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Abstract
This paper deals with topology optimization of large-scale structures with proportional damping subjected to har-
monic excitations. A combined method (CM) of modal superposition with model order reduction (MOR) for har-
monic response analysis is introduced. In the method, only the modes corresponding to a frequency range which is a
little bigger than that of interest are used for modal superposition, the contribution of unknown higher modes is
complemented by a MOR technique. Objective functions are the integral of dynamic compliance of a structure, and
that of displacement amplitude of a certain user-defined degree of freedom in the structure, over a range of
interested frequencies. The adjoint variable method is applied to analyze sensitivities of objective functions and
the accuracy of the sensitivity analyses can also be ensured by CM. Topology optimization procedure is illustrated
by three examples. It is shown that the topology optimization based on CM not only remarkably reduce CPU time,
but also ensure accuracy of results.

Keywords Topology optimization . Harmonic response .Modal superposition .Model order reduction

1 Introduction

Structural topology optimization is a method to find the opti-
mal distribution of material within an admissible design do-
main (Bendsøe and Kikuchi 1988). It is applied to a wide
range of structural design problems (Bendsøe and Sigmund
2004; Deaton and Grandhi 2014). For dynamic problems,

researches mainly focus on three aspects such as topology
optimization of natural frequency (Díaz and Kikuchi 1992;
Pedersen 2000; Du and Olhoff 2007), topology optimization
of dynamic response in the time domain (Zhao and Wang
2016) and frequency domain (Ma et al. 1995; Jog 2002; Shu
et al. 2011).

This paper is mainly concerned with the third case, i.e.
structural topology optimization under harmonic excitations.
Recently, many researchers study this kind of problems. Ma
et al. (1995) used homogenization method to investigate to-
pology optimization of harmonic response problems. Jog
(2002) firstly introduced “dynamic compliance” as an objec-
tive function of topology optimization based on density meth-
od. Tcherniak (2002) formulated an optimization problem of
maximization of the magnitude of steady-state vibrations for a
given frequency. Olhoff and Du (2005) focused on minimiz-
ing dynamic compliance of undamped systems at a given
frequency. Jensen (2007) employed the Padé approximation
method to solve harmonic response in structural topology op-
timization. Yoon (2010) studied structural topology optimiza-
tion related to dynamic responses by using model reduction
schemes such as mode superposition, Ritz vector, and quasi-
static Ritz vector methods. Some works (Kang et al. 2012; Yu
et al. 2013; Zhu et al. 2017) focused on practical applications
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of structural topology optimization under harmonic excita-
tions. For large-scale problems, Liu et al. (2015) made a com-
parative study among mode displacement method (MDM),
mode acceleration method (MAM) and full method (FM) for
structural topology optimization under harmonic excitations.
It concludes that MAM is a preferable method, compared with
MDM, due to its balance between efficiency and accuracy.

However, MAM lacks a straightforward procedure to con-
trol the accuracy of structural harmonic response analysis, it
cannot also determine the number of lower eigenfrequencies
and eigenvectors required for modal superposition. Generally,
optimization process involves repeated analysis of harmonic
response. Hence, an efficient method is required to deal with
large-scale harmonic response problems for structural topolo-
gy optimization. On the other hand, in the adjoint variable
method (AVM) (Haftka and Gürdal 1992; Yoon 2010) for
computing the sensitivities of objective functions related to
harmonic response, the corresponding analysis method is
again used to obtain the adjoint variable vector. The accuracy
of harmonic response analysis is thus another critical aspect.
Therefore, a more accurate, controllable and efficient method
for harmonic response analysis is needed. In this paper, a
combined method (CM) (Wu et al. 2015b) of modal superpo-
sition with model order reduction (MOR) is introduced to
compute harmonic response for a range of interested frequen-
cies. By using the Sturm sequence, the method can self-
adaptively determine the number of lower modes for modal
superposition instead of fixing the number in the MAM, as
modes re-distribute due to updating of design variables. The
MOR method is used to ensure the accuracy owing to lacking
of unknown higher modes.

The paper is organized as follow. Section 2 introduces two
methods for computing harmonic response of structures under
harmonic excitations, including CM (Wu et al. 2015b) and
MAM. In section 3, we review formulations of topology op-
timization and sensitivity analysis based on AVM. In section
4, three examples are given and comparison of topology op-
timization results based on CM and MAM is performed to
demonstrate accuracy and efficiency of the proposed method.
Conclusions are presented in Section 5.

2 Methods of harmonic response analysis

The governing equation of a discretized structure with nDOFs
under harmonic loading can be written as

M€X tð Þ þ CX˙ tð Þ þKX tð Þ ¼ F tð Þ ¼ Feiωt;ω∈ 0;ω f
� � ð1Þ

where M, C, K represent the mass matrix, damping matrix
and stiffness matrix, respectively, and M, K are symmetric
positive definite; X(t) represents the displacement vector;
F = F1 + iF2 represents vector of amplitudes and phases of

the harmonic external force, F1 and F2 are real vectors; ω is
the excitation frequency. In this paper, proportional damping
C =αM + βK is considered where α, β are damping coeffi-
cients of the structure. Assume that X(t) = xeiωt is the solution
of (1), its substitution into (1) yields

K þ iωC−ω2M
� �

x ¼ F; ω∈ 0;ω f
� � ð2Þ

Note that, every evaluation of x(ω) requires solving (2), and for a
large-scale system, the FM for every frequency of interest within
[0,ωf] is usually unaffordable. For this reason, the FM is unsuit-
able as a method of harmonic response analysis with multiple
excitation frequencies for structural topology optimization.

2.1 A combined method of modal superposition
with model order reduction

Wu et al. (2015b) presented a combined method of modal
superposition with MOR for harmonic response analysis of
structures. This method allows very fast development of ap-
proximate solutions of high quality and low computational
cost. It is applicable for topology optimization of structures
under harmonic excitations which involves many times of
harmonic response computation. The method is briefly de-
scribed as follows.

Let x1 and x2 be solutions to the following two systems,
respectively

K þ iωC−ω2M
� �

x1 ¼ F1

K þ iωC−ω2M
� �

x2 ¼ F2

�
ð3Þ

for ω ∈ [0, ωf] where x1 and x2 are complex vectors. Hence, the
solution of (2) x can be written as

x ¼ x1 þ ix2 ð4Þ

Based on the modal superposition method, x1 in (3) can be
expressed as

x1 ¼ Φy1 ð5Þ

where y1 ¼ y11;…; y1n
� �T, y1j ¼

φT
j F1

ω2
j−ω2þiαωþiβω2

jω
j ¼ 1;…; nð Þ, Φ = [φ1,

…, φn], φj and ωj (j = 1,…, n) are eigenvectors and
eigenfrequencies of the undamped system which satisfy

Kφi ¼ ω2
iMφi

φT
jMφi ¼ δij

�
⋅ i; j ¼ 1;…; n ð6Þ

where δij is Kronecker delta, ωi is in rad/s. Taking the computa-
tional efficiency into account, only lower l eigenfrequencies and
eigenvectors are computed (l is far less than n and ωl>ωf). The
Sturm sequence (Bathe 2014) can be used to determine l before
the computation of eigenproblem, i.e. K−ω2

fM ¼ LD fLT, l=
nf+ 1, where nf is the number of negative elements in Df.
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Eq. (5) can be written as follow

x1 ¼ ΦL~y1 þΦHc1 ð7Þ

where ~y1 ¼ ~y11;~y
1
2;…;~y1l

� �T
,~y1j ¼

φT
j F1

ω2
j−ω2þiαωþiβω2

jω
(j = 1,…, l),

ΦL = [φ1,…,φl] andΦH are the unknown higher eigenvectors.

The unknown part of x1 can be written as w1 =ΦHc1 and it
satisfies the following equation

K þ iωC−ω2M
� �

w1 ¼ F1− K þ iωC−ω2M
� �

ΦL~y1

¼ F1− ∑
l

j¼1
~y
1

jKφ j þ iαω ∑
l

j¼1
~y
1

jMφ j þ iβω ∑
l

j¼1
~y
1

jKφ j−ω2 ∑
l

j¼1
~y
1

jMφ j

 !

¼ F1− ∑
l

j¼1
ω2

j~y
1

jMφ j þ iαω ∑
l

j¼1
~y
1

jMφ j þ iβω ∑
l

j¼1
ω2

j~y
1

jMφ j−ω2 ∑
l

j¼1
~y
1

jMφ j

 !
;

¼ F1− ∑
l

j¼1
~y
1

j ω2
j−ω

2 þ iωαþ iωω2
jβ

� �
Mφ j

( )

¼ F1− ∑
l

j¼1
φT

j F1Mφ j ¼ F1−MΦLΦ
T
LF1;ω∈ 0;ω f

� �

ω∈ 0;ω f
� �

ð8Þ
It is impossible to compute all the unknown higher eigen-

vectors for large-scale structures. A feasible scheme is to con-
struct an approximate solution of (8) by projecting it onto a
subspace spanned by the columns of V1 ∈Rn ×m with dimen-
sion m far less than n − l, i.e.

Fig. 1 The flow chart of the optimization procedure

Fig. 2 2D cantilever beam

Fig. 3 a The converged result of Example 1 using CM for [0,50]Hz. b
The converged result of Example 1 using MAM for [0,50]Hz

Fig. 4 a The converged result of Example 1 using CM for [0,100]Hz. b
The converged result of Example 1 using MAM for [0,100]Hz
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w1 ¼ V1z1 ð9Þ
where z1 ∈Cm is the complex vector of generalized coordinates.

Due to the feature of proportional damping, the first equa-
tion of (3) can be decoupled by the eigenvectors of (6). Hence,
it is natural to construct the subspace V1 from the undamped
system (α = 0, β = 0) resulted from (8), i.e.

K−ω2M
� �

~w1 ¼ F1−MΦLΦT
LF1; ω∈ 0;ω f

� � ð10Þ

Preconditioned Conjugate Gradients (PCG) method is
an efficient algorithm to solve large sparse linear posi-
tive definite systems. Note that the coefficient matrix K
− ω2M is symmetric, but not positive definite. In order
to apply PCG algorithm, the coefficient matrix should
be equivalently transformed to a symmetric positive def-
inite matrix. The solution of (10) can be written as
follow

~w1 ¼ ΦH~c1 ð11Þ

where ~c1 ¼ ~clþ1;…;~cn½ �T, ~c j ¼ φT
j F1

ω2
j−ω2 (j = l + 1,…, n). Due

to the orthogonality of eigenvectors, one has

ΦT
LMΦH ¼ 0. Hence, ~w1 is M orthogonal with respect

to ΦL. As a result, ~w1 satisfies the following equation

K−ω2M þ ω2MΦL MΦLð ÞT
h i

~w1 ¼ K−ω2M
� �

~w1 ¼ F1−MΦLΦT
LF1;ω∈ 0;ω f

� �
ð12Þ

The coefficient matrix K − ω2M + ω2MΦL(MΦL)
T is

symmetric and positive definite (Wu et al. 2015b). Hence,
PCG (Golub and Van Loan 2013) method may be applied
to solve (12).

Because the computation of eigenfrequencies and ei-
genvectors is generally performed by using iterative
methods such as Lanczos (Grimes et al. 1994) or sub-
space method (Bathe 2013), the factorized stiffness ma-
trix K = UTU is available and is chosen as the
preconditioner. Now, the PCG method is applied to
solve (12) with ω = ωf, i.e.

K−ω2
fMþ ω2

fMΦL MΦLð ÞT
h i

~w1 ¼ F1−MΦLΦT
LF1 ð13Þ

to yield the search directions vj(j = 1, 2,⋯,m) and form the sub-
spaceV1 = [v1,…, vm]. Here, vj is normalized by ‖vj‖2 = 1 (j= 1,
2,⋯,m). The PCG algorithm will terminate if the 2-norm of
relative residual vector rmof mth step reaches the error tolerance,

i.e. ‖rm‖2/‖F‖2 < ε, where Fk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1k k22 þ F2k k22

q
, ε is

the error tolerance.
Note that, for a proportional damping system, the harmonic

response can be represented by the eigenvectors of the corre-
sponding undamped system, for example, see (2). Since V1 is
the Krylov subspace constructed by solving (13) and it is an
approximation to the unknown higher eigenvectorsΦH. Such
a V1 can be used to implement Galerkin projection for the
complementary part of contribution of computed eigenvec-
tors. Setting ω = ωf in (12) is equivalent to using a best shift
for constructing an fast approximation to ΦH. If a small or
larger value of ω is selected for obtaining the subspace V1,
the convergence speed of CM method will be affected.

Fig. 5 a The converged result of Example 1 using CM for [0,500]Hz. b
The converged result of Example 1 using MAM for [0,500]Hz

Table 1 Performance results of topology optimization based on MAM
and CM for Example 1: [0,50]Hz

Method Initial objective value Converged
objective
value

CPU
time(s)

Iteration
number

MAM 10.1609 0.1820 8240.33 187

CM 10.1614 0.1813 2456.13 205

Table 2 Performance results of topology optimization based on MAM
and CM for Example 1: [0,100]Hz

Method Initial objective
value

Converged
objective value

CPU
time(s)

Iteration
number

MAM 12.6037 0.4155 8998.47 208

CM 12.6052 0.4162 3103.84 203

Table 3 Performance results of topology optimization based on MAM
and CM for Example 1: [0,500]Hz

Method Initial objective
value

Converged
objective value

CPU
time(s)

Iteration
number

MAM 14.1862 1.9396 15053.16 176

CM 14.2892 1.9806 11757.25 171
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Next, perform Galerkin projection of (8) by using
subspace V1 and solve reduced order system to obtain
the vector z1 at each frequency of interest

Kr þ iωCr−ω2Mr
� �

z1 ¼ Fr; ω∈ 0;ω f
� � ð14Þ

where the subscript r denotes reduced system:

Kr ¼ VT
1KV1;Mr ¼ VT

1MV1;Cr ¼ αMr þ βKr; Fr ¼ VT
1 F1−MΦLΦ

T
LF1

� �
ð15Þ

Finally, the approximate solution to the first equation of (3)
can be written as
x1a ¼ ΦLc1 þ V1z1;ω∈ 0;ω f

� � ð16Þ

For a system with large damping effect, the subspace V1

can be constructed in a similar way by simply changing con-
vergence criteria (Wu et al. 2016) to ‖(K + iωfC − ωf

2M)x1a −
F1‖ ≤ ε‖F1‖ where x1a is given in (16).

Summarily, the harmonic response vector x(ω) can be ob-
tained by the following computation procedure

1. Use the Sturm sequence to determine the number l
(ωl > ωf).

2. Solve the eigenproblem to obtain the lower l
eigenfrequencies and eigenvectors, and store the upper tri-
angular part Uof the factorized stiffness matrix K =UTU.

3. Apply PCG algorithm and use the factorized stiffness ma-
trix as the preconditioner to solve (13), and obtain reduc-
tion bases V1 = [v1, v2,…, vm].

4. Compute reduced system matrices Kr, Mr, and vector Frin
(15).

5. Compute z1 for each frequency of interest ω in [0, ωf] by
solving (14) and get x1a by (16).

6. Compute x2a by the same method, and finally obtain xa =
x1a + ix2a.

7. The relative residual errors (RRE) is used to measure the
accuracy of proposed method.

RRE ¼ K þ iωC−ω2Mð Þxa ωð Þ−F

 


2

Fk k2
ð17Þ

2.2 Mode acceleration method

Usually, modal acceleration method (Dickens et al. 1997) is
applied to compute harmonic response for structural topology
optimization. This part gives an outline of MAM. Based on
the modal superposition method, the solution of (2) can be
written as

x ¼ ∑
n

j¼1
φ jy j ¼ Φy ð18Þ

where.

Φ = [φ1,…,φn], y = [y1,…, yn]
T, y j ¼

φT
j F

ω2
j−ω2þiωαþiωω2

jβ

(j = 1,…, n).
The solution in (18) can be written as follow

x ¼ K−1FþΦy−K−1F ð19Þ

Table 4 Details of time distribution for computing harmonic response by CM at the initial step for the three frequency intervals in Example 1

Frequency
interval

Sturm
sequence(s)

Number
of lower
modes

Solution of the
eigenproblem(s)

PCG
method(s)

Calculation
of (14) and
(16)(s)

Total(s)

[0,50]Hz 0.869 2 1.764 0.090 0.258 2.981

[0,100]Hz 0.842 2 1.593 0.115 0.378 2.928

[0,500]Hz 0.836 7 3.618 0.167 1.785 6.406

Table 5 Details of time distribution for computing harmonic response
by MAM at the initial step for the three frequency intervals in Example 1

Frequency
interval

Number
of lower
modes

Solution of the
eigenproblem(s)

Solution
of (22)(s)

Total(s)

[0,50]Hz 20 11.356 0.210 11.566
[0,100]Hz 20 11.568 0.262 11.830
[0,500]Hz 20 11.103 0.720 11.823 Fig. 6 The comparison of RREs of harmonic responses by MAM and

CM at the initial step for Example 1: [0,500]Hz
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Note that the inverse of the stiffness matrix K can be rep-
resented as

K−1 ¼ ΦΛ−1ΦT ð20Þ

where Λ ¼ diag ω2
1;…;ω2

n

� �
. The substitution of (20) in the

third part of (19) yields

x ¼ K−1FþΦy−ΦΛ−1ΦTF ð21Þ

However, taking the computational efficiency into account,
only lower nd eigenfrequencies and eigenvectors are comput-
ed for large-scale problems. Hence, an approximate solution
to (2) may be written as follows

~xa ¼ K−1FþΦndynd−ΦndΛ
−1
ndΦ

T
nd F ð22Þ

It can be derived that

~xa ¼ Φndynd þ ∑
n

k¼ndþ1

φkφ
T
k F

ω2
k

¼ Φyþ ∑
n

k¼ndþ1

φkφ
T
k F

ω2
k

−
φkφ

T
k F

ω2
k−ω2 þ iωαþ iωω2

kβ

� � ð23Þ

where Λnd ¼ diag ω2
1;…;ω2

nd

� �
, Φnd ¼ φ1;…;φnd

� �
are lower

nd computed eigenfrequencies and eigenvectors forMAM and

ynd ¼ y1;…; ynd
� �T

. The first part of (23) is the exact solution

of (2), and its second part is the error vector of MAM, ωk and
φk(k = nd + 1,…, n) are the unknown part of eigenfrequencies
and eigenvectors of (6). Generally, nd is far less than n and can
be chosen by experience in the application. When the excita-

tion frequency ω = 0, the term
φkφ

T
k F

ω2
k

− φkφ
T
k F

ω2
k−ω

2þiωαþiωω2
kβ
is equal

to 0. As the excitation frequency ω increases, the level of
φkφ

T
k F

ω2
k−ω

2þiωαþiωω2
kβ

deviating from
φkφ

T
k F

ω2
k

increases. As a result,

when nd is determined, the error will increase as ω increases. It
means that MAM may not ensure the accuracy at a higher
excitation frequency ω. Furthermore, Example 1 in Section 4
will demonstrate that attempts to increase nd may not cause a
remarkable improvement of accuracy. RRE is also used to
measure the accuracy of MAM.

3 Topology optimization formulation

For the dynamic response under harmonic excitations, the
formulation of topology optimization can be stated as

find 0 < ρ≤ρe≤1; e ¼ 1;…; ne

min∫ω f

0 J ωð Þk kdω
s:t: ∑

e¼1

ne

ρeve≤V

ð24Þ

where ρe is the pseudo-density of element e and it is the design
variable in the problem, ρ ¼ 0:001 is the lower bound of

design variable, V is the prescribed total volume of available
material, and ne presents the total number of finite elements.
The function ‖J(ω)‖ is as follow

J ωð Þk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ωð ÞJ ωð Þ

q
¼ LTx ωð Þ

 



2
ð25Þ

Table 6 The relative errors of the sensitivity analysis by CM andMAM
at the initial step for Example 1

Method [0,50]Hz [0,100]Hz [0,500]Hz

CM 2.939e-09 1.861e-08 5.498e-09

MAM 1.217e-04 2.287e-03 0.3671

Fig. 7 The comparison of displacement amplitudes of the user-defined
DOF at the initial step for Example 1: [0,500]Hz

Fig. 8 2D double clamped structure

Fig. 9 a The converged result of topology optimization based on CM for
Example 2: [0,50]Hz. b The converged result of topology optimization
based on MAM for Example 2: [0,50]Hz
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where J ωð Þ is complex conjugate of J(ω). For the problem of
dynamic compliance suggested by Ma et al. (1995), Jensen
(2007) and Yoon (2010), the vector L in (25) is equal to F in
(2). On the other hand, for the problem of amplitude minimi-
zation of a certain user-defined DOF in the structure (Yoon
2010; Liu et al. 2015), the vectorL is a column vector with the
value of 1 at term s and zeros otherwise which s means the
user-defined DOF in the structure.

In order to ensure the accuracy, the integral of (24)
in a frequency interval is divided into some subdivisions
to implement. The determination of subdivisions (Liu
et al. 2015) depends on eigenfrequencies of (6), because
the harmonic response sharply jumps around them.
Hence, the interval between adjacent eigenfrequencies
(ωi − 1 and ωi) are divided into 6 subdivisions as follows

ωi−1;ωi−1 þ 0:01 ωi−ωi−1ð Þ½ �
ωi−1 þ 0:01 ωi−ωi−1ð Þ;ωi−1 þ 0:11 ωi−ωi−1ð Þ½ �
ωi−1 þ 0:11 ωi−ωi−1ð Þ;ωi−1 þ 0:50 ωi−ωi−1ð Þ½ �
ωi−1 þ 0:50 ωi−ωi−1ð Þ;ωi−1 þ 0:89 ωi−ωi−1ð Þ½ �
ωi−1 þ 0:89 ωi−ωi−1ð Þ;ωi−1 þ 0:99 ωi−ωi−1ð Þ½ �
ωi−1 þ 0:99 ωi−ωi−1ð Þ;ωi½ �

ð26Þ

Gauss-Legendre integration is used to calculate the integral
in a subdivision.

∫~ωq

~ωq−1

J ωð Þk kdω≈ ~ωq−~ωq−1

2
∑
N

k¼1
γk J

~ωq−~ωq−1

2
μk þ

~ωq þ ~ωq−1

2

 !










 ð27Þ

where ~ωq−1; ~ωq
� �

is one of the previously mentioned sub-
divisions, γk is the weight factor for the kth Gaussian
point, and μk is the Gaussian point, N is the number of
Gaussian points, N = 16 is chosen in the paper.

So the integral in a frequency interval can be formulated as
follow

∫ω f

0 J ωð Þk kdω ¼ ∑
p

q¼1
∫~ωq

~ωq−1

J ωð Þk kdω ð28Þ

where the number p depends on the number of eigenfrequencies
in the frequency interval [0,ωf].

In this paper, Polynomial Interpolation Scheme (PIS)
(Zhu et al. 2010) is chosen to prevent the appearance of
localized modes.

ke ¼ 15ρ5e þ ρe
16

ke0

me ¼ ρeme0

ð29Þ

where ke, me are the element stiffness matrix and mass
matrix of element e, respectively, and ke0, me0 are the
stiffness matrix and mass matrix referring to an element
density equal to 1.

We assume that harmonic loads are independent of
design variables. Liu et al. (2015) applied direct method
to analyze sensitivities of an objective function which
involves computation of eigenvector derivatives. Such a
computation with repeated eigenvalues is a complicated
subject (Wu et al. 2015a) and accuracy of eigenvectors
derivatives obtained by using the mode superposition

Fig. 10 a The converged result of topology optimization based on CM
for Example 2: [0,500]Hz. b The converged result of topology
optimization based on MAM for Example 2: [0,500]Hz

Fig. 11 a The converged result of topology optimization based on CM
for Example 2: [0,1000]Hz. b The converged result of topology
optimization based on MAM for Example 2: [0,1000]Hz

Table 7 Performance results of topology optimization based on MAM
and CM for Example 2: [0,50]Hz

Method Initial objective
value

Converged
objective value

CPU
time(s)

Iteration
number

MAM 88952.72 3745.61 3459.68 153

CM 88949.26 3749.18 833.04 148

Table 8 Performance results of topology optimization based on MAM
and CM for Example 2: [0,500]Hz

Method Initial objective
value

Converged
objective value

CPU
time(s)

Iteration
number

MAM 946688.78 46883.10 6785.59 189

CM 964493.25 46545.33 4868.36 196
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technique is not ensured. AVM is an alternative to avoid
this complication. Yoon (2010) computed the sensitivi-
ties by using AVM and model reduction schemes. The
sensitivity of objective function in (24) with respect to
the material density ρe is given by

∫ω f

0

∂ J ωð Þk k
∂ρe

dω ¼ ∫ω f

0

∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ωð ÞJ ωð Þ

q
∂ρe

dω

¼ ∫ω f

0

J ωð Þ ∂J ωð Þ
∂ρe

þ ∂J ωð Þ
∂ρe

J ωð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ωð ÞJ ωð Þ

q dω

ð30Þ

where ∂ J ωð Þ
∂ρe

can be derived as follows

∂J ωð Þ
∂ρe

¼ ∂ LTx ωð Þ� �
∂ρe

¼ LT ∂x ωð Þ
∂ρe

ð31Þ

The differentiation of (2) with respect to ρe gives

∂S
∂ρe

x ωð Þ þ S
∂x ωð Þ
∂ρe

¼ 0 ð32Þ

where S =K + iωC − ω2M is defined as dynamic stiffness ma-
trix (Bathe 2014). Use of (32) yields

∂x ωð Þ
∂ρe

¼ −S−1
∂S
∂ρe

x ωð Þ ð33Þ

Substituting (33) into (31) and noting that S is a symmetric
matrix result in the sensitivity as follows

∂J ωð Þ
∂ρe

¼ LT ∂x ωð Þ
∂ρe

¼ −LTS−1
∂S
∂ρe

x ωð Þ

¼ −λT ∂S
∂ρe

x ωð Þ ð34Þ

where λ is the solution of following equation and is called
adjoint variable vector

Sλ ¼ L ð35Þ
which can be obtained by using the methods in
Section 2 and replacing F with L. For the problem of
dynamic compliance, there is no need to solve the (35)
again, since the adjoint variable vector λ is the same as
the response vector x(ω).

The flow chart of the optimization procedure is shown in
Fig. 1.

4 Numerical examples

In this section, three examples are given to illustrate the effi-
ciency of the proposed method. The filtering technique
(Sigmund 1997) is used to avoid the checkboard pattern.
The GCMMA algorithm (Svanberg 2002) is applied as the
optimizer. The computations of all examples are completed
on a server with Intel CPU Xeon E5-2687 W v4, 128G
RAM. The stiffness and mass matrices are stored in the com-
pressed sparse row format. All computations are based on the
Intel Math Kernel Library 10.3. The compiler is Intel Visual
Fortran Compiler XE 2011. In all examples, we set the error
tolerance ε = 10−8 of PCG, Young’s modulus E = 2 × 1011Pa,
Poisson’s ratio υ = 0.3, mass density ρ = 7800kg/m3, propor-
tional damping coefficients α = 10−2and β = 10−4. The con-
vergence criteria of optimization procedure is set to
gkþ1−gkk k

gkk k < 10−4, where gk is the objective value of kth step.

Let dMAM, dCM and dFM are the sensitivity vectors at the initial
step obtained by AVM based on MAM, CM and FM, respec-
tively. The relative errors of the first two approximations are

defined by dMAM−dFMk k2
dFMk k2 and dCM−dFMk k2

dFMk k2 . Let ρMAM and ρCM

represent the converged design variable vectors obtained by

Table 9 Performance results of topology optimization based on MAM
and CM for Example 2: [0,1000]Hz

Method Initial objective
value

Converged
objective value

CPU
time(s)

Iteration
number

MAM 1515221.09 92560.49 14345.95 243

CM 1567650.59 89348.93 13857.13 290

Table 10 Details of time distribution for computing harmonic response by CM at the initial step for the three frequency intervals in Example 2

Frequency interval Sturm sequence(s) Number of
lower modes

Solution of the
eigenproblem(s)

PCG method(s) Calculation
of (14) and (16)(s)

Total(s)

[0,50]Hz 0.545 1 0.710 0.065 0.091 1.411

[0,500]Hz 0.532 5 2.006 0.084 0.519 3.141

[0,1000]Hz 0.620 10 3.207 0.166 1.386 5.379

Table 11 Details of time distribution for computing harmonic response
by MAM at the initial step for the three frequency intervals in Example 2

Frequency
interval

Number of
lower modes

Solution of
the eigenproblem(s)

Solution
of (22)(s)

Total(s)

[0,50]Hz 20 5.805 0.032 5.837

[0,500]Hz 20 5.922 0.225 6.147

[0,1000]Hz 20 5.868 0.632 6.500
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using MAM and CM, respectively. The relative difference

between ρMAM and ρCM is defined as ρMAM−ρCMk k2
ρCMk k2 . The first

nd = 20 modes are employed in MAM. The subspace iteration
method is used to solve the eigenproblem.

Example 1 Minimization of the displacement amplitude at a
certain DOF for a 2D cantilever beam structure.

The design domain of the beam structure is a rectan-
gle of size 2m × 1m with 0.01m thickness and it is
clamped at the left side as shown in Fig. 2. The struc-
ture is meshed into 200 × 100 2D 4-node plane stress
elements and has 40,400 DOFs. The volume fraction
is constrained to be less than 30%. A harmonic load
with amplitude 10kN is applied at the center of the
right edge. Three frequency intervals [0,50]Hz,
[0,100]Hz, and [0,500]Hz are considered. The objective
function is the integral of vertical displacement ampli-
tude at the loading position over given frequency inter-
vals. The filter radius is set to 4.

For the three frequency intervals, 128, 144, and 608
Gaussian frequency points are determined, respectively,
at the initial step. The converged results of topology
optimization based on CM and MAM for [0,50]Hz,
[0,100]Hz, and [0,500]Hz are shown in Figs. 3(a,b),
4(a,b), and 5(a,b), respectively. It is seen that there are
no siginificant difference of the optimized configurations
of the structure based on the two methods. Details of
optimization are listed in Tables 1, 2 and 3. From these
tables, it can be found that the topology optimizations
based on CM can reduce 70.19%, 65.51% and 21.90%

CPU time, respectively, compared with those based on
MAM. Details of time distribution for computing har-
monic response by CM and MAM at the initial step for
the three frequency intervals are list in Tables 4 and 5,
respectively. The comparison of RREs of harmonic re-
sponse analysis based on the two methods for [0,500]Hz
at the initial step is given in Fig.6. The figure shows
that attempts to increase nd from 20 to 50 are unlikely
to cause a remarkable improvement of RRE. But nd = 50
will cost much more CPU time than nd = 20 in MAM. It
can also demonstrate that the RRE of CM is less than
10−7.3 at all Gaussian frequency points. The RRE of
MAM sharply increases from 10−5.8 to 10−0.5 as the
excitation frequency increases. At the initial step, the
sensitivity analyses computed by CM and MAM, re-
spectively, are compared with that by FM. The relative
errors are list in Table 6. It can be observed that MAM
cannot ensure the accuracy for a large range of excita-
tion frequency. Fig. 7 displays variation of vertical dis-
placement amplitude at the loading position, i.e. the
user-defined DOF, in frequency interval [0,500]Hz at
the initial setp. Additionally, the result of the FM is
also plotted in Fig. 7 for comparison. It can be ob-
served that increasing number of modes in MAM will
have little influence of the displacement amplitude. The

Table 12 The relative errors of the sensitivity analyses based on CM
and MAM at the initial step

Method [0,50]Hz [0,500]Hz [0,1000]Hz

CM 6.625e-09 9.844e-09 3.574e-09

MAM 6.791e-04 7.810e-02 0.4534

Fig. 12 The comparison of RREs of harmonic responses using MAM
and CM at the initial step for Example 2: [0,1000]Hz

Fig. 13 The comparison of dynamic compliances based on MAM and
CM at the initial step for Example 2: [0,1000]Hz

Fig. 14 3D left clamped structure
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relative difference between the converged design vari-
able vectors based on MAM and CM for the three fre-
quency intervals are 0.06, 0.09 and 0.08, respectively.

Example 2 Minimization of the dynamic compliance of a 2D
beam structure.

The structure has design domain of a rectangle of
size 2m × 0.5m with 0.01m thickness and is clamped-
clamped as shown in Fig. 8. It is meshed into 200 ×
50 2D 4-Node plane stress elements with 20,298 DOFs.
The volume fraction is constrained to be less than 30%.
Three harmonic forces are applied at quarter, center and
three quarters points of the bottom edge with amplitudes
F1 = F2 = F3 = 10kN, F1 and F3 have phase difference
of 180 degrees from F2. Three frequency intervals
[0,50]Hz, [0,500]Hz and [0,1000]Hz are considered.
The objective function is integral of the dynamic com-
pliance under given frequency intervals. The filter radius
is set to 2.

For the three frequency intervals, 48, 432 and 912
Gaussian frequency points are calculated at the initial
step respectively. The converged results of topology op-
timization based on CM and MAM for [0,50]Hz,
[ 0 , 5 0 0 ] H z a n d [ 0 , 1 0 0 0 ] H z a r e s h o w n i n
Figs. 9(a,b), 10(a,b) and 11(a,b), respectively. From
Figs.10(a,b) and 11(a,b), it is found that the converged
results of the topology optimization based on MAM and
CM have some differences, which result from lacking of
accuracy of MAM at higher excitation frequencies ω.
Performance results of topology optimization based on
MAM and CM are shown in Tables 7, 8 and 9. From
Tables 7, 8, 9, it can be observed that the optimization
via CM can reduce 75.92%, 28.25% and 3.41% CPU
time, respectively, compared with those via MAM.

Fig. 15 a The converged result of topology optimization based on CM
for Example 3: [0,50]Hz. b The converged result of topology
optimization based on MAM for Example 3: [0,50]Hz

Fig. 16 a The converged result of topology optimization based on CM
for Example 3: [0,300]Hz. b The converged result of topology
optimization based on MAM for Example 3: [0,300]Hz

Table 14 Performance results of topology optimization based onMAM
and CM for Example 3: [0,300]Hz

Method Initial
objective
value

Converged
objective
value

CPU
time(s)

Iteration
number

MAM 9841.82 452.05 26833.95 83

CM 9816.94 452.09 17162.51 76

Table 13 Performance results of topology optimization based onMAM
and CM for Example 3: [0,50]Hz

Method Initial
objective
value

Converged
objective
value

CPU
time(s)

Iteration
number

MAM 1636.85 76.43 13,641.88 79

CM 1636.68 76.42 6500.61 79
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Details of time distribution for computing harmonic re-
sponse by CM and MAM at the initial step for the three
frequency intervals are list in Tables 10 and 11, respec-
tively. For the case of frequency interval [0,1000]Hz,
the topology optimizations via the two methods con-
verge to different configurations. Although CM only
costs 3.41% CPU time less than MAM, CM costs much
less average CPU time than MAM for per iteration, as
shown in Table 9. At the first step, the sensitivity
analysed by CM and MAM are compared with that by
FM, see Table 12. The errors in sensitivity analysis can
cause the optimization to converge to different configu-
rations. The relative difference between the converged
design variable vectors by MAM and CM for the three
frequency intervals is 0.02, 0.25 and 0.5, respectively.
The comparison of RREs of harmonic responses based
on the two methods for [0,1000]Hz at the initial step is
given in the Fig.12. The figure demonstrates that the
RRE of CM is less than 10−7.1 at all Gaussian frequen-
cy points. The RRE of MAM sharply increases from
10−5.4 to 10−0.2 as the excitation frequency increases.
The comparison of dynamic compliance based on
MAM, CM and FM at initial step for [0,1000]Hz is
plotted in Fig.13. Obviously, the difference is more sig-
nificant at higher excitation frequency ω.

Example 3 Minimization of the dynamic compliance of a 3D
structure.

The structure has the design domain of size 0.8m ×
0.4m × 0.06m and is clamped at the left side as shown
in Fig. 14. It is meshed into 80 × 40 × 6 3D 8-Node
solid elements with 68,880 DOFs. Two harmonic forces
are applied at center of the bottom surface, and center
of the intersection line of the upper surface and the
right surface, respectively, with amplitude F1 = 0.5 ×
F2 = 5kN. In addition, F1 has a phase difference of

180 degrees from F2. Two frequency intervals
[0,50]Hz, and [0,300]Hz are considered. The volume
fraction is constrained to be less than 40%. The objec-
tive function is integral of dynamic compliance under
the given frequency intervals. The filter radius is set
to 2.

For the two frequency intervals, 144 and 512
Gaussian frequency points are calculated at the initial
step, respectively. The converged results of topology
optimization based on CM and MAM for [0,50]Hz
and [0,300]Hz are plotted in Figs.15(a,b) and 16(a,b),
respectively. Performance results of topology optimiza-
tion based on MAM and CM are listed in Tables 13
and 14. It can be seen that the optimizations based on
CM can reduce 52.35% and 36.04% CPU time, respec-
tively, compared with MAM. Details of time distribution
for computing harmonic response by CM and MAM at
the initial step for the two frequency intervals are list in
Tables 15 and 16, respectively. At the first step, the
sensitivity analyses by CM and MAM are compared
with that by FM, see Table 17. The comparison of
RREs of harmonic responses using MAM and CM for
[0,300]Hz at the initial step is plotted in the Fig.17. The
figure indicates that the RRE of CM is less than 10−7.3

at all Gaussian frequency points. The RRE of MAM
sharply increases from 10−6.1 to 10−0.7 as the excitation
frequency increases. The comparison of dynamic com-
pliance based MAM, CM and FM for [0,300]Hz at the
initial step is displayed in Fig. 18, which illustrates that,
for MAM, harmonic response under higher excitation ω
is less accurate. The relative difference between the
converged design variable vectors based on MAM and
CM for the two frequency intervals is 0.002 and 0.04,
respectively.

Based on the three examples above, it can be con-
cluded that, in terms of efficiency and accuracy, the
topology optimization method based on the CM is the

Table 15 Details of time distribution for computing harmonic response by CM at the initial step for the two frequency intervals in Example 3

Frequency
interval

Sturm
sequence(s)

Number
of lower
modes

Solution
of the
eigenproblem(s)

PCG
method(s)

Calculation
of (14) and
(16)(s)

Total(s)

[0,50]Hz 3.669 2 5.492 0.661 0.835 10.657

[0,300]Hz 3.801 6 9.665 1.982 4.138 19.586

Table 16 Details of time distribution for computing harmonic response
by MAM at the initial step for the two frequency intervals in Example 3

Frequency
interval

Number of
lower modes

Solution of the
eigenproblem(s)

Solution of
(22)(s)

Total(s)

[0,50]Hz 20 37.107 0.433 37.540

[0,300]Hz 20 37.804 1.300 38.100

Table 17 The relative errors of the sensitivity analyses based on CM
and MAM at the initial step for Example 3

Method [0,50]Hz [0,300]Hz

CM 6.060e-9 7.614e-9

MAM 7.699e-4 2.901e-2
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best one among these methods. This is mainly because
of the integral function and its derivatives as shown in
(25), (34) and (35), respectively, can be fast and exactly
computed by using CM of harmonic response analysis.

5 Conclusions

In this paper, the CM method for harmonic response analysis
has been integrated to structural topology optimization related
to harmonic responses. The CM is based on modal superpo-
sition and model order reduction. Contrasted withMAM, usu-
ally adopted in the topology optimization, the CM determines
the number of lower eigenfrequencies and eigenvectors for
modal superposition quantitatively and improves the accuracy
by using MOR. Due to the accuracy of the CM, the sensitivity
analysis results of objective functions are more reliable. Three
examples are investigated by using topology optimization
based on MAM and CM, respectively. For both problems of
minimizing the dynamic compliance and minimizing the dis-
placement amplitude at a given DOF, the topology optimiza-
tion based on the CM not only guarantee the accuracy of
results, but also reduce CPU time remarkably.
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