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Abstract
The Taguchi method is a widely used conventional approach for robust design that combines experimental design with quality
loss functions. However, this method can be only used in a single-response problem. In this study, we propose the use of principal
component analysis (PCA) to consider multi-response problems in the Taguchi method and to investigate the influence factor of a
cab suspension system. We compute the normalized quality loss for each response and perform PCA to calculate the multi-
response performance index. In this study, control factors with three level combinations and noise factors with random sampling
from each normal distribution are considered. Additionally, we applied multi-objective reliability based robust design optimiza-
tion (RBRDO) to accommodate design uncertainties and its data scattering based on rational probabilistic approaches. This is
used to develop the reliability assessment and reliability based design optimization and corresponds to an integrated method that
accounts for the design robustness in the objective function and reliability in the constraints.

Keywords Uncertainty . Principal Component Analysis (PCA) . Multi-response Performance Index (MPI) . Reliability Based
DesignOptimization (RBDO) . Reliability Based Robust DesignOptimization (RBRDO)

1 Introduction

In order to evaluate and improve the performance of any sys-
tem, it is necessary to analyze the experimental or observation
data associated with the system. Generally, various types of
errors including observation errors, experimental errors, and
modeling errors are inherent in experimental and observation
data. Therefore, it is important to eliminate these errors while
analyzing the data or to develop robust statistical models. In
this study, we developed a scatter analysis technique to control
the performance uncertainty due to the variation in topology
by dimension, shape, position, and the scattering in the
material. In the front-loading stage, we propose an optimal
design method by considering the uncertainty to satisfy vari-
ous objectives such as NVH, durability, and collision safety
performance. Specifically, we derive a vehicle performance

design solution that analyzes and evaluates the characteristics
of performance scattering with respect to various body struc-
tures and parts of a commercial vehicle cab suspension sys-
tem. Therefore, it is expected that this will contribute to in-
crease in the work efficiency and shorten the development
period by developing a parameter analysis technique that
can predict the performance without repeated analysis for
any given design change. Specifically, with respect to com-
mercial vehicles that are similar to the subject of the study, the
weight applied to the cabin suspension varies based on the
number and weight of passengers as well as the characteristics
of the component material with the operating environment,
and the center of gravity also exhibits uncertainty. Several
uncertainties are also involved in the performance test of the
general system. Most CAE models conduct a deterministic
performance analysis although this approach reduces the pre-
diction accuracy of the model. Therefore, various uncer-
tainties and scattering that exist in real engineering problems
are considered to control the scattering and to reduce the un-
certainties (Tu et al. 1999).

The aim of this study involves increasing efficiency of a reli-
ability based robust design optimization via principal component
analysis by considering the uncertainty as shown in Fig. 1. First,
we analyze the physical and epistemic uncertainty for uncertainty
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quantification in cab suspension components. Here, phys-
ical uncertainty implies a knowledge random factor that
is expressed as a probability distribution by knowing
accurate statistical characteristics, and it requires a sig-
nificant amount of numerical cost and time in advance.
On the contrary, epistemic uncertainty comes from a lack
of knowledge, and it can be reducible if more data are
collected. In the present study of a cap suspension de-
sign, the weight and center of gravity of a driver are
assumed to be noise factors that are classified as physical
uncertainty.

For this purpose, the main input variables that signifi-
cantly affect the performance of the cab suspension sys-
tem among the multiple random input parameters are se-
lected as control factors. The design of experiment (DOE)
is performed by considering the noise factors of random
sampling, and a meta-model is created for approximate
optimization. The Taguchi method that combines the ex-
perimental design method and quality loss is applied to a
single-response. However, it is difficult to apply the same
to multi-response problems in which correlation exists
between different values such as the scenario considered
in the present study. To solve these types of complicated
problems, we apply PCA to determine the importance of
various design variables and to reduce the time required
for subsequent design optimization.

Deterministic design optimization (DDO) is a commonly
used as an approximate optimization technique, and it uses
only a single fixed value for the meta-model and does not
consider the uncertainty and tolerance of design variables
(Sim et al. 2012). Thus, there is a tendency that the reliability
with respect to the optimum value is slightly low. In the case
of robust design optimization (RDO) that is a representative
probabilistic approach, we first determine the optimal condi-
tions for the factors that reduce dispersion and then minimize
the quality loss by moving the average of the quality charac-
teristics to the target. Therefore, we set the conditions for the
controllable factors that reduce the dispersion by determining
the factor that affects the dispersion of the quality

characteristics and make the quality characteristic insensitive
to changes in the uncontrollable factors. Another approach,
namely reliability based design optimization (RBDO), is for-
mulated as an optimal design problem that minimizes the ob-
jective function with constraints for reliability requirements.
Therefore, the user can give a desired index of reliability to the
constraint.

In a study by Choi et al. (2009), Monte Carlo Sampling
(MCS) is used to assess the reliability of constraints. An ap-
proximate function of the cumulative distribution function
(CDF) is used for the constraints to acquire a probability of
failure and its analytic sensitivities. Lee et al. (2008a) also
developed a reliability based robust design optimization
(RBRDO) method with the dimension reduction method and
compared it to the performance moment integration (PMI)
method and percentile difference method (PDM) in terms of
accuracy and efficiency.

In this study, deterministic optimization is first performed,
and the result is used as the initial value of RBRDO (Shahrak
and Noorossana 2014; Motta and Afonso 2016; Youn and Xi
2009) to optimize robustness as well as reliability. The
RBRDO can be used as an integrated method to obtain opti-
mal design by providing design robustness to the objective
function and simultaneously providing the desired index of
reliability to the constraint condition.

2 Multiple performance characteristics
of a cab suspension system

2.1 Problem definition

Recently, there is an increase in the demand for ride comfort in
addition to the functions and performance of commercial vehi-
cles such as mounting an air suspension that is shocked by air
instead of a spring Lee et al. (2008b). Therefore, studies on cab
suspension system that directly affects vibration reduction are
actively performed such that a driver can work comfortably
when given the vibrations and shocks generated during a ride
(Cole 2001). Specifically, the cab suspension system of a com-
mercial vehicle absorbs even minute shocks that are transmitted
to the driver’s seat in the cabin through the wheels and the frame,
and thus, ride comfort is excellent and the stability is maintained
especially on the expressway. Therefore, the cab suspension in-
cludes a shock absorber for supporting a hydraulic mechanism
and a cabin mounted on a frame of the vehicle, an air spring
installed between the frame and the cabin to support the cabin
with an elastic force, and a leveling valve that adjusts the height
of the cabin by controlling the internal pressure of the air spring.

In the front-loading stage of new car development, studies
evaluated the construction of a performance integrated vehicle
development process by considering the geometry as well as
the ride and handling (R&H) by predicting and controlling the

Fig. 1 Flowchart of research
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scatter factors. In this process, the necessity of a technique to
reduce the error between the test results under the uncertainty
and the predicted value is increased by applying probability
statistics techniques.

In this study, we establish the design of an experimental
table by considering the control factor and noise factor for
multi-response problem and determine influential design fac-
tors through principal component analysis and analysis of var-
iance. This ensures that the robust design and reliability-based
design of cab suspension are performed easily and quickly in
the front-loading stage. Generally, traditional cab suspension
systems must typically compromise ride comfort and stability.
Therefore, the cabin weight (weight) and the center of gravity
position (cogx) are considered as the noise factors with uncer-
tainty, and thus, design parameters of cab suspension system
including the bush and stabilizer bar subsystem as shown in
Fig. 2 are optimized to improve ride comfort while ensuring
the stability of the system. The descriptions of control factors

and noise factors are summarized in Table 1. All control fac-
tors were considered by adjusting the scale to [−1, 1].

2.2 Design of experiments

The presence of various uncertainty and variability causes the
deterministic model correction to degrade the predictive abil-
ity of the model. Therefore, it is necessary to create a statistical
model with the random input variables through uncertainty
modeling. Subsequently, several input variables that signifi-
cantly affect the system performance are selected as control
factors among the multiple random input variables. We apply
the statistical optimization technique by using methods, such
as design of experiment (DOE) and Taguchi method, to estab-
lish the random sampling meta-model. Furthermore, we cal-
culate the optimal condition of the control factors that mini-
mize the standard deviation while satisfying the mean of the
response values to the target value.

(a) Design level configuration of cap suspension

Loading conditions(b) 

Fig. 2 Design architecture of cab
suspension
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The reasons for the control factor optimization experiment
are as follows. The first reason involves identifying the impor-
tant control factors that reduce variability caused by noise
factors. The second reason is to identify the control factors
that do not significantly influence the main function such that
the tolerances on these factors can be relaxed. The uncertainty
of the design variables is controlled by considering the noise
factors that are distributed based on the variation characteris-
tics centering on the mean value. It is critical to focus on an
engineering solution, i.e., improving the performance in a way
that minimizes the cost. In the study, two cases of an experi-
ment were performed to determine the effects of design pa-
rameters on the responses. Optimal settings are determined
such that a low variability for the responses is achieved.

The experimental procedure of parameter optimization cor-
responds to the crossed array format as shown in Fig. 3. The
use of a crossed control factor and noise factor array allows the
execution of each treatment combination of the control factor at
two or more treatment combinations of the noises. To verify the
efficiency of PCA that will be performed in next chapter,
ANOVA analysis of multi-response to all control factors was
performed, and the response graph was confirmed. In the ran-
dom sampling stage, the control factors of discrete sampling
and noise factors of random sampling that are distributed based
on the dispersion characteristics are considered. Thus, 27 trial
conditions were considered, and both noise factors were con-
sidered as a normal distribution with a 15% scatter around the
mean value. With respect to the two noise factors, 100 samples
are randomly extracted within the range of each distribution.
The loss function is calculated by considering the number of
iterations in each trial condition, and the results are shown in
Table 2. The F-statistic is the ratio of the mean squares. The P-
value is the probability from the cdf of the F-distribution such
that the F-statistic can assume a value that exceeds the comput-
ed test-statistic value. The preload angle of torsion bar (x6) and
total stiffness (x10) correspond to the highest sum of squares
value.

3 Principal component analysis

The Taguchi method is typically used for the design optimization
based on the design of experiment, and it combines the quality
loss and the experimental design technique. This is mostly avail-
able in the case of a single-response, and it is difficult to apply the
same to multi-response problem optimization. However, most

Table 1 Control factor and noise factor for design optimization

Factor Description

Control factor x1 Distance of hinge link

x2 Distance of tiliting grab handle

x3 Torsion bar hinge X

x4 Torsion bar hinge Z

x5 Torsion bar rate

x6 Preload angle of torsion bar

x7 Spring track FRT

x8 Spring track RR

x9 Spring track Stab. Bar

x10 Total stiffness

x11 Bush damping FRT

x12 Bush damping RR

Noise factor Weight Weight of cabin

Cogx The center of gravity X position

Fig. 3 Orthogonal array of
random sampling metamodel
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modern manufacturing processes demand the simultaneous opti-
mization of multiple response variables, and a few of these re-
sponses are often correlated. Until now, the weight of multi-
response optimization has been determined according to the en-
gineering judgments although this approach increases uncertain-
ty in the decision-making process. A method to solve the uncer-
tainty problem involves determining a weight for each response
although it is difficult to determine the weight. Other method
involves regression techniques but this also increases the com-
putational complexity and makes it difficult to depict the corre-
lation between responses. Furthermore, an important factor in a
single-response casemay not be present in amulti-response case.

Therefore, a more efficient solution was required to solve
such a complicated problem, and principal component analy-
sis (PCA) is accordingly applied as a solution. Fig. 4 shows
the flow chart for the PCA calculation. This significantly re-
duces the analysis time and calculation cost required for de-
sign optimization by determining and selecting the importance
of many design variables (Jollife 2002, Yang et al. 2007). In
summary, PCA is a data reduction technique that is used to
identify a small set of design variables that account for most of
the variance in the original values (Jean and Wang 2006). The
key concept of PCA is to indicate the direction of the data with
the greatest change. After a series of calculations, all changes

are included in the sets of coordinate axes, and the covariance
corresponds to a diagonal matrix. Therefore, a set of responses
is transformed into a linear combination of uncorrelated com-
ponents. The ability to determine optimal factors or level com-
binations in a multi-response problem is considered as the
greatest strength of the PCA (Antony 2000). Additionally, it
is possible to reduce the uncertainty due to the engineering
judgment that occurs while applying the Taguchi method.

3.1 Normalized quality loss of each quality
characteristics

The input data for the principal component analysis follows the
control factors, noise factors, and corresponding responses in the
random sampling DOE table. Taguchi categorizes the response
variables into the following three types: smaller-the-better(STB),
larger-the-better (LTB), and nominal-the-best (NTB) (Phadke
1989). In this study, there are two responses with STB charac-
teristics and one response with LTB characteristics. The formu-
lation for quality loss is shown in (1), and it is easily obtained
from Taguchi’s quality loss functions as follows:

For STB; Lij ¼ c
1

n
∑
n

k¼1
y2ijk

� �

For LTB; Lij ¼ c
1

n
∑
n

k¼1

1

y2ijk

 ! ð1Þ

where, Lij denotes the quality loss for the jth response (j =
1,2,…,p) in the ith trial condition (i = 1,2,…,m), and yijk denotes
the experimental value of jth response in the ith trial condition at
the kth replication, c denotes the quality loss coefficient, and n
denotes the number of repeated experiments (Gauri and Pal
2014). Thus, the SN ratio of each response is expressed as fol-
lows:

ηij ¼ −10*log10Lij ð2Þ

In order to transform the SN ratio of each response into a
scaled SN ratio, we compute the normalized quality loss
(NQL, Yij). Furthermore, the maximum quality loss for the
jth response is ηþj , the minimum quality loss for the jth re-

sponse is η−j , and NQL is then expressed using (3) as follows:

Y ij ¼
ηij−η−j
ηþj −η−j

where; 0≤Y ij≤1; i ¼ 1∼27; j ¼ 1; 2; 3 ð3Þ

As shown in Table 3, Yi1, Yi2, and Yi3 represent the NQL
values for the responses f1, f2, and f3 at the i

th trial condition,
respectively. Subsequently, we confirmed the correlation ma-
trix of the multi-performance, and the result is summarized in
Table 4. The results indicate that a high correlation exists
between f2 and f3, while f1 is less related to the other two
values.

Table 2 The analysis of variance (ANOVA) result of random sampling
case

Case Sum of squares Mean squares F-statistic P-value

x1 0.0430 0.02149 0.30 0.7663

x2 0.0602 0.03011 0.43 0.7006

x3 0.1054 0.05271 0.75 0.5720

x4 0.0701 0.03504 0.50 0.6678

x5 1.5414 0.77069 10.94 0.0838

x6 5.5281 2.76405 39.23 0.0249

x7 0.0117 0.00583 0.08 0.9235

x8 0.0032 0.00159 0.02 0.9779

x9 0.0012 0.00062 0.01 0.9912

x10 5.0128 2.50641 35.58 0.0273

x11 0.0137 0.00683 0.10 0.9116

x12 0.0021 0.00105 0.01 0.9853

Fig. 4 Flowchart of principal component analysis
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3.2 Computation of principal components

In order to solve the multi-response problem, the use of a
principal component (PC) is an effective method, and it means
that a small number of components (q) account for a large
proportion of the variance in the original responses (p).
Thus, the PCA result can be expressed as the uncorrelated
linear combination of PCs, and Zik (where, k = 1, 2, …, q
and q ≤ p) denotes a set of responses as shown in (4). Here,
Zi1 is termed as the first principal component and it implies
that it accounts for the maximum variance in the data. The
expression is as follows:

Zil ¼ al1Y i1 þ al2Y i2 þ⋯þ alpY ip

where; a2l1 þ a2l2 þ⋯þ a2lp ¼ 1 ð4Þ

Where, akp denote the elements of the eigenvector correspond-
ing to the k th largest eigenvalue, and the components with
eigenvalue larger than 1 are selected to replace the original
responses (Kaiser 1960).

The multi-response performance index (MPI) for the ith

trial is computed based on (5) as follows:

MPIi ¼ ∑
q

k¼1
Wk � Zik

where;Wk ¼ Eigenvalue of the lth PC
Sum of eigenvalues of all PC

; ∑
q

i¼1
Wk ¼ 1

ð5Þ
Wk denotes the proportion of overall variance of the responses
and is used as the weight for the k th PC. With respect to the
optimization of the MPI values, we determine the optimal
parametric settings for multi-response problem (Su and Tong
1997). In the study, the variances of the PCs that are termed as
eigenvalues and the coefficients that are termed as eigenvec-
tors are computed as shown as Table 5 and Table 6. From the

values, we consider the number of components that must be
selected to express the original response. The first principal
component accounts for more than 60.89% of the total vari-
ance in the original data as shown in Fig. 5. The eigenvector
for the first principal component with an eigenvalue of 2.1009
is [0.8812, 0.4407, −0.1713]. The second principal compo-
nent exhibits a variance of approximately 20.22%, an eigen-
value of 0.6978, and an eigenvector of [0.2341, −0.0919,
0.9679]. In the case of the second and third principal compo-
nents, the variance is low, and the eigenvalue value is less than
1, and thus it is not considered in theMPI equation. Therefore,
the multi-response performance index is calculated for all trial
conditions. Subsequently, we identify the factor and interac-
tion effects that significantly influence the multi-response per-
formance (Antony 2000).

3.3 ANOVA for multi-response performance index

To compare the results, the response graphs for two cases of
the random sampling meta-model, namely the weighted sum
of responses case and MPI based case, are shown in Fig. 6.
The weights in the case of weighted sum are assumed as the
same value. From the result, the response graph shows that the
influence as well as the tendency differ based on the case in
which the responses are simply multiplied with arbitrary
weights and the case in which the MPI values are used.
Specifically, there is a difference in the effect of torsion bar
rate (x5) and front bush damping (x11) when the two cases are
compared.

The eigen frequency among the responses is influenced
only by the total stiffness (x10) as the design variable.
Additionally, the tilting effort has a strong correlation with
the distance between the hinge and link part as well as the rate
(Nm/degree) and preload angle (degree) of the torsion bar that
acts as a spring to connect the body and suspension. From this

Table 3 Normalized
quality loss values for
each response

Trial(i) Yi1 Yi2 Yi3

1 1.0000 0.0000 0.7524

2 0.0000 0.3321 0.2640

3 0.3548 0.6349 0.5933

… … … …

26 0.3548 0.4388 0.5485

27 1.0000 0.0853 0.8801

Table 4 Correlation matrix of the multi-response

Correlation Eig.freq.(f1) Max. effort (f2) Min. effort (f3)

Eig.freq.(f1) 1.0000 0.4361 −0.1818
Max. effort (f2) 0.4361 1.0000 −0.1369
Min. effort (f3) −0.1818 −0.1369 1.0000

Table 6 Eigenvectors of the correlation matrix

Performance characteristics Principal component

1st PC 2nd PC 3rd PC

f1 0.8812 0.2341 −0.4108
f2 0.4407 −0.0919 0.8929

f3 −0.1713 0.9679 0.1841

Table 5 Eigenvalues of the correlation matrix

Principal component Eigenvalue % of variance Cumulative %

1st PC 2.1009 60.8954 60.8954

2nd PC 0.6978 20.2256 81.1210

3rd PC 0.6513 18.8790 100.0000

790 J. Lim et al.



mechanism, it is desirable to consider MPI based result with
linearity and the significant effect of the torsion bar rate.
Therefore, the MPI concept reduces the uncertainty that arises
from determining the weights based on the judgement of the
engineer. From the ANOVA, the effects of factors on the MPI
are summarized, and factors x6 and x10 are most influential
factors when compared with the other factors, and they ac-
count for more than 79% of the total variation. Furthermore,
factors x7, x9, and x12 exhibit a lower influence on MPI. From
the results, it is possible to determine the robust optimal design
condition in the multi-response problem with a factor combi-
nation with the highest MPI value. However, in this study, the
aim involves reducing the analysis time by subtracting the
main factor among many factors to perform a reliability-
based analysis under uncertainty as opposed to a simple ap-
proximate optimization. Based on the result, the factors in
which the sum of the effect percentage on MPI exceeds 95%
andwhich exhibit the lower rankwhen compared to half of the

number of factors are considered in the approximate optimi-
zation process such as DDO, RBDO, and RBRDO. The
ANOVA values of the six factors are summarized in Table 7.

4 Deterministic design optimization

4.1 Formulation of the DDO problem

The purpose of structural design and optimization involves
satisfying any performance reference value related to safety
and usability, and the performance reference value is usually
formulated as a limit state. General optimization techniques in
extant studies proceeded to satisfy the constraints required by
the system and to optimize the objective function. This tech-
nique is known as deterministic design optimization (DDO).

Variance percentage of each PC value

(b) Three responses at PC dimension

(a) 

Fig. 5 PCA result

(a) Result form weighted sum of responses

Result from MPI values(b) 

Fig. 6 Response graph of random sampling metamodel
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Thus, it was systematically used to reduce costs and improve
quality (Arora et al. 1995; Haftka et al. 1998). However, the
deterministic design technique does not account for the uncer-
tainties of design parameters, such as dimensions, models, ma-
terials, and loads, or indirectly consider the same by using
methods such as subjective judgement and partial safety factors.

Hence, the reliability of the optimal value is generally low
because it does not consider the uncertainty of the design vari-
ables, the tolerance required in the fabrication process, and the
fluctuation of material properties. This is a limitation point be-
cause only one fixed value is used as a representative value (Tu
et al. 1999). As a result, deterministic optimal solutions possess
the potential to reduce reliability levels (Beck and de Santanna
Gomes 2012). Based on the results of the deterministic optimi-
zation, we aim to provide a technique that quantitatively and
reasonably considers uncertainties and fluctuations in the design
parameters that occur during the initial design process.

The polynomial based response surface method
(RSM) is used to create the meta-model for optimum
design. The present study employs quadratic and cubic
functions to establish response surface meta-models ac-
cording to their nature of nonlinearity. There were a
total of 81 data sample used in training response surface
models. The statistical parameter R2 for evaluating the
approximation degree of the response surface must sat-
isfy approximately 95% or more.

The formulation of the deterministic design problem is
shown in (6) below. In this case, only the 6 factors and not
all the 12 factors are considered from the results of PCA and
ANOVA processes, and the corresponding constraints are in-
cluded. The expression is as follows:

Find x1; x3; x4; x5; x6; x10
Minimize f DDO ¼ f 1=4þ f 2=10− f 3=10
Subject to gopen a≥1

0≤gmax ef ≤20
−20≤gmin ef ≤0
groll a≤0:3
gsettl t ≤0:4
xiL≤xi≤xiUwhere; i ¼ 1; 3; 4; 5; 6; 10

ð6Þ

4.2 Result of the DDO optimal solution

For each of the six control factors selected through PCA and
ANOVA, the approximate optimal values of design variables
and the objective function are shown as initial values in
Table 8 while considering the random sampling based design
of experiments. Based on the results, the following two opti-
mization processes were performed: micro-genetic algorithm
(micro-GA) of a global optimization technique and sequential
two-point diagonal quadratic approximate optimization
(STDQAO) of a gradient-based optimization technique
(Song and Lee 2010; Kim et al. 2001; Coello and Pulido
2005). In Table 8, DDO solutions are demonstrated for two
cases of PCA (i.e., with PCA) and all design variables (i.e.,
without PCA). In order to identify the variation of optimal
solutions, the micro-GA search was conducted four times by
starting with different initial populations for the case of ‘with
PCA’. It is detected that micro-GA solutions are similar in
terms of design variables value (x1, x3, x4, x5, x6, x10) and
objective function value (fDDO) as shown in Table 8. From
the comparison between ‘with PCA’ and ‘without PCA’ under
both micro-GA and STDQAO, the latter (without PCA) pro-
duces the slightly better objective function values since ‘with-
out PCA’ actually works with the larger (i.e., non-reduced)
number of design variables.

The results confirmed that a sufficient objective is satisfied
even if the factors with low influence are excluded from the
optimum design process through the PCA and ANOVA.
Therefore, we significantly reduce the time and cost for
RSM calculation, and the formulation of optimization prob-
lem, such as RBDO and RBRDO, is simplified since the con-
sidered design variables are reduced. Specifically, the overall
objective result value of STDQAO in both cases is the lowest,
and the reliability-based optimization is performed with this
result as the initial value.

5 Design optimization under uncertainty

5.1 Formulation of the RBDO problem

In the study, it is necessary to improve the limit of optimal
design based on the deterministic approach as previously con-
firmed. Therefore, we first systematically approach the uncer-
tainties of design variables and apply reliability-based optimal
design that corresponds to a probabilistic approach that can
more accurately and rationally handle the stability of struc-
tures by applying logical probability and statistical theory.
The approach can be formulated as an optimal design problem
that minimizes the objective function with the reliability index
as a constraint (Sandgren and Cameron 2002). Thus, in con-
trast to the deterministic approach identified above, the prob-
ability constraint that satisfies the constraint exceeds the

Table 7 Pooled the analysis of variance (ANOVA) on MPI for low-
fidelity case

Case Sum of squares DoF Mean squares F-statistic P-value

x1 0.0262 2 0.0131 0.57 0.6371

x3 0.0732 2 0.0366 1.59 0.3861

x4 0.0325 2 0.0163 0.71 0.5860

x5 0.0709 2 0.0355 1.54 0.3937

x6 0.2273 2 0.1136 4.94 0.1684

x10 0.8690 2 0.4345 18.88 0.0503
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confidence probability according to the probabilistic ap-
proach. At this point, it is possible to obtain the robustness
of the constraint condition by changing the design area with
the reliability index that possesses the upper limit value and
the lower limit value based on the distribution characteristic of
the random variable. The objective function is to minimize the
fRBDO, and the reliability index criterion for five constraints
was considered. The RBDO also accounts for two cases of all
the design variables and the reduced design variables, similar
to the previous DDO. The reliability-based optimization prob-
lem in the reduced case is formulated as (7) as follows:

Find x1; x3; x4; x5; x6; x10
Minimize f RBDO ¼ f 1=4þ f 2=10− f 3=10
Subject to P gopen a≥1

� �
≥Rtarget ¼ Φ −βð Þ

P 0≤gmax ef ≤20
� �

≥Rtarget ¼ Φ −βð Þ
P −20≤gmin ef ≤0
� �

≥Rtarget ¼ Φ −βð Þ
P groll a≤0:3ð Þ≥Rtarget ¼ Φ −βð Þ
P gsettl t ≤0:4ð Þ≥Rtarget ¼ Φ −βð Þ
xiL≤xi≤xiUwhere; i ¼ 1; 3; 4; 5; 6; 10

ð7Þ

5.2 Result of the RBDO optimal solution

The STDQAO exhibits better results for the optimal value of
the deterministic approach, and thus, RBDO based on a single
loop single vector (SLSV) is performed based on the value.
The SLSV method eliminates the iterative process to obtain
the precise most probable point (MPP). This method allows
MPP to approximately converge and to simultaneously opti-
mize the design parameter. Therefore, it is possible to reduce
the numerical burden due to a dual loop structure such as the
reliability index approach (RIA) (Enevoldsen and Sorensen
1994; Yu et al. 1997) or the target performance approach
(Jeong et al. 2012). Specifically, MPP based RBDO is more
efficient when compared to the second-order reliability

method (SORM) (Der Kiureghian et al. 1987) and sampling
methods (Lee et al. 2013). The results of RBDO are shown in
Table 9, and four cases were examined for the reliability index
(β) and standard deviation of input variables (σ). The β of 2
and 3 implies that the confidence interval corresponds to
95.45% (2 sigma) and 99.7% (3 sigma), respectively. The
range of σ is from zero to one, and we equally apply the case
of 0.5 and 0.8 to all the design variables. It is observed that the
design variables change when these values increase, and it
corresponds to a conservative solution with an increased ob-
jective function. Additionally, the same procedure that con-
siders all the design variables is performed.When the value of
β and σ increases, the objective value also increases although
it exhibits a lower increase in range when compared with the
case of the reduced variables. The difference in the value of
design variables occurs based on the number of design vari-
ables that are considered when compared with the DDO al-
though it is confirmed that it exhibits a very similar objective
value. Therefore, with respect to the optimum design that con-
siders the reliability index, it is possible to obtain a result that
is almost similar to the case in which all design variables are
applied to the reduced design variables with a result of PCA
for the multi-response.

5.3 Formulation of the RBRDO problem

The design optimization methods that consider uncertainty are
generally classified into robust design optimization and reli-
ability based design optimization methods. Previous studies
proposed optimum design for structure by using each of these
methods. In the case of the robustness design method, it is a
design technique that reduces the fluctuations in performance
by reducing the sensitivity as opposed to reducing the cause of
fluctuation in the design process (Youn and Choi 2004). It also
exhibits a feature in which the robustness of the objective
function and the robustness of the constraint condition are
simultaneously considered. However, a disadvantage is that

Table 8 Result of DDO using PCA result (with PCA) and all design variables (without PCA)

Design variable Objective function

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 f1 f2 f3 fDDO

PCA result Initial 1 – −1 1 −1 0 – – – −1 – – 3.679 96.21 7.559 9.785

MGA −0.777 – −0.163 0.962 0.144 0.465 – – – −0.486 – – 4.680 3.068 −18.64 3.341

−0.952 – 0.531 0.908 −0.567 0.875 – – – −0.669 – – 4.345 1.201 −19.65 3.171

−0.841 – −0.125 0.822 −0.348 0.825 – – – −0.494 – – 4.507 0.035 −19.67 3.137

−0.995 – 0.017 0.971 −0.309 0.455 – – – −0.582 – – 4.664 17.16 −1.388 2.982

STDQAO −1 – 0.352 0.856 −1 0.918 – – – −0.695 – – 4.297 18.49 0 2.924

All design var. Initial 1 1 −1 1 −1 0 −1 −1 −1 −1 −1 −1 3.679 96.21 7.559 9.785

MGA 0.376 1 0.160 0.735 0.407 0.376 0.036 0.590 −0.628 −0.807 1 1 4.070 16.37 −2.692 2.924

STDQAO 0.381 1 0.160 0.736 0.407 0.377 0.036 0.590 −0.627 −0.807 1 1 4.070 16.38 −2.675 2.922
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the criterion for determining the degree of reliability is not
clear. Otherwise, in the case of RBDO, it is formulated as an
optimal design that minimizes the objective function with the
reliability index as a constraint based on the stochastic ap-
proach (Sandgren and Cameron 2002). However, an addition-
al difficulty is that the robustness of the objective function
cannot be considered while the robustness of the constraint
condition is secured.

Given these reasons, the reliability-based robustness opti-
mization (RBRDO) that is used in the present study is an
integrated method to obtain robustness by providing design
robustness to the objective function and the user’s desired
reliability index to the constraint condition. Specifically,
RDO is naturally combined with RBDO for the constraint
evaluation, and this corresponds to RBRDO, and the SLSV-
based RBDO is used in the study. Thus, we determine a value
that minimizes the critical state equation in the space of the
standard normal distribution based on the given reliability
index condition as follows:

Minimize ϕ xð Þ ¼ w
μ f

μ*
f

 !2

þ 1−wð Þ σ f

σ*
f

 !2

; 0≤w≤1

where;μ f ¼ f μxi

� �
; i ¼ 1∼n

σ f ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

∂ f xð Þ
∂xi

� �2

μ

⋅σ2
xi

s

Subject to P G Xð Þ≤0½ �≤Pf

ð8Þ

Where, μ*
f and σ*

f denote optimal function values that are

calculated by only considering the mean and standard devia-
tion, respectively, as in the deterministic design technique.

In this problem, it is necessary to minimize the fRBRDO that
correspond to a series of calculations for three responses f1, f2,
and f3. The robust design itself possesses the characteristics of
the multi-objective for mean and variance, and thus we set
their weights as a multiple objective function to solve the
problem. We consider the upper and lower boundaries for

each of the six design variables and the five constraints similar
to the previous RBDO. The optimization problem in the study
is formulated as follows:

Find x1; x3; x4; x5; x6; x10
Minimize f RBRBDO ¼ w1

μ f

μ*
f
þ w2

σ f

σ*
f

where; f ¼ f 1=4þ f 2=10− f 3=10
w1 þ w2 ¼ 1; 0≤w1≤1; 0≤w2≤1

Subject to P gopen a≥1
� �

≥Rtarget ¼ Φ −βð Þ
P 0≤gmax ef ≤20
� �

≥Rtarget ¼ Φ −βð Þ
P −20≤gmin ef ≤0
� �

≥Rtarget ¼ Φ −βð Þ
P groll a≤0:3ð Þ≥Rtarget ¼ Φ −βð Þ
P gsettl t ≤0:4ð Þ≥Rtarget ¼ Φ −βð Þ
xiL≤xi≤xiUwhere; i ¼ 1; 3; 4; 5; 6; 10

ð9Þ

5.4 Result of the RBRDO solutions

The DDO result is used as a reference, and thus the
value of fDDO in Table 8 is used for μ*

f and σ*
f of the

objective function, and μ*
f corresponds to 2.924 and σ*

f

corresponds to 0.680 and 1.089. The results for RBRDO
based on the above formulation with same weights are
shown in Table 10. The value of μf increases with a
conservative solution and σf decreases with robustness
as an increase in the reliability index (β) and the stan-
dard deviation of the input parameter (σ). We examined
five steps according to the weights of the mean (w1)
and the weights of standard deviation (w2) from zero
to one, and the results in the case of σ=0.5 are illus-
trated in Fig. 7. The w1 of sample points are increased
by 0.25 from the left side to the right side of each
curve. When w1 increases, μf increases and σf decreases.
The variation of σf is higher, and thus fRBRDO finally
decreases. In case 2 (β=3), the slope of variance and
mean exceeds those in case 1 (β=2). Therefore, when

Table 9 Result of RBDO using PCA result (with PCA) and all design variables (without PCA)

Design variables Obj.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 fRBDO

PCA result Case1 −1 – −0.036 0.641 −0.950 0.999 – – – −0.676 – – 2.891

Case2 −0.833 – 0.272 0.629 −0.920 1 – – – −0.307 – – 2.998

Case3 −0.619 – −0.207 0.998 −0.172 0.526 – – – −0.777 – – 3.163

Case4 1 – 0.051 1 0.447 0.216 – – – −0.451 – – 3.215

All Design Var. Case1 0.533 1 0.087 0.396 0.953 0.123 −1 0.455 0.157 −0.998 1 0 2.681

Case2 0.515 0 −0.001 0.388 0.827 0.146 −1 0.440 0.122 −0.994 1 −1 2.843

Case3 0.528 0 0.071 0.394 0.719 0.203 −1 0.450 0.123 −0.998 1 −1 2.808

Case4 −0.061 1 0.103 0.558 0.930 −0.008 −1 −0.479 −1 −0.989 1 0 2.907

Case 1 (β = 2, σ = 0.5), Case 2 (β =3, σ = 0.5), Case 3 (β =2, σ = 0.8), and Case 4 (β =3, σ = 0.8)
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β increases, the mean value is shifted to a conservative
value, and the variance value decreases. Cases 3 and 4
depict a sharp slope of the variations. Specifically, in
case 4, the curve returns to the direction in which σf
increases when the w1 exceeds 0.5.

From the results, it is confirmed that the optimal
design variables consider two objectives of structural
design methodologies with respect to various uncer-
tainties as follows: the reliability-based design optimiza-
tion deals with the probability of failure while a robust
design optimization minimizes the product quality loss.
Additionally, the trend of response variation shows that
the overall objective f decreases when the response f3
with a negative term experiences a significant increase.
However, in the problem, f is considered based on a
series of calculation for the three responses in the ob-
jective. These results generally correspond to a conser-
vative solution, and the values decreased instead of in-
creasing with respect to the objective value of RBDO.
The use of a multi-objective evolutionary genetic algo-
rithm, such as non-dominated sorting genetic algorithm
(NSGA-II), as an optimizer makes it is possible to per-
form multi-objective optimization that considers all the
responses.

6 Concluding remarks

In the study, the methods of reliability based design optimiza-
tion and reliability-based robust design optimization of com-
mercial vehicle cab suspension are implemented with influ-
ence factor analysis. The design of experiments of a L27 array
is used as a meta-model with 12 control factors and random
sampling noise factors. Specifically, we apply principal com-
ponent analysis to solve the multi-response problem and over-
come the limitations of the Taguchi method that are applicable
only to a single-response problem. The results of PCA indi-
cate that the multi-response performance index (MPI) value
was calculated from the variance percentage of the control
factors by considering the uncertainties of noise on each re-
sponse through an uncorrelated linear combination of PC.
Subsequently, an analysis of variance is performed to deter-
mine the importance of various design variables and to reduce
the costs involved in the design optimization process.

In the case of the deterministic design optimization, uncer-
tainty and variance of design variables are not considered by
using only a single fixed representative value, and thus reli-
ability relative to the optimum value is low. Therefore, a sto-
chastic approach, such as robust design and reliability based
design, is a more conservative approach for the stability of the
structure that reflects the uncertainty of the design variables.
In the case of the DDO, the optimal combination value based
on DOEmeta-model was used as the default criterion, and the
optimal objective was derived through STDQAO method.
Additionally, RBDO is a representative optimization tech-
nique that considers the uncertainty of the objective is per-
formed with the DDO result as the initial value. We examined
the objective function with increases in the reliability index
and standard deviation of input variables and the trend of
variation, and the objective is gradually increased. Both
DDO and RBDOwere analyzed in the cases of reduced design
variables based on the results of the PCA and ANOVA and all
design variables. The results confirmed that the cost and time
for design optimization are reduced by analyzing the influence
factor by using PCA. Furthermore, RBRDO is another reli-
ability based approach that makes it possible to obtain a con-
servative solution by providing design robustness to the ob-
jective function and providing the reliability conditions re-
quired by the designer to the constraints. We examined five
cases along with the weight of mean and variance as well as
the changes in β and σ. We used the values of μ*

f and σ
*
f in the

DDO as the reference for the objective function.

In the present study, both the noise factors in the experi-
mental design method were considered as a normal distribu-
tion with a 15% variance in the mean value. A future study
will involve more reliable results by estimating the appropriate
distribution and considering the uncertainty of the noise factor
in the experimental data and reflecting the corresponding

Table 10 Result of RBRDO

w1=0.5, w2=0.5 Case 1
(β = 2,
σ = 0.5)

Case 2
(β =3,
σ = 0.5)

Case 3
(β =2,
σ = 0.8)

Case 4
(β =3,
σ = 0.8)

μ*
f =2.924, σ

*
f = 0.680 μ*

f =2.924, σ
*
f = 1.089

Design
variables

x1 −0.918 −0.957 −0.919 −0.617
x3 −0.083 −0.120 −0.077 −0.224
x4 0.860 0.858 0.857 1

x5 −0.171 −0.085 −0.128 0.113

x6 0.541 0.415 −2.984 0.366

x10 −0.692 −0.651 −0.695 −0.654
Objective
function

fRBRDO 1.421 1.410 1.401 1.335

μf 3.079 3.130 3.109 3.234

σf 1.216 1.189 1.894 1.703

2.70 2.85 3.00 3.15

1.2

1.4

1.6

1.8

f

f

Case 1

Case 2

Fig. 7 Pareto optimal solutions for multi-objective function (σ = 0.5)
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parameters such as mean and variance. Moreover, we per-
formed the optimization for a single function f based on a
series of responses in this study, and thus a future study will
involve using a multi-objective optimization for each response
by using an optimizer such as NSGA-II.
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