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Abstract
This paper develops a new mixed uncertainty robust optimization (MURO) method with both random and interval
uncertainties. Existing strategies in literature always treat the system performance as a sequence of probability distribution
with the interval factors varying within their domains. Moreover, the robust design objective and constraints are modeled
in the form of combination of interval mean and interval deviations of performances, which cannot offer a quantitative
robustness measurement of a design. The new MURO method is based on the sensitivity region concept and a hybrid
robustness index is developed to represent the possibility that the uncertain vector locates within the worst-case sensitivity
region (WCSR). This proposed index can offer a more quantitative and intuitive way to evaluate the robustness of a design.
With the hybrid indices, the traditional robust optimization problem can be converted to an ordinary optimization with the
robustness index constraints. Two numerical examples and two engineering examples with different combinations of interval
and random factors are illustrated to demonstrate the applicability and efficiency of the proposed algorithm. The comparison
results show that the new method can reduce the conservatism of previous method significantly with fewer computational
efforts.

Keywords Robust design · Mixed uncertainties · Random variable · Interval variables · Worst-case sensitivity region

1 Introduction

Design optimization plays a vital role in industrial tech-
nologies, aiming to obtain the set of design variables
that can provide optimal objective performances under the
given constraints. Conventionally, the design optimization
is often performed with deterministic inputs and parame-
ters. However, real life problems in engineering are almost
all non-deterministic. The uncertainties existing in struc-
tural material properties, geometrical dimensions, loading
conditions, etc. may cause significant degradation in system
performances. Problems that are sensitive to slight pertur-
bations may give rise to suboptimal or even infeasible solu-
tions when optimized without incorporating uncertainties
(Ur Rehman and Langelaar 2015; Du et al. 2009).
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Therefore, to explicitly account for the uncertainties is
of great importance for establishing robust-to-variations
solutions (Zhang et al. 2017; Beyer and Sendhoff 2007).
This has promoted the development of robust design
techniques in different scientific and engineering fields,
which aims to reduce the sensitivity of the system
performances to the uncertainties since Taguchi’s pioneer
work (Taguchi 1978). Within the field of robust design, two
categories of uncertainty description are mainly considered:
one is probabilistic (random) models and the other is
non-probabilistic models, including the convex models
and interval models. The probabilistic description of
uncertain variations has been investigated thoroughly in
the past several decades. In this circumstance, the robust
optimization will often show in the formulation of bi-
criteria, in which both the expected value and the standard
deviation of the performance functions are to be minimized.
Using this concept, Doltsinis and Kang (Doltsinis et al.
2005; Doltsinis and Kang 2004) investigated the robust
design of linear and non-linear structures with perturbation-
based stochastic finite element analysis. Surrogate models have
also been used in the robust design of engineering systems
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(Sun et al. 2014; Wiebenga et al. 2012). Robust topology
optimization techniques with the random models (including
random field uncertainty) are also developed (Asadpoure
et al. 2011; Richardson et al. 2015; Zhao and Wang 2014).

Generally, reliable results can be obtained by the prob-
abilistic approaches only when sufficient statistical data
are available. In order to handle the uncertainties with-
out sufficient information, the convex model (Ben-Haim
and Elishakoff 1990) and interval model (a special instance
of convex model) (Moore et al. 2009) were introduced to
describe the uncertainties of parameters involved in engi-
neering problems. In the non-probabilistic models, only
the bounds of the uncertainties are required to build the
description models, which is easier to obtain in practical
engineering. Several strategies have been developed in the
field of optimization under non-probabilistic uncertainty.
Zhou et al. (2012) introduced a sequential quadratic pro-
gramming method for robust optimization under interval
uncertainties with both objective robustness and feasibility
robustness. Cheng et al. (2015) proposed a hybrid multi-
objective differential evolution robust optimization strategy
which incorporated sequential quadratic programming. For
robust design under convex models, Kang and Bai (2013)
defined a robustness measurement as the minimal dis-
tance from the origin to the limit-state surface and the
design objective is to maximize the minimum one of the
robustness indices. The authors (Hu et al. 2017) developed
a new robustness index to handle bounded constraints on per-
formance variation where the traditional inner optimization
loop is omitted to improve computational efficiency.

As aforementioned, either probabilistic model or non-
probabilistic model is adopted to describe the uncertainties.
However, these two kinds of variations may exist simultane-
ously in the real uncertain engineering problems (Wang and
Huang 2016). Among these concerned uncertainties, some
can be described as probabilistic factors with sufficient data,
while others need to be modeled as interval or convex ones
due to the lack of samples. There are some researches on the
hybrid uncertainty method which have been applied to the
structural reliability analysis (Elishakoff and Colombi 1993;
Jiang et al. 2012; Luo et al. 2011; Han et al. 2014) and struc-
tural response prediction (Wang and Huang 2016; Gao et al.
2011; Wu and Gao 2017; Xia et al. 2015; Feng et al. 2017).

For robust optimization when the random and interval
variables co-exist, as far as the authors knowledge, there
have been some prospective researches (Du et al. 2009;
Li et al. 2015; Liu and Lin 2006; Wu et al. 2017). Du
et al. (2009) proposed a double loop Monte Carlo (DMC)
simulation procedure to assess the system robustness with
the mixture of random and interval variables. The outer
loop is for the interval combinations and for each outer
loop, an inner loop is performed to get the samples of the
random variables according to their distributions. Then, a

weighted sum method for several objective is developed. Li
et al. (2015) used the aforementioned double loop Monte
Carlo simulation procedure in the robust crashworthiness
design. In Liu and Lin (2006), a percentile-based robust
optimization with metamodeling method is introduced to
handle the design problem with the mixture of random and
interval factors. The system objective value and constraint
values perform as a sequence of probability distribution with
the marginal distribution concept. Wu et al. (2017) proposed
a level set-based robust topology optimization method for
computational design of metamaterials where the Young’s
modulus of the solid is described as a random variable
while the Poissons ratio is regarded as an interval variable.
The Polynomial Chaos-Chebyshev inclusion method in
Wu et al. (2017) approximates the objective function
with a weighted summation of polynomial basis, whose
coefficients are functions of interval factors. In their work,
the robust objective function is also formulated by a
combination of interval mean and interval variance of
the deterministic objective function, which is similar to
Du et al. (2009). The Polynomial Chaos expansion and
Chebyshev inclusion function are used for random variables
and interval variables, respectively. The aforementioned
techniques to evaluate the intervals of expectation and
standard variance were also used in uncertain analysis
for structural-acoustic systems with random and interval
parameters (Wang and Huang 2016).

These strategies have provided us some meaningful
insights into the design problem with mixed uncertainties.
Nevertheless, from the authors’ viewpoint, the existing
methods are similar in two aspects.

1) The existing methods express the system performance
as a sequence of probability distribution with the
interval factors varying within their domain. Then, the
bi-criteria approaches (i.e., to minimize the mean value
and standard deviation of the performance at the same
time) are used to evaluate the robustness of the system
with only random factors. The difference is that when
hybrid uncertainties exist, the design objective and
constraints are modeled with the upper/lower bounds of
the means or deviations of performances. Nevertheless,
these approaches cannot show whether the robustness
constraints are satisfied for a certain design.

2) In order to evaluate the intervals of the means and
deviations at every design candidate, the procedures
all require the double level sampling of random and
interval factors, respectively, which will lead to an
increment in computational times.

Therefore, there are several issues that can be improved in
this field:

1) A new quantitative measurement of robustness should
be developed since the existing bi-criteria approaches
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techniques are not able to give a clear robustness index
quantitatively for a certain solution.

2) A more efficient method is needed to avoid the heavy
sampling work in assessing the mean intervals and
standard deviation intervals.

Starting from these considerations, in this paper, a robust
optimization method is introduced, in which a new
robustness assessment technique with the mixture of
random and interval uncertainties is developed. This new
evaluation process can provide a distinct robustness index
with fewer computational efforts.

The rest of the paper is arranged as follows. In
Section 2, the assessment method ofWCSR for the objective
and constraints in literature is given. The new proposed
robustness index definition for the MURO is illustrated in
Section 3. Section 4 shows the mathematical formulation of
the new robust design procedure. Two numerical examples
and two engineering examples are carried out in Section 5 to
demonstrate the effectiveness of the presented method and
several conclusions are drawn in Section 6.

2 Definition of theWCSR

A robust optimization concerning both the objective
robustness and the feasibility robustness with the random
and interval variables can be formulated in the following
equation,

min f (X,U0,V0)

s.t . gj (X,U,V) ≤ 0, j = 1, 2, ..., K
∣
∣
∣
∣

f (X,U,V) − f (X,U0,V0)

�f0

∣
∣
∣
∣
− 1 ≤ 0

lb ≤ X0 ≤ ub

(1)

where X is the vector of design variables, U and V
are the random and interval variable vectors respectively
while U0 and V0 are their nominal values and mid-point
values, respectively. Then, the interval factor V can be
described as V ∈ [V0 − �V, V0 + �V ], where �V is the
variation range of variable V . gj (X,U,V) represents the ith
constraint value under uncertainties and K is the number
of the constraints. �f0 is a presumed acceptable variation
range for the objective function.

In this paper, the robust design problem in (1) will be
transformed into an ordinary optimization with robustness
index constraints. The main contribution of this paper is the
development of the indices for the robust design problems
with mixed uncertainties. The procedure to obtain the new
index can be divided into two sub-step.

The first step is the WCSR assessment for the objective
function and constraint functions, and the random and

interval factors are treated equally in this step. That is to
say, both the random and interval factors are treated as
interval factors in this section, ignoring the probabilistic
characteristic of the random ones. The second step is
a numerical integral within the WCSR to define the
robustness index of the design candidates under mixed
uncertainties. In this section, the different properties of
the random and interval uncertainties are embodied, which
will be shown in Section 3. The first step is shown in the
following part of this section.

2.1WCSR assessment with interval uncertainty

The sensitivity region concept for objective function and
constraint functions are developed by Gunawan and Azarm
(2004; 2005a, b) for robust design problem with interval
uncertainties. This concept is also used in this paper and
briefly introduced as follows.

In parameter variation space, where the uncertainties
can vary, the sensitivity region is formed by the points
whose performance after variation still satisfy the robust
restrictions (for both objective function and constraint
functions). The sensitivity region of objective functions and
constraint functions associated with a given design vector
X0 can be defined as follows,

SRobj(X0,P0) =
{

�p ∈ RG : (f (X0,P0)

− f (X0,P0 + �p))2 ≤ �f0
2
}

(2)

and

SRf ea(X0,P0) =
{

�p ∈ RG : ∀j, gj (X0,P0 + �p) ≤ 0
}

(3)

where P0 is the nominal values of the uncertainties and
�P is the variation vector. Note that P represents both the
interval and random factors because in the search of the
WCSR they are treated in the same way.

However, in general, as the formulation of the sensitiv-
ity region’s shape is not known, an analytical calculation
of its size is not possible (Gunawan and Azarm 2004).
Therefore, a hyper-sphere constructed with the most sensi-
tive directional vector is used to approximate the sensitivity
region and is the so-called WCSR. Figure 1 shows the
WCSR estimation for the objective and constraints that have
been developed in literature, respectively. It should be noted
that in this paper, we assume the objective and constraints
functions are both continuous with respect to the uncertain-
ties. Therefore, the WCSR defined in (2) and (3) are both
connected around the origin of the �p-space.
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Therefore, the optimization to find the radius of WCSR
of objective function ξObj is shown as follows (Gunawan
and Azarm 2004):

min ξObj = √

�pT�p
s.t . (f (X0,P0) − f (X0,P0 + �p))2 = �f0

2 (4)

Similarly, the search for the radius ofWCSR of constraint
functions ξFea is Gunawan and Azarm (2005a)

min ξFea = √

�pT�p
s.t . maxj=1,...K [gj (X0,P0 + �p)] = 0

(5)

2.2 Normalization of uncertain variables

Since the uncertain parameters or variables may have
incommensurable units and scales (Gunawan and Azarm
2004), the normalization of the uncertainties is necessary to
obtain a reasonable radius ofWCSR. Otherwise the shape of
sensitivity region may be stretched and the radius of WCSR
will be close to zero.

For each interval factor V (i.e., a component of interval
factor vector (V)), we choose to normalize the range to
[−1, +1] by dividing it by V w for each V, where �V is the
width of the interval factor.

v = V − V0

�V
(6)

For each random factor U (i.e., a component of random
factor vector (U)) with non-standard normal distribution,
it can be firstly transformed into standard normal random
variable by Kang and Luo (2010):

u = U − U0

σ
(7)

where U0 and σ are the mean value and the standard
deviation of U, respectively. For dependent random

variables, they can be transformed into a set of uncorrelated
normal random variables via Rosenblatt transformation
(Rosenblatt 1952). From the “6σ” criterion, the domain
of each u can be approximated by [−3, +3]. Since the
interval factors are normalized into [−1, +1], in order to
make these two domain as uniform as possible, the u with
standard normal distribution is transformed into random
ones obeying random distribution whose standard deviation
is 1/3.

With the two transformation in (7) and (6), the
normalized random and interval parameters form a new δ-
space. Therefore, the design optimization in (4) and (5)
should be carried out in this normalized δ-space.

3 Definition and calculation of the hybrid
index

3.1 Themathematical formulation of the hybrid
index

In this work, the interval variables are treated as random
ones that obey uniform distribution within their upper and
lower bounds. Therefore, for each uncertain variable, there
is a probabilistic density function (PDF) associated with
each of them. Based on this treatment, the new index is
defined as the possibility that the uncertain vector locates
within theWCSR area. The details are shown in this section,
which is the main contribution of this paper.

In this circumstance, the probability that the uncertainties
locate in the WCSR in δ-space can be formulated as

η =
∫

· · ·
∫

�

ψ(δ)d� (8)
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where the integral domain � is the WCSR associated with
current solution and ψ(δ) is joint PDF of the n-dimensional
uncertain variables.

From the probability theory (DeGroot and Schervish
2012), if random variables are independent with each other,
the joint PDF can be stated as the mutation of every marginal
PDF of the random variable

ψ(δ) = ψ1(δ1)ψ2(δ2) · · · ψn(δn) (9)

where ψi(δi) is the marginal PDF of the ith random
variables (including the interval variables which are
regarded as random ones with uniform distribution). n is
the total number of the uncertain factors, including both
the random and intervals. It is easy to figure out that the
ψi(δi) is the PDF of this variable itself. Therefore, the (8) is
transformed into

η =
∫

· · ·
∫

�

ψ1(δ1) · ψ2(δ2) · · · ψn(δn)d� (10)

A 2-dimensional problem (i.e., n = 2) in Fig. 2 is
shown to explain (10) in details. ψ(δ) is the joint PDF
of the 2-dimensional uncertain factors δ1 and δ2 which
are normalized random and interval factors, respectively.
Figure 2a shows the joint PDF when δ1 and δ2 both vary
within [−1, +1]. In (b), (c) and (d), the joint PDF when
δ21 + δ22 ≤ ξ2 is shown, where ξ equals 0.7, 0.9 and 1.1,
respectively. The ξ here is the radius of the WCSR for either
the objective or constraint functions that is derived in Section 2.

From the point view of geometry, the integral in (10)
represents the domain volume which is under the integral

function ψ(δ) within given domain and the domain in this
problem is theWCSR. Therefore, we can see from the Fig. 2,
the integral η value can vary from 0 to 1 with the increase
of ξ .

3.2 Calculation procedure

After the definition of the hybrid index, the calculation of
the integral in (10) should be performed. For the numerical
integration, there are plenty of techniques for one-
dimensional cases, such as rectangle rule, the trapezoidal
rule, Simpson’s rule and the Gauss rule (Leobacher and
Pillichshammer 2014). When the one-dimensional rules are
applied to multidimensional integration, the convergence
rate shows a poor dependency on the dimension, which
is unacceptable in high-dimensional cases. To solve this
problem, Monte Carlo Integration (Jarosz 2008; Robert and
Casella 2004; Gong 2001; Kang 2015; Ren et al. 2005) is an
efficient and accurate alternatives and its convergence rate
is independent of the dimension. Therefore, in this paper,
the Monte Carlo integration is used to calculate (10).

The fundamental idea of Monte Carlo integration is to
use random sampling of a function to numerically compute
an estimate of its integral. For the details the readers
are referred to Leobacher and Pillichshammer (2014) and
Robert and Casella (2004). The procedure of Monte Carlo
integration in our problem can be described as follows,

1) In δ-space, make the uncertain parameter as inde-
pendent random variables under uniform distributions

Fig. 2 The joint PDF ψ(δ) and
integral domain � for a 2D
uncertain problem
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within the box which has the smallest area to enclose
the WCSR. Then we obtain N samples and all the
obtained samples are uniformly distributed in an n-
dimensional box. A 2D problem is shown in Fig. 3.

2) Sequentially substitute the samples into the hyper-

sphere function
m∑

i=1
δ2i ≤ ξ2 and get the ones satisfying

this function. Thus, we can obtain a pile of samples
uniformly distributed in the n-dimensional WCSR. The
number of samples in this step is N2.

3) Sequentially substitute the samples into (9) to get the
function values ψ(δ) and get the summation of these

values F =
N2∑

i=1
ψ(δ) .

4) Finally, the integral estimation of η is η̂ = V

N2
F where

V is the volume of the WCSR. For the purpose of
simplification, η is used instead of η̂ in the following
sections.

With the aforementioned method, the hybrid robustness
index of the current solution can be obtained to show
the possibility that the solution satisfies both the objective
and feasibility robustness restrictions. Since the WCSR for
objective and constraint functions generally are different
and therefore the integral procedure in this section should be
performed twice for each solution to get the ηObj and ηFea .

3.3 Interpolationmodel

As we can see from (10), when the uncertainty type is
determined (i.e., the number of the uncertain variables and
the distribution or interval bounds associated with them),
the integral function ψ(δ) is fixed. Thus, the robustness
index η is only dependent on the integral domain, actually,
the WCSR radius. Obviously, the WCSR radius-robustness

1

2

WCSR

marginal box

Fig. 3 Samples for the numerical integration

index (ξ − η) function is a non-decreasing one-to-one
mapping relationship.

In the optimization procedure, (10) should be performed
repeatedly to assess the objective and feasibility robustness
indices, respectively, which may lead to an increase of
computational burden. In this section, a 1D interpolation
model is adopted to deal with this problem. That is to say,
for a certain MURO design problem, the integral in (10) is
carried out with different radius ξ before the optimization
procedure. The ξ values should be from 0 to a value that
is a little bit larger than

√
n since that when ξ ≥ √

n, the
WCSR covers the whole variation region(i.e., just shown in
Fig. 2a), and the η value approaches 1.

Then a radius-index table is built and in the subsequent
optimization process, a table lookup operation is used to
approximate the index at the actual WCSR radius for
a particular design. In this work, the spline method is
applied between the adjacent sample ξ values. Figure 4
is to demonstrate the relationship of ξ and η for 2D, 3D
and 4D problems, respectively. By this way, no integral
procedure is needed in the optimization and compared with
the computational costs of function calls in optimization, the
cost of building this lookup table can be neglected.

Since the interpolation model is introduced to replace the
original integration, it is necessary to evaluate the errors
related to this procedure. We use a 2-dimensional problem
(one uncertain parameter is random and the other is interval)
to calculate the η values with Monte Carlo integration
method and the interpolation model. The relative errors of
η values with interpolation model with respect to the values
with Monte Carlo integration method is defined as

Relative error =
ηIM − ηMCI

ηMCI

× 100% (11)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Fig. 4 The relationship of ξ and η for problems with different number
of uncertain factors
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where the subscripts IM and MCI stand for interpolation
model and Monte Carlo Integration, respectively. Since the
integration value of η when ξ = 0 is zero, the relative
error is calculated when ξ starts from 0.05 with a sampling
interval of 0.005. The sampling interval when we build the
interpolation model is 0.025 and therefore, in Fig. 5, the
errors show a trend of oscillation around zero. When ξ is
quite small( such as ξ � 0.1), the errors are relatively high
because the η values are close to zero now and the higher
errors may contain numerical errors inside. From a global
view, the relatively errors within the whole ξ domain are
almost all smaller than ±1%. Therefore, we believe that the
interpolation is accurate enough to be used in the MURO
method.

4 Robust optimization with hybrid index
constraint

With the strategies developed in the previous sections,
the MURO design problem in (1) can be reformulated as
follows

min f (X,U0,V0)

s.t . ηObj (X,U,V) ≥ η∗
Obj

ηFea(X,U,V) ≥ η∗
Fea

lb ≤ X0 ≤ ub

(12)

where η∗
Obj and η∗

Fea are respectively the prescribed target
indices for objective and constraint functions.

When the values of these two kinds of indices
approximate 1, it implies that no robust constraints
violations are allowed. Since the robustness index represents
the possibility that the uncertain vector locates in the WCSR

and the existence of the random factors, the index can not
be exactly equal to 1, and instead, can approximate 1. Also,
when the target indices determined by the decision-maker
are less than 1, it means that the system allow a certain
degree of constraint violations. That is to say, the proposed
MURO method allows the decision makers to determine the
robustness of the system.

In this paper, the inner loop to evaluate the robustness
indices ηObj and ηFea is solved by the fmincon function
(”SQP” algorithm) of the Matlab optimization toolbox
(2012b Release). To speed up computation of the proposed
approach, gradient-based optimization algorithms NLPQL
(Schittkowski 1986) is used in the outer loop as opposed
to population-based optimization ones (such as Genetic
Algorithms or Simulated Annealing). For both the inner and
outer loop, the convergence criteria is ‖xk+1 − xk‖ � 10−6.
When this new method is applied into other engineering
problems, the choice of algorithm should be dependent on
the nonlinearity of the problems. The flowchart of solving
the MURO method is depicted in Fig. 6.

5 Test examples

In this section, two nonlinear numerical and two engineering
design optimization examples are tested. The robust optimal
results are compared to their deterministic counterparts
(i.e., without any uncertainy) and robust solutions by DMC
method in Du et al. (2009) to demonstrate the computational
effectiveness and efficiency of the proposed MURO
method. Table 1 summarizes the uncertainty occurrences in
each example.

The design objective of the DMCmethod is the weighted
summation of three factors, which is often used in the
multiobjective design problem, shown as follows,

fDMC = w1μf + w2σf + w3δf (13)

where μf , σf and δf are the average mean values of
original objective f , average of standard deviations and
the difference between maximum and minimum standard
deviations, respectively. Note that these three values should
be normalized before summation. A particular set of
weighting factors (i.e., w1, w2 and w3) can only produce
a single Pareto-optimal solution generally (Hu et al. 2013)
and the essential part of the DMC method to find a
robust solution is the determination of the weighted factors.
However, the determination work is usually not an easy
job. In Du et al. (2009), the three weighting factors are
equal. In this paper, we have tried the equal weighting
factor and the optimal solutions are much worse than that of
proposed method. Finally, the weighting factors are set as
w1 = 0.7, w2 = 0.15 and w3 = 0.15.
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Fig. 6 The flowchart of the
proposed MURO method
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5.1 Nonlinear numerical example 1

The first example is a nonlinear problem with uncertainty in
design variables from Zhou and Li (2014). We modified it a
little in this paper. The formulation is given in the following
equation:
min f =x3

1 sin(x1+4)+10x2
1+22x1+5x1x2+2x2

2+3x2+12
s.t . g1 = x2

1 + 3x1 − x1 sin x1 + x2 − 2.75 ≤ 0
g2 = −log(0.1x1 + 0.41) + x2e

−x1+3x2−4 + x2 − 3 ≤ 0
�x1 = 0.1, σ2 = 0.01

∣
∣μx2

∣
∣

�f0 = 0.15

(14)

In this example, the design variables x1 and x2 suffer
from uncertainty. x1 is a interval variable with a variation
range�x1 = 0.01 around its nominal value and the standard
variation of x2 is 0.1 times of its mean value. Also, the
acceptable objective function variation �f0 = 0.15. The

Table 1 Uncertainty occurrences in each example

Numerical examples Engineering examples

Example 1 Example 2 Two-bar truss Ten-bar truss

Design variables � � �
Parameters � � �

optimal solutions of the proposedmethod, deterministic design
andDMCmethod are displayed in Table 2 and Fig. 7. Note that
the η∗ stands for η∗

Obj and η∗
Fea at the same time. In order

to verify the effectiveness of the proposed method, Monte
Carlo simulation is executed to compute the possibility β of
solutions to satisfy the objective and feasibility robustness
restrictions under uncertainties. In this simulation, 106

samples are taken according to the probability distribution
and intervals of x1 and x2.

Table 2 Results comparisons with different design for example 1

Deterministic DMC Proposed method

η∗ = 0.75 η∗ = 0.99

x1 −1.8256 −1.6683 −1.8036 −1.7952

x2 0.7411 0.7206 0.7180 0.7094

f −3.2871 −3.0436 −3.1952 −3.1610

g1 −5.9196 −5.9115 −5.9448 −5.9537

g2 0 −0.2574 −0.1227 −0.1659

ηObj 0.9921 0.7856 0.9950 0.9951

ηFea 0 1.00 0.7500 0.9900

β 48.95% 93.42% 95.97% 99.78%

N.F.C 25 > 108 3398 5782
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Fig. 7 Comparison of different optimal solutions for example 1

We can find that the proposed MURO method can
produce better objective values with fewer number of
function calls (N.F.C) when η∗ = 0.75 and η∗ = 0.99. The
constraints g1 and g2 in the table are the nominal values
for the optimal designs. From η∗ = 0.75 to η∗ = 0.99, with

Table 3 Results comparisons with different design for example 2

Deterministic DMC Proposed method

η∗ = 0.75 η∗ = 0.99

x1 0.5000 0.4059 0.4610 0.4480

x2 0.5000 0.4059 0.4610 0.4480

x3 0.5000 0.5095 0.4316 0.4047

x4 0.5000 0.3059 0.4316 0.4047

f 9.7700 9.8916 9.8524 9.8824

g1 0 −0.1883 −0.0780 −0.1039

g2 0 −0.1847 −0.1368 −0.1906

ηObj 0.9999 0.9999 0.9999 0.9999

ηFea 0 0.9965 0.7500 0.9967

β 50.01% 99.91% 93.34% 99.99%

N.F.C 20 > 108 20484 20520

the increasement of the robustness index target, the nominal
constraint values get smaller.

The β values of the proposed method with η∗ = 0.99 and
the DMC method are both almost 100%, which means that

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

f

0

0.5

1

1.5

2

2.5

E
v
e
n
t 
F

r
e
q
u
e
n
c
y

10
4

-0.4 -0.3 -0.2 -0.1 0 0.1
0

0.5

1

1.5

2

10
4

0 0.010.020.03

0

500

1000

-0.2 -0.1 0 0.1 0.2

f

0

0.5

1

1.5

2

E
v
e
n
t 
F

r
e
q
u
e
n
c
y

10
4

-0.4 -0.3 -0.2 -0.1 0
0

0.5

1

1.5

2

10
4

(a)

(b)

Fig. 8 Event frequency in example 1 by Monte Carlo simulations
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Fig. 9 The iteration histories of proposed method for example 2

the design constraints in (1) can be satisfied. However, it
is hard to judge these two solutions from the perspective
of robustness. Therefore, the Monte Carlo simulations with
106 samples were carried out to verify the actual distribution
of performances under uncertainty (i.e., the sensitivity of the
objective and constraint functions to the uncertainties). We
did not give the distributions of g1 because it is not a tight
constraint at the optimal. �f = f − fopt is the variation
of the objective and the fopt is the nominal objective
value. The yellow bars represent the event frequency when
the constraint g2 ≤ 0 is violated. In Fig. 8a, the tail
distribution is amplified to provide a clearer view and
the proportion of the yellow ones has been reduced into
0.22% = 1 − βη∗=0.99 and the restriction of �f0 = 0.15
is also satisfied. We can see from Fig. 8b that there is no

Table 4 Results comparisons with different design for two engineering
examples

Deterministic DMC Proposed method

η∗ = 0.75 η∗ = 0.99

Two-Bar x1 0.0199 0.0195 0.0198 0.0198

x2 0.0001 5.0333e-4 1.0159e-4 1.2017e-4

x3 3.000 2.9760 3.000 3.000

f 1.6750 1.7148 1.6806 1.6847

g1 −98.3250 −98.2850 −98.3195 −98.3153

g2 −0.18377 −1.004 −0.5048 −0.6900

g3 −95.76244 −95.6807 −95.7485 −95.7380

ηObj 0.9999 0.9999 0.9999 0.9999

ηFea 0.0980 0.9999 0.7820 0.9914

β 68.36% 100% 97.37% 100%

N.F.C / > 108 38419 40257

Ten-Bar x1 13.0645 12.9000 14.8005 15.4280

x2 0.0100 0.9533 0.0100 0.0100

x3 9.0373 14.5847 10.2486 10.687

x4 6.4758 7.0541 7.3398 7.6520

x5 0.0100 0.0314 0.0100 0.0100

x6 0.0100 1.8978 0.0100 0.0100

x7 0.7080 7.6235 0.7586 0.7763

x8 10.4439 10.8150 11.8456 12.3546

x9 10.2392 9.8961 11.6250 12.1285

x10 0.0100 2.969 0.0100 0.0100

volume 21195 29878 24011 25032

v3 1.847 1.610 1.6248 1.55

v6 5.000 4.290 4.4046 4.22

ηFea 0 0.99 0.75 0.99

β 50.00% 100% 99.0% 100%

N.F.C 991 > 109 57286 80234

violation of the constraints for g2 but �f ≤ �f0 has been
violated. Therefore, the DMC method cannot guarantee a
feasible solution for all the robustness constraints. From
another perspective, the solution of DMC is too conservative
because the distribution area of g2 is far away from
the design restriction g2 ≤ 0. Therefore, even the DMC
method can produce robust solutions, the proposed MURO
technique can significantly reduce the conservatism with
a equal degree of robustness (i.e., achieving a satisfactory
level β close to 100%).

Note that the difference between the η and β in Table 2 is
caused by the usage of the WCSR to estimate the actual sen-
sitivity region whose shape the designers cannot know for sure.
These two indices both stand for the possibility that the perfor-
mance with variation satisfy the restriction. The difference is
that the η can be regarded as a worst-case estimation of β

since that β is produced with Monte carlo simulation which
can be considered as the actual possibility. Generally, the
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Fig. 10 Event frequency of g2in two bar truss by Monte Carlo
simulations
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Fig. 11 A ten bar truss structure

actual size of sensitivity region is larger than the WCSR and
therefore, the values of β are not less than the η. Therefore,
one of the advantages of this new index or method is that
we can provide a worst-case estimation of the robustness
constraint satisfaction degree for a certain design.

5.2 Nonlinear numerical example 2

Another numerical example is originally from the literature
(Zhou and Li 2014; Zhou et al. 2012). In this example,
the uncertainties exist in both the design variables and the
parameters, and the design variable x3 is interval and the
two parameters p1 and p2 are random ones. The optimal
solutions are listed in Table 3.

min f = (x1 − 0.6)2 + (x2 − 0.6)2 − x3x4 + 10
s.t . g1 = p1 + x1 + x2 ≤ 0

g2 = p2 + x3 + x4 ≤ 0
�x3 = 0.1, σ1 = 0.03

∣
∣μp1

∣
∣ , σ2 = 0.03

∣
∣μp2

∣
∣

�f0 = 0.2

(15)

In this example, the optimal objective when η∗ = 0.99 is
9.8824, which is smaller than the solution of DMC method
9.8911. Also, the N.F.C of the new method is lesser. The
ηFea of the deterministic optimization is 0 means that this
design cannot withstand any uncertainty because it has been
located in the design boundary. Nevertheless, the β for
this deterministic design is 50%, not 0. This phenomenon
is because the samples set of Monte Carlo simulation to
evaluate β includes the ones which lead to the satisfaction
of the constraints. The iteration histories of the example 2
are shown in Fig. 9 and we can find that the MURO method
can converge to the optimal point with fewer iterations.

5.3 Engineering example -Two bar truss

The two-bar truss problem is also a typical engineering
design problem which has been tested in literature



240 N. Hu and B. Duan

(Zhou and Li 2014; Zhou et al. 2012). The formulation
is

min f (x)= 20(16+x23 )
1
2

1000x1x3
s.t . g1=f − 100 ≤ 0

g2=1000

[

x1

(
(

16+x2
3

) 1
2

)

+x2(1+x2
3)

1
2

]

−100≤0

g3= 80(16 + x2
3)

1
2

1000x1x3
− 100 ≤ 0

0.0001 ≤ x1, x2 ≤ 0.25, 1.0 ≤ x3 ≤ 3.0
�x1 = 0.0001, σ1 = 0.002

∣
∣μx2

∣
∣ , σ2 = 0.002

∣
∣μx3

∣
∣

�f0 = 1

(16)

where one of the design variable x1 is interval and the other
two are random. The design solutions are demonstrated in

Table 4. Similar to the previous two numerical examples,
better objective can be obtained by the proposed method
with lesser function calls. Also, Fig. 10 presents the
distribution of the tight constraint g2 under uncertainties,
which shows the obvious reduction of conservatism of the
new method over the DMC method. Note that the optimal
solution of deterministic optimization is from the literature
(Zhou et al. 2012) and therefore the N.F.C in that column is
not provided.

5.4 Engineering example -Ten bar truss

The ten-bar example from Hu et al. (2017) is modified in
this paper. The structure, shown in Fig. 11, is subject to two
vertically concentrated forces P1 = P2 = 100 kip at node
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Fig. 12 Event frequency in ten bar truss by Monte Carlo simulations
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Fig. 13 The iteration histories of proposed method for ten bar truss

4 and 6, respectively. The total 10 bars are classified into
two groups and the bars within each group have the same
Youngs modulus. The bars from number 1 to 6 are with an
elastic modulusE1 whose value is 10000 ksi. The other bars
are with an elastic modulus E2 whose value is 8000 ksi.
The design objective is to minimize the total volume of the
structure and the nominal values of the cross-section areas
are the design variables. The vertical displacement of node
3 and node 6 are restricted by v3 ≤ 2.0 in and v6 ≤ 5.0 in,
respectively.

In this problem, the uncertain parameters are the elastic
modulus E1, E2 and the fixed loads P1 and P2. The
two loads are independent intervals with variation range

�P = 10 kip. The two elastic modulus obey normal
distributions with their standard deviations being 0.03
times their nominal values, respectively. Therefore, in this
ten-bar truss design problem, four independent uncertain
parameters exist. Then, Table 4 lists the optimal solutions.
Note that in this problem, only feasibility robustness
constraint is considered and the objective function volume
has no relationship with the uncertainties.

The actual distribution of v3 and v6 under uncertainties
is shown in Fig. 12. The distributions of proposed MURO
and DMC method are similar to each other and the
distribution by DMC method does not show large extent
of conservatism. However, from Table 4, we can find
that the optimal volume 25032 in3 of proposed method
when η∗ = 0.99 is 20% smaller than that of DMC method
(i.e., 29878 in3). Obviously, the ten bar truss robust
design problem is highly nonlinear and the MURO method
can obtain better solutions than the DMC method with
equivalent robustness.

The iteration histories of the ten bar truss example are
shown in Fig. 13. Compared with the numerical example
2, more iterations are needed in this design problem.
Nevertheless, the optimization algorithm can find the
design points which are close to the final optimal within
about 20 iterations. Since we transfer the original robust
design problem into an optimization procedure with index
constraints, the relationship between the design variables
and the indices can be highly nonlinear. This may lead to the
slow convergence problem and more attentions will be paid
to handle this problem in the authors’ future research.

6 Conclusions

A new efficient mixed uncertainty robust optimization
strategy is developed in this paper to handle design
problems with both random and interval uncertainties. With
the hybrid robustness index, the original robust design
problem is transformed to an ordinary design problem
with indices restrictions. Four different types of examples
are investigated and the results show the validity of the
proposed method.

Based on the numerical results, several conclusions can
be drawn out as follows.

1) The new hybrid robustness index η can provide
an effective quantitatively measurement of system
robustness. TheMonte Carlo simulations also show that
the hybrid index represent a worst-case estimation of
the robustness constraint satisfaction degree for a certain
design. This is the main contribution of this work.

2) The new method can produce better objective values
with the satisfaction of the robustness restrictions.
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Compared with the existing method, the proposed
technique can reduce the conservatism of the solution
significantly .

3) The new method is more efficient than previous
techniques because the double sampling procedure of
existing tools can be omitted in the MURO method.

4) The proposed method still aim to minimize the
objective which is the same with deterministic designs
while the objectives of other methods are relatively
complex (i.e., the weighted summation of mean
interval and standard deviation interval). Therefore, the
objective of our method has clear physical or practical
meaning and can be readily understood and performed.

5) This new method allows the decision-makers to
determine the system robustness level and a robustness
index less than 1 is also acceptable. However, few other
robust design methods have this convenience.

The numerical results have shown that the MURO
method may suffer from the problem of slow convergence.
In order to make the method more reliable and robust, in
the next step, the sensitivity analysis of the robustness index
with respect to design variables should be carried out. Also,
other powerful optimization techniques instead of SQP can
be investigated.
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