases. Both Fig. 16 and Table 9 demonstrate the efficiency
of the stepwise accuracy-improvement strategy and the pro-
posed reliability analysis method for this implicit performance
function.

5.5 Summary of results

To validate the efficiency of the proposed DoE strategy and
SRA method, four benchmark examples are studied and sev-
eral methods are compared qualitatively and quantitatively.
According to the results, conclusions are summarized as
follows:

(1) The stepwise accuracy-improvement strategy is able to
roughly approximate the target failure probability quick-
ly. With same initial DoE, the proposed strategy needs
fewer DoE points than other learning functions to satisfy
a given stopping criterion (Figs. 3, 7, 13 and 16; Table 1
and Table 3).

(2) By testing the Kriging models with the same ran-
dom samples (Tables 2, 4, 6 and 9), it is obvious
that Kriging models based on the proposed strategy
are more accurate than those based on learning
functions.

(3) As MCMC sampling are employed during the
search of the best next point, the efficiency of
the stepwise accuracy-improvement strategy has
more or less randomness. By randomly running it
several times in the first three examples (Figs. 4, 8
and 11), it is concluded that the proposed strategy
is stable and the randomness is more likely to be
negligible.

(4) According to Figs. 5, 9, 12 and 15, for given [U], the
proportion of the contribution of the regionU < [U] to EN

increases with Ncall. Generally, the proportion is above
90% when [U] = 2, which validates the reasonability of
(28).

(5) Figures 2 and 6 indicate that increasing the number
of candidate points does not remarkably make the
proposed strategy more efficient when NE > 1000.
There are lots of untried points that could enhance
the accuracy of the Kriging model when it is not
accurate. On this condition, the best point among
NE (=1000) ones may be good enough even if it is
not the real best next point. As the improvement of
the Kriging model, the region [U] < 2 tends to be
cabined, and NE (=1000) conditional random points
may cover this region well. From this perspective,
it is understandable that large number of candidate
points benefits little.

Fig. 11 Graphs of P̂ f and eε from
the proposed method with
random initial DoE (the 3rd
example, NE = 3000)

Fig. 12 Graphs of λ based on Kriging models with different DoE points
(the 3rd example)
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Fig. 13 Graphs of P̂ f and eε from
different methods for the primary-
secondary system

Table 6 Comparisons of methods in terms of the real accuracies of
Kriging models for the 3rd example. NMC = 3 × 106 i.i.d. points are
generated, and 14,147 of them are located in the failure domain. The
reference value of Pf is 4.716 × 10−3

Method Ncall EW P̂ f (10
−3) ε eε

AK-MCS+U 300 4492 4.07 13.6% 0.31

500 2137 4.55 3.41% 0.15

700 1301 4.73 0.36% 0.88

AK-MCS+ EFF 300 2957 4.17 11.6% 0.70

500 1467 4.78 1.32% 0.52

700 7898 7.08 50.2% 0.85

AK-MCS+ ERF 300 5232 3.91 17.1% 0.30

500 3884 4.10 13.2% 0.22

700 3042 4.24 10.2% 0.17

AK-MCS+H 300 5262 4.01 15% 0.46

500 3235 4.29 9.0% 0.22

700 2328 4.48 4.95% 0.15

LIF based method
(Sun et al. 2017)

300 2024 4.77 1.20% 0.22

500 994 4.61 1.17% 0.11

700 641 4.74 0.42% 0.05

The proposed method
(NE = 3000)

300 1394 4.65 1.43% 0.11

500 649 4.71 0.22% 0.58

700 384 0.472 <0.1% 0.04

Fig. 14 The frame structure (m)

Table 7 Properties of finite elements of the frame structure

Elements Young’s modulus Moment of inertia Cross section

1 E1 I5 A5
2 E1 I6 A6
3 E1 I7 A7
4 E1 I8 A8
5 E2 I1 A1
6 E2 I2 A2
7 E2 I3 A3
8 E2 I4 A4

Table 8 Distribution information of input variables of the frame
structure

Variable Distribution Mean Standard deviation

P1 Lognormal 133.454 40.04

P2 88.97 35.59

P3 71.175 28.47

E1 Normal 2.1738 × 107 1.9152 × 106

E2 2.3796 × 107 1.9152 × 106

I1 Truncated normal
(0,∞)

8.1344 × 10−3 1.0834 × 10−3

I2 1.1509 × 10−2 1.2980 × 10−3

I3 2.1375 × 10−2 2.5961 × 10−3

I4 2.5961 × 10−2 3.0288 × 10−3

I5 1.0812 × 10−2 2.5961 × 10−3

I6 1.4105 × 10−2 3.4615 × 10−3

I7 2.3279 × 10−2 5.6249 × 10−3

I8 2.5961 × 10−2 6.4902 × 10−3

A1 Truncated normal
(0,∞)

3.1256 × 10−1 5.5815 × 10−2

A2 3.7210 × 10−1 7.4420 × 10−2

A3 5.0606 × 10−1 9.3025 × 10−2

A4 5.5815 × 10−1 1.1163 × 10−1

A5 2.5302 × 10−1 9.3025 × 10−2

A6 2.9117 × 10−1 1.0232 × 10−1

A7 3.7303 × 10−1 1.2093 × 10−1

A8 4.1860 × 10−1 1.9537 × 10−1
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6 Conclusion

This study proposes a new Kriging-based DoE strategy
called the stepwise accuracy-improvement strategy. The
principle of the proposed strategy is to refresh the DoE
and the Kriging model with the point that has the larg-
est improvement with regard to the accuracy of the
Kriging model. To do this, an upper bound error of
the Kriging-based estimate of the failure probability is
treated as the accuracy measure of the Kriging model.
The expectation that quantifies how much a untried
point could enhance the accuracy of the Kriging model
is derived. Then, the best next point is defined as the
maximum point of the expectation. To search for it
within acceptable time, the domain of integration of
the accuracy measure of the Kriging model is limit to
the region U < [U] (this study sets [U] = 2), conditional
points generating with the MCMC algorithm are used to
approximately compute the accuracy measure and at the

same time act as the candidates of the best next point,
and Gauss–Hermite quadrature is employed to compute
the expectation mentioned above. A SRA method is
constructed mainly based on the stepwise accuracy-
improvement strategy. According to the comparisons be-
tween it and several learning function-based methods,
the advantage of the SRA method and the stepwise
accuracy-improvement strategy proposed by this study
is demonstrated.

In addition, the idea of the stepwise accuracy-improvement
strategy, i.e. deriving how much a tried point could im-
prove a given Kriging model with regard to an accuracy
measure, defining the best next point and searching for
it, is also available to develop Kriging-based time-variant
reliability method.

Fig. 15 Graphs of λ based on Kriging models with different DoE points
(the 4th example)

Fig. 16 Graphs of P̂ f and eε from
different methods for the frame
structure

Table 9 Results of the frame structure

Method Ncall EW P̂ f (10
−4) ε eε

AK-MCS+ EFF 75 193 2.44 106% 0.57

125 31 1.30 9.7% 0.12

175 9 1.15 −3.2% 0.06

AK-MCS+ ERF 75 81 1.36 14.9% 0.32

125 66 1.60 35.1% 0.25

175 38 1.23 3.9% 0.22

AK-MCS+H 75 38 1.09 −7.8% 0.29

125 41 1.38 16.2% 0.17

175 15 1.15 −3.2% 0.06

AK-MCS+U 75 60 1.12 −5.2% 0.25

125 281 2.78 134% 1.25

175 28 1.23 3.9% 0.44

LIF based method
(Sun et al. 2017)

75 63 0.62 4.74% 0.35

125 16 1.20 1.30% 0.12

175 10 1.19 0.65% 0.06

The proposed method
(NE = 3000)

75 29 1.09 7.79% 0.14

125 11 1.15 2.60% 0.07

175 7 1.14 3.90% 0.049
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