
RESEARCH PAPER

Reliability analysis for k-out-of-n systems with shared load
and dependent components

Tianxiao Zhang1
& Yimin Zhang2

& Xiaoping Du3

Received: 8 September 2017 /Revised: 8 December 2017 /Accepted: 25 December 2017 /Published online: 16 January 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Many structural systems require a minimal number of components to be operational, and predicting the reliability of such systems
is a challenge because surviving components share the original system workload with higher component loads after the failure of
some components. The states of all the components are also dependent. Such dependence, however, is generally neglected in
many existing methods. In this study, we develop a new reliability method for systems with dependent components that share the
system load equally before and after other components have failed. The components are also subjected to other loads, such as a
preload. The new method is based on limit-state functions that predict the states of components, and the First Order Reliability
Method is used. The advantage of the proposed method is that it can directly link the system reliability with design variables and
random parameters because of the use of a physics-based approach. High accuracy is maintained with the consideration of
dependent component states. Two examples are used to demonstrate the good accuracy and efficiency of the proposed method.
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1 Introduction

In many engineering applications, there are systems that re-
quire at least a certain number of components to work suc-
cessfully to ensure the normal functionality of the entire sys-
tem. For example, an aircraft with four engines could still
work properly if at least two out of its four engines remain
functioning. Another example is the bolted flange connection
that is commonly used in structural systems, as shown in
Fig. 1. There are n bolts, and at least k bolts are required to
be operational in order for the connection system to operate.
This kind of systems is referred to as k-out-of-n systems,

where n is the total number of components in the system,
and k is the minimal number of components that have to work
successfully.

Many reliability engineering studies assume independence
across the components in the system (Kuo and Zuo 2003;
Yang 2007). This means that the component states (operation-
al or failed) are statistically independent; in other words, the
failure of a component does not affect the failures of other
components in the system. In reality, the states of components
are dependent because the components share the same envi-
ronment, such as loads, temperature, and humidity (Cheng
et al. 2017; Hu and Du 2017). After a number of components
have failed, the remaining components will share the same
system load with increased component loads. Take the con-
nection system in Fig. 1 as an example. Initially all the bolts
evenly share the system load. If one or more bolts have failed,
the system load is redistributed, and the remaining bolts also
evenly share the same system workload. Then the load acting
on each of the remaining bolts increases, resulting in a higher
probability of component failure.

Many studies have been conducted for k-out-of-n systems
with load sharing components (Amari and Bergman 2008;
Huamin 1998; Kong and Ye 2017; Liu et al. 2016;
Taghipour and Kassaei 2015). These studies produce
statistics-based reliability methods for estimating the system
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reliability, meaning that the life distributions of components
are obtained from statistics or assumed. Then the system reli-
ability is analyzed with an assumption that the life distributions
or the failure rates of remaining components change after a
number of components have failed. In some of the studies,
the dependence of component states is neglected for the calcu-
lation of the probability of intersection of the event that several
components work successfully together. The independence as-
sumption may produce a large error if the component states are
strongly dependent. The advantage of the statistics-based
methods is that they can easily estimate the system reliability
based on statistical data; but they lack a direct link with design
variables and parameters, such as component structures, dimen-
sions, material properties, manufacturing imprecisions, and
component loads, which do not come from the system load.

This study develops a reliability method for k-out-of-n sys-
tems with physics-based approaches. The scope of this study
is for systems with identical components, for example, an
aircraft with four identical engines, a power generating system
with six identical generators, and a joint connection system (as
shown in Fig. 1) with six identical joints. The newmethod has
the following advantages: (1) It can deal with systems whose
components are subjected to not only the load that comes from
the system load, but also other loads, such as the preload
acting on a bolt in the joint connection system in Fig. 1. It
therefore overcomes the drawback of the existing methods
that deal with component loads directly proportional to the
system load. (2) It produces the joint probability density of
the states of all components before any component failures
and the joint probability density of the states of remaining
components after a number of components have failed.
Consequentially, component dependence can be accommo-
dated implicitly and automatically. (3) The method is based
on the commonly used physics-based method, the First Order
Reliability Method (FORM). It has a good balance between
efficiency and accuracy. And (4) the new method is a physics-
based method that relies on a component limit-state function
derived from physics. As a result, the method directly links the

system reliability with design variables. When used in a de-
sign stage, the method helps identify new design variables for
design improvement if the system reliability does not meet the
reliability requirement.

The rest of this paper is organized as follows. In Sec. 2, we
review the reliability engineering methods for k-out-of-n sys-
tems and FORM.We then discuss the proposed method in Sec.
3, followed by examples in Sec. 4. Sec. 5 concludes the paper.

2 Related work

In this section, we review existing reliability methods for k-
out-of-n systems. Since the proposed method uses a physics-
based method that is based on limit-state functions, we also
review the First Order Reliability Methods (FORM), which is
the most commonly used physics-based method for structural
reliability analysis.

2.1 Reliability of k-out-n systems

Suppose that the n components in a k-out-of-n system are iden-
tical. Consider no load sharing and assume the states of com-
ponents are independent. Let the reliability of a component beR
and the number of operational components be x. Then the prob-
ability of having k components operational is (Yang 2007)

Pr x ¼ kð Þ ¼ Ck
nR

k 1−Rð Þn−k ; k ¼ 1; 2;…; n ð1Þ

Since it is required that at least k components have to be
operational, the system reliability is calculated by

Rs n; kð Þ ¼ Pr x≥kð Þ ¼ ∑
n

i¼k
Ci

nR
i 1−Rð Þn−i ð2Þ

When components share the same system load, the load
acting on each of remaining components will increase after a
number of components have failure. For example, when k = n,
the n components share the same load equally, and we have a
series system. The system reliability is (Yang 2007)

Rs n; nð Þ ¼ Rn
0 ð3Þ

where R0 is the component reliability under the initial compo-
nent load.

When k = 1, one component is allowed to fail. The system
reliability becomes

Rs n; n−1ð Þ ¼ Rs n; nð Þ þ nRn−1
1 1−R0ð Þ ð4Þ

where R1 is the component reliability subjected to an increased
component load after one component has failed.

Equation (3) and (4) are derived based on the assumption
that component states are independent. This assumption may
not hold because components share the same random

Fig. 1 Bolted flange connection system
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environment in the system. With statistics-based approaches,
the component reliability is calculated with the distribution of
the component life. As a result, a direct link between the
system reliability and design variables does not exist. In this
study, we develop a physics-based approach to establish such
a link by using FORM, which is reviewed in Sec. 2.2.

2.2 Physics-based First Order Reliability Method
(FORM)

In this subsection, we review how the reliability of a compo-
nent in a k-out-of-n system is calculated by a physics-based
reliability approach. When the state of a component, either
operational or failed, can be predicted by a computational
model that is derived from physics, the reliability of the com-
ponent can then be predicted with a physics-based reliability
approach. The computational model is called a limit-state
function, and the reliability is calculated by

R ¼ Pr g Xð Þ≥0f g ¼ ∫g Xð Þ≥0 f X xð Þdx ð5Þ

where g(X) is a limit-state function, X = [X1,…, Xm] is a vec-
tor of random input variables, and fX(x) is the joint probability
density function (PDF) of X. The associated probability of
failure is given by

p f ¼ 1−R ¼ Pr g Xð Þ < 0f g ¼ ∫g Xð Þ<0 f X xð Þdx ð6Þ

Calculating the integrals in (5) and (6) is difficult and may
be impossible for high dimensional random variables. For this
reason, approximation methods are usually used, including
the First Order Second Moment Method (FOSM) (Dolinski
1982; Lee and Kwak 1987), the First Order Reliability
Method (FORM) (Du 2008; Du et al. 2008; Du and
Sudjianto 2004; Yang and Gu 2004; Zou and Mahadevan
2006), the Second Order Reliability Method (SORM) (Lim
et al. 2014), and other physics-based approaches (das Neves
Carneiro and Antonio 2017; Drignei et al. 2016; Ramu et al.
2010; Wang and Wang 2016; Xi et al. 2017; Xie et al. 2017;
Youn and Wang 2008; Zhang 2017). Among them, FORM is
the most commonly used method because of its good balance
between accuracy and efficiency.

With the assumption that all the components of X are
independent, we herein briefly review the procedure of
FORM. FORM at first transforms X into standard normal
variables U by

FX i X ið Þ ¼ Φ Uið Þ; i ¼ 1; 2;…;m ð7Þ
in which FX i �ð Þ and Φ(·) represent the cumulative distribu-
tion functions (CDF) of Xi and Ui, respectively. FORM
then linearizes the limit-state function at the most probable
point (MPP), which minimizes the error of the lineariza-
tion. The MPP u∗ is found by solving

min β ¼
ffiffiffiffiffiffiffiffiffiffi
UUT

p
s:t: g Xð Þ ¼ g T Uð Þð Þ ¼ 0

(
ð8Þ

where T(⋅) stands for the U-to-X transformation defined in (7).
The magnitude of u∗ is the reliability index and is

calculated by

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u*1
� �2 þ…þ u*m

� �2q
ð9Þ

When the limit-state function is linearized at u∗, the event
that the component is in an operational state is defined by

Y
0 ¼ β þ ∑

m

i¼1
αiU i > 0 ð10Þ

where αi is the component of the unit vector of the gradient of
the limit-state function at the MPP.

And the component reliability is approximated by

R ¼ Φ βð Þ ð11Þ

3 The proposed method

We now discuss the proposed reliability method for k-out-of-n
systems whose components equally share the system load
before and after some components have failed. The compo-
nents of the system are identical, and they are also subjected to
other component loads, such as a preload. As a result, the
component load is not directly proportional to the system load
as some existing methods assume (Huamin 1998; Kuo and
Zuo 2003). Let the system load be L. Since L is a random
variable shared by all the components, the states of the com-
ponents are therefore dependent. In this study, we consider
static reliability, and this means that the reliability of a com-
ponent or the system does not change over time. It is the
situation where the limit-state function of a component is time
independent. We at first provide necessary equations of the
component reliability in Sec. 3.1 and then discuss the details
of the proposed system reliability analysis in Sec. 3.2.

We use the following notations for our discussions.

& L: Total system workload
& Rs(n, i): Reliability of an i-out-of-n system
& Ln − i: Component load with the system load shared by n −

i remaining components
& Y(Ln − i): Component state variable when the component

load is Ln − i

& Yi: The state variable of the i-th component

3.1 Component reliability analysis

Let the state of the i-th component be Yi, i = 1, 2,…, n. It is a
function of the component load, which is from the system load

Reliability analysis for k-out-of-n systems with shared load and dependent components 915



L, and other basic random variables X, such as other compo-
nent loads, material properties and component dimensions.
For brevity, when we discuss a general component in the
system, we drop the subscript of Yi. To emphasize the compo-
nent load, we also separate it from other basic random vari-
ables. Thus the limit-state function of a general component is
written as

Y Ln− j
� � ¼ g Ln− j;X

� � ð12Þ

where Ln − i is the component load distributed from L, or the
portion of the system load L shared by the component after j
components have failed. Ln − j is given by

Ln− j ¼ L
n− j

ð13Þ

We assume that L and the components of X are indepen-
dent. Recall that if Y(Ln − j) > 0, the component is operational;
otherwise, the component fails. Then the component reliabil-
ity is given by

R ¼ Pr Y Ln− j
� � ¼ g Ln− j;X

� �
> 0

� �
¼ ∫g Ln− j;Xð Þ>0 f L lð Þ f X xð Þdldx ð14Þ

where fL(l) is the PDF of L, and fX(x) is the joint PDF of X.
When FORM is used, the component reliability is

computed by

R ¼ Pr Y
0
Ln− j
� � ¼ β Ln− j

� �þ ∑
m

i¼1
αi Ln− j
� �

Ui > 0

� �

¼ Φ β Ln− j
� �	 
 ð15Þ

3.2 System reliability analysis

Before discussing the details of the proposed method, we
summarize the assumptions we use in this study.

1) The system consists of n identical components. It is re-
quired that at least k components be operational for the
system to work properly.

2) The system load is initially shared by all the components
equally.

3) The system load is shared by surviving components
equally after other components have failed. This results
in an increased component load.

4) The system load and other basic random variables are
independent.

5) In addition to the shared system load, components are also
subjected to other component loads. Hence component
loads are not directly proportional to the system load.

With the above assumes, the limit-state function of
component i is given by

Y i Ln− j
� � ¼ g Ln− j;Xi

� � ð16Þ

where Xi, i = 1, 2, …, n, are independent and identically
distributed random vectors. In other words, X⋅ j, j = 1, 2,
…, m, are independently and identically distributed. The
PDF of Xi, i = 1, 2, …, n, is fX(x) as shown in (14). Since
all the components are identical, they have the same limit-
state function g(⋅), which has the common random vari-
able L. Then all the component states Yi, i = 1, 2, …, n,
are dependent.

As will be discussed later, for dependent components that
equally share the system load, more than one component can
fail simultaneously; there are also a number of possible paths
along which the system may fail. For these reasons, it is dif-
ficult to derive general equations that lead to automated or
recursive algorithms. We hence discuss the system reliability
analysis with various cases.

k ¼ n

For this case, no failure is allowed. This case represents a
series system. All components are required to be functional for

the system to work properly; in other words, ∩
n

i¼1
Y i Lnð Þ > 0.

Then the system reliability is given by

Rs n; nð Þ ¼ Pr ∩
n

i¼1
Y i Lnð Þ > 0

� �
ð17Þ

Recall that Yi is the state variable of component i and is
given by Yi(Ln) = g(Ln,Xi). As discussed previously, all the
component state variables Yi(Ln), i = (1, 2,…, n), are depen-
dent. The joint PDF of Yi(Ln), i = (1, 2,…, n), is therefore
required.

In Sec. 3.3, we will discuss how to obtain the joint PDF in
order to calculate the system reliability with the use of FORM.

k ¼ n−1

One component is allowed to fail. To better understand all
the possible paths to the success of the system, we use a tree
plot to show all the combinations of events that lead to the
proper function of the system. The following notations are
used in a tree plot.

& SG: The system in a good (operational) state.
& iF: i components fail.

The tree plot is given in Fig. 2, which shows two paths. The
first one represents the case where all components are opera-
tional. This is the case of k = n we have just discussed. The
second branch indicates that initially all components share the
system load with their portion Ln, and then one component
fails. After this, the system load is redistributed, and the
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component load increases to Ln − 1, under which no further
component failures occur.

For the second branch, we consider one of the possible
combinations: the n-th component fails under load Ln. After
the first load distribution, the component load becomes Ln − 1,

and the first n − 1 components do not fail. There are Cn−1
n ¼ n

such combinations. Then the system reliability is given by

Rs n; n−1ð Þ ¼ Pr ∩
n

i¼1
Y i Lnð Þ > 0

� �

þnPr ∩
n−1

i¼1
Y i Lnð Þ > 0∩Yn Lnð Þ < 0

� �
∩
n−1

i¼1
Y i Ln−1ð Þ > 0

� � ð18Þ

The equation can be rearranged as

Rs n; n−1ð Þ ¼ Rs n; nð Þ þ nPr ∩
n−1

i¼1
Y i Ln−1ð Þ > 0∩Yn Lnð Þ < 0

� �
ð19Þ

In the rearrangement of the equation, we use Pr{Yi(Ln) >
0 ∩ Yi(Ln − 1) > 0} = Pr {Yi(Ln − 1) > 0} because Ln − 1 > Ln.
Yi(Ln − 1) > 0 automatically leads to Yi(Ln) > 0.

As indicated in (19), the joint PDF of Yi(Ln − 1), i = 1, 2,…,
n − 1, and Yn(Ln) are required.

k ¼ n−2

As shown in Fig. 3, at most, two components are
allowed to fail. The first two branches are the same as
the case of k = n − 1. The third branch represents two com-
ponent failures. One component fails with load Ln, and
one more component fails with load Ln − 1 after the first
load redistribution. No further components fail after the
second load redistribution when the load is Ln − 2. In the
equation below, for the third branch, the n-th component
fails first followed by the failure of the (n-1)-th compo-
nent. There are n(n − 1) such combinations. The fourth
branch indicates that two components fail before any load
redistribution, and the n-th and (n-1)-th components are
assumed to fail in the equation below. No more component
failures occur after the first load redistribution. There are

Cn−2
n such combinations. The equation is then given by

Rs n; n−2ð Þ ¼ Rs n; n−1ð Þ þ

þn n−1ð ÞPr ∩
n−1

i¼1
Y i Lnð Þ > 0∩Yn Lnð Þ < 0

� �
∩
n−2

i¼1
Y i Ln−1ð Þ > 0∩Yn−1 Ln−1ð Þ < 0

� �
∩
n−2

i¼1
Y i Ln−2ð Þ > 0

� �

þCn−2
n Pr ∩

n−2

i¼1
Y i Lnð Þ > 0∩Yn−1 Lnð Þ < 0∩Yn Lnð Þ < 0

� �
∩
n−2

i¼1
Y i Ln−2ð Þ > 0

� �� � ð20Þ

The equation is rewritten as

Rs n; n−2ð Þ ¼ Rs n; n−1ð Þ þ

þn n−1ð ÞPr ∩
n−2

i¼1
Y i Ln−2ð Þ > 0∩Yn−1 Lnð Þ > 0∩Yn−1 Ln−1ð Þ < 0∩Yn Lnð Þ < 0

� �

þCn−2
n Pr ∩

n−2

i¼1
Y i Ln−2ð Þ > 0∩Yn−1 Lnð Þ < 0∩Yn Lnð Þ < 0

� � ð21Þ

This process can go on and on until k=1.

SG

0F 1F

0F

Ln−1

Ln

1st load redistribution

Load shared by a component

Load shared by a remaining component

Fig. 2 Tree plot for k = n − 1

SG

0F 1F

1F

1st load redistribution

2nd load redistribution

2F

0F

0F

1F

0F

Load shared by a remaining component

Load shared by a remaining component

Load shared by a component

Ln−2

Ln−1

Ln

Fig. 3 Tree plot for k=n-2
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3.3 The use of FORM

As discussed in Sec. 3.2, we need the joint PDF of the com-
ponent state variables under varying component loads. For

example, to calculate the probabili ty Rs n; nð Þ ¼ Pr

∩
n

i¼1
Y i Lnð Þ > 0

� �
in (17), we must know the joint CDF of

Yi(Ln) = g(Ln,Xi) = g(L/n,Xi), i = 1, 2, …, n, where Xi = [Xi1,
Xi2,…, Xim].

We now discuss how to use FORM to obtain the joint PDF
of component states and then how to use the joint PDF to
calculate the system reliability. As indicated in (6), the event
that the i-th component works successfully after j components
have failed is

Y
0
i Ln− j
� � ¼ βi Ln− j

� �þ αL Ln− j
� �

UL þ ∑
m

l¼1
αil Ln− j

� �
Uil > 0 ð22Þ

The component state now becomes Y
0
i Ln− j
� �

. We can then

replace the original state variables Yi(Ln − j)with Y
0
i Ln− j
� �

.
Then (17) is rewritten as

Rs n; nð Þ ¼ Pr ∩
n

i¼1
Y

0
i Lnð Þ > 0

� �
¼ P1 ð23Þ

Equation (19) is rewritten as

Rs n; n−1ð Þ ¼ Rs n; nð Þ þ P2 ð24Þ
where

P2 ¼ Pr ∩
n−1

i¼1
Y

0
i Ln−1ð Þ > 0∩Y

0
n Lnð Þ < 0

� �
ð25Þ

Equation (21) is rewritten as

Rs n; n−2ð Þ ¼ Rs n; n−1ð Þ þ n n−1ð ÞP3 þ Cn−2
n P4 ð26Þ

where

P3 ¼ ∩
n−2

i¼1
Y

0
i Ln−2ð Þ > 0∩Y

0
n−1 Lnð Þ > 0∩Y

0
n−1 Ln−1ð Þ < 0∩Y

0
n Lnð Þ < 0

� �

ð27Þ
and

P4 ¼ Pr ∩
n−2

i¼1
Y

0
i Ln−2ð Þ > 0∩Y

0
n−1 Lnð Þ < 0∩Y

0
n Lnð Þ < 0

� �

ð28Þ
Equation (22) shows that each individual component state

variable Y′ is the combination of standard normal random
variables. Then any combination of component state variables
follows a multivariate normal distribution. We now discuss
how to obtain the multivariate PDFs to calculate the individual
probabilities P1 through P4.

P1

Y
0
i Lnð Þ, i = 1, 2, …, n, are needed to calculate P1. We re-

quire Y
0
i Lnð Þ > 0, i = 1, 2, …, n. To use the CDF of a multi-

variate normal distribution easily, we define a new set of ran-

dom variables with Z ¼ Zi½ �i¼1;n ¼ −Y 0
i Lnð Þ	 


i¼1;n, i = 1, 2,

…, n. From (22), we have the mean vector of Z

μ1 ¼ μ1i½ �i¼1;n ¼ −β Lnð Þ½ �i¼1;n ð29Þ

And the covariance of Z is

Σ2 ¼ ρ2ij
h i

i; j¼1;n
ð30Þ

where

ρ2ij ¼ 1 if i ¼ j
α2 Lnð Þ if i≠ j

�
ð31Þ

Then P1 is given by the following CDF:

P1 ¼ Φ 0;μ1;Σ2ð Þ ð32Þ
where Φ(⋅) is the CDF of the multivariate normal distribution
defined by μ and Σ.

P2

The calculation of P2 requires the joint PDF of Y
0
i Ln−1ð Þ,

i = 1, 2,…, n − 1, and Y
0
n Lnð Þ. Since we require Y 0

i Ln−1ð Þ > 0,

i = 1, 2, …, n − 1, and Y
0
n Lnð Þ < 0, we define a new set of

random variables with Z = [Zi]i = 1, n as

Zi ¼ −Y
0
i Ln−1ð Þ i ¼ 1; 2;…; n−1

Y
0
n Lnð Þ i ¼ n

�
ð33Þ

Then the mean vector μ2 = [μ2i]i = 1, n of Z is

μ2i ¼ −β Ln−1ð Þ i ¼ 1; 2;…; n−1
β Lnð Þ i ¼ n

�
ð34Þ

And the covariance Σ2 = [ρ2ij]i, j = 1, n of Z is

ρ2ij ¼
1 if i ¼ j

α2 Ln−1ð Þ if i≠ j; i; j ¼ 1; 2;…; n−1
−α Lnð Þα Ln−1ð Þ if i ¼ 1; 2;…; n−1; j ¼ n; i ¼ n; j ¼ 1; 2;…; n−1

8<
:

ð35Þ

Then the system reliability is given by the following CDF:

P2 ¼ Φ 0;μ2;Σ2ð Þ ð36Þ
P3

As indicated in (27), P3 involves Y
0
i Ln−1ð Þ, i = 1, 2,…, n −

2, Y
0
n−1 Lnð Þ, Y

0
n−1 Ln−1ð Þ, and Y

0
n Lnð Þ. We require

Y
0
i Ln−1ð Þ > 0, i = 1, 2, …, n − 2, Y

0
n−1 Lnð Þ > 0,

918 T. Zhang et al.



Y
0
n−1 Ln−1ð Þ < 0, and Y

0
n Lnð Þ < 0, a new set of random vari-

ables with Z = [Zi]i = 1, n + 1 is defined by

Zi ¼
−Y

0
i Ln−1ð Þ i ¼ 1; 2;…; n−2

−Y
0
n−1 Lnð Þ i ¼ n−1

Y
0
n−1 Ln−1ð Þ i ¼ n
Y

0
n Lnð Þ i ¼ nþ 1

8>>><
>>>:

ð37Þ

Then the mean vector μ3 = [μ3i]i = 1, n + 1 of Z is

μ3i ¼
−β Ln−1ð Þ i ¼ 1; 2;…; n−2
−β Lnð Þ i ¼ n−1
β Ln−1ð Þ i ¼ n
β Lnð Þ i ¼ nþ 1

8><
>: ð38Þ

And the covariance Σ3 = [ρ3ij]i, j = 1, n + 1 of Z is

ρ3ij ¼

1 if i ¼ j
α2 Ln−2ð Þ if i≠ j; i; j ¼ 1; 2;…; n−2

α Ln−1ð Þα Lnð Þ if i ¼ 1; 2;…; n−2; j ¼ n−1; j ¼ n−1; i ¼ n−1; ; 2;…; n−2
−α2 Ln−1ð Þ if i ¼ 1; 2;…; n−2; j ¼ n; i ¼ n; j ¼ i ¼ 1; 2;…; n−2

− α Ln−1ð Þα Lnð Þ þ α Ln−1ð ÞαT Lnð Þ	 

if i ¼ n−1; j ¼ n; i ¼ n; j ¼ n−1

α2 Ln−1ð Þ if i ¼ n−1; j ¼ nþ 1; i ¼ nþ 1; j ¼ n−1
α Ln−1ð Þα Lnð Þ if i ¼ n; j ¼ nþ 1; i ¼ nþ 1; j ¼ n

8>>>>>>>><
>>>>>>>>:

ð39Þ

A dot product appears in (39), and the two associated
vectors are α(Ln) = [αj(Ln)]j = 1, m and α(Ln − 1) = [αj(Ln −
1)]j = 1, m. The dot product is needed to calculate the

covar i ance be tween Y
0
n−1 Lnð Þ ¼ βn−1 Lnð Þ þ αL Ln−1ð Þ

U n−1ð Þ Lþ ∑
m

l¼1
α n−1ð Þ l Lnð ÞU n−1ð Þ l and Y

0
n−1 Ln−1ð Þ ¼ βn−1

Ln−1ð Þ þ αL Ln−1ð ÞU n−1ð Þ Lþ ∑
m

l¼1
α n−1ð Þ l Ln− j

� �
U n−1ð Þ l.

Then P3 is given by the following CDF:

P3 ¼ Φ 0;μ3;Σ3ð Þ ð40Þ
P4

We need the joint PDF of Y
0
i Lnð Þ, i = 1, 2, …, n − 2,

Y
0
n−1 Lnð Þ, and Y

0
n Lnð Þ to calculate P4. Since we require

Y
0
i Lnð Þ > 0, i = 1, 2, …, n − 2, Y

0
n−1 Lnð Þ < 0, and

Y
0
n Lnð Þ < 0, we define a new set of random variables with

Z = [Zi]i = 1, n as follows:

Zi ¼
−Y

0
i Ln−2ð Þ i ¼ 1; 2;…; n−2

Y
0
n−1 Lnð Þ i ¼ n−1
Y

0
n Lnð Þ i ¼ n−1

8<
: ð41Þ

The mean vector μ4 = [μ4i]i = 1, n of Z is given by

μ4i ¼ −β Ln−2ð Þ i ¼ 1; 2;…; n−1
β Lnð Þ i ¼ n−1; n

�
ð42Þ

The covariance Σ4 = [ρ4ij]i, j = 1, n of Z is

ρ4ij ¼

1 if i ¼ j
α2 Ln−2ð Þ if i≠ j; i; j ¼ 1; 2;…; n−2

−α Lnð Þα Ln−2ð Þ if i ¼ 1; 2;…; n−2; j ¼ n−1; i ¼ n−1; j ¼ 1; 2;…; n−2
−α Lnð Þα Ln−2ð Þ if i ¼ 1; 2;…; n−2; j ¼ n; i ¼ n; j ¼ 1; 2;…; n−2

α2 Lnð Þ if i ¼ n−1; j ¼ n; i ¼ n; j ¼ n−1

8>>>><
>>>>:

ð43Þ

Then P4 is given by the following CDF:

P4 ¼ Φ 0;μ4;Σ4ð Þ ð44Þ

3.4 Computational considerations

The proposed method employs FORM and therefore requires
the MPP search and the evaluation of a multivariate normal
CDF. The MPP search optimization model in (8) can be
solved with any constrained nonlinear optimization algorithm,

such as the sequential quadratic programming method. MPP
search algorithms (Du et al. 2004; Youn et al. 2005; Zhang
and Der Kiureghian 1995) can also be used. Since the algo-
rithms are specifically designed for the MPP, their efficiency,
measured by the number of calls of a limit-state function, is in
general less than a general optimization algorithm.

The other computational aspect is the calculation of the CDF
of a multivariate normal distribution. It is a multi-dimensional
integral of the PDF of the multivariate normal distribution.
When the dimension is low, the integral can be calculated
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numerically (Drezner 1994; Drezner and Wesolowsky 1990;
Genz 2004). When the dimension is high, a sampling method
can be used to estimate the integral (Teng et al. 2015).

4 Examples

We use two examples to demonstrate the proposed method.
The first example is a simple problem where the component
limit-state function is linear with respect to two normally and
independently distributed random variables. Example two in-
volves a bolted flange connection system whose components
have a nonlinear limit-state function with more random vari-
ables, some of which are non-normal variables.

For the comparison study on the accuracy, we also develop
a computational procedure for Monte Carlo simulation
(MCS). The details are provided in the appendix.

4.1 A 2-out-4 system with a linear limit-state function

The limit-state function of the component of the system is
given by

Y Ln−ið Þ ¼ g L;Xð Þ ¼ C−
L
n−i

ð45Þ

whereX = [C], and C is the resistance of the component and is
normally distributed. L/(n − i) is the load applied to the com-
ponent after i components have failed. The system load L also
follows a normal distribution. The distributions are given in
Table 1. The units of the variables are provided in parentheses,
where N standards for newtons.

The results from the proposed method are given in Table 2.
To verify the result, we also perform MCS with a sample size
of 107. As shown in Table 1, the results from both methods are
very close. For this problem with a linear limit-state function,
the difference comes from only numerical errors. The pro-
posed method produces a very accurate system reliability pre-
diction. The proposed method is also efficient, and it calls the
limit-state function 88 times, and the CPU time is only 1.08 s
compared with 645.34 s used by MCS. The high efficiency is
particularly important for reliability-based design optimiza-
tion because it will call the system reliability analysis
repeatedly.

4.2 A 4-out-of 6 bolted flange connection system

Figure 4 shows a bolted flange connection system, which
consists of six tension joints. It is required that at least four
joints should work to ensure the functionality of the system.

The limit-state function of one bolt after i bolts have failed
is given by

Y Ln−ið Þ ¼ g L;Xð Þ ¼ Sp−
4 C

L
n−i

þ Fp


 �

πD2 ð46Þ

where X = [Sp,C, Fp,D], in which Sp is the proof strength of
the bolt, C is the stiffness constant (the faction of the load
carried by a bolt), Fp is the preload acting on the bolt, and D
is the diameter of the bolt. L is the system load. The variables
are independent and their distributions are provided in Table 3.
Some of the random variables are not normally distributed.
Two cases are studied. Case 1 involves a lower system load
and therefore higher system reliability while Case 2 involves a
higher system load and therefore lower system reliability. In
Table 3, for a normal or lognormal distribution, parameters 1
and 2 are a mean and standard deviation, respectively; for a
Weibull distribution, parameters 1 and 2 are a scale parameter
and shape parameter, respectively.

Table 1 Distributions of random variables

Variable Mean Standard deviation Distribution

L (N) 80 10 Normal

C (N) 75 5 Normal

Table 2 System reliability for example one

Proposed Method MCS

Rs 0.9999986 0.9999989

Number of function calls 88 10,000,034

CPU time (seconds) 1.08 645.34

Fig. 4 A bolted flange connection system
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To evaluate the accuracy of the proposedmethod, the result
is compared with that fromMCS. The results of the two cases
are provided in Tables 4 and 5. The MCS solution is obtained
from the procedure described in the appendix.

The results show that the proposed method produces
accurate solutions because they are close to those from
MCS with 107 simulation. The accuracy is good for both
high and low system reliability cases. The proposed meth-
od is also efficient because it uses fewer limit-state func-
tion calls and less CPU time.

With the physics-based approach, it is straightforward to
change design variables if the system reliability predicted
does not meet the reliability requirement. To improve reli-
ability, we may select a different material to change the
proof strength Sp, modify the component size to change
the stiffness constant C, change the preload Fp, and change
the diameter D. We can easily set the system reliability to its
target value.

5 Conclusions

This study deals with the reliability prediction for systems
that requires its k components out of the total of n iden-
tical components so that the system can work properly.
Since components equally share the system load before
and after some of the components have failed, component
states are dependent, and the system load is redistributed
with the increase component load.

The proposed method is based on the First Order
Reliability Method, which linearizes the component
limit-state state function at the most probable point.

Then all the component states follow a multivariate nor-
mal distribution. This treatment allows for the easy and
fast probability integrations for estimating the system re-
liability. Since there are no general equations for general
k-out-of-n systems, equations for specific systems, includ-
ing k = n, k = n − 1, and k = n − 2 systems, are derived. The
proposed method can also accommodate components,
which are subjected to other component loads, such as a
preload, which does not come from the system load. It can
therefore handle systems whose component loads are not
directly proportional to the system load.

This study also develops a Monte Carlo simulation
procedure to perform the same system reliability analysis.
With a sufficiently large number of samples, the method is
accurate. Due to this reason, the accuracy of the proposed
method is compared with the Monte Carlo simulation. As
indicated by the example, the proposed method is much
faster than the Monte Carlo simulation.

The proposed method is based on the First Order
Reliability Method, which may not be accurate for the situ-
ation where a component limit-state function is highly non-
linear with respect to the system load and other basic input
variables. Our future work will be the improvement in ac-
curacy, the investigation of k ≤ n − 3 systems, and the exten-
sion of the method to time-dependent reliability problems.

Appendix: Monte Carlo Simulation
for k-of-of-n Systems

The Monte Carlo simulation (MCS) for a k-out-of-n system
with k = n − 2 is discussed herein. The procedure is summa-
rized below.

1) Input n, k, distribution types and parameters of L and X,
and number of simulations Nsim.

2) Initialize the number of success NS = 0.
3) Generate Nsim samples of system load L.
4) For i = 1 to Nsim by 1

(a) Set number of component failures nF = 0
(b) Generate n samples of basic random variables X
(c) Set component load shared by n components; call g(⋅)

and obtain the state variables of the n components
(d) Count the number of failures nF

Table 3 Distributions of random variables

Variable Parameter 1 Parameter 2 Distribution

Sp(kpsi) 114 18 Weibull

C 0.38 0.01 Lognormal

L (kip) (Case 1) 75 5 Normal

L (kip) (Case 2) 85 5 Normal

Fp (kip) 15 1 Lognormal

D (in) 0.55 0.01 Normal

Table 4 System reliability for Case 1

Proposed Method MCS

Rs 0.999882 0.999855

Number of function calls 267 10,295,808

CPU time (seconds) 2.43 1522.69

Table 5 System Reliability for Case 2

Proposed Method MCS

Rs 0.998346 0.997932

Number of function calls 252 10,686,380

CPU time (seconds) 1.77 1562.20

Reliability analysis for k-out-of-n systems with shared load and dependent components 921



(e) If nF = 0 (no component failure before the first load
redistribution)

NS ¼ NS þ 1

End if.
If nF = 1 (one component failure before the first load

redistribution).
Delete the failed component.
Set component load shared by the remaining n − 1
components; call g(⋅) and obtain the state variables of
the n − 1 components.
Count the number of failures nF1.
If nF1 = 0 (no failure after the first load redistribution)

NS ¼ NS þ 1

EndIf.
If nF1 = 1 (one component failure after the first load

redistribution).
Delete the failed component.
Set component load shared by the n − 2 remaining
components; call g(⋅) and obtain the state variables of
the n − 2 components.
Count the number of failures nF2.
If nF2 = 0 (no failure after the first load redistribution)

NS ¼ NS þ 1

End if.
End if.

EndIf.
If nF = 2 (two component failures before the first load

redistribution).
Delete the two failed components.
Set component load shared by the n − 2 remaining
components; call g(⋅) and obtain the state variables of
the n − 2 components.
Count the number of failures nF1.
If nF1 = 0 (no failure after the second load redistribu-
tion)

NS ¼ NS þ 1

End if.
EndIf.

EndFor

5) System reliability RS =NS/Nsim

With a sufficiently large value of Nsim, the system reliability
obtained fromMCS can be very accurate. It is the reasonwe use
MCS to evaluate the accuracy of the proposed methods. MCS,
however, is extremely computationally expensive because it
requires a large number of limit-state function calls for highly
reliable systems.
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