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Abstract
A strategy for tension/compression anisotropy enhancement of topology optimization approaches is presented. To this
end, a spectral decomposition of stresses and strains into tension and compression contributions allows for a multi-
material optimization that favors tension or compression affine materials, dependent on the predominant local state.
Numerical computations hence yield the topology of a construction part with maximum stiffness at constraint design
volume. Additionally, the spatial distribution of a tension affine and a compression affine material is optimized, which is
motivated by concrete engineering: financially cheap material, for example concrete, is applied in compression dominant
regions in favor of stiffer but more expensive material, which is applied only in tension dominant regions, for example
steel. The enhancement is applied both to a classical (mathematical) optimization method and the thermodynamic topology
optimization. Several numerical examples are investigated and yield design suggestions for tension/compression sensitive
construction parts, e.g., for future lightweight structures made of reinforced concrete.

Keywords Multi-material topology optimization · Tension/compression anisotropy · MRM · Thermodynamic topology
optimization

1 Introduction

Structural topology optimization has become a popular tool
in engineering within recent years, cf. Sigmund and Maute
(2013). In most cases, no distinction between tension and
compression states is made which might be sufficient for
many engineering applications, e.g., for steel structures.
Steel is a prominent example for materials with similar
strength both under tension and compression. However, in
some cases, a more sophisticated optimization is desired,
i.e., when materials are considered which show a strong
anisotropic failure behavior. For example, in concrete
engineering, the distinction of structural components being
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subjected to compressive or tensile stresses is of great
importance for the principle design. Generally, concrete has
a high compressive but only poor tensile strength of which
the latter usually is treated as zero in structural design within
concrete engineering. To be able to bear tensile stresses,
a concrete structure therefore has to be reinforced with
steel what leads to reinforced concrete (RC). As mentioned,
steel has a comparable behavior in both compression and
tension but exhibits the disadvantages of high mass and
costs compared to concrete. Furthermore, actions against
corrosion have to be taken into account. Consequently, a
mechanically efficient and economically favorable load-
bearing structure in terms of concrete engineering should
be designed in a way that compression is taken by concrete
whereas reinforcement steel should be limited to bear tensile
stresses.

Several works tackle the problem of tension/compression
anisotropy during the optimization process. Minimum
weight optimization under compliance and (local) stress
constraint approaches can provide different yield strengths
under tension and compression by applying the Drucker-
Prager stress criterion (Bruggi and Duysinx 2012; Luo
and Kang 2012), which can be extended to multi-material
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topology optimization (Luo et al. 2012). Another common
method is to define the spatial distribution of tension
and compression affine material with respect to the
spectral decomposition of local stresses and/or strains while
maximizing the structural stiffness under volume constraint.
An approach for truss structures can be found in Martinez
et al. (2007) which is based on a sequential topology,
size, and shape optimization algorithm. The results coincide
with analytical solutions. Truss-like continua are optimized
in Querin et al. (2010): the material applied in the finite
element (FE) analysis is an orthotropic mixture of two
different linear elastic isotropic materials. The resulting
stresses are transformed into principal directions and either
of the two materials is applied in each direction depending
on the sign of the principal stresses in those directions.
In Liu and Qiao (2011), a similar orthotropic mixture is
used but enhanced by a modified Heaviside function for
a smoothed interpolation between the elastic properties of
two different linear elastic isotropic materials. Additionally,
optional price functions for the materials are introduced
to optimize the financial costs or to reduce the weight of
the structure. A rather simple to implement but efficient
approach is given in Cai (2011) referred to as the material-
replacement method (MRM). The material stiffness is
modified by a weight function considering the signs of
the principal stresses. The original approach includes only
a single material which is either considered as so-called
“compression-only” or “tension-only”. The method was
extended to multiple bi-modulus materials in Cai et al.
(2016), i.e., materials with different elasticity moduli
in compression and tension, by approximating each bi-
modulus material with two isotropic materials. In each
iteration of the optimization process the real material’s
modulus is chosen between the two substituting materials in
dependence of the current stress state.

The current publication aims at proceeding one step
further and presents a strategy based on the work of
Cai (2011). The spectral decomposition of the (local)
stresses and strains into their tensile and compressive
parts provides an energetical decomposition in tension and
compression, which is used for indirect consideration of
anisotropic material affinities, yet without including the
actual nonlinearity of materials within FE analysis. To this
end, a three-phase system is introduced consisting of void,
one material with affinity to tension (e.g., steel) and one
to compression (e.g., concrete), respectively. Two design
variables are considered for the compliance minimization
under volume constraint: a density variable for the topology
of the structure defining whether there is material or
void and a phase variable defining which of the two

non-void materials spatially forms the structure. A SIMP
approach is used for the density variable whereas the phase
distribution is determined by the local decomposition of
the elastic energy in tension and compression: one material
is applied in tension dominant regions and the other in
compression dominant regions to mimic the usual design
approach in concrete engineering. To demonstrate the broad
applicability of the presented procedure, it is employed to
two different approaches: the material-replacement method
(referred to as MRM) and the thermodynamic topology
optimization (referred to as TDO).

The MRM is expanded to multi-phase optimization:
the sensitivities are modified by a weight function
considering the decomposed elastic energy into tension
and compression to provide the respective affinity of the
materials. The optimization algorithm is based on the
implementation given in Andreassen et al. (2011) including
a sensitivity filter and the method of moving asymptotes
(MMA) (Svanberg 1987) as solver. The topology and
phase distribution are updated simultaneously within the
optimization iteration.

The TDO was introduced first in Junker and Hackl
(2015) and progressively improved in Junker and Hackl
(2016), Jantos et al. (2016, 2018a). In contrast to classical
optimization, the optimization process follows from Hamilton’s
principle which is widely used for variational material
modeling. This principle demands the formulation of the
Gibbs energy and a dissipative functional, whose sum is
assumed to be stationary with respect to all governing
variables. These variables, which are the same as for the
MRM, are the displacement field, the density variable and
the phase variable for the tension and compression affine
material. For regularization of the problem, a gradient-
enhancement based on finite differences is employed,
see Jantos et al. (2018a) and Junker et al. (2019).
Hamilton’s principle then yields as stationarity condition an
ordinary/partial differential equation (ODE/PDE) for each
design variable, which is referred to as evolution equation
in the context of material modeling. They serve as design
update, which can be evaluated simultaneously within an
iterative optimization algorithm. An energetic penalization
is introduced to account for the tensile and compressive
affinity of the materials.

The paper begins with some preliminaries to the
tension/compression anisotropy enhancement for topol-
ogy optimization. After the presentation of the deriva-
tion and numerical treatment of the tension/compression
anisotropy enhanced MRM and TDO, a comparative anal-
ysis of the respective mathematical structure is given.
Afterwards, several boundary value problems are solved
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whose numerical results serve as basis for comparison.
Although this publication focuses on single load cases,
examples for multiple load cases are also presented. Finally,
an example for practical application in the field of structural
concrete design is presented.

2 Tension/compression anisotropy
enhancement

The following preliminaries serve as general basis and will
be applied to both approaches to topology optimization
(MRM and TDO). To enhance topology optimization
approaches by tension/compression anisotropy, the classical
spectral decomposition of the stresses and strains is adopted.
This procedure was also used by Cai (2011) to derive the
MRM and is known for instance in the context of damage
mechanics as well, cf. Voyiadjis et al. (2008). The stress is
hence decomposed into

σ = σ+ + σ− (1)

with

σ+=
3∑

i=1

σiei⊗ei ∀ σi>0, σ−=
3∑

i=1

σiei⊗ei ∀ σi<0

(2)

where σi denote the (scalar) principal stresses or equiva-
lently the eigenvalues of σ . The spectral decomposition of
the strains analogously reads as

ε = ε+ + ε− (3)

with

ε+=
3∑

i=1

εiei ⊗ei ∀ εi>0, ε−=
3∑

i=1

εiei ⊗ei ∀ εi <0

(4)

where εi denotes the (scalar) principal strains or equiva-
lently the eigenvalues of ε. For using an energetic measure
of the tension/compression anisotropy, the potential energy
(which is equivalent to the Helmholtz free energy) will be
utilized, defined by

� := 1

2
σ : ε . (5)

Inserting the spectral decomposition given in (1) and (3) into
the potential energy yields

� = 1

2
σ+ : ε+

︸ ︷︷ ︸
:=�+

+ 1

2
σ− : ε−

︸ ︷︷ ︸
:=�−

+ 1

2
σ+ : ε− + 1

2
σ− : ε+

︸ ︷︷ ︸
:=�+−

.

(6)

with �+− = 0 for isotropic materials. Similarly to Cai et al.
(2016), the relative energy amount imposed by compression
loads is defined by

R− := �−
�

(7)

and the relative energy amount imposed by tension loads by

R+ := �+
�

. (8)

It thus immediately follows

R+ + R− = 1 ⇔ R+ = 1 − R− . (9)

It will be shown in the following sections that this ener-
getic decomposition is sufficient for tension/compression
anisotropy enhancement. To be more precise, the “mea-
sures” for tension/compression anisotropy R− and R+ =
1 − R− can be implemented into existing approaches to
topology optimization in two different ways: they might be
used by an enhancement of the stiffness matrix to calcu-
late modified sensitivities as will be done for the MRM
approach; or by an enhancement of an energetic penaliza-
tion term as will be done for the TDO approach.

3 Extended bi-material-replacement method

3.1 Preliminaries

The classical minimum compliance problem subject to
a volume constraint, see e.g., Bendsøe and Kikuchi
(1988) and Bendsøe (1989), serves as basis for the
tension/compression anisotropy enhancement of the MRM.
It is stated as follows: given a feasible design space �

that is discretized by Ne finite elements, the purpose is
to minimize the objective function, which is the mean
structural compliance

c := Û
T · K · Û , (10)
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while the structural volume V is limited to a predefined
ratio

� = V

�
. (11)

The following notations are introduced regarding the
discretization: quantities discretized at the nodes of the FE
mesh are denoted by ˆ(·) whereas quantities discretized at
the integration (Gauß) points are denoted by (·̃). Element-
wise constant quantities are denoted by (·̄). In (10) Û and K

are the global (= assembled) displacement vector and global
stiffness matrix, respectively. The displacement vector for
each element e is denoted by ûe and the corresponding
stiffness matrix by k̄e. To link the statical FE setting with the
optimization problem, the three-phase SIMP interpolation
scheme (Sigmund 2001b) is utilized, whereby one phase is
void. Herein, two design variables χ̄ and ϕ̄ are discretized
element-wise and define each element stiffness matrix k̄ as

k̄(χ̄ , ϕ̄) = χ̄p
[
ϕ̄ k̄− + (1 − ϕ̄) k̄+

]
(12)

where χ̄ is the well-known “relative density” and ϕ̄ a
second design variable which interpolates between the
two predefined materials represented by their element
stiffness matrix k̄− and k̄+, respectively. For χ̄ = 0,
the element is “void” and for χ̄ = 1, it is “solid”, i.e.,
there is none or full material. Because of the well-known
difficulties that arise from a discrete valued optimization
problem, mathematical relaxation is applied on the design
variables so that any value in the interval [0, 1] is feasible.
To avoid thereof emerging hard to interpret intermediate
(“gray”) densities, i.e. χ̄ ∈ [0, 1], the usual penalty
power p is used. A reasonable value for the penalization
can be justified and derived physically as a function of
the Poisson’s ratio (Bendsøe and Sigmund 1999) and is
usually set to p = 3. The element stiffness is composed
additively of the isotropic stiffness matrices k̄− and k̄+
that are assigned to the predefined compressive material
“−” and the tensile material “+” , respectively. The additive
composition may be interpreted as an upper Voigt bound of
the energy. The single-material proportions are steered by
the continuous phase variable ϕ̄, in which ϕ̄ = 0 denotes
full tensile material and ϕ̄ = 1 full compressive material.
Although a second penalty power for the phase variable
could be applied to push ϕ̄ towards a 0–1 distribution
in order to avoid “hybrid” elements consisting of two
materials, this would lead to physical inconsistency because
for an exponent larger than 1, the sum of the material
proportions could become < 1. Hence, no penalty power for
the phase variable is used. The “hybrid” element problem
will be overcome later by taking into account the tensile

and compressive anisotropy of materials. The optimization
problem can be formulated as

find: χ̄ = [χ̄1, χ̄2, ..., χ̄Ne ]T , ϕ̄ = [ϕ̄1, ϕ̄2, ..., ϕ̄Ne ]T
such that c(χ̄ , ϕ̄) = Û

T · K(χ̄ , ϕ̄) · Û

=
Ne∑
e=1

û
T
e · k̄e(χ̄e, ϕ̄e) · ûe → min

χ̄ ,ϕ̄

subject to: f (χ̄)=V (χ̄)−� � =
Ne∑
e=1

�eχ̄e −�
Ne∑
e=1

�e ≤ 0 ,

K(χ̄ , ϕ̄) · Û = F ,

0 ≤ χmin ≤ χe ≤ 1 ,

0 ≤ ϕe ≤ 1 .

(13)

The quantity �e is the element volume and � is the
volume fraction of the optimized structure subject to the
total volume of the initial design space �. The parameter
χmin is a lower, nonzero bound to avoid singularity within
the FE computations. It should be mentioned that the
formulation can be modified, for instance the objective and
constraint function can be interchanged. Also the volume
constraint can be formulated more elaborated, considering
for example material weight. Such a mass-related constraint
can be written as

M(χ̄, ϕ̄)−�M M0 =
Ne∑

e=1

χ̄e �e[ϕ̄e ρ−+(1−ϕ̄e) ρ+]−�M M0 ≤ 0

(14)

where ρ+ and ρ− are the (given) mass densities of the
tension affine material and compression affine material,
respectively, and �M is the ratio of the optimized structure
mass to that of the initial material distribution. However, the
results presented in this paper correspond to the formulation
given in (13).

E

E

σ

ε

σ

UHPC structural steel

_

__

ε

Fig. 1 Approximated stress/strain relations used in the presented
bi-material MRM approach
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Fig. 2 Left: contour plot of the
element phase variable ϕ̄ over
the modification factor R̄−
subject to the element stiffness
(isolines) in terms of the
element’s modified Young’s
modulus, for a fixed χ̄p and
E+/E− = 4. Right:
three-dimensional visualization
of the interrelations
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3.2 Tension/compression anisotropy enhancement
by stiffness modification

To take into account the tension and compression affinity
of the two materials, generally the stress/strain relationship
has to be represented in the FE model. For a realistic rep-
resentation of the stress/strain relation of many materials,
like for example ultra high-performance concrete (UHPC)
and steel, this implies a nonlinear approach. Consider-
ing the several nonlinear structural reanalysis within each
optimization iteration and also a more cumbersome sensi-
tivity analysis, it leads to remarkable, high computational
costs. To prevent this drawback, Cai (2011) proposes the
material-replacement method (MRM) as an approach to
introduce so-called “tension-only” or “compression-only”
materials in the single-material topology optimization pro-
cedure yet within a linear FE analysis. For suitable boundary
conditions MRM thus yields structures purely under com-
pression or tension depending on the predefined material,
i.e., compression-only or tension-only, respectively. The
respective material is herein replaced by a linear elastically
behaving, isotropic material with equal elasticity properties,
i.e. Young’s modulus and Poisson’s ratio, in both compres-
sion and tension. Subsequently, the real behavior of the

anisotropic material is approximated gradually in each iter-
ation by modifying the element stiffnesses depending on
their respective local stress state. The simplified adoption
of a linear elastic, isotropic material utilized to calculate
deformations, strains, and stresses in the FE analysis is
“corrected” subsequently, i.e., the element stiffness for the
optimization process is altered depending on the local stress
state:

k̄R = R̄
± k̄ . (15)

In (15), k̄R is the modified element stiffness matrix and
R̄
± = {R̄
+, R̄
−} is the affiliated element modification
factor defined as

R
+= max

{
Rmin,

�+
�

}
and R
−= max

{
Rmin,

�−
�

}

(16)

for the tension affine “+” and compression affine “−”
material, respectively. Obviously, it holds R̄
− = R̄−
according to (7) for �−/� > Rmin. Rmin is a lower bound
to avoid singularity, e.g., Rmin = 10−6. In order to simplify
the notation, we are going to use R̄+ = R̄
+ and R̄− = R̄
−,

Fig. 3 Results for the
Messerschmidt-Bölkow-Blohm
(MBB) beam with sensitivity
filter (left) for phase variable
and without (right)
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respectively. In a numerical implementation, the element
stiffness is modified individually in each iteration step after
firstly computing the principal stresses and strains for an
isotropic material behavior and subsequently “correct” the
assumption by modifying the local stiffness based on the
local stress state. To be more precise, we emphasize that
according to Cai (2011) both the unmodified k̄, cf. (12),
and the modified k̄R stiffness matrix, cf. (15), are applied
in each iteration: the unmodified for the FE calculations
representing the linear elastic isotropic “replacing material”
and the modified to alter the sensitivities needed to update
the design variables. Hence, the method operates somehow
heuristic to enhance tension- or compression-only materials
within a linear FE framework by solving a subproblem. As
will be demonstrated by the numerical results, this strategy
still yields very reasonable optimization results.

The single-material MRM approach has been extended
to a multi-material framework (Cai et al. 2016). Motivated
to design lightweight structures through the intelligent
application of materials, regarding the existing multi-
material MRM approach some difficulties arise. In Cai
et al. (2016) the considered materials are so-called bi-
modulus, i.e., they exhibit a different behavior in tension
and compression, respectively. While each bi-modulus
material is composed of two isotropic materials with
Young’s modulus according to the tensile and compressive
stiffness, the FE computation is carried out with either the
compensatory tensile or compressive material. Hence, the
method is based on switching between the two predefined
virtual materials for each bi-modulus and interpolate then
between the two corresponding compensatory tensile or
compressive replacing materials, respectively, of each real
compression affine and tension affine material. In doing
so, the choice of material and thus the optimization results
strongly depend on the predefined ratio of the tensile
to compressive Young’s modulus of each real material.
However, the main building materials in the construction
industry are concrete and (structural) steel, of which each
has comparable elasticity moduli either in tension as in
compression and thus they are no bi-modulus materials.
According to the design principles in concrete engineering,
it is preferable to use financially cheap concrete for
structural elements subjected to pressure loads, whereas
financially expensive steel as reinforcement has to bear
tensile stresses due to the low tensile strength of concrete.
Thus, concrete design primarily aims at reinforcing concrete
only where indispensible, i.e., where tensile stresses are
present, in order to minimize the costs of the structure. It
appears inaccurate to define a sufficient pseudo ratio of
tensile to compressive elasticity moduli to achieve proper

material separation. In addition, the existing multi-material
MRM approach in Cai et al. (2016) can lead to results
where a strict material separation in compressive and
tensile structural members is insufficient, e.g., tension affine
material is sometimes locally applied to regions that are
predominantly under compressive stresses and vice versa.

Therefore, a new multiphase MRM approach will be
presented that is based on gradually steering the element
towards a preferable material based on the current stress
state instead of switching between the different elasticity
moduli. In contrast to the existing generalized multi-
material MRM approach, our presented approach is tailor-
made for the particular use in concrete engineering. The
proposed alternative bi-material MRM approach cannot be
derived directly from the existing method proposed in Cai
et al. (2016). Comparable to the single-material MRM
approach (Cai 2011), modification factors are defined,
[see (7) and (8)], yet including in each element both, the
compressive as well as the tensile factor R̄− and R̄+ =
1 − R̄− [see (9)], respectively. Hence, a compression-only
(concrete) and a tension-only (structural steel) material are
given in the complementary assembly of the elemental
stiffness matrix stated in (12). The material models applied
to approximate, for instance concrete and steel, are shown
in Fig. 1.

By that, each modified element stiffness matrix k̄R is
interpolated between the two modified isotropic stiffness
matrices of the predefined materials in each iteration step
instead of switching discretely between them

k̄R(χ̄, ϕ̄) = χ̄p
[
ϕ̄ R̄− k̄− + (1 − ϕ̄) R̄+ k̄+

]

= χ̄p
[
ϕ̄ R̄− k̄− + (1 − ϕ̄) (1 − R̄−) k̄+

]
(17)

where the phase variable ϕ̄ steers the compressive to tensile
material ratio and k̄− and k̄+ denote the isotropic element
stiffness matrices corresponding to the isotropic replacing
materials of concrete and steel. Assembling the modified
element stiffness matrices k̄R yields the modified global
stiffness matrix KR . The stress state in each “hybrid”
element is computed by composing the effective element
elasticity matrix in a similar manner and thus interpolating
linearly between the elasticity matrices for the compressive
and tensile material Ē− and Ē+, viz

Ē = χ̄p
[
ϕ̄ Ē− + (1 − ϕ̄) Ē+

]
(18)

which corresponds to a Voigt bound of the mixture energy
of the tension affine and compression affine material. In
contrast, the existing multi-material MRM approach in
Cai et al. (2016) switches between the elasticity matrices
of the two predefined replacing materials for each real
material. Of course, other mixture rules might be applied,
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such as the effective elastic constants according to Reuss
or Mori-Tanaka (Mori and Tanaka 1973). However, the
Voigt mixture is in accordance to the tension/compression
anisotropy enhancement in (17).

Again, it is important to note that for linear FE analysis,
i.e., calculation of deformations, strains, and stresses, the
bi-linear material behavior shown in Fig. 1 is replaced by
two linear elastic, isotropic materials assembling each local
isotropic (unmodified) stiffness matrix k̄(χ̄ , ϕ̄), cf. (12).
The tension/compression anisotropy is tackled afterwards
in an indirect manner by modifying the stiffness matrix
according to (17). Subsequently, the sensitivities are
computed using the modified element stiffnesses to update
the design variables heuristically by solving a subproblem
in each iteration. As Cai (2011) pointed out in the original
article, in the first iteration steps the stress and strain fields
of the original anisotropic and replacing isotropic materials
differ strongly because most elements are under a complex
stress state and mixed material elements exist. Therefore,
stiffness modification of each element is momentous. As
firstly material distribution evolves and structural members
are arranged such that they carry predominantly one-
dimensional stresses and secondly this leads to a full
phase separation and adequate distribution within the design
space (compression affine material in compressive stress
dominating areas and likewise for tension affine material),
the computational error vanishes since no more stiffness
modification is performed, viz the difference between the
values of structural compliance calculated with unmodified
and modified stiffnesses will tend to zero. This will be
demonstrated in Section 6. As a result, if an element is
subjected to a stress state with predominantly uniaxial
stresses, it becomes beneficial for the minimization of the
objective function to steer the material distribution towards
monophasic elements. Thus, the modification factors cause
virtually an implicit penalization of composite elements
as a consequence of their inferiority to “pure” elements.
In other words, the stiffness of a composite material
is usually always lower, due to the stiffness reduction
of the disadvantageous material proportion, than that of
monophasic elements.

In order to illuminate this strong tendency to material
separation within an element, (17) is investigated in terms
of the effective Young’s modulus given by

ĒR(χ̄, ϕ̄) = χ̄p
[
ϕ̄ R̄− E− + (1 − ϕ̄) (1 − R̄−) E+

]
.

(19)

Mention that this illustrative effective “elemental” Young’s
modulus must not be confused with the effective elasticity
according to (18) – whereas Ē is used for the computation

of the stresses (after ϕ̄ has been determined), the
tension/compression anisotropy enhancement follows from
k̄R(χ̄, ϕ̄) in (17) which is supposed to be analyzed for the
one-dimensional case in terms of ĒR(χ̄, ϕ̄).

For a fixed χ̄p, the resulting element stiffness ĒR(χ̄, ϕ̄)

in (19) can be plotted in the (ϕ̄, R̄−) space. Figure 2 shows
the plot for a Young’s modulus ratio of E+/E− = 4,
which is a typical ratio of steel to UHPC. In the left
contour plot, the color gradient corresponds to the element
stiffness ĒR(χ̄, ϕ̄), which is highlighted additionally by
the isolines. Obviously, two boundary value maxima can
be observed (right plot): the one representing an element
fully assigned to the compressive material for ϕ̄ = 1
and R̄− = 1 leading to ĒR = E−, and vice versa,
i.e. full tensile material for ϕ̄ = 0 and R̄− = 0 with
ĒR = E+. These two single points constitute the optimal
distribution, both in terms of χ̄ (purely one-dimensional
stress) and ϕ̄ (monophasic elements). Now, the graph can
be split vertically in two sections, divided by the isoline
for which ∂ĒR/∂ϕ̄ = 0 holds (red dashed line). From
this condition, the modification factor R̄− is calculated
as R̄− = E+/(E+ + E−) and hence for E+/E− = 4
it yields R̄− = 0.8. For a given modification factor
R̄− < E+/(E+ + E−), it is evident that to minimize the
mean compliance the most reasonable phase distribution
leading to maximum element stiffness is given for ϕ̄ → 0,
hence resulting in full tensile material. On the contrary,
for R̄− > E+/(E+ + E−) the reverse applies. Altering
the predefined materials, for instance replacing UHPC with
ordinary concrete exhibiting a lower Young’s modulus,
the threshold value for R̄− increases, thus favoring the
tension affine material for a broader range of stress states
and vice versa. Given the assumption that, after the basic
optimized design has been found through the distribution
of the density χ , the fundamental stress state in an element
between two iterations barely changes, a strong tendency
of the phase variable is observed towards a district 0-1
distribution based on the modification factor R̄−. There
is merely one single value, i.e. R̄+ = E+/(E+ + E−),
for which all yielding points are turning points, hence
all values for ϕ̄ result in the same element stiffness and
thus a 0-1 distribution is not given. Except this, from a
numerical point of view, highly unlikely event, a rigorous
material separation is indispensable for the minimization
of the objective function. In reference to the discussion of
an additional penalization exponent for the phase variable
in Section 3.1, besides the lack of physical interpretation,
there is indeed not even a necessity in further penalizing
ϕ. Numerical studies underline this conclusion and will be
demonstrated exemplarily in Section 6.4.
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3.3 Numerical implementation

The presented approach is implemented in Matlab inspired
by the pioneering work of Sigmund (2001a) and making
use of the computational improvements presented in
Andreassen et al. (2011). Quadrilateral 4-node elements
with linear shape functions are used to discretize evenly the
feasible design space �. The method of moving asymptotes
(MMA) (Svanberg 1987), with default settings as described
in (Svanberg 2007), is used to solve the minimization
problem. The sensitivity analysis for the replacing isotropic
material can be computed with the adjoint method, when the
constraints are considered, by

∂c(χ̄ , ϕ̄)

∂χ̄e

= −p χ̄
p−1
e û

T
e ·[ϕ̄e k̄−+(1 − ϕ̄e) k̄+

]·ûe, (20)

∂c(χ̄ , ϕ̄)

∂ϕ̄e

= −χ̄
p
e û

T
e · [

k̄− − k̄+
] · ûe . (21)

For the tension/compression enhancement, the stiffness
matrices and thus the sensitivities computed with the
replacing isotropic material formulation are modified
element-wise. The modified sensitivities applied for the
subproblem then read:

∂c(χ̄ , ϕ̄)

∂χ̄e

∣∣∣∣
R

= −p χ̄
p−1
e û

T
e ·[ϕ̄e R̄− k̄− +(1− ϕ̄e) R̄+ k̄+

]· ûe,

(22)

∂c(χ̄ , ϕ̄)

∂ϕ̄e

∣∣∣∣
R

= −χ̄
p
e û

T
e · [

R̄− k̄− − R̄+ k̄+
] · ûe . (23)

For the volume constraint function formulated in (13), the
sensitivity analysis simply leads to

∂f (χ̄)

∂χ̄e

= �e . (24)

To ensure existence of solutions, and consequently mesh-
independence which also implies to avoid the well-known
checkerboard problem (Diaz and Sigmund 1995), additional
restrictions to the optimized design have to be considered.
For the method proposed in this paper, one of the most
popular tools in terms of the sensitivity filter (Sigmund
1997) is implemented which modifies the derivative stated
in (22). A predefined filter radius rmin controls the minimum
structural member size and is given in terms of h, which
is the element edge length. The derivatives with respect
to the phase variables ϕ can also be modified as reported
in Sigmund (2001b). However, numerical studies revealed
that filtering the sensitivities of ϕ has no significant effect
on the resulting topology (cf. Fig. 3). In transition areas
between two phases fine branches can still appear causing

mesh dependency. Applying a filter on the phase variables
can remove these fine branches and ensure a smooth
transition. Thus, filtering techniques could be used to apply
manufacturing constraints for the phase. However, this
topic is beyond the scope of this publication. Furthermore,
the results presented in Section 6.4 demonstrate that no
additional constraint has to be employed in order to avoid
composite elements, i.e., elements with mixed material
distribution. Hence, sensitivity filtering with respect to the
phase variables is not adopted hereafter.

Special attention is required regarding the stop criterion
of the iterative optimization procedure. In the 99-line
code (Sigmund 2001a) as well as in the 88-line code
(Andreassen et al. 2011), an absolute convergence criterion

Fig. 4 Flowchart for the extended MRM
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is implemented based on the maximum change of an
element density between two iterations, i.e.

max �χ = max
e

∣∣∣χ̄ i−1
e − χ̄ i

e

∣∣∣ ≤ 10−2 , (25)

where i is the current iteration step. An alternative
convergence criterion referring to the relative change of the
objective function, i.e., the mean structural compliance c,
between two iteration steps can be formulated as

�crel =
∣∣∣∣
ci−1 − ci

ci

∣∣∣∣ ≤ ctol . (26)

It has been observed that the fundamental layout of the
optimized structure is found in the first, often relatively
few iterations. By imposing an absolute stop criterion
like that given in (25), the possibility of an extended
search procedure arises in which usually only marginal
improvements can be obtained, if at all. Since MRM is a
heuristic approach in which the element stiffness and thus
the sensitivities are modified in each iteration, a few element
densities can oscillate between iterations particularly in
elements exhibiting a multi-dimensional stress state. Thus,
it is more promising to adopt a relative criterion like that
proposed in (26). However, special attention has to be paid
regarding the convergence limit ctol. If ctol is chosen too
large the probability of a premature finish of the search
process arises. On the contrary, a very small value could
lead to a considerable great number of iterations. Numerous
numerical studies exhibit that ctol = 10−6 is an adequate
stop limit. Nevertheless, the total iteration number should
be limited to avoid potentially extensive iterations in the
optimization process.

A flowchart of the presented MRM approach is given
in Fig. 4. After the stresses and strains are computed by
a linear FE analysis for the replacing isotropic material,
the modification factors R̄− and R̄+ are determined by (7)
and (8). The modified derivatives are thereby computed
with (22), (23) and (24) to update the design variables via
MMA, hence incorporating tension/compression anisotropy
in the linear FE analysis heuristically. The FE analysis of
the subsequent iteration step is then carried out again with
the global stiffness matrix assembled from the unmodified
element stiffness matrices given by (12) but which are now
composed by the updated design variables. The previously
modified stiffness is replaced by the unaltered (isotropic
material behavior) before each new iteration, hence the
name of the approach.

4 Thermodynamic topology optimization

4.1 Preliminaries

The thermodynamic topology optimization was derived in
a series of papers of which just the basics are recalled
for convenience. Further details can be found in the
original publications (Junker and Hackl 2015, 2016; Jantos
et al. 2016, 2018b). The fundamental idea of the TDO
is the usage of thermodynamic principles known from
material modeling. Hereto, Hamilton’s principle has been
proven to be beneficial. In contrast to the procedure for
tension/compression anisotropy enhancement of the MRM
in which a modification of the stiffness matrix for the
optimization was performed, it will be shown that the
fundamental idea in Section 2 is applicable also by an
energetic penalization. To this end, the original model is
extended by a second functional including the penalization
potential P , which is specified in Section 4.2, to address the
tension/compression anisotropy. This yields

δG +
∫

�

∂Dχ

∂χ̇
δχ dV + δCχ + δR = 0 ∀ δu, δχ

δP +
∫

�

∂Dϕ

∂ϕ̇
δϕ dV + δCϕ = 0 ∀ δϕ (27)

as stationarity condition(s) where G is the Gibbs energy
with the displacements u. Dχ and Dϕ are the dissipation
functions with the internal variables χ(x) and ϕ(x), which
equal the design variables in the context of optimization.
The two design variables for the topology optimization with
tension/compression anisotropy are defined as already done
for the MRM: the local material’s density χ ∈ [χmin, 1] and
the tension/compression phase ϕ ∈ [0, 1]. The functionals
Cχ and Cϕ account the problem-specific constraints for
χ and ϕ, respectively, and the functional R refers to
a regularization. The Gâteaux derivative, indicated by a
prefixed δ, refers to a “total derivative” with respect to all
variables that are present in the respective model approach,
i.e. the displacement field u and the design (or internal)
variables χ and ϕ.

The problem is separated in the two stationarity
conditions (27) to decouple the phase evolution imposed
by P from the mechanical problem represented by G. The
inclusion of the phase variable to the mechanical problem
would yield an evolution towards the stiffer phase, which
is physically reasonable but not intended for the present
model. Instead, we want to provide the evolution of the
material phase based purely on the local distinction between
tension and compression, which is a rather unphysical
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Fig. 5 Driving forces p̄ϕ∗ for the phase variable ϕ with respect to
the principal stresses σi = {σ+, σ−}. The red dashed line denotes the
threshold p̄ϕ∗ = 0

property for linear elastic materials. Thus, we decouple the
mechanically/physically motivated topology optimization
from the economically motivated phase distribution.

The Gibbs G energy for solid mechanics can be defined
as

G =
∫

�

� dV −
∫

�

f · u dV −
∫

∂�

t · u dA (28)

where f are the body forces and t are the given external
tractions that act on the boundary ∂�. The Helmholtz free
energy � for a linear elastic material reads

� = 1

2
σ : [E(χ, ϕ)]−1 : σ (29)

where σ denotes the stresses and E(χ, ϕ) the spatially
distributed material stiffness defined by the design variables
χ(x) and ϕ(x). The definition of the Helmholtz free energy
with respect to stresses and material compliance yields
a model which minimizes the structural compliance (i.e.,
increases the stiffness). The definition with respect to strains
and material stiffness would yield a model which minimizes
the structural stiffness as in mechanical damage modeling
models, e.g., Junker et al. (2017).

The material stiffness is defined as

E(χ, ϕ) = χp [ϕ E
−1− + (1 − ϕ) E−1+ ]−1 (30)

which follows from relaxation, cf. Junker (2014), and
constitutes a lower Reuss bound. This procedure is in
agreement to the previous approaches to TDO but differs
from the one in MRM where a Voigt bound is used.
However, as will be demonstrated by the numerical results,
almost no intermediate phases ϕ ∈]0, 1[ are present for
which both energy bounds yield the very same value.

For numerical reasons, the material stiffness must not be
zero, which is accounted for by the small parameter 0 <

χmin 	 1. As for the MRM, the penalization exponent p >

1 known from SIMP approaches penalizes intermediate

densities χ ∈]χmin, 1[. The phase ϕ does not need additional
penalization, because the tension/compression penalization,
which is introduced later by the functional P , removes
intermediate phases ϕ ∈ [0, 1]. It bears emphasis that the
same effective elasticity tensor E(χ, ϕ) in (30) is later used
both for the construction of the finite element stiffness
matrix and the update scheme for the design variables which
stands in contrast to the MRM, cf. Section 3.2.

The dissipation functions Dχ and Dϕ influence the form
of the later evolution equations which are used as an update
scheme for the design variables. A usual approach for
viscous evolution is applied by choosing

Dχ = 1

2
ηχ χ̇2 and Dϕ := 1

2
ηϕ ϕ̇2 (31)

with the viscosities ηχ > 0 and ηϕ > 0. Although the
viscosities may have a physical meaning, they are primarily
used as numerical damping parameters for the iterative
update of the design variables (Jantos et al. 2016, 2018a).

Fig. 6 Flowchart for the TDO
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The functional C accounts the problem specific con-
straints

ϕ ∈ [0, 1] ∀ x ∈ � (32)

χ ∈ [χmin, 1] ∀ x ∈ � (33)∫

�

χ dV − �� = 0 (34)

which are identical as given for the MRM, cf. (13). Thus,
the constraint functionals are defined as

Cχ :=
∫

�

γχ χ dV + λ

(∫

�

χ dV − ��

)
and

Cϕ :=
∫

�

γϕ ϕ dV (35)

including the Lagrange multiplier λ and the Kuhn-Tucker
parameters

γϕ =
⎧
⎨

⎩

γ̄ϕ : ϕ̇ > 0 ∧ ϕ = 1
−γ̄ϕ : ϕ̇ < 0 ∧ ϕ = 0

0 : else
(36)

and

γχ =
⎧
⎨

⎩

γ̄χ : χ̇ > 0 ∧ χ = 1
−γ̄χ : χ̇ < 0 ∧ χ = χmin

0 : else
. (37)

It is well-known, that the SIMP approach for p > 1
yields a non-convex and mathematically ill-posed problem
resulting in checkerboarding and mesh-dependent results
(Sigmund and Petersson 1998; Stolpe and Svanberg 2001;
Rozvany 2009). The MRM tackles the problem employing
filter techniques, cf. Section 3.3. In contrast to this
strategy, the fundamental problem statement for the TDO is
regularized by a gradient penalization. To this end, this issue
is accounted by applying a Tikhonov regularization (Engl
et al. 1989; Wang and Zhou 2004; Yamada et al. 2010) for
the density χ introducing the functional R as

R :=
∫

�

1

2
β|∇χ |2 dV (38)

with the nabla operator ∇ = ∂/∂x and the numerical
regularization parameter β, which can be used to control
the minimum structural member size similar to filter radii
of classical filtering techniques. This regularization strategy
is well-known in gradient-enhanced damage modeling (De
Borst and Mühlhaus 1992; Peerlings et al. 1996). Herein,
the regularization parameter β corresponds to the crack
width which in turn can be associated with the minimum
member size in topology optimization. Further elaboration
and details are given in Jantos et al. (2018a), Junker et al.
(2019).

4.2 Tension/compression anisotropy enhancement
by energetic penalization

In contrast to the direct modification of the stiffness
matrix in the MRM, cf. Section 3.2, the fundamental
idea for tension/compression anisotropy enhancement as
presented in Section 2 is included into the TDO by
energetic penalization. The modification factors R− and
R+ according to (7) and (8) serve as energetic measure
for a compression affine or tension affine state. Hence, the
penalization functional P is defined by

P =
∫

�

[
ϕ R+ + (1 − ϕ) R−

]
dV . (39)

Mention that for a purely tensile stress state it holds R− = 0,
R+ > 0, and the phase variable evolves towards the tensile
affine material ϕ → 0. For a purely compressive state
R+ = 0, R− > 0, and ϕ → 1 holds. For both cases it holds
P = 0 and no penalization is active, i.e., the energy is at a
minimum. Because the phase variable ϕ is linear in P , no
regularization is required for the very same. Nevertheless,
regularization and/or filtering techniques could be applied
to apply manufacturing constraints. However, this is beyond
the scope of this work, which focuses on the overall
topology design.

Collecting all functionals, the Gâteaux derivative with
respect to the unknown variables given in (27) can now be
evaluated. The unknown variables of the problem are the
displacement field u and the design variables χ and ϕ. The
variation with respect to u yields

δuG = 0 ∀ δu (40)

with the balance of linear momentum

δuG =
∫

�

ε : E(χ, ϕ) : δε dV −
∫

�

f ·δu dV −
∫

∂�

t ·δu dA

(41)

where Hooke’s law σ = E(χ, ϕ) : ε has been inserted.
The stationarity conditions for the design variables result

in partial differential equations (PDEs) which can be used
as an update scheme for the χ and ϕ, cf. Junker and Hackl
(2015, 2016), Jantos et al. (2016, 2018b). The variations
with respect to the density χ yield

0 = ∂�

∂χ
+ ηχ χ̇ + λ + γχ − β ∇ · ∇χ ∀ x ∈ � (42)

0 = β ∇χ · n ∀ x ∈ ∂� (43)
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where δR is integrated by parts with the outward pointing
normal vector n on the boundary ∂�. The variation with
respect to the phase variable ϕ yields

0 = ηϕϕ̇ + γϕ + [
R+ − R−

] ∀ x ∈ � (44)

The three equations (41), (42) and (44) form a closed system
for the unknowns u, χ and ϕ, with the boundary condition
(43), and can be solved numerically.

4.3 Numerical implementation

The structural analysis is carried out within a FE
environment in which the displacements u are the only
unknowns. The notations regarding the discretization
introduced in Section 3.1 are used: ˆ(·) denotes quantities
discretized at the nodes of the FE mesh, ˜(·) denotes
quantities discretized at the integration (Gauß) points, and
¯(·) denotes element-wise constant quantities. Higher order

tensors are given in their respective Voigt notation. The
balance of linear momentum given in (41) is solved with
a classical FE approach with linear shape functions. The
operator matrix b is defined by û = b · ε̃ which yields the
element stiffness matrix

k̄ =
∫

�e

bT · E(χ̄ , ϕ̄) · b dV (45)

with the element-wise discretized design variables χ̄ and ϕ̄.
Using the given discretization, (42) can be transformed to

˙̄χ = 1

ηχ

(
p̄χ − λ + β ∇ · ∇χ̄

)
(46)

with the element-wise constant mechanical driving force p̄χ

p̄χ = 1

�e

∫

�e

−∂�

∂χ̄
dV

= 1

2�e

∫

�e

ε̃ · p χ̄p−1[ϕ E
−1− +(1−ϕ) E−1+ ]−1 · ε̃ dV . (47)

The driving force serves the same purpose as the
sensitivities (Jantos et al. 2018b). The Laplacian is
calculated via the finite difference scheme

∇ · ∇χ̄ |x̄ ≈
2∑

i=1

χ̄ (x̄ + h ei ) − 2 χ̄ (x̄) + χ̄ (x̄ − h ei )

h2

(48)

where h is the distance between the midpoints of two
neighboring elements or the length of the element edges.
Applications for the Laplacian on unstructured quadrilateral
(hexahedral) meshes are given in Jantos et al. (2018a). The
element-wise discretization of (44) yields

˙̄ϕ = R̄− − R̄+
ηϕ

(9)= 2R̄− − 1

ηϕ

(49)

with

R̄− = 1

�e

∫

�e

R− dV . (50)

The phase transformation is based solely on the spectral
decomposition of the elastic energy given by R̄− and R̄+.
For R̄− > R̄+, ˙̄ϕ > 0 and the compression affine material
indicated by ϕ → 1 will be established, whereas the
contrary applies for R̄− < R̄+. The mixed bi-axial (two-
dimensional) case for principal stresses given by σi =
{σ+, σ−} with σ+ > 0 and σ− < 0 is illustrated in Fig. 5.

The Kuhn-Tucker parameters γχ and γϕ can be replaced
by simple if-conditions within the numerical solution to
grant the interval boundaries χ ∈ [χmin, 1] and ϕ ∈ [0, 1]
and are omitted in the following. The viscosity related to the
numerical damping ηχ and the regularization parameter β

for the density field are

β = β∗ pw (51)

η = η∗
χ pw (52)

with

pw =
∫
�

g(χ̄) p̄χ dV∫
�

g(χ̄) dV
(53)

including

g(χ) = (χ − χmin)(1 − χ) ∀ χ ∈ [χmin, 1] (54)

The parameters related to the viscosity η∗
χ and the viscosity

ηϕ are defined as constant and problem independent with
η∗

χ = 15.0 and ηϕ = 1.0, respectively. The parameter
related to the regularization β∗ is associated with the
internal length of the microstructure of the problem (De
Borst and Mühlhaus 1992; Peerlings et al. 1996) and can
be used to control the minimum structure member size:
the mimimum member size scales with

√
β∗ (Jantos et al.

2018a). Values β∗ ≥ 2h2 are recommended to suppress
checkerboarding and grant mesh-independent results.
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Table 1 Comparison of
methodology between MRM
and TDO

MRM TDO

FEM Linear elastic; linear shape functions

Interpolation SIMP (power-law) for χ

Voigt bound for ϕ Reuss bound for ϕ

Material separation Modification of element stiffness Energetic penalization

Regularization χ : sensitivity filter with rmin χ : gradient penalization with β∗

no regularization for ϕ

Optimization solver MMA Evolution equation

given as ODE/PDE

The PDEs (42) and (44) are solved with an explicit time
discretization ti+1 = ti + �t yielding the update schemes

χ̄i+1 = χ̄i + �t ˙̄χ(ε̃i , χ̄i , ϕ̄i ) (55)

ϕ̄i+1 = ϕ̄i + �t ˙̄ϕ(ε̃i , σ̃ i ) (56)

The strains ε̃i and stresses σ̃ i = E(χ̄i , ϕ̄i) · ε̃i , whose
spectral decomposition yields R̄−, are calculated via the FE
analysis for each step i. The phase variable is then updated
by

ϕ̄i+1 = ϕ̄i + �t
2R̄− − 1

ηϕ

(57)

The evolution equation ˙̄χ for the density variable includes
the Laplacian and is consequently discretized by a FTCS
(forward time and central space) scheme which is known to
be conditionally stable. A Neumann stability analysis yields

η∗
χ

�tχ
≥ 6

β∗

h2
(58)

To fulfill this stability condition and to keep the compu-
tational costs at a minimum, an inner solution loop over
the steps j is introduced for the density variable update.
Consequently, the evolution equation

χ̄j+1 = χ̄j + �tχ ˙̄χ(ε̃i , χ̄j , ϕ̄i) (59)

is evaluated n-times with �tχ = �t/n. The strains ε̃i and
the phase variable ϕ̄i are held constant within the inner loop

over j . The number of (minimum) inner loop steps n can be
obtained from (58) as

n =
⌊

6

η∗
χ

β∗

h2

⌋
+ 1 (60)

where �·� denotes the floor function. Thus, the two time
increments are ti+1 = ti + n �tχ = ti + �t and tj+1 =
tj + �tχ . For simplicity, �t = 1 is employed so that
the current (dimensionless) time step ti coincides with the
current iteration step i of the FE solution.

A flowchart for the thermodynamic topology optimiza-
tion with tension/compression anisotropy is given in Fig. 6.
After the strains ε̃ and stresses σ̃ are obtained by a FE
analysis, the design variables are updated. The Lagrange
multiplier λ is determined within a bisection algorithm,
similar to the evaluation of the optimality criteria method
(Sigmund 2001a). The regularization is embedded within
the evolution equation, and with the time-explicit discretiza-
tion, no additional equation systems must be solved. The
evolution of the phase ϕ̄ can be evaluated for each element
separately without any further processing. The time explicit

3

1

Fig. 7 Boundary conditions for the MBB beam
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Fig. 8 Topologies obtained for
the MBB beam for different
meshes with
h = {1/20, 1/40, 1/60}. Filter
radius rmin = 1.5h for the MRM
method and regularization
parameter β∗ = 2.0h2 for the
TDO method
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updates for both internal variables χ̄ and ϕ̄ are decoupled
and can be solved separately.

The updated design variables are used for a new FE analysis.
The process is repeated until convergence is reached. The same
convergence criterion is used as for the MRM given in (26).

5 Comparison of the approaches

After applying the general idea for tension/compression
anisotropy enhancement from Section 2 to two different
approaches to topology optimization in Sections 3 and 4,
respectively, it is convenient to make a brief comparison
before analyzing actual optimization results in the next
section. Table 1 contains a short comparison of the
approaches.

Both methods adopt the well-established three-phase
SIMP interpolation scheme. While the density variable χ

is interpolated equally, the phase distribution, namely, the
choice of values for ϕ, differs. The MRM-based approach
applies a Voigt interpolation of the individual materials,
which is used for the FE calculation. The stiffness matrix for
the optimization is modified proportionally in dependence
of the relative compression and tension parts of the elastic
energy. For example, if an element consists fully of the
tensile material but is in a compression dominated state,
the stiffness is pushed towards zero before the design
update, thus forcing the optimization algorithm to replace
the disadvantageous material in order to preserve stiffness.
Compressive states on tensile material are canceled out and
vice versa. Hence, the approach is heuristic since different
stiffness matrices are used for the FE analysis and the
optimization to avoid computationally expensive nonlinear
FE computations.

In contrast, TDO uses a Reuss interpolation of the
individual materials. An additional functional P adds an
energetic penalization which yields the evolution equation
that is used to update the phase variable. The driving
forces for the density field, which fulfill the purpose of
sensitivities, are not modified, in contrast to MRM.

In conclusion, MRM can be implemented in generalized
optimization algorithms such as MMA, SLP or SQP, since
common sensitivity analysis with respect to ϕ can be carried
out. For TDO, no external optimization algorithm is necessary
as the Hamilton principle directly yields an ODE that leads
to an evolution equation for updating the phase variable.
These equations can be implemented in any FE code using
the material model interface subroutine. As a consequence,
a viscosity is introduced for each design variable that serves
as numerical damping parameter to control the convergence

behavior. In contrast, MRM is free of additionally introduced
parameters apart from those of the chosen optimizer.

Though the proposed approaches diverge concerning
the material update concept, they also share some com-
monalities. Some additional constraints have to be applied
on both to ensure mesh-independent results. However, the
adopted measures (filter and gradient based regularization,
respectively) only need to be utilized on the density vari-
able χ . The phase variable is not regularized within both
approaches in the attempt at computing an optimized topol-
ogy design although additional constraints could be applied
on ϕ to allow for manufacturing constraints. Furthermore,
no additional penalization has to be imposed on mixed
phases ϕ ∈]0, 1[ in order to ensure discrete distribution and
thus material separation within elements. Both approaches
make use of linear FE analysis, hence preventing sophisti-
cated and expensive nonlinear FE analysis.

6 Numerical results

6.1 Preliminaries

The following numerical examples are obtained using
uniformly distributed quadratic finite elements with bi-
linear shape functions. All loads are of the magnitude “1”.
The element edge length is denoted by h. The structural
stiffness of the resulting designs is given by the inverse
of the mean compliance, i.e. c−1. The utilized materials
are defined by their Young’s moduli E− = 1 for the
compression affine and E+ = 4 for the tension affine,
respectively. The Poisson’s ratio is set to ν− = 0.2 and
ν+ = 0.3, respectively. The penalization exponent p =
3 and the lower bound χmin = 0.001 are applied. The
material with affinity to compression (e.g., concrete) is
depicted in azure whereas the tensile material (e.g., steel) is
represented by black color. For the MRM, a filter is applied
on the sensitivities that is given in terms of the radius rmin

with respect to the element length h. The regularization
parameter β∗ for the thermodynamic optimization (TDO) is
defined analogously. For a better comparison of the results
the so-called measure of discreteness with respect to the
density χ is introduced (Sigmund 2007):

MODχ = 4

�

∫

�

(χ − χmin)(1 − χ) dV

= 4

Ne

Ne∑

e

(χ̄e − χmin)(1 − χ̄e) , (61)
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Fig. 10 Topologies obtained for
the MBB beam for two different
meshes with h = {1/40, 1/60}.
Mesh-independent filter radii
rmin = 3/40 for the MRM
method and the regularization
parameter β∗ = 5 × 10−3 for
the TDO method corresponding
to the coarse mesh given in
Fig. 8 (h = 1/20) with
rmin = 1.5h and β∗ = 2h2
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Fig. 11 Comparison of stiffness, phase volume fractions and measure
of (non-)discreteness for the MBB beam corresponding to Fig. 10.
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where MODχ = 0 =̂ 0% corresponds to a fully discrete 0-
1 distribution of χ and MODχ = 1 =̂ 100% means that all
element densities are equal to 0.5. Following this principle,
a measure of discreteness can also be established for the
phase variable distribution ϕ. It is analogously defined as

MODϕ = 4
∫

�

χ ϕ (1 − ϕ) dV

/∫

�

χ dV

= 4
Ne∑

e

χ̄e ϕ̄e (1 − ϕ̄e)

/
Ne∑

e

χ̄e . (62)

Here, each element phase variable is multiplied with the
affiliated density in order to ensure the measure is only
computed for the solid structure and not for the overall
design space. The values for MODϕ can be interpreted in
the same way as for the density, i.e., a value of 0 implies
that no mixed material elements exist and MODϕ = 1 that
all solid elements consist of equal material proportions.

To allow for a better demonstration of the appropriate
distribution of the compression affine and tension affine
material, respectively, an additional measure called “Ten-
sion/Compression Error” for each element is introduced

TCE = χ̄

[
(1 − ϕ̄)

(
1 − sgn(σ̄|max|)

2

)

+ϕ

(
1 + sgn(σ̄|max|)

2

)]
, (63)

where σ̄|max| is the largest principal stress in terms of the
absolute amount. The signum function for a plane problem
formulation is defined as

sgn(σ̄|max|) =
{

1 if max{|σi |} ≥ 0
−1 else

. (64)

By integration of all error values over the design space, the
TCE value for the overall structure is obtained:

TCE=
∫

�

TCE dV

/∫

�

χ dV =
Ne∑

e

TCE

/
Ne∑

e

χ̄e , (65)

where TCE = 0 =̂ 0% means that all elements predomi-
nantly under compressive stress are fully assigned with the
compression affine material and vice versa for the tension
affine material in tensile regions. Consequently, TCE =
1 =̂ 100% means that all elements have been fully assigned
the wrong material in terms of their tension/compression
affinity. A low value for the measure TCE also demon-

strates that the unmodified compliance differs only slightly
from the modified compliance of the subproblem for
MRM.

Finally, the total volume fraction of tensile v+ and
compressive material v− is computed by

v+ := 1

�

∫

�

χ (1 − ϕ) dV , v− := 1

�

∫

�

χ ϕ dV ,

(66)

respectively, for which v+ + v− = ∫
�

χ dV/� ≡ �

holds true. The quantities v+ and v− allow for a more
detailed investigation of the numerical results presented in
the following.

6.2 MBB beam

Figure 7 shows the boundary conditions for the sym-
metrically reduced Messerschmidt-Bölkow-Blohm (MBB)
beam. The optimized design is computed for three different
meshes subject to a prescribed relative structural volume of
� = 0.3 by means of the proposed methods (Fig. 8). The
associated values for stiffness, material volume and mea-
sure of discreteness are plotted against the iteration numbers
in Fig. 9. The stiffness of each result is normalized to the
smallest value given within the respective figure. In turn,
for each mesh size three results per method are shown. In
the first column, there are the computed structures for a
manual stop of the algorithms after observing only marginal
improvements between the iterations and the second col-
umn contains the results for the predefined stop criterion
given by (26). Finally, in the last column the results after
500 iterations are depicted if the stop condition is met
beforehand.

For the MRM based approach, the computed structures
tend to more elaborated and detailed shapes as the
mesh size becomes finer with rmin defined relative to
the mesh size. The results obtained with TDO exhibit
no strong dependence on mesh refinement although the
regularization parameter β∗ scales with the mesh size.
However, a significant correlation between mesh size and
stiffness is remarkable for both methods. The stiffness
rises as the mesh becomes finer, whereby simultaneously
the discreteness (decreasing MODχ ) is improved. On the
one hand the improvement of stiffness is affiliated with
a better approximation of the mechanical model and on
the other hand, which is quite more influential, with the
reduction of intermediate densities χ ∈ ]χmin, 1[ due
to the declining influence of the relative filter radius
(MRM) and regularization parameter (TDO), respectively.
The comparative plots of Fig. 9 indicate stiffer designs
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Fig. 12 TCE plots according to
(63) and the overall TCE value
of each structure according to
(65) for the MBB results after
meeting the predefined stop
criterion
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for TDO. By defining mesh-independent values for the
regularization parameters rmin and β∗, as shown in Figs. 10
and 11, mesh independency can be attained for both models.
As expected, the non-discreteness increases simultaneously
with the degree of regularization for both methods, i.e.,
more blurred designs emerge.

To allow for a better comparison of the results for the
MBB beam according the adequate distribution of tension
affine and compression affine material, the TCE plots for
the MBB beam are depicted in Fig. 12 both for MRM and
TDO. The plots prove a good material distribution regarding
the tension and compression affinity of the materials.
The affinity is only violated for an insignificant amount
of elements solely in nodes connecting the struts where
a multi-dimensional stress state is present. However, the
overall structural TCE value does not exceed 0.52%.

6.3 Bending problem

The classic bending problem in Fig. 13 serves as second
example for the comparative numerical study. Figures 14

L

1

Fig. 13 Boundary conditions for the bending problem with varying
length L



Tension/compression anisotropy enhanced topology design... 2245

It. step 40:

additional iterations-6
ctol = 10manual stop

N
 =

 1
2

0
 ×

 6
0

e

Stiffness: 103.07 %
: 18.84 % +

MODχ: 18.11 %

It. step 80: It. step 117: It. step 500:

M
R

M
T

D
O

Stiffness: 103.10 %
: 19.11 %+

MODχ: 18.21 %

It. step 115:

Stiffness: 100.00 %
: 19.60 % +

MODχ: 17.21 %

Stiffness: 100.84 %
: 19.39 % +

MODχ: 16.44 %

Stiffness: 101.03 %
: 19.32 %+

MODχ: 16.31 %

Stiffness: 102.85 %
: 18.69 % +

MODχ: 17.81 %

It. step 500:

Fig. 14 Topologies obtained for the bending problem (L = 2) with h = 1/60. Filter radius rmin = 3.5h for the MRM method and regularization
parameter β∗ = 8h2 for the TDO method

and 15 show the results for a volume fraction of � =
0.5. As in the previous example, the obtained solutions
are depicted after manual stop, satisfying the convergence
criterion and for iteration number 500. Here, it is obvious
that only marginal improvements can be attained for TDO
by computing more iterations. In the case of MRM, the
stiffness even declines slightly due to the increased amount
of compression affine material used in later iteration steps,
which possesses a smaller stiffness. This is reasonable,
because the phase distribution in tension/compression
dominated regions has a higher priority than the stiffness
maximization. However, the optimized designs between

MRM and TDO differ significantly, particularly in terms of
the compression affine material distribution. While in MRM
the bottom strut subdivides close to the clamping, in TDO
the structural parts under compressive stresses are quite
different from those under tensile. Although MRM employs
a fewer amount of tensile material and simultaneously
exhibits higher values for MODχ the obtained structural
stiffness is throughout higher. In Fig. 16, the TCE plots and
the overall TCE value are depicted for the results meeting
the convergence criterion. As already observed for the MBB
beam, the distribution error of materials is limited to the
node areas both for MRM and TDO. However, the overall

Fig. 15 Comparison of stiffness, phase volume fractions and measure of (non-)discreteness for the bending problem with L = 2 corresponding
to Fig. 14
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Fig. 16 TCE plots according to (63) and the overall TCE value
according to (65) for the bending problem (L = 2) after meeting the
predefined stop criterion

TCE value is very low, i.e., 0.85% for MRM and 1.03% for
TDO. For a cantilever with a length of L = 5 as shown in
Fig. 17, the TDO results are more slender and the degree of
ramification is much higher compared to MRM. In fact, this

contrasts to the observations made in the previous section
for the MBB beam.

6.4 L-shaped cantilever

Figure 18 shows the boundary conditions for the L-
shaped cantilever loaded by a single load on the top end.
The aimed volume fraction is � = 0.3 and the design
space was discretized by 6 400 elements. In Figs. 19
and 20, the resulting topologies for varying filter radii
and regularization parameters, respectively, are depicted.
Figure 21 holds a comparative survey of the convergence
history. This time the stiffness reference is of the design
obtained by MRM with rmin = 3.5h after manual
stop. All TDO results show a higher stiffness for similar
acting regularization parameters compared to the filter
radii in MRM, although the discreteness and the amount
of tensile material is lower. It is noticeable that MRM
produces designs with more spokes under tension than
TDO.

Particular attention should be paid on Fig. 22 where the
measure of (un-)discreteness for ϕ is plotted against the
iteration numbers. Both, MRM and TDO, attain virtually
full separation of materials within elements in the first few
iterations. The MODϕ value can be successfully reduced
to 0, apart from marginal numerical fluctuations. It is

Fig. 17 Topologies obtained for
the bending problem (L = 5)
with h = 1/60. Filter radius
rmin = 1.5h for the MRM
method and regularization
parameter β∗ = 2.0h2 for the
TDO method
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1

1

0.6

0.6

Fig. 18 Boundary conditions for the L-shaped cantilever

noticeable that discrete separation of ϕ is reached faster and
more efficiently than that of the density variable χ . Thus, an
additional penalization for mixed phases seems redundant.

Obviously, the MRM approach achieves this phase-discrete
design slightly quicker throughout, whereby convergence
history of TDO appears to be smoother. However, Fig. 22
is a revealing demonstration of the effectiveness of both
proposed approaches in distributing materials inside the
predefined design space as simultaneously distinguishing
between compressive and tensile affinity.

6.5 Bridge-like problem

The symmetrically reduced bridge-like problem from
Fig. 23 is computed for a volume fraction of � = 0.2 and
two different FE discretizations, one coarse with 300 × 100
(Fig. 24) and one fine mesh with 450 × 150 elements
(Fig. 25). The regularization is rmin = 1.5h and β∗ = 2.0h2,
respectively.

The results remind on arch-through bridges with
suspended deck. The massive arch above the central span
consists of the material with compression affinity (concrete)
while it is supported from hangers consisting of the material
with tension affinity (steel). The deck goes through the

Fig. 19 Topologies obtained for
the L-shaped cantilever problem
with the MRM method for a
mesh with h = 1/100 and
different filterradii rmin
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Fig. 20 Topologies obtained for the L-shaped cantilever problem with the TDO method for a mesh with h = 1/100 and different regularization
parameters β∗

arch and the springings culminate in the supports. In turn,
the cantilevering deck sections are supported by braced,
fanned pylons. It is obvious that such a bridge design is well
suitable for the employed construction materials, because
it avoids large areas subject to bending, i.e., complex
stress states. It is worth mentioning that all results limit

the amount of the tensile material to approximately 3.5%
what implies that the optimized structure is predominantly
orientated towards a load transfer based on compression.
While the TDO design converges comparatively quickly
towards a convenient bridge design, MRM establishes the
bridge gradually over more iteration steps. It is remarkable
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Fig. 21 Comparison of stiffness, phase volume fractions and measure of (non-)discreteness for the L-shaped cantilever problem corresponding to
Figs. 19 and 20. Mesh with h = 1/100 and varying regularization parameters β∗
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Fig. 23 Boundary conditions for the bridge-like problem

that the arch of the MRM design in both meshes is compiled
gradually from two single ones. Additionally, the supporting
structure above the supports evolves continuously from
the bridge deck. This phenomenon known as boundary
translation problem was already reported in Sigmund

and Maute (2013) and Rojas-Labanda et al. (2017) and
concerns first-order optimization methods like MMA. A
better convergence for the MRM could be achieved by
adjusting the parameters within the MMA algorithm. For
the current examples, the default parameters according to
Svanberg (2007) were applied. In contrast, TDO has only
two problem independent numerical parameters to adjust,
namely the viscosities ηχ and ηϕ .

6.6 Multiple load cases

Optimization under multiple load cases is defined as the
optimization under different loads which are not applied
simultaneously on the structure (Sigmund 2001a). Multiple
load cases can be taken into account by minimizing the
weighted average of the compliances resulting from all
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Fig. 24 Topologies obtained for the bridge-like problem with h = 1/100. Filter radius rmin = 1.5h for the MRM method and regularization
parameter β∗ = 2.0h2 for the TDO method
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Fig. 25 Topologies obtained for the bridge-like problem with h = 1/150. Filter radius rmin = 1.5h for the MRM method and regularization
parameter β∗ = 2.0h2 for the TDO method

load cases. The sensitivities of each load case are weighted
likewise. To this end, the FE calculations for each load case
are carried out separately with the current design variables,
which results in different weighted sensitivities for each
load case. The resulting weighted sensitivities are summed
up for a single optimization step, which combines all load
cases.

This procedure can also be applied for the MRM by
replacing the modified sensitivities given in (22) and (23) by
the sum of the weighted modified sensitivities over all load
cases, provided that the spectral decomposition of the stress
is performed separately for each load case. For the TDO,
the procedure can be performed analogously by replacing
the driving forces (47) and the time derivative (49) by
their respective sum over all load cases. Additionally, the
viscosity ηϕ is multiplied by the number of load cases to
maintain the numerical damping and evolution speed of the
phase variable. The viscosity ηχ is automatically adjusted
by applying the sum of the driving forces over all load cases
in (53). Figures 26 and 27 show two examples in which the

two loads are applied as single and multiple load cases. All
load cases are weighted equally.

The example given in Fig. 26 shows the requirement
of multiple load cases: if the forces are applied as one
load case, no connection to the supports is established due
to the (vertical) equilibrium of the forces. If the forces
would be applied as separated load cases, the structure
would fail. For the single load cases, the MRM and TDO
yield very similar results, whereas the multiple load cases
differ partially. In the first example given in Fig. 26, the
MRM yields compression affine material in the trusses
on the right; whereas, the TDO yields a composite of
tension and compression affine material. The structural
stiffness for the TDO is higher, which is mainly provided
by the larger amount of stiffer tension affine material used
in the design. The second example is given in Fig. 27.
The frame bracing is made of the stiffer tension affine
material in both results. In MRM, the node connecting
the tension struts is on the bottom of the design space;
whereas in TDO, it is oriented towards the center. The two
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Fig. 26 Example for the
application of two loads as
single load case (left) and
multiple load cases (right)
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Fig. 27 Example for the
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single load case (left) and
multiple load cases (right)
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conventional RC beam hybrid beam

h‘/h ≥ 1
100 % ~ 15 %

h‘h

Fig. 28 Transformation of a conventionally reinforced concrete beam to a weight-optimized hybrid concrete-steel beam by topology optimization

multiple load case examples reveal an interesting aspect in
tension/compression anisotropy enhanced topology design.
For instance, regarding Fig. 27, if the load on the right side
is active, the truss between the lower left and the upper
right supports the load in a compressive state, whereby the
other diagonal structural member is under tensile stress. For
the other load case, i.e., the load on the left side is active,
the opposite applies. Therefore, it is to say, that there is no
actually suitable material for these structural members due
to the changing stresses. However, in order to maximize
the weighted average of the structural stiffness, the stiffer
material (steel) is employed. The examples show that further
investigations related to incorporating multiple load cases
within a multi-material optimization problem that tackles
the tension/compression anisotropy of materials are worth
to be accounted. However, this is beyond the scope of this
publication and has to be investigated carefully in future
research efforts.

7 Practical application

Although concrete can be casted in nearly any shape, this
benefit is poorly used in practical application. In recent
years, some research effort has been done in civil engi-
neering, concerning for example optimized reinforcement
(Putke and Mark 2014; Putke et al. 2015, 2016; Schmidt-
Thrö et al. 2018;) and parabolic trough collectors (Forman
et al. 2016; Kämper et al. 2017). However, still concrete
beams and plates with compact cross sections are designed
often, hence leading to oversized structural components.
Simple improvements concerning the general shape, cross-
section layout, and material distribution ensure weight-
optimized structures with equivalent load-bearing capacity.
The presented method for tension/compression anisotropy
enhancement enables the feasibility to perform an adequate
topology optimization taking into account the character-
istic requirements existing in structural engineering. As
mentioned in the introduction, the objective in concrete

design is to exploit the benefits of both materials, i.e., con-
crete and structural steel. While concrete is comparatively
lightweight, economical and has high compressive strength,
it can barely sustain tensile stresses. In comparison, steel
has an equally high compressive and tensile strength but
suffers from a high density and material price. Thus, the
proposed methods could be used to reduce the cost of
materials and structural weight considerably by arranging
material only where really needed. In Fig. 28 a conventional
concrete beam with rectangular cross-section and accompa-
nying longitudinal reinforcement for bending and stirrups
for the internal shear force is shown. Modeling the 4-point
bending problem with FE and applying one of the proposed
methods (here exemplary MRM), the material distribution
can be optimized in such a way that the structural volume,
weight and costs are decreased drastically. Further material
reduction can be attained by increasing the height of the
predefined design space. Eventually, UHPC with its much
higher compressive strength can be utilized to minimize the
material costs even further to about 15% relative to the ini-
tial beam volume. As a consequence of the optimization
procedure, a hybrid concrete-steel beam results in which no
redundant material is employed. The structural layout and
material distribution is designed to transform bending in
axial loads and thus bear loads most effectively.

8 Conclusion and outlook

A general idea to the tension/compression anisotropy
enhancement to topology design was presented. To this end,
a three-phase (two solid and one void material) system,
distinguishing between materials’ tensile and compressive
stress affinity, has been introduced along with an energetic
measure for the tension and the compression affine material.
The implementation of this enhancement to topology opti-
mization was demonstrated using two different optimiza-
tion schemes: the extended material-replacement method
(MRM) which applies modified stiffness matrices for the
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optimization based on MMA, and the thermodynamic
topology optimization (TDO) which applies Hamilton’s
principle with additional energetic penalization to derive
evolution equations for the design update. Although the
tension/compression anisotropy enhancement was imple-
mented into different topology optimization approaches,
similar results are obtained. Surely, both optimization
schemes can be improved further in future works. For exam-
ple, more sophisticated filter techniques for the density
variable or filter techniques for the phase distribution could
be included to improve the convergence behavior or to apply
manufacturing constraints. However, the computed results
demonstrate the applicability in practice already. Further-
more, it is planned to construct and test experimentally the
proposed optimized hybrid concrete-steel structures shortly
and verify their superiority over conventionally designed
RC counterparts.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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