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Abstract

Optimal design of micron-scale beams as a general case is an important problem for development of micro-electromechanical
devices. For various applications, the mechanical parameters such as mass, maximum deflection and stress, natural frequency and
buckling load are considered in strategies of micro-manufacturing technologies. However, all parameters are not of equal
importance in each operating condition but multi-objective optimization is able to select optimal states of micro-beams which
have desirable performances in various micro-electromechanical devices. This paper provides optimal states of design variables
including thickness, distribution parameter of functionally graded materials, and aspect ratio in simply supported FG micro-
beams resting on the elastic foundation using analytical solutions. The elastic medium is assumed to be as a two-layered
foundation including a shear layer and a linear normal layer. Also, the size effect on the mechanical parameters is considered
using the modified strain gradient theory and non-dominated sorting genetic algorithm-II is employed to optimization procedure.
The target functions are defined such that the maximum deflection, maximum stress and mass must be minimized while natural
frequency and critical buckling load must be maximized. The optimum patterns of FG micro-beams are presented for exponential
and power-law FGMs and the effect of theory type and elastic foundation discussed in details. Findings indicate that the elastic
foundation coefficients and internal length scale parameters of materials have the significant influences on the distribution of
design variables. It is seen that the optimum values of inhomogeneity parameter and aspect ratio for E-FG micro-beams predicted
by the modified strain gradient theory are larger than those of the classical continuum theory. Also, the multi-objective optimi-
zation is able to improve the normalized values of mass, maximum deflection, buckling load and natural frequency of P-FG
micro-beams.

Keywords Multi-objective optimization - Non-dominated sorting genetic algorithm-II - Size effect - Modified strain gradient
theory - Euler—Bernoulli model - Functionally graded materials

1 Introduction
1.1 Size effect
Micro-beams, as one out of the most important components in

micro-electromechanical systems (MEMS) e.g. atomic force
microscopes, micro-actuators, and micro-pumps, have been
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broadly utilizedPelesko and Bernstein 2003). Since dimen-
sions of beams are in micron-order, size dependent behaviors
have been observed experimentally in these applications (Lam
et al. 2003; McFarland and Colton 2005). Due to lack of
length scale parameters in the constitutive relation of classical
continuum theory, the classical beam models are not able to
interpret the size effects in micro-scale elements. Therefore,
several non-classical continuum theories such as the couple
stress (Toupin 1962), nonlocal (Eringen 1968), the modified
couple stress (Yang et al. 2002) and the modified strain gradi-
ent (Lam et al. 2003) theories have been developed to inves-
tigate the size effect. Recently, these non-classical continuum
theories have been widely utilized to formulate and study the
size-dependent thermal and mechanical behavior of micro-
beams, plates and shells. Some examples of such works are
mentioned here: Ghayesh et al. (2017); Farokhi et al. (2016);
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Gholipour et al. (2015); Taati et al. (2014a, b); Ghayesh et al.
(2013); Taati et al. (2012).

1.2 Functionally graded materials

Functionally graded materials (FGMs) are made from two or
more materials in which the properties continuously vary in
the defined direction(s) from one point to another. In the most
of cases, FGMs are a combination of a metal phase and a
ceramic phase which can provide simultaneously both the
desired mechanical and thermal properties. Metals give better
tensile strength and are not able to withstand exposure to high
temperatures. On the contrary, ceramics are advantageous in
high compressive strength and thermal environments. The
mechanical behavior of FGMs is strongly dependent to spatial
distribution of the volume fractions. Hence, the distribution of
volume fractions in FG structures can be selected as a design
variable in the optimization procedure for achieving desired
mechanical performance. In recent years, the abundant re-
quirements have been declared to achieve the multilayer
MEMS with variable properties in the thickness. For example,
the processes were defined to produce an FG layer in micron
size with the desired electrical, thermal and mechanical prop-
erties at its bottom and top surfaces (Witvrouw and Mehta
2005). Hence, some studies have been accomplished on the
thermal and mechanical analyses of FG microstructures under
thermo-mechanical loadings (For instance, please see: Simsek
and Aydin 2017; Taati 2016; Simsek 2015; Molaei et al.
2014a, b; Asghari and Taati 2013; Kocatiirk et al. 2011).

1.3 Multi-objective optimization

Multi-objective optimization algorithms are used to find opti-
mum values of several target functions. These algorithms have
been employed in numerous scientific fields namely engineer-
ing, physics, chemistry and economics where optimal deci-
sions require to be taken in the presence of trade-offs between
two or more conflictive objectives. No single solution can be
found that simultaneously optimizes each objective for non-
trivial multi-objective problem. Until now, some of multi-
objective optimization algorithms have been introduced by
researchers that the most important of those are Pareto
Archived Evolution Strategy (rey Horn et al. 1993), Multi-
Objective Genetic Algorithm (Murata et al. 1996), Strength
Pareto Evolutionary Algorithm (Zitzler and Thiele 1999) and
The Pareto Envelope-based Selection Algorithm (Come et al.
2000). Recently, Srinivas and Deb (1994) proposed a non-
dominated sorting genetic algorithm to find optimum values
which includes several layers of classifications. Deb et al.
(2002) improved the NSGA and called it NSGAII. This
algorithm generates population and classifies the solutions
based on ranks. By applying evolutionary operations such as
mutation and crossover, it builds new offspring and combines
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offsprings with parents. Also, the diversity of algorithms is
guaranteed by employing crowding distance for selection the
solutions.

1.4 A review of studies accomplished
on the optimization of beams

Here, a brief review of studies conducted on the optimization
of'beams is presented. Dems (1980) developed optimal design
of the shape of an internal or external boundary in an elastic
bar subjected to torsion. For the formulation of optimization
problem, the boundary shape was described by a set of shape
functions and a set of shape parameters. Hence, the
optimization procedure was reduced to determination of
these parameters. Dems and Plaut (1990) designed beams,
plates and their elastic foundations for uniform foundation
pressure which its main objective was the minimization of
the maximum pressure transmitted to the foundation. Three
types of loadings including concentrated central force,
uniform and parabolic distribution of load per unit length
were considered. Lee et al. (1994) proposed a detection tech-
nique for the delamination phenomenon in a laminated beam
which optimizes the spatial distribution of harmonic excitation
so as to magnify the difference in response between the
delaminated and intact beam. This technique was evaluated
by numerical simulation of two-layered aluminum beams.
Kruusing (2000) presented a simple and straightforward ana-
lytical model of the mechanical response of cantilever micro-
beam loaded normally at the tip. In the both cases of constant
total thickness and constant thickness of one layer, the optimal
dimensions of two-layer beams with one active and one
passive layer was given based on the maximal tip deflection
and generated force. Sorokin et al. (2001a) developed a for-
mulation and a solution technique to analyze and optimize
energy flows in structures composed of beam elements.
They considered the energy outflow integrated within the giv-
en frequency range at a given cross-section of the tubular
structure as an objective function. They (Sorokin et al.
2001b) employed this method to optimize a model structure
consisting of two elements of a finite length and one semi-
infinite element. Design parameters were chosen as the stiff-
ness, mass and the location of two of the terminal points.
Cardoso et al. (2002) accomplished a design sensitivity anal-
ysis and optimal design of composite structures modelled as
thin-walled beams subjected to torsion-bending loadings. A
two-node Hermitean beam element was used to solve the
mathematical model. Optimal design was carried out with
respect to the lamina orientations and thickness of the
laminates. Liu et al. (2008) formulated a topology optimiza-
tion technique for beam cross-section using an anisotropic
beam theory. They studied effects of section warping and
coupling among deformations in this method. In this
optimization problem, the minimum averaged compliance of
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the beam was taken as an objective function, and the material
density of each element was utilized as a design variable.
Sivanagendra and Ananthasuresh (2009) provided the optimi-
zation of the cross-section profile of a cantilever beam under
deformation-dependent loads. The criteria of optimization
were considered to be minimum moment at the fixed ground
support as well as adequate stiffness and strength. Polajnar
etal. (2013) performed the geometry optimization of a slender
cantilever beam subjected to a concentrated force at the free
end. Bernoulli-Euler beam theory was used to obtain two-
parametric mathematical model of lateral torsional buckling.
The optimization procedure was implemented by use of the
optimal control theory and the relation between state and
adjoint variables. Shi and Shimoda (2015) proposed an inter-
face shape optimization method to design FG sandwich struc-
tures with two different materials to minimize the compliance
of FG sandwich structures under the volume constraint. They
concluded that the compliance of FG sandwich structures is
significantly reduced after optimizing by means of this meth-
od with a large difference between Young’s modulus of
components.

1.5 Present study

In this study, a multi-objective optimization of simply support-
ed FG micro-beams resting on an elastic medium is carried out
using the size dependent analytical expressions of mechanical
parameters. The elastic medium is modeled as a two-layered
foundation including a shear layer and a linear normal layer
which are known Pasternak and Winkler elastic foundations,
respectively. To this end, the size dependent equilibrium equa-
tion of FG micro-beams is derived using the modified strain
gradient theory. Next, by solving this governing equation, the
analytical expressions for maximum deflection, maximum
stress, minimum natural frequency and critical buckling load
are developed. For multi-objective optimization, the lengths to
thickness (aspect) ratio, thickness and distribution parameter
of FGM are considered as design variables. Also, the target
function is defined such that maximum deflection, maximum
stress and mass become minimum while values of natural
frequency and critical buckling load must be maximized.
Multi-objective optimization is performed by use of non-
dominated sorting genetic algorithm-II. The optimum patterns
of FG micro-beams resting on the elastic foundation including
curves of the normalized target function versus pairs of design
variables are presented for both exponential and power-law
FGMs. For each case, the effects of theory type and founda-
tion on various optimum patterns are discussed in details.
Outcomes show that the elastic foundation coefficients and
internal length scale parameters of materials have significant
influence on the distribution of design variables at optimal
states.

2 Preliminaries
2.1 Problem definition and modeling

Consider a simply supported FG micro-beam resting on elas-
tic foundations with length L, thickness /4, width b, as shown
in Fig. 1. It is subjected to axial load N and the constant
transverse force per unit length g. The optimization of the
aspect ratio L/h, thickness and distribution parameter of
FGM in micro-beams is selected as a case study. The optimi-
zation procedure will be performed using analytical expres-
sions of size dependent mechanical parameters. To this end,
the Euler—Bernoulli beam model is used to describe the defor-
mational behavior of beams under mechanical loadings.
According to this model, the components of the infinitesimal
displacement field are expressed as follows:

ow(x, 1)
Ox

U, = —Z 5 u2:0, u3:W()C,t), (1)

The symbol w denotes the displacement of points on the
bending plane of the flexible beam in z direction. Moreover,
parameter ¢ is the time. The bending plane is a plane perpen-
dicular to the thickness direction and the cross section of
beam, wherein no longitudinal strain exists under pure bend-
ing condition (without axial force resultant). Parameter z-
represents the distance of the point from the mid surface.

Here, FGMs are modeled as a non-homogenous isotropic
linear elastic material whose properties, A vary continuously
through the thickness direction. Most researchers utilized the
exponential function (E-FGM) and the power-law function (P-
FGM) to describe the spatial dependent of FGM properties.
Hence, these two kinds of FGMs are introduced in the
following:

« E-FGM

For this case of FGMs, it is supposed that all of mechanical
properties are varied through the thickness as the following
exponential function:

AQ

_ a(z/h+0.5)
= ¢ 2
Py (2)

In (2), A is a material property and the index of ref. stands
for any physical property of FGM either metal or ceramic.
Moreover, the inhomogeneity parameter is denoted by .

+ P-FGM

For this case of FGMs, it is assumed that the beam is com-
posed of a ceramic phase and a metal phase whose volume
fractions obeying a simple power-law distribution. Therefore,
each of beam properties, A can be expressed as follows:
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Fig. 1 Coordinate system, z

L

\
loading and geometry of a simply N
supported FG micro-beam resting

q
on elastic foundation vl"L‘l“lﬂlﬂ]/\lﬂlrl"]/‘L‘L‘]/i'J/\Hri' N

Material

A=AV, .+ AN,V

(3)

where the subscripts ¢ and m stand for ceramic and metal,
respectively. Also V. and V,, are the volume fractions of ce-
ramic and metal, respectively which are related as V. +V,, = 1.
(3) shows the linear rule of mixture, which is the simplest
estimate of the effective material properties at a point in a
dual-phase metal-ceramic material. The metal volume frac-
tion is considered to follow a power-law distribution as fol-
lows:

Vi =(05+z/h)" > V,.=1-(0.5+2z/h)" (4)

In (4), n is the power-law index that takes values greater
than or equal to zero. Substituting for V.. and V,, from (4) into
(3) results in the effective material property as:

A(2) = Ac + (Aw=A) (0.5 + 2/h)" (5)

In current study, relation (4) will be employed as a model
for Young’s modulus E, shear modulus G, and density p of
micro-beams.

2.2 The modified strain gradient theory
According to the modified strain gradient theory (Lam et al.

2003), the variation of strain energy (6U) for a linear elastic
body occupying region €2 can be written as follows:

oU = sz (Uij‘sgij +pi v + Tz(j}c) 5775‘1'? + mlS/aXf’) aa (6)
where
1 [ Ou; auj
i =% o ) ’
RAR (qu i 5x1’> 7
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asmm
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= (®)
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(3 Emi € Emi
_ ; mm 2 mi . l mm 2_’7[]
156-’"( o T axm) 15 5"<ax,- * ax,,,>
XS = ! 00; + 00; , (10)
Y 2 6xj 8x,~
1 —
9i:—<curl(u)), (11)
2 i

where ¢, 77[(].1,3 and x;; are the components of the strain tensor,

the deviatoric stretch gradient tensor and the symmetric part of
the rotation gradient tensor, respectively. Also, u;, ; and 6;
denote components of the displacement vector, the dilatation
gradient vector, and the infinitesimal rotation vector, respec-
tively. In addition, the components of the classical (¢;) and
higher-order ( p;, ngi() ,mfj) stress tensors are defined as follow
(Lam et al. 2003):

oy = /\tr<£>5ij+2,u5ij, (12)

pi = 2#%%’ = B> (13)
1 1 1

) = 2uln) = By, (14)

my, = 2ul x5 = Br (15)

where A and y are Lame constants.
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3 Theoretical formulation

Here, analytical expressions for the mechanical parameters of
simply supported FG micro-beams are obtained. To this pur-
pose, the equilibrium equation of FG micro-beams is derived
using Hamilton principle and a variational approach. Next, the
Fourier series expansion is employed to solve the governing
equation.

3.1 Equilibrium equation
Based on the modified strain gradient theory, the variation of

strain energy for an FG micro-beam can be computed as fol-
lows (Taati et al. 2014b):

J.(YUlm 6de + (5Ubound)x 0’ (16)
where
, & 1
U™ — — — e {M“ +M + - 5 ( M3, +4MT13_M523) +M'1n2]

83 2 T T
g [+ 3 s

and

0
Spybound _ [6_ (M“ + M5+ — (M + 4MT 5 M223) + MY,

62
v < T+ 1= ngl))} ow

1
=M +M13]+5( M3y + 4MT3~MGys) + M7,
0

2, . ow

_a (HI;+ 5 (Hm 3H221))} 6(5)
2, . - &w
7(H117+§(H11173H221))5(@>

g(
(

(17)
In (17), the stress resultants are defined as follows:
*w m m 1 *w
My, :7(El)eq6727 My, = My, :75(/32‘4)3(;@7
Fw &*w
HY ==(Bo]) oy =5 PR MY = _(ﬂoA)qu7
. ow . *w
Hiyyy = _§(611)8q$7 M3y, = (51A)eq o2’
T T T 4 62
My =My, =M, = _E(ﬂlA)qu7

1 w
I (ﬂlA)eq FoR
Sw

1
Hyy = H3y, = Hy, = Hiys = Hyy = Hy :g(ﬂll)eq¥7

(18)

T . T . T _
M223 _M232 _M322 -

in which
h/2 h/2
(EA),, =b | E(2)dz, (ED,,=b | E(z)Zdz,
~h/2 ~h/2
h/2 h/2
(Bl =b ] Giz)dz, (Bl)eg=b ] Bi(e)edefori=0,1,2

(19)

The variation of kinetic energy for an FG micro-beam is
given by:

L L L yA2e . x=L
8T = —m [véwdx + m Jg (W6W)dx +1] 6_w ow |dx—I a—wéw
0 0 Ot 0 \ ox2 Ox

x=0
(20)
where p is the density and a dot over the kinematic variables

signifies a time derivative. Furthermore, the parameters m and
1 are defined as follows:

hy2 h/2
m=b [ plx)dz, I=b | p(z)7°dz (21)
~h/2 ~h/2

Finally, the variation of virtual work done by the external
forces is obtained as:

2 2

o“w ow

owdx, (22)
Based on the relation of the Hamilton principle on the time
interval between #, and #,, we have:

i (6T—8U + 6W)dt = 0 (23)

Substituting for the variation of strain energy, kinetic ener-
gy and external work from (16), (20) and (22), respectively
into relation (23) results in the following governing equation:

& 1
5W27|:M11+M§+*

02 5 (7M§33 + 4MT137M§23) “'Mrlnz}

F [, 2, .
63 H, +§(H11173H221)
62w 62 az

(24)

Similarly, the end conditions at x=0, L are obtained as
follows:
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6 P 1 T T T m < . mm
o \Mun + M —0—;(—M333 +4MT 3=M5y) + M7, w(x, t) = Zl wmsm(Tx)f(t) (29)
P
& 2 o = i i — olent i
- (H}f Lz (H{11—3H§21)) + 120 OR dw(x,))=0 whe'ref(t) =1 'for statlc'a‘nalysw and f(¢) = “' for free vi-
Ox 5 ox bration analysis. In addition, the constant transverse force per

1 _
My + MY +§(_M§33 +4MT 3 —M5y) + MY,

0 2, . . ow
P (H1;+§(H111—3H221)> =0, OR 5(5) =0,
2, - Pw
H€+§(H111_3H221) =0, OR 5(@) =0

(25)

Upon substitution of the stress resultants from (18) into the
differential equation of motion presented in (24), one can get
the governing equation only in terms of kinematic parameter
and the material properties as follows:

_w . otw L O
5W:Dﬁ—Ey+q—mw+1W—kww (26)
Pw Pw
i Vi
+p Ox2 Ox?
where,

D= (Bl +3 (s E = (D), + (oA),
@)

4 I
+ g (B1A), + ) (B24),,

Similarly, the boundary conditions at x=0 and L can be
expressed as follows:

LTI

P ; ﬁ ) ax OR (SW(.X', t) = O7
- o'w - 0w ow
_ _ R ) =
oxt T ox2 0 © 6(5)6) g
_Ow Pw
D= = R ) =o.
o0 0, o) 6(6}#) 0

3.2 Analytical expressions for the mechanical
parameters

In this section, the mechanical parameters namely the mass,
maximum deflection, stress, natural frequency and buckling
load are obtained for simply supported FG micro-beams. The
following Fourier series expansion, which is compatible with
simply supported boundary conditions, can be proposed for
transverse deflection.
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unit length should be expanded as follows:

g=2 QmSin(EX), Q,,,:%Iqsm(ﬂx>dx:4—q (m=1,3,-).

m=1 L L mm
(30)

The mechanical parameters can be obtained by substituting
(29) and (30) into governing equation appearing in (26).
Analytical expressions of mechanical parameters which will
be used for multi-objective optimization of simply supported
FG micro-beams are given in Table 1.

4 Multi-Objective optimization

In this study, all mechanical parameters developed in the pre-
vious section are considered for multi-objective optimizations.
The target function is defined such that maximum deflection,
maximum stress and mass must be minimized while natural
frequency and critical buckling load must be maximized.
Hence five target functions are introduced as follow

(M .
Target Functions : min (F) ;min (:’Snw) ; (31)

max

min (Umax) ; max (i) ; max (N”)

oS )’ WS/’ NS
where the mechanical parameters with superscript S refer to
values relevant to suitable sample beams with L =104 =

10b=10pum and E=70 GPa for each case. The values of
mechanical parameters are obtained for three cases as follows:

Mechanical parameters of sample beam based on
the modified strain gradient theory :

MS =27 fg, WS = 2.23 nm, omax = 75 uN / (um)?,

w® =2.3e"Hz, N5 = 575.73uN

Mechanical parameters of sample beam based on
the modified strain gradient theory :

M5 =27 fg,w = 1.93 nm, opmay = 64.75 uN / (im

WS =2.475¢"Hz, NS = 666.99N

Mechanical parameters of sample beam resting on
the elastic foundation

M =27fg. WS = 0.3 nm, Omax = 9.36 uN /(uim)?,

max

WS =6.19¢"Hz, NS = 4174uN

)2’ (32)

It is to be noticed that 1 femtogram (fg)=10""°g ram. The
variables of aspect ratio L/A, thickness 4 and distribution pa-
rameter of FGM are chosen as design variables which play
important role in the target functions. These are components
of'a vector with 3 elements which include numerical quantities
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Table 1  Analytical expressions of mechanical parameters in multi-
objective optimization

Mechanical parameter Analytical expression
Mass (kg) M=m L
Maximum deflection (1) Winax = 2, DS‘+ES+W
where =1 !
S=@2s—Dn/L and Q,=4q/(2s — )r
*© 2
Maximum stress (Pa) Omax = (2E(z) G

) max gl DS®+ES*+k,,+k,S*

Natural frequency (rad/s)

o= D(r/L)*+E(n/L)* +h,+ky(n/L)
- m+I(7/L)*

D(n/L)° +E(n/L)* 4k 4k, (7/L)*
(x/L)*

Critical buckling load (V) Ny =

and denoted by X(i=1 to 3) presented in Table 2. It is not
possible to evaluate all possible values of design vector, there-
fore the design variables must be constrained between lower
and upper bound which are given in Table 2.

4.1 NSGAII Algorithm and settings

As mentioned before, NSGAII is a successful algorithm for
multi-objective optimization.it has several layers to maintain
both variety and efficiency. The successive steps of optimiza-
tion on the basis of NSGAII Algorithm are presented in Table 3.

To this algorithm, the number of initial population is firstly
generated and amount of objective functions for each number of
the initial population is computed. Also, these members are
ranked and the crowding distance (CD) for any one of them is
determined. In the next stage, parents are chosen based on the
rank and CD of each member and then a total population is
formed by combination of new population and initial popula-
tion. N number of upper population of the total population
would be separated for the next generations among the total
population, whose numbers are higher than initial population.
To get acceptable results, the algorithm requires to suitable set-
tings. The settings of the NSGAII algorithm are given in Table 4.

Crossover and mutation determined in Table 4 are two
basic operators of optimization algorithm which are simulta-
neously employed to generate new population in the algo-
rithm. Crossover is utilized to vary the programming of a
chromosome or chromosomes from one generation to the next
generation. This process is like to reproduction and biological
crossover which takes more than one parent solutions and
produces a child solution from them. Many crossover

Table 3 NSGAII Algorithm

1. Initialize population and generate random population
2. Calculate Objective functions
3. Sort by non-dominated sorting algorithm
4. Calculated the crowding distance
5. Sort population based on rank
6. For i=1 to generation number do
For each parent and child do
Crossover
Mutation
End for
7. Merge population
8. Non-dominated sorting
9. Calculate the crowding distance
10. Sort population and calculate fronts
11. Store the first front
12. End for
13. End procedure

techniques namely single-point crossover, two-point cross-
over, cut and splice, uniform crossover and halfuniform cross-
over exist for organisms which use different data structures to
store themselves. The single-point crossover technique is ap-
plied to increase the variety in the answers in this algorithm.
Mutation operator often changes randomly a part of a chro-
mosome and maintains genetic diversity from one generation
of a population of genetic algorithm chromosomes to the next.
It prevents the algorithm to stay in a local minimum so the
chance of finding more accurate answers improves.

The non-dominated sorting operator (NS) is the important
operator of the multi-objective procedures which eliminates
the weak answers and improves the optimum front to reach to
the Pareto front. In this algorithm, each population is com-
pared with all other population two by two. For each chromo-
some, the number of times defeated by other answers is cal-
culated. The answers which are not defeated by other points
are placed in the first front. By laying away these non-
dominated points, the trend repeats for remain points. It is
important to assign a rank for each member of population
located in a front. In what follows, the crowding distance
(CD) is described to tackle the issue. The CD subprogram
plays main role in the NSGAII algorithm which is applied to
compare the answers of a united front with similar rank num-
ber and sorts these answers. It means that if two answers are

Table 2 Range of design ] ]
variables in micro-beams Design variables

Lower bound Upper bound
X = Thickness (h) 0.5 pm 3 um
X, =Aspect ratio (L/h) 10 20
Xs={ a for E-FGM n for P-FGM {2 fora 0 forn {2for o 4.5 for n
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Table 4  Algorithm Settings

Description ~ Maximum Initial Crossover ~ Mutation
number of  population  percentage rate
generations  size

Value 20 50 0.7 0.02

from a unique front, the answer with higher crowding distance
will be selected and increases the variety of answers. In this
study, the objective functions are five, hence the crowding
distance is a five-dimensional space.

5 Results and discussion

Here, the results of optimization are obtained for two types of
FG beams with constant width » = 1um. As mentioned in the
first section, three design variables including thickness, aspect
ratio and the distribution parameters of FGM (« for E-FGM
and n for P-FGM) are assumed. In addition, if the material
length scales parameters /y, /; and /, are considered to be zero,
the results predicted by the classical theory are obtained.
Without losing generality and for convenience, it is presumed
that all the material length scale parameters have the same
value as [p=1; =1, =0.1um. As mentioned previously, five
normalized mechanical parameters have been considered that
orders of their amplitudes are not same. We tend to define an
output parameter in which the weight of all mechanical pa-
rameters is supposed to be equal. To this end, all values for
each of outcomes (7)) is normalized as follows:

= Ti(j)—min[7;(j)]

where, index j stand for the population number. As a result, the
values of 7 ‘s are in the interval [0,1]. A normalized form of
target function is defined as follow:

U=Ty+Ty +Ts ~T.Ty, (34)

It is worth mentioning that the sign of values of function ¥
may be negative.

5.1 E-FG beams

For obtaining the numerical results, it is assumed that E-FG
beams are composed of aluminum (Al) material with
properties E,.;=70 GPa, G,,;=26GPa and p,.;=2700 kg/m’
as the reference material. In order to attain the best outcomes,
intended algorithm has been utilized in several times and by
considering the various population members and various iter-
ation times. Table 5 demonstrates some selected outcomes of
multi-objective optimization predicted by classical continuum
theory for various design variables (A, L/h and «). From this
Table, it can be found that the mass of micro-beams can be
reduced more than half of the sample beam as values of « are
negative. Hence, these FG micro-beams are suitable for appli-
cations that beams are only subjected to the inertial forces. In
these applications, the values of maximum deflection, maxi-
mum stress and critical load are less important. A range of
results of the multi-objective optimization is good for FG
micro-beams under compressive traction. In these cases, the
thickness of beams and inhomogeneity parameters are larger
than the thickness of the sample beam and zero, respectively.
Compared to the sample beam, the mechanical parameters
except buckling loads are not improved. Figures 2a and b

T:(j) = : (33) show the values of normalized target function defined in (34)
max|[7;(j)|-min[7;(;)] for pairs of design variables («, L/h) and («, h), respectively
Table 5 Some results of multi-objective optimization for the classical theory
Design variables Outcomes
h(um) L/h a M/M3 Winax/Winax G (i w/w® Ner /NG v
0.81 10.76 —0.453 0.572 1.35 1.44 1.07 0.57 0.077
0.71 12.59 —0.493 0.500 2.24 1.99 0.89 0.36 1.181
0.89 10.97 —1.48 0.45 2.32 2.15 0.962 0.41 1.255
0.67 11.31 1.27 1.02 0.51 2.15 1.20 1.11 —0.073
0.95 10.36 0.949 1.53 0.63 1.61 1 1.50 —0.293
0.637 10.55 1.116 0.79 0.40 1.77 1.43 1.1 —0.649
1.03 10.29 0.848 1.79 0.7 1.53 0.93 1.56 —0.229
1.23 10.27 0.74 2.31 0.90 1.46 0.77 1.77 —0.037
1.46 10.35 0.57 2.99 1.23 1.39 0.64 1.86 0.243
2.09 10.90 1.032 8.353 1.64 1.85 0.41 3.18 1.164
2.18 10.91 0.758 7.734 2.03 1.67 0.39 2.78 1.300
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based on the classical continuum theory. It can be readily con-
cluded from these figures that E-FG beams with 0.5 < h(um) <

2,10<L/h<12, and 0.2 <« <1.2 are selected in the most of
optimized cases. It is to be noted that the point U™ implies a
state of multi-objective optimization at which the value of

o

normalized target function is minimum. The row related to this
state is highlighted in all of tables and such beam is applicable
when importance of all mechanical parameters is identical.

In Table 6, some selected outcomes of multi-objective op-
timization for various design variables (4, L/h and o) are given

Table 6 Some results of multi-objective optimization for the modified strain gradient theory

Design variables Outcomes

h’(l’lm) L/h‘ a M/MS Wmax/wrflax O-max/o'frglax w/ws NCT/NL:S;' l{J
2.16 11.28 2.22 19.47 0.84 2.8 0.39 7.07 0.259
2.84 11.39 2.03 29.82 1.32 2.72 0.29 7.88 0.610
2.86 11.32 2.13 32.12 1.20 2.76 0.29 8.67 0.579
0.895 10.46 1.29 1.71 0.50 1.86 1.04 1.75 —0.613
2.43 11.55 1.87 20.04 1.34 2.70 0.32 5.85 0.512
0.635 10.76 0.123 0.46 0.79 1.23 1.36 0.58 —0.968
0.65 11.90 —0.29 0.44 1.49 1.62 1.09 0.40 —0.470
0.68 12.87 —0.63 0.43 2.46 2.2 0.90 0.31 0.042
0.69 14.01 —1.04 0.41 4.15 3.06 0.75 0.22 0.707
0.65 15.75 -1.06 0.41 6.28 3.90 0.63 0.16 1.398
0.58 17.06 —0.89 0.379 7.24 4.30 0.60 0.13 1.698
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Fig. 3 Values of normalized i — .
target function W for pairs of a T
optimum decision variables P RS e
(a) (o, L/h) and (b) (ax, h), | © i
respectively based on the
modified strain gradient theory 14 o
=
[ L ] '
0+ 0 ® qeeNeo
e e G0 ©
- S - o © o® —
18 S . d e 3 —~ |
16 - P (0.12319, 10.7585 , -0.96765) \. s P —~ 3
14. sy - 2
e - 1
12 TS 4 0
10 -2
L/h a
b — - _
2 T ) i *
W,
1 @ % o @ =
=l ® QP (@) o ® o ©
0~ %@@ -
. . B
RS <l e e® v—
A e . e ©
3 = ¥ (0.12319, 6.3488e-07 ,-0.96765)\ ® ~ .
- o S OO e} e =
2.5 oy - 3
<10°® 1.5 1 e, ) 1/ 0
h 05 -2 )

by use of the modified strain gradient theory. It is to be noted
that the mechanical parameters are normalized with respect to
the suitable reference values given in (32) for sample beam.
For some cases of beams, the thickness and aspect ratio of

Table 7 The effect of elastic foundations (K, = 2K}, = 100) on some results

(24

micro-beams, respectively are significantly lesser and larger
than those of the sample beam, the mass and natural frequency
of FG beams is decreased approximately to 38—44% and 60—
90% of those of the sample beam, respectively. Therefore,

of multi-objective optimization for the modified strain gradient theory

Design variables Outcomes
h(ﬂm) L/h a M/MS Wmax/w'rflax O-max/o'rflax w/ws NCT/NC?i" L[J

3 10.84 0.61 13.57 3.98 2.07 0.25 2.73 1.816
2.89 10.78 —0.18 8.23 4.00 1.17 0.31 245 0.750
2.94 10.84 0.61 12.85 3.88 2.07 0.26 2.66 1.744
2.29 10.51 0.13 5.90 2.81 1.25 0.38 2.01 0.251
1.39 10.32 0.65 2.82 1.50 1.95 0.59 1.40 0.164
1.72 10.64 —0.994 1.99 2.35 1.16 0.68 1.44 —0.811
1.83 10.49 —1.10 2.14 2.38 1.13 0.62 1.57 —0.312
0.90 11.27 —-0.174 0.83 1.48 1.28 1.00 0.70 —0.579
0.78 13.04 -1.12 0.48 2.42 1.75 1.13 0.43 0.216
0.84 12.83 —1.22 0.53 2.46 1.70 0.92 0.48 0.198
0.62 13.04 —1.22 0.28 1.91 1.75 1.22 0.34 —0.238
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Fig. 4 The effect of elastic
foundations (K, = 2K,,=100) on
values of normalized target
function W for pairs of optimum
decision variables (a) (¢, L/h) and
(b) («, h), respectively based on
the modified strain gradient
theory

these beams are applicable wherein subjected to harmonic
forces with excitation frequencies higher than natural

Fig. 5 The distribution of
properties through the normalized
thickness at the optimal state U*
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Table 8  Some results of multi-objective optimization for the classical theory

Design variables Outcomes
h’(:u'm) L/h’ n M/MS Wmax/W‘rb"‘Lax Jmax/grflax w/ws NCT/N(:‘ST lp
2.12 10.71 2.74 6.47 0.73 1.62 0.69 7.08 1.369
2.05 10.61 292 6.01 0.67 1.58 0.73 7.04 1.044
2.12 10.69 3.30 6.55 0.71 1.58 0.70 7.30 1.129
2.02 10.70 2.80 5.87 0.69 1.62 0.73 6.78 1.234
2.12 10.71 291 6.49 0.72 1.61 0.70 7.14 1.302
0.743 10.46 3.53 0.79 0.22 1.50 2.01 2.69 —0.73
0.83 10.46 3.50 0.98 0.25 1.50 1.88 3.00 —0.577
0.75 10.46 3.41 0.80 0.23 1.50 2.07 2.71 —0.683
1 10.63 3.62 1.42 0.32 1.54 1.52 3.49 —0.125
2.18 10.57 3.89 6.90 0.68 1.51 0.700 7.84 0.797
2.62 10.36 4 9.80 0.75 1.44 0.61 9.9 0.733

beams which are under compressive tractions and harmonic
forces with low excitation frequencies. In these cases, the
mass and buckling load of beams are larger than the several
times those of the sample beam. Also, a remarkable difference

between optimal values of mechanical parameters specially
mass and buckling load can be observed. In Figs. 3a and b,
the values of normalized target function for pairs of design
variables («, L/h) and (o, h), respectively are depicted using
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Table 9  Some results of multi-objective optimization for the modified strain gradient theory

Design variables Outcomes

h’(l”'m) L/h’ n M/MS Wmax/Wrb;‘Lax o-max/grflax w/ws NCT’/NL:ST lp
2.13 10.18 2.48 6.17 0.67 1.66 0.72 6.98 0.924
1.11 10.12 1.94 1.62 0.32 1.54 1.46 3.900 0.130161
1.80 10.26 2.53 443 0.57 1.65 0.85 591 0.762
231 10.31 2.94 7.39 0.75 1.67 0.65 7.49 1.092
0.90 10.49 2.23 1.13 0.28 1.52 1.74 3.24 —0.011
0.578 10.63 2.71 0.47 0.14 1.19 3.00 2.64 —1.133
0.68 10.49 1.97 0.63 0.19 1.36 2.46 2.71 —0.6
2.69 10.68 2.61 10.35 1.04 1.84 0.52 7.95 1.912
0.84 10.64 2.78 1 0.25 1.46 1.88 3.10 -0.172
0.53 12.56 2.11 0.46 0.25 1.62 241 1.77 0.018
1.15 10.40 3.11 1.86 0.35 1.53 1.36 4.09 0.169

the modified strain gradient theory. By comparing Figs. 2 and
3, it can be readily found that inhomogeneity parameters and
aspect ratio of optimal states predicted by the modified strain
gradient theory are larger than those obtained by the classical
continuum theory. Also, the distributions of optimal

statespredicted by these theories are completely different with
each other.

In Table 7, the effect of elastic foundations on some results
of multi-objective optimization for various design variables (/,
L/h and «) is studied using the modified strain gradient theory.
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Table 10 The effect of elastic foundations (K, = 2K, = 100) on some results of multi-objective optimization for the modified strain gradient theory

Design variables Outcomes
h(ﬂm) L/h a M/MS Wmax/W'rfLax O—max/o'rflax w/ws NCT/NC?i" L[J
2.28 10.26 2.51 7.1 1.87 4.39 0.42 2.99 0.614
2.45 10.20 2.77 8.23 1.96 4.34 0.40 3.26 0.597
2.81 10.29 3.21 11 231 4.39 0.34 3.69 0.941
297 10.26 2.35 11.97 2.45 4.44 0.33 3.85 1.107
2.16 10.31 2.16 14.65 1.45 4.67 0.58 1.93 0.707
0.67 10.66 2.79 0.64 0.55 4.16 1.44 0.95 —1.030
0.72 10.54 2.09 0.71 0.59 4.23 1.35 0.99 —0.854
0.67 10.70 0.66 0.58 0.65 4.79 1.40 0.82 —0.066
0.75 10.61 2.26 0.78 0.63 4.29 1.28 1.01 —0.681
0.85 10.60 2.61 1.01 0.74 4.44 1.12 1.08 —0.314
0.92 10.69 2.98 1.21 0.82 4.44 1.00 1.20 —0.194

It is to be noted that the mechanical parameters of the sample
beam resting elastic foundations (K,, = 2K, = 100) based on the
modified strain gradient theory are used to normalize outputs.
According to Tables 6 and 7, the optimal aspect ratio and inho-
mogeneity parameters of FG micro-beams resting on the elastic

foundations are smaller than those of FG micro-beams without
elastic foundations. In the most of optimal cases, values of the
inhomogeneity parameters are smaller than zero. Also, the elas-
tic foundations are able to increase values of the buckling load
for some optimal states whose thickness are larger than that of
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foundations (X,, = 2K}, = 100) on a .
values of normalized target 2 __— s
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Fig. 11 The iteration history for the target functions of P-FG beams

the sample beam. In Figs. 4a and b, the effect of elastic foun-
dations on values of normalized target function W for pairs of
design variables is investigated based on the modified strain
gradient theory. As can be seen, FG micro-beams with 1<
h(um)<3, 10.75<L/h<12, and —1 <« <0 are chosen as
the optimal cases. It can be readily concluded from Figs. 3
and 4 that the elastic foundation has the considerable influence
on the scattering of optimal states. In addition, the thickness,
inhomogeneity parameter and aspect ratio of the FG beam un-
der elastic foundations at state U™ are larger, smaller and ap-
proximately equal to those of beam without elastic foundations.

In Fig. 5, the distribution of properties through the normal-
ized thickness of E-FG beams at the optimal states U™ is plot-
ted. As can be observed, the forms of properties distribution are
completely different from each other by considering the size
effect and the elastic foundation. The difference between the
values of properties at top and bottom surfaces is small for the
optimal case predicted by the modified strain gradient theory.

@ Springer

5.2 P-FG beams

In this section, it is assumed that constituents of the FG micro-
beeams are a mixture of aluminum (Al) and alumina (Al,O3)
with material properties E,, = 70 GPa, G,,=26 GPa and p,, =
2700 kg/m3 for Al, and E.=380 GPa, G.= 152 GPa and p. =
3960 kg/m’ for AL,Os. In Table 8, some of optimal outcomes
for various design variables (%, L/h and n) are presented based
on the classical continuum theory. As can be seen, the buck-
ling loads and maximum deflections of micro-beams can be
improved more than sometimes of the sample beam. While,
the maximum stresses are increased more than 50% of the
sample beam. In the most of optimal states, values of thickness
and power index are larger than 2 and 2.5, respectively. Also,
the values of aspect ratio are smaller than 11. By comparison
of Tables 5 and 8, it can be found that the optimal mechanical
parameters of P-FGM beams except the mass are more advis-
able than those of E-FGM beams. Figure 6a and b demonstrate
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the optimal values of normalized target function for pairs of
design variables («, L/h) and («, &), respectively based on the
classical continuum theory. To these Figures, It can be readily
found that P-FG beams with 1 <A(um)<2.25, 10.4<L/h<

10.8, and 2 <n <3.75 are chosen in the most of optimal states.
Furthermore, values of normalized target function are smaller
than zero in these cases. The comparison of optimal values at
state W™ in Figs. 2 and 6 indicates that all mechanical param-
eters of the P-FG beams except mass are more appropriate
than those of the E-FG beams.

In Table 9, the size effect on optimal states of P-FG beams
is investigated by means of the modified strain gradient theo-
ry. Comparing Tables 8 and 9, it can be concluded that P-FG
beams with smaller values of the thickness, aspect ratio and
power index are chosen as optimal states based on the modi-
fied strain gradient theory. Also, values of normalized maxi-
mum deflection predicted by the modified strain gradient the-
ory are smaller than those of the classical continuum theory.
However, values of other normalized mechanical parameters

Point Number

MSG theory and elastic foundation

of optimal states change very slightly considering the effect of
size dependency. It is worth mentioning that there are signif-
icant differences between values predicted by the classical and
modified strain gradient theories of outcomes except mass,
which are not normalized. In Figs. 7a and b, the size effect
on the values of the normalized target function for pairs of
design variables («, L/h) and («, h), respectively are studied.
As observed in Figs. 6 and 7, the scattering of power indexes
predicted by the modified strain gradient theory for optimal
states are larger than that of classical continuum theory. To
results depicted in Figures 2,3, 6 and 7, it can be readily con-
cluded that the difference between values of design variables
and the normalized target function obtained by the modified
strain gradient theory and the classical continuum theory for
P-FG beam are smaller than those of E-FG beams.

In Table 10, the simultaneous effects of elastic foundations
and size dependency on the design variables (%, L/h and «) and
the mechanical parameters are investigated. Similar to Table 7,
the mechanical parameters are normalized using values of the
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sample beam resting elastic foundations predicted by the mod-
ified strain gradient theory. From Tables 9 and 10, the influ-
ence of elastic foundation coefficients on the values of out-
comes is more significant than the size effect. In the most of
optimal states, values of the aspect ratio and power index
respectively are in the interval [10, 10.7] and [2,2.8]. In
Fig. 8a and b, the effect of elastic foundations on values of
design variables and normalized target function is shown
using the modified strain gradient theory. As can be seen in
Figs. 7 and 8, the distribution of optimal states for micro-
beams resting on the elastic foundations is different from the
case of without foundation. For optimal state ¥, the thickness
of the P-FG beam under elastic foundations is larger than that
predicted for the case without effect of elastic foundations.
However, values of power index and aspect ratio of the FG
beams are approximately equal to each other. Furthermore, the
multi-objective optimization is able to improve the normalized
values of mass, maximum deflection and frequency for P-FG
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micro-beams resting on the elastic foundation (please see the
row of Tables 10 which are highlighted).

In Fig. 9, the distributions of metal volume fraction, V,,
through the normalized thickness at the optimal state U™ are
depicted. The volume fraction distributions are clearly differ-
ent by considering the size effect while a little difference can
be seen for micro-beams resting on the elastic foundation.
Comparing Figs. 5 and 9, it can be concluded that the effects
of size and elastic foundation for E-FG beams are more re-
markable than P-FG beams.

5.3 History, trade-off and sensitivity analysis

Here, the optimization histories of five target functions, trade-
off and sensitivity analysis of E-and P-FG beams for three
case studies are discussed in detail. In Figs. 10 and 11, the
iteration history of best values of mechanical parameters are
presented to show the trade-off of conflicting target functions
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Fig. 14 The sensitivity analysis for target functions of E-FG beams resting on the elastic foundation based on the MSG theory

for each case of E-and P-FG beams, respectively. It is to be
noted that best values at different iterations do not necessarily
belong to an optimal state. From Figs. 10 and 11, it is seen that
the best values of normalized buckling load and natural fre-
quencies become larger when number of iteration increases,
contrary to best values of normalized maximum deflection,
maximum stress and mass. For E-FG beams, the optimal value
of maximum stress, natural frequency and mass are obtained
by use of less iteration. For P-FG beams, only the optimal
values of normalized buckling load are significantly varied
by iteration. Also, it is observed that the best value of some
mechanical parameters is remained to be constant after each of
iteration for different cases, e.g. the optimal values of normal-
ized maximum deflection and mass in three cases of P-FG
beams. As mentioned in the Sections 5.1 and 5.2, many opti-
mal states can be found at each of iteration and it is impossible
to discuss all of them. Also, it is obvious that the best values of
all target functions are not occurred an optimal state. Hence,
the mechanical behavior of FG beams in some aspects may be
improved while the other mechanical aspects are unchanged
or even more disadvantageous. In Figs. 12 and 13, the trade-
off analysis of some optimal states is shown for three cases of
E- and P-FG beams, respectively. The values of mechanical
parameters at selected optimal states of FG beams discussed to
show the trade-off of conflicting target functions. For first
example, consider the values of target functions at first data
point of E-FF beams predicted by the classical theory
(Fig. 12a). It is seen that all mechanical parameters except
the normalized maximum stress are improved relative to sam-
ple values. For third, fifth and sixth data points in Fig. 12b, itis
seen that the values of normalized buckling load and mass
become larger than sample beam while values of natural fre-
quency and maximum deflection decreases. Hence, these

cases are suitable in application which E-FG beams are only
subjected to static loads. For some selected optimal states in
the case of P-FG beams resting under elastic foundation
(Fig. 13c¢), it is observed that the values of mass and normal-
ized natural frequency are less than the sample beam the while
maximum stress increases. Such optimal states of beam is
used somewhere the harmonic load with a high excitation
frequency imposed to the device.

A quantitative sensitivity analysis is conducted to show the
applicability and feasibility of the multi-objective optimiza-
tion and better understand optimal states presented in two
previous sections. On the basis of this sensitivity analysis,
the variation with an arbitrary design variable of outcomes is
obtained while two other variables are supposed to be constant
at their mean values. Since the design variables such as thick-
ness, distribution parameter of functionally graded materials
and aspect ratio have different ranges, a new variable of each
design variable should be defined using the Z -score function
as follows:

XY
r

Z—score(X) = (35)

In which, Y is the mean of arbitrary design variable X and I"
is the standard deviation of X. It is to be noted that values of
design variables have same mean value equal to zero and their
standard deviation is equal to unit. Figures 14 and 15 illustrate
the quantitative sensitivity analysis for all mechanical param-
eters of E- and P-FG beams embedded in the elastic founda-
tion using the modified strain gradient theory, respectively. As
mentioned previously, the horizontal axis represents values of
Z -score function and not the exact values of design variables.
From Figs. 14 and 15, it can be concluded that the aspect ratio
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Fig. 15 The sensitivity analysis for target functions of P-FG beams resting on the elastic foundation based on the MSG theory

have significant influence on the normalized maximum de-
flection and buckling load. Also, the variation with thickness
of normalized natural frequency and mass are larger than those
with other design variables. For E-FG beams, the normalized
maximum stress are strongly varied by the positive values of
Z— score when «v increases. Based on this sensitivity analysis,
it can be concluded that the variation of mechanical parame-
ters with an arbitrary design variable may be different each
other while two other variables are fixed at their mean values.

6 Conclusion

In this study, a multi-objective optimization of simply support-
ed FG micro-beams resting on Pasternak and Winkler elastic
foundations has been performed using the non-dominated
sorting genetic algorithm-I. The analytical expressions of me-
chanical parameters were chosen as target functions such that
maximum deflection, maximum stress and mass become min-
imum while values of natural frequency and critical buckling
load must be maximized. The size and foundation effects on
the design variables including thickness, distribution parame-
ter of FGMs, and aspect ratio and values of normalized target
functions were discussed in details for both E-FG and P-FG
micro-beams. Findings indicated that

* For some of optimum cases, the mass of micro-beams is
reduced more than half of the sample beam based on the
classical and the modified strain gradient theories. These
cases are suitable for applications of E-FG and P-FG
beams subjected to the inertial forces.

* For cases of optimum states, the thickness and inhomoge-
neity parameters of micro-beams are larger than those of
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the sample beam. These cases are suitable for when FG
micro-beams are subjected to static in-plane and trans-
verse forces, since the values of buckling load are many
times larger than those of sample beam

* The elastic foundation coefficients and internal length
scale parameters of materials have significant influence
on the distribution of design variables.

* For most cases of E-FG beams, the optimal values of
thickness and aspect ratio predicted by the modified strain
gradient theory respectively are significantly lesser and
larger than those of the sample beam. For such states,
the mass and natural frequency is decreased approximate-
ly to 38-44% and 60-90% of those given for the sample
beam.

* For P-FG micro-beams resting on the elastic foundation,
the multi-objective optimization is able to increase values
of buckling load more than several times of sample beam
and decrease the values of mass and maximum deflection.

*  For E-FG micro-beams embedded in elastic medium, op-
timum values of the inhomogeneity parameters are smaller
than zero in the most of optimal cases.

*  Optimum mechanical parameters of P-FGM beams except
the mass are more advisable than those of E-FGM beams
based on the classical continuum theory.

Finally, the history and trade-off analysis was provided to
demonstrate the shortcomings of the proposed multi-objective
optimization. The most main limitation is that there were some
conflicts between five target functions which prevents to
achieve the best optimal states for each mechanical parameter.
However, this obstacle can be removed by reducing a number
of target functions and it is possible to reach a better optimal
design of FG micro-beams for a specific application. In the
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iteration history analysis, it was shown that the values of target
functions at optimal states may be dominated for next gener-
ations. Also, the multi-objective optimization algorithm may
be improved by modifying the crowding distance and using a
weighted function for each target function.
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