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Abstract
Metamodels are often used as surrogates for expensive high fidelity computational simulations (e.g., finite element analysis).
Ensemble of metamodels (EM), which combines various types of individual metamodels in the form of a weighted average
ensemble, is found to have improved accuracy over the individual metamodels used alone. Currently, there are mainly two kinds
of EMs called as pointwise EM and average EM. The pointwise EM generally has better prediction accuracy than the average
EM, but it is much more time-consuming than the average EM. In most cases, as a metamodel, EM is often used in the
engineering design optimization which needs to invoke EM tens of thousands of times. Therefore, the average EM is still the
most extensively used EM. To the authors’ best knowledge, the most accurate average EM is the EM with optimized weight
factors proposed byAcar et al. However, the EM proposed byAcar et al. is often too “rigid” and may not have sufficient accuracy
over some regions of the design space. In order to deal with this problem and further improve the prediction accuracy, a new EM
with multiple regional optimized weight factors (EM-MROWF) is proposed in this study. In this new EM, the design space is
divided into multiple subdomains each of which is assigned a set of optimized weight factors. This new EM was constructed by
combining three typical individual metamodels, i.e., polynomial regression (PR), radial basis function (RBF), and Kriging
(KRG). The proposed technique was evaluated by ten benchmark problems and two engineering application problems. The
ten benchmark problems are typical mathematical functions for evaluating the approximation performance in previous studies.
And, the two engineering application problems refer to the vehicular passive safety in the field of crashworthiness design. The
study results showed that the EM-MROWF performed much better than the other existing average EMs as well as the three
individual metamodels.
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1 Introduction

The design of modern engineering systems often relies on
high-fidelity numerical simulations (e.g. finite element analy-
sis) that are usually computationally expensive. In the opti-
mum design of an engineering system, the high-fidelity nu-
merical simulations are performed many times and thus the

computational cost often becomes excessive and unafford-
able. To reduce the computational cost, metamodels are used
in the optimization work as the surrogates of the high-fidelity
numerical simulations.

During the past decades, a large number of metamodeling
methods have been proposed by the researchers and are available
from literature. The commonly used metmodeling methods in-
clude polynomial regression (PR) (Box et al. 1978; Myers and
Montgomery 2002), radial basis function (RBF) (Dyn et al. 1986;
Buhmann 2003), Kriging (KRG) (Sacks et al. 1989; Simpson
et al. 2001), Gaussian process (GP) (MacKay 1998; Rasmussen
and Williams 2006), neural networks (Bishop 1995; Smith
1993), support vector regression (SVR) (Clarke et al. 2005;
Gunn 1997) and multivariate adaptive regression splines
(MARS) (Jerome 1990; Diana et al. 2015). In the work of Hou
et al. (2007), they compared different PR models with different
polynomial functions in the design optimization of hexagonal
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thin-walled structures. They found that quadratic polynomials
provided the best approximations to the specific energy absorp-
tion (SEA) andmaximumpeak load. Fang et al. (2005) compared
PR and several RBFmodels for the crashworthiness optimization
problems and showed that the RBF models were more suitable
for modeling highly nonlinear responses than the PR models.
Song et al. (2013) carried out a comparative study on four com-
monly used metadmodels, PR, RBF, KRG and SVR, for the
design optimization of foam-filled tapered structures. They found
that no single model was the best for approximating all objective
functions in the considered problems. Yin et al. (2011) employed
PR, RBF, KRG, MARS and SVR models to approximate the
responses of SEA and peak crushing stress of aluminum
honeycomb structures. It was found that the best metamodels
were different for the two responses. Forrester and Keane
(2009) reviewed different metamodeling methods used in
surrogate-based optimization and suggested that the choice of
which surrogate to use should be based on the problem size,
the expected complexity, and the cost of the analyses. From the
available studies, the general consensus was that no single
metamodel was the most effective for all problems. Different
metamodels are suitable for fitting different functions; each
metamodel has its advantages and drawbacks (Forrester and
Keane 2009; Queipo et al. 2005; Wang and Shan 2007).

To improve the prediction accuracy of surrogate models, a
number of studies were conducted on combining multiple
metamodels into a single ensemble using the weighted sum
approach (Goel et al. 2007; Zerpa et al. 2005; Sanchez et al.
2008; Acar and Rais-Rohani 2009; Acar 2010; Acar 2015;
Lee and Dong-Hoon 2014; Fang et al. 2017; Ferreira and
Serpa 2016; Zhou and Jiang 2016; Zhou et al. 2011; Zhang
et al. 2012). Since an RBF could accurately capture the non-
linear aspect of a response, and a PR model could give the
overall trend, an ensemble of metamodels (EM) of both RBF
and PR models may have better prediction ability than the
stand-alone models. In the work of Gu et al. (2015), they
established the EM of PR, RBF, KRG and SVR for the

responses of an occupant protection system. The results of
the study showed that the EM had better prediction than all
the individual metamodels.

In an EM, the weight factors have a significant effect on the
prediction accuracy and there exist a number of methods for
determining the weight factors such as the simple average
weights (Goel et al. 2007), prediction-sum-of-squares-based
average weights (Goel et al. 2007), optimized weights (Acar
and Rais-Rohani 2009) and functional weights as the location
of prediction point (Zerpa et al. 2005; Sanchez et al. 2008; Lee
and Dong-Hoon 2014). Based on the method of determining
the weight factors, EM can be classified into two types, an
average EM and a pointwise EM (Lee and Dong-Hoon 2014).
An average EM has unchanged weight factors in the entire
design space, while a pointwise EM has varied weight factors
which change as the location of a prediction point varies. The
EMs proposed by Goel et al. (2007) and Acar and Rais-
Rohani (2009) belong to average EM and the EMs proposed
by Zerpa et al. (2005), Sanchez et al. (2008) and Lee and
Dong-Hoon (2014) are typical pointwise EMs. The weight
factors of the stand-alone metamodels in an average EM are
determined based on their average accuracies throughout the
entire design space, while the weight factors of the stand-alone
metamodels in a pointwise EM are determined based on their
accuracies at each prediction point. A pointwise EM was
found to be more accurate than the average EM because it
had varied weight factors according to the prediction point
(Lee and Dong-Hoon 2014). However, it had much higher
computational cost than the average EM especially when it
was used as the surrogate in the design optimization.

In most cases, EM is employed as the surrogate of high
fidelity computational simulation (e.g., finite element analysis)
with expensive computational cost in the engineering design
optimization (Hou et al. 2007; Fang et al. 2005; Song et al.
2013; Yin et al. 2011; Forrester and Keane 2009; Queipo
et al. 2005; Wang and Shan 2007). Generally, the EM is in-
voked tens of thousands of times in the optimization process.
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(a)Fig. 1 Illustration of the divided
regions in the design space: (a)
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The computational time may not be accepted if we use
pointwise EM in the practical design optimization. Thus, the
average EM is relatively efficient in the practical design opti-
mization. The average EM proposed by Acar et al. was found
to be more accurate than the other existing average EMs (Acar
and Rais-Rohani 2009). However, the average EM proposed
byAcar et al. has only one set of weight factors across the entire
design space, and this approach is often too “rigid” andmay not
have good prediction in some areas of the design space.

To deal with this issue and improve the accuracy of the EM
proposed by Acar et al., a new EM with multiple regional

optimized weight factors (EM-MROWF) was proposed and
investigated in this study. In this new EM, the design space
was divided into multiple subdomains, each of which had its
own set of optimized weight factors. The optimized weight
factors in each subdomain were determined byminimizing the
error metric of the training points in that subdomain. The EM-
MROWF technique was evaluated using ten benchmark prob-
lems and two engineering application problems. The results
showed that the EM-MROWF had better prediction accuracy
and robustness than the other two considered average EMs
and the individual metamodels.
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points and set ni=1 (i = 1, 2, p)
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Fig. 2 The flowchart of the
process of establishing the EM-
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2 Ensemble of metamodels

Metamodels are widely used in simulation-based design optimi-
zation to reduce the computational cost of a large number of
expensive simulations. The most commonly used ensemble
method is the weighted average ensemble (Goel et al. 2007)
given by

ŷens xð Þ ¼ ∑
i¼1

nM

wiŷi xð Þ ð1Þ

where ŷens is the prediction by the EM, x is the vector of design
variables, nM is the number of metamodels used in the ensemble,
wi is theweight factor of the ith basismetamodel in the ensemble,
and ŷi is the predicted value by the ith metamodel. To have
unbiased response estimation, the following equation should be
satisfied by the weight factors:

∑
i¼1

nM

wi ¼ 1 ð2Þ

Ametamodel that is deemedmore accurate should be assigned
a largeweight factor, and the less accuratemodel should have less
influence on the predictions. There are many possible strategies
of determining weight factors (Lee and Dong-Hoon 2014).

Among the existing EM, there are mainly two types of EMs,
i.e., the pointwise EM (Zerpa et al. 2005; Sanchez et al. 2008;
Lee and Dong-Hoon 2014) and the average EM (Goel et al.
2007; Acar and Rais-Rohani 2009). Generally, the accuracy of
the pointwise EM is much better than that of the average EM,
but the pointwise EM is much more time-consuming than the
average EM. As a metamodel, the EM is often used as the
surrogate of the numerical simulation (e.g., finite element anal-
ysis) for the engineering design optimization. In the design
optimization process, the computational time will be exagger-
ated if we use pointwise EM as the surrogate of the numerical
simulation. In order to consider the numerical cost of the EM,
we only consider the average EM in this study.

2.1 The EM proposed by Goel

Goel et al. (2007) proposed an average EM using the basis
metamodels of PR, KRG and RBF. The weight factors of the
EM proposed by Goel were determined as:

wi ¼ w*
i

∑
M

i¼1
w*
i

ð3Þ

w*
i ¼ Ei þ αEavg

� �β
;β < 0;α < 1 ð4Þ

Eavg ¼
∑
M

i¼1
Ei

M
ð5Þ

Ei ¼ GMSEi ¼ 1

ndes
∑
ndes

k¼1
y xkð Þ−ŷi

−kð Þ
xkð Þ

� �2
ð6Þ

where M is the number of individual metamodels, ndes is the
number of design points, xk is the kth design point, y(xk) is the real
response value at xk, and ŷi(−k)(xk) is the predicted response value
of the ith basis metamodel generated using nexp-1 design points
without the kth point at xk. In this study, α= 0.05 and β= −1 as
the Goel et al. suggested. In the method proposed by Goel et al.,

Table 1 User chosen functions
and parameters of four individual
metamodels (Yin et al. 2014)

Metamodel Function Parameters

PR Cubic polynomial functions –

RBF ϕ x−xik kð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xik kp

2 þ c2 c = 1.0

KRG R xi; x j
� � ¼ ∏ndv

k¼1exp −θk xik−x
j
k

�� ���
2Þ 0.01 ≤ θk ≤ 20

(w11, w12, w13)(w21, w22, w23)(w31, w32, w33)

13 2311 21 12 22, ,
2 2 2

w ww w w w

21 31 22 32 23 33, ,
2 2 2

w w w w w w
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Fig. 3 Illustration of the weight calculation for the adjacent regions
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the generalized mean square cross-validation error (GMSE) was
used to calculate the prediction errors of the basis metamodel.

2.2 The EM proposed by Acar

An error-based minimization method (Acar and Rais-Rohani
2009; Acar 2010, 2015) is recognized as an effective method
for determining the weight factors of the EM. Acar and Rais-
Rohani (2009) proposed an ensemble of metamodels with opti-
mized weight factors, in which they determined the weight fac-
tors wi by solving an optimization problem as

Minimize Error ŷens
� 	

s:t: ∑
i¼1

nM

wi ¼ 1

8><
>: ð7Þ

where Error(ŷens) is the selected error metric that measures the
accuracy of the ensemble-predicted response ŷens. In Acar and
Rais-Rohani’s study, GMSE was selected as the error metric to
evaluate the accuracy of the ensemble of metamodels (Acar
2015). Then, GMSE was selected to evaluate the accuracy of
the ensemble-predicted response ŷens. The Error(ŷens) of (7) will
be written as

Error ŷens
� 	

¼ GMSEens ¼ 1

ndes
∑
ndes

k¼1
y xkð Þ−ŷ

−kð Þ
ens xkð Þ

� �2
ð8Þ

R

t

(b)(a)

Fig. 4 FE model and illustration
of design variables of the cylinder
thin-walled column: (a) FEmodel
and (b) illustration of design
variables

Table 2 Responses of the design points for the thin-walled column
crash problem

No. R (mm) t (mm) EA (kJ) PCF (kN) SEA (kJ/kg)

1 79 2.85 8.739 134.44 11.4446

2 83 1.45 2.907 45.573 7.1219

3 95 1.35 2.7113 37.876 6.2327

4 99 1.85 4.9181 55.225 7.9165

5 75 2.45 6.7958 103.37 10.9055

6 81 1.95 4.8268 70.943 9.0103

7 69 2.95 8.7972 128.52 12.7452

8 91 1.75 4.3508 65.176 8.0549

9 61 2.15 5.1846 73.361 11.6602

10 67 1.25 2.2375 28.21 7.8788

11 87 1.05 1.8314 27.5 5.9109

12 63 1.65 3.3225 46.272 9.4268

13 93 2.25 6.3145 106.21 8.8968

14 85 2.35 6.5542 106.07 9.6743

15 89 2.75 8.7528 139.47 10.5438

16 73 1.55 3.3476 44.262 8.7242

17 77 1.15 2.0095 24.831 6.6915

18 71 2.05 4.9883 72.46 10.1064

19 97 2.65 9.135 129.47 10.4771

20 65 2.55 7.0502 99.915 12.5444
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where ndes is the number of design points, xk is the kth design
point, y(xk) is the real response value at xk, and ŷens(−k)(xk) is the
predicted response value of the ensemble metamodel generated
using nexp-1 design points at xk.

3 New proposed ensemble of metamodels

In this study, a new EMapproachwas investigated by dividing
the design space into multiple subdomains and use a set of
optimized weight factors for each subdomain. The basic idea
of the new EM approach was to allow the subdomain to have
independently determined sets of weight factors so that they

will not affect or be affected by those of other subdomains.
With multiple regional optimized weight factors, the accuracy
of the EM could be improved in each of the subdomains and
thus across the entire design space.

The first step of constructing the EM with multiple re-
gional optimized weight factors was to divide the design
space into m = n1 × n2×⋯×np subdomains or regions (see
Fig. 1), where ni is the number of sections of ith variable,
and p is the number of variables. In each region, there is one
set of weight factors that is obtained by minimizing the
GMSE on the design points in that region. The flowchart
of the process to establish the EM-MROWF is shown in
Fig. 2 and a detailed description is given as follows.

Table 3 Responses of the test points for the thin-walled column crash
problem

No. R (mm) t (mm) EA (kJ) PCF (kN) SEA (kJ/kg)

1 73.79 1.31 2.3797 34.5630 7.2387

2 94.08 2.64 8.1013 136.1800 9.6245

3 87.99 1.76 4.0882 63.8470 7.7824

4 80.45 2.05 5.1393 78.0010 9.2399

5 96.37 1.46 3.0392 41.9080 6.3928

6 68.26 2.29 5.7388 87.6090 10.8682

7 91.83 1.68 3.8887 57.4820 7.4177

8 89.20 2.39 6.8776 112.5400 9.5328

9 75.48 2.48 6.7731 103.4600 10.7376

10 82.40 2.58 7.6675 119.6200 10.6861

11 65.14 1.96 4.4404 66.0820 10.2791

12 62.18 1.20 2.0742 24.1870 8.2225

13 79.64 1.51 3.0533 48.2830 7.4526

14 93.47 2.81 8.9713 147.4300 10.1211

15 99.71 1.25 2.3973 26.9210 5.6540

16 67.73 2.75 7.7750 115.7500 12.2614

17 84.26 2.17 5.6086 88.0930 9.0721

18 76.84 2.91 8.9568 135.7500 11.7868

19 60.90 1.06 1.6707 20.2880 7.6208

20 71.71 1.89 4.3304 67.5830 9.3838

(a) (b)Fig. 5 FE models of the airbag
cushion system: (a) before airbag
deployment and (b) after airbag
deployment

Table 4 Responses of the design points for the airbag cushion problem

No. λ A (mm2) apeak (mm/ms2)

1 0.975 537.333 2.5755

2 1.075 31.793 2.9792

3 1.375 19.233 3.5447

4 1.475 113.433 3.5701

5 0.875 330.093 2.3267

6 1.025 141.693 2.8853

7 0.725 596.993 1.7822

8 1.275 88.313 3.2267

9 0.525 207.633 1.0548

10 0.675 9.813 1.7974

11 1.175 0.393 3.0983

12 0.575 66.333 1.3687

13 1.325 245.313 3.2610

14 1.125 286.133 2.9033

15 1.225 480.813 3.0281

16 0.825 47.493 2.2632

17 0.925 3.533 2.4965

18 0.775 173.093 2.1010

19 1.425 427.433 3.3293

20 0.625 377.193 1.4210
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STEP 1: Generate ndes design points using the optimal
Latin hypercube sampling, and create ntest test points using
the regular Latin hypercube sampling. The design points
were used to create the individual metamodels, i.e., PR,
RBF and KRG. The ensemble training points were used
to calculate the weight factors of the ensemble of
metamodels. The test points were used to calculate the root
mean square error (RMSE) and maximum absolute relative
error (MARE) of the ensemble of metamodels.
STEP 2: Divide the design space into m = n1 × n2×⋯×np
regions, as illustrated in Fig. 1.

STEP 3: Create the individual metamodels, i.e., PR, RBF
and KRG, and construct the EM based on the design points.
The functions and parameters of thesemetamodels are given
in Table 1.
STEP 4: Calculate the error metric GMSE of the EM in
each subdomain using the design points in that region.
STEP 5: Obtain the optimized weight factors for each
region by minimizing the GMSE. In this study, the se-
quential quadratic programming (SQP) optimizer of
MATLAB, the “fmincon” function, was used to solve
the optimization problem of (7). A total of m = n1 ×
n2×⋯×np sets of optimized weight factors were obtained
for the m = n1 × n2×⋯×np regions.
STEP 6: Obtain the weight factors for the regional
boundaries by averaging the weight factors of the adja-
cent regions. The weight factors for the regional bound-
aries were determined by averaging the weight factors of
the adjacent regions, which is illustrated in Fig. 3 (e.g. if
the weight factors of region A and region B were (w11,
w12, w13) and (w21, w22, w23), respectively. The weight
factors of the boundary of region A and region B would
be (w11/2+ w21/2, w12/2+ w22/2, w13/2+ w23/2).)
STEP 7: Obtain one EM for the whole design space and
calculate the RMSE and MARE of the test points. RMSE
and MARE can be calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntest
∑
ntest

i¼1
y xið Þ−ŷ xið Þ
h i2s

; ð9Þ

MARE ¼ max
y xið Þ−ŷ xið Þ

y xið Þ

�����
�����

 !
; ð10Þ

where ntest is the number of test points, xi is the ith design
point, y(xi) is the real response value at xi, and ŷ(xi) is the

Table 5 Responses of the test points for the airbag cushion problem

No. λ A (mm2) apeak (mm/ms2)

1 0.718 470.291 1.8153

2 1.046 30.997 2.8403

3 0.546 116.211 1.2238

4 1.111 13.556 3.1062

5 0.955 274.379 2.4650

6 0.673 0.689 1.7366

7 0.845 531.085 2.1401

8 1.409 82.722 3.4479

9 1.283 54.563 3.3197

10 1.085 221.287 2.8429

11 1.463 327.841 3.4961

12 0.599 66.634 1.4815

13 1.398 573.323 3.3091

14 1.317 233.719 3.2606

15 1.170 134.788 3.0865

16 0.774 24.479 2.0766

17 1.214 187.461 3.0873

18 0.915 5.736 2.5118

19 0.611 362.812 1.4428

20 0.886 404.788 2.3469

Table 6 Summary of the ndes,
ntest and ntotal* for the
benckmark problems

ID Problem nvar ndes ntest ntotal

1 Branin-Hoo 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

2 Camelback 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

3 Goldstein-price 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

4 2D multi-modal 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

5 Haupt 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

6 Crane 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

7 Peak 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

8 Waving 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

9 Rastrigin 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

10 Rosenbrock 2 20, 30, 40, 50, 60 1000 1020, 1030, 1040, 1050, 1060

* ndes and ntest denote the numbers of the design points and test points, respectively. Ntotal represents the total
sampling points which equals to ndes + ntest
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predicted response value of the ensemble metamodel at xi.
Generally, RMSE and MARE are used to evaluate the global
and local errors of the metamodel, respectively (Jin et al. 2001).

STEP 8: Obtain nmax
p EMs with differently divided re-

gions for the whole design space. In this study, in order to
save the computational cost, nmax was chosen as four.
STEP 9: Find the best EM with minimum RMSE of the
test points and set it as the final EM-MROWF.

4 Example problems

Ten mathematical benchmark problems and two engi-
neering application problems were used to test the per-
formance of the proposed EM-MROWF technique. The
first engineering application was a cylindrical thin-walled

column crushed by a dynamic axial load, and the second
application was an airbag cushion impacted by a dummy
head. For both application problems, the responses were
obtained using nonlinear finite element (FE) simulations.

4.1 Benchmark problems

The ten benchmark problems (Acar 2015; Lee and Dong-Hoon
2014; Wikipedia 2015) used in this study are given as follows.

(1) Branin-Hoo function

y x1; x2ð Þ ¼ x2−
5:1x21
4π2

þ 5x1
π

−6

 �2

þ 10 1−
1

8π


 �
cos x1ð Þ þ 10 ð11Þ

Table 7 Normalized RMSE
values with ndes = 20 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 20 1.0000 1.0811 1.0000 1.5370 3.1506 1.0348

2 Camelback 20 1.0000 1.1157 1.0000 2.5324 1.1967 1.1901

3 Goldstein-price 20 1.0567 1.0000 1.2422 1.6521 1.0784 1.3392

4 2D multi-modal 20 1.0000 1.1906 1.0000 7.7781 3.1063 1.0000

5 Haupt 20 1.0609 1.0000 1.0609 1.0702 2.1813 1.1706

6 Crane 20 1.0293 1.2326 1.0293 1.5678 2.9483 1.0000

7 Peak 20 1.2292 1.2825 1.2319 2.2085 2.3040 1.0000

8 Waving 20 1.1254 1.0000 1.1447 1.1447 2.3316 1.1982

9 Rastrigin 20 1.5223 1.2797 1.5223 1.0000 1.6805 1.0218

10 Rosenbrock 20 1.0505 1.2949 1.2531 3.1969 1.6016 1.0000

Average 1.1074 1.1477 1.1484 2.3688 2.1579 1.0955

Standard deviation 0.1536 0.1171 0.1595 1.9211 0.7203 0.1141

The symbol bold represents the best value which is normalized to 1 in each case.

Table 8 Normalized RMSE
values with ndes = 30 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 30 1.0000 1.3376 1.3772 4.8833 3.8906 1.4756

2 Camelback 30 1.6305 1.6233 1.7020 9.0444 1.0000 2.2491

3 Goldstein-price 30 1.0000 1.4566 1.0000 2.6726 1.0000 2.1721

4 2D multi-modal 30 1.0000 1.7101 1.0000 28.6957 4.7536 1.0000

5 Haupt 30 1.4846 1.7158 1.5397 3.1958 2.9730 1.0000

6 Crane 30 1.0058 1.0628 1.0058 1.4079 2.3466 1.0000

7 Peak 30 1.3707 1.3779 1.7984 1.9691 3.3994 1.0000

8 Waving 30 1.0000 1.0292 1.1747 1.1747 2.9841 1.1104

9 Rastrigin 30 1.0911 1.0744 1.1334 1.0000 1.3239 1.1334

10 Rosenbrock 30 1.0000 10.0361 1.0000 391.2876 37.8470 1.0000

Average 1.1583 2.2424 1.2731 44.5331 6.1518 1.3141

Standard deviation 0.2297 2.6095 0.2943 115.8571 10.6313 0.4695

The symbol bold represents the best value which is normalized to 1 in each case.
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where x1∈[−5, 10] and x2∈[0, 15].

(2) Camelback function

y x1; x2ð Þ ¼ 4−2:1x21 þ
x41
3


 �
x21 þ x1x2 þ −4þ 4x22

� �
x22 ð12Þ

where x1, x2∈[−2, 2].

(3) Goldstein-price function

y x1; x2ð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 � 19−4x1 þ 3x21−14x2 þ 6x1x2 þ 3x22
� �h i

� 30þ 2x1−3x2ð Þ2 � 18−32x1 þ 12x21 þ 48x2−36x1x2 þ 27x22
� �h i ð13Þ

where x1, x2∈[−2, 2].

(4) 2D multi-modal function

y x1; x2ð Þ ¼ x1x2sin x1ð Þ þ x21=10
� �þ x1−1:5x2 ð14Þ

where x1, x2∈[−2, 2].

(5) Haupt function

y x1; x2ð Þ ¼ x1sin 4x1ð Þ þ 1:1x2sin 2x2ð Þ ð15Þ
where x1, x2∈[0, 4].

(6) Crane function

y x1; x2ð Þ ¼ ecos x1−x2ð Þsin cos2 x1−x2ð Þ þ x1 þ x2
� 

= 1þ x1−x2ð Þ2
h in o

ð16Þ

where x1, x2∈[−4, 4].

(7) Peak function

y x1; x2ð Þ ¼ 3 1−x21
� �

e−x
2
1− x2þ1ð Þ2−10

x1
5
−x31−x

5
2

� 	
e−x

2
1−x

2
2−

1

3
e− x1þ1ð Þ2−x22

ð17Þ

where x1, x2∈[−3, 3].

Table 10 Normalized RMSE
values with ndes = 50 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 50 1.0000 3.5345 1.0000 40.1539 24.2682 1.0006

2 Camelback 50 1.0000 1.3856 1.0000 20.7263 1.0000 5.2628

3 Goldstein-price 50 1.0000 2.0576 1.0000 14.5952 1.0000 3.3529

4 2D multi-modal 50 1.0000 29.3087 1.0004 1283.8484 47.1488 1.0004

5 Haupt 50 1.0000 1.2907 1.0000 11.8416 14.8758 1.6112

6 Crane 50 1.0000 1.0376 1.0303 1.2509 2.1503 1.0122

7 Peak 50 1.3836 2.3486 1.5294 5.1491 7.8747 1.0000

8 Waving 50 1.0000 1.2222 1.2954 1.8332 1.8340 1.2541

9 Rastrigin 50 1.0673 1.0000 1.0858 1.0072 3.3176 1.0873

10 Rosenbrock 50 1.0000 41.4273 1.0000 1232.0237 73.6073 1.0000

Average 1.0451 8.4613 1.0941 261.2430 17.7077 1.7581

Standard deviation 0.1146 13.7430 0.1695 498.6079 23.2350 1.3567

The symbol bold represents the best value which is normalized to 1 in each case.

Table 9 Normalized RMSE
values with ndes = 40 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 40 1.0828 1.8451 1.0828 25.7168 14.1362 1.0000

2 Camelback 40 1.0000 1.1917 1.0229 8.3381 1.0263 2.7807

3 Goldstein-price 40 1.0000 1.4307 1.1069 7.2046 11.0691 1.5345

4 2D multi-modal 40 1.0000 10.1842 1.0000 291.6117 21.2290 1.0000

5 Haupt 40 1.0000 1.7031 1.0629 6.7354 7.9061 1.0977

6 Crane 40 1.0667 1.0533 1.0667 1.2362 4.5219 1.0000

7 Peak 40 1.1112 1.6529 1.1112 3.8730 9.0369 1.0000

8 Waving 40 1.5925 1.6247 1.8445 1.2288 3.2175 1.0000

9 Rastrigin 40 1.0304 1.0476 1.0463 1.0000 2.8663 1.1957

10 Rosenbrock 40 1.0000 23.4864 1.0000 674.5060 54.9614 1.0000

Average 1.0884 4.5220 1.1344 102.1451 12.9971 1.2609

Standard deviation 0.1725 6.8425 0.2396 208.9274 15.1287 0.5314

The symbol bold represents the best value which is normalized to 1 in each case.
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(8) Waving function

y x1; x2ð Þ ¼ 2þ 0:01 x2−x21
� �2 þ 1−x1ð Þ2 þ 2 2−x22

� �
þ 7sin 0:5x1ð Þsin 0:7x1x2ð Þ ð18Þ

where x1, x2∈[0, 5].

(9) Rastrigin function

y x1; x2ð Þ ¼ x21 þ x22−cos 18x1ð Þ−cos 18x2ð Þ ð19Þ

where x1, x2∈[−1, 1].

Table 12 Summarized
normalized average RMSE values
for all benchmark problems

ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

20 1000 1020 1.0109 1.0476 1.0483 2.1623 1.9698 1.0000

30 1000 1030 1.0000 1.9359 1.0991 38.4469 5.3111 1.1345

40 1000 1040 1.0000 4.1547 1.0423 93.8489 11.9415 1.1585

50 1000 1050 1.0000 8.0962 1.0469 249.9694 16.9435 1.6822

60 1000 1060 1.0000 21.7517 1.1107 1471.2713 31.0700 1.8330

Average 1.0022 7.3972 1.0694 371.1398 13.4472 1.3616

Standard deviation 0.0043 7.5788 0.0292 556.5412 10.2273 0.3312

The symbol bold represents the best value which is normalized to 1 in each case.

Table 13 Normalized MARE
values with ndes = 20 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 20 1.0000 1.4260 1.2740 3.8456 8.2069 1.5332

2 Camelback 20 1.0155 1.0000 4.0458 23.3617 1.5664 5.9017

3 Goldstein-price 20 1.0000 5.4042 7.0789 12.9064 1.2092 1.0000

4 2D multi-modal 20 1.9506 1.0000 1.9506 30.0819 4.1822 1.9506

5 Haupt 20 1.1896 1.0000 1.1896 1.7272 3.1093 1.3231

6 Crane 20 1.0000 3.4849 1.7327 9.5128 43.5543 1.5093

7 Peak 20 10.4837 14.4376 14.7119 40.2929 36.2147 1.0000

8 Waving 20 1.6658 2.5173 2.9694 2.9694 1.0000 1.2312

9 Rastrigin 20 1.5080 1.5404 1.6455 1.0000 1.8004 1.5156

10 Rosenbrock 20 1.0779 5.4602 3.3756 43.7483 8.8033 1.0000

Average 2.1891 3.7271 3.9974 16.9446 10.9647 1.7965

Standard deviation 2.7830 3.9299 3.9483 15.4970 14.7865 1.3984

The symbol bold represents the best value which is normalized to 1 in each case.

Table 11 Normalized RMSE
values with ndes = 60 for Test 1 ID Problem ndes EM-MROWF GOEL ACAR PRS RBF KRG

1 Branin-Hoo 60 1.0000 9.5172 1.0000 316.4286 43.3892 1.0000

2 Camelback 60 1.0000 2.4597 1.0000 58.1528 1.0000 8.4289

3 Goldstein-price 60 1.4599 1.5373 1.4599 15.3353 1.0000 1.9170

4 2D multi-modal 60 1.1042 110.1322 1.1042 7631.7507 122.3691 1.0000

5 Haupt 60 1.0000 1.4164 1.0552 24.8754 7.6530 1.0363

6 Crane 60 1.0177 1.0854 1.0177 1.4154 5.7436 1.0000

7 Peak 60 1.0000 2.1889 1.1048 6.8066 15.6973 1.1024

8 Waving 60 1.0000 1.6686 2.0110 2.6726 4.2353 1.8149

9 Rastrigin 60 1.0002 1.0000 1.0002 1.0252 7.5979 1.0978

10 Rosenbrock 60 1.0000 99.1707 1.0000 7510.5305 120.0976 1.0000

Average 1.0582 23.0176 1.1753 1556.8993 32.8783 1.9397

Standard deviation 0.1374 40.9592 0.3085 3008.6002 45.7013 2.1882

The symbol bold represents the best value which is normalized to 1 in each case.
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(10) Rosenbrock function

y xð Þ ¼ ∑
n−1

i¼1
100 xiþ1−x2i
� �2 þ xi−1ð Þ2

h i
ð20Þ

where xi ∈[−2, 2], i = 1, 2.

4.2 Engineering application problems

4.2.1 Thin-walled column crushing problem

Thin-walled columns are widely used as energy absorbers
in engineering applications. In this study, the FE model
of a cylindrical thin-walled column, as shown in Fig. 4a,
was created for LS-DYNA (Hallquist 1998a, b) and used
to simulate axial crushing of the column under dynamic
loading conditions. As an energy absorber, the energy

absorption (EA), peak crushing force (PCF), and specific
energy absorption (SEA) are three important indicators
for evaluating the energy absorption capacity and effi-
ciency. The EA is calculated by

EA ¼ ∫d0F xð Þdx ð21Þ

where d is the crushing distance and F is the crushing
force. The SEA is defined as (Kim 2002)

SEA ¼ EA

M
ð22Þ

where M is the mass of the structure.
The three performance indicators did not have explicit

mathematical formulas and thus metamodels needed to be
established using FE simulation results. The design vari-
ables of the cylinder thin-walled column were the radius

Table 14 Normalized MARE
values with ndes = 30 for Test 1 ID Problem ndes EM-

MROWF
GOEL ACAR PRS RBF KRG

1 Branin-Hoo 30 1.0000 1.2597 1.4023 7.9394 6.9846 2.0177

2 Camelback 30 1.0000 1.5615 1.0000 50.9719 0.2349 1.4008

3 Goldstein-price 30 1.0000 8.7442 1.0000 33.2038 1.0000 8.2540

4 2D multi-modal 30 1.0000 2.9029 1.0000 78.0319 6.1115 1.0000

5 Haupt 30 1.0000 1.5815 1.0626 1.2444 15.1943 1.2645

6 Crane 30 1.0104 17.9619 26.4215 23.8980 414.4597 1.0000

7 Peak 30 7.5540 41.1055 63.6183 66.1785 192.4292 1.0000

8 Waving 30 10.3375 10.5862 10.3375 10.3375 1.0000 14.6854

9 Rastrigin 30 1.2139 1.3709 1.4906 1.0000 1.4353 1.5682

10 Rosenbrock 30 1.0000 37.7751 1.0000 2105.9653 46.5476 1.0000

Average 2.6116 12.4849 10.8333 237.8771 68.5397 3.3191

Standard deviation 3.2283 14.4425 19.2041 623.2293 128.1861 4.3327

The symbol bold represents the best value which is normalized to 1 in each case.

Table 15 Normalized MARE
values with ndes = 40 for Test 1 ID Problem ndes EM-

MROWF
GOEL ACAR PRS RBF KRG

1 Branin-Hoo 40 1.0057 9.6582 1.7915 213.9820 46.1504 1.0000

2 Camelback 40 1.0000 11.1181 2.7318 247.3032 4.7649 107.3323

3 Goldstein-price 40 1.0000 1.7002 3.3168 27.6370 3.3168 4.6276

4 2D multi-modal 40 1.0000 74.2188 1.0000 5320.0000 61.7188 1.0000

5 Haupt 40 1.0000 1.1353 1.0509 3.2309 6.4784 1.0000

6 Crane 40 1.0000 1.9308 2.6493 4.1484 8.1179 1.1288

7 Peak 40 1.1364 8.8221 3.7487 36.1953 145.9479 1.0000

8 Waving 40 1.0352 3.8735 3.6900 9.7898 1.0000 1.6054

9 Rastrigin 40 1.0000 1.0815 1.0584 1.0000 1.9940 1.1089

10 Rosenbrock 40 1.0000 47.9086 1.0000 2821.0216 49.4289 1.0000

Average 1.0177 16.1447 2.2037 868.4308 32.8918 12.0803

Standard deviation 0.0409 23.4860 1.0964 1697.8807 43.6015 31.7685

The symbol bold represents the best value which is normalized to 1 in each case.
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Table 16 Normalized MARE
values with ndes = 50 for Test 1 ID Problem ndes EM-

MROWF
GOEL ACAR PRS RBF KRG

1 Branin-Hoo 50 1.0000 5.6621 1.0000 36.4582 39.6996 1.0246

2 Camelback 50 1.0000 11.4871 1.0821 355.7157 1.0821 154.0538

3 Goldstein-price 50 1.0000 1.0693 2.1759 19.8773 2.1759 2.2637

4 2D multi-modal 50 1.0000 66.0556 1.3889 7773.2222 27.5000 1.3889

5 Haupt 50 1.0000 1.0859 1.0177 4.2393 13.3411 1.0556

6 Crane 50 1.0000 11.4605 7.7727 7.9709 102.3860 2.4104

7 Peak 50 1.1199 12.3005 5.9937 33.3052 77.9452 1.0000

8 Waving 50 4.3332 23.8994 25.8497 41.4823 7.6345 1.0000

9 Rastrigin 50 1.0000 1.0500 1.0858 1.1114 2.1304 1.0876

10 Rosenbrock 50 1.0000 126.9953 1.1251 15,860.8187 26.5614 1.1251

Average 1.3453 26.1066 4.8492 2413.4201 30.0456 16.6410

Standard deviation 0.9966 38.3365 7.3601 5038.5887 32.8869 45.8070

The symbol bold represents the best value which is normalized to 1 in each case.

Table 17 Normalized MARE
values with ndes = 60 for Test 1 ID Problem ndes EM-

MROWF
GOEL ACAR PRS RBF KRG

1 Branin-Hoo 60 1.0000 6.6738 1.2688 885.6810 66.7563 1.2688

2 Camelback 60 1.0000 4.1925 1.0009 407.7011 1.0009 9.5742

3 Goldstein-price 60 1.0000 3.3120 3.5742 74.0009 1.0000 1.8666

4 2D multi-modal 60 1.3926 622.5904 2.4795 74,897.0552 75.0554 1.0000

5 Haupt 60 1.0000 1.1448 4.5812 19.9271 72.1765 4.5407

6 Crane 60 1.2725 13.0926 1.2725 1.0000 1558.7820 14.6677

7 Peak 60 2.7182 33.4037 4.2566 87.6442 527.4450 1.0000

8 Waving 60 1.4432 54.0901 62.8965 87.5623 1.0000 10.4344

9 Rastrigin 60 1.0024 1.0157 1.0138 1.4429 4.0778 1.0000

10 Rosenbrock 60 1.0000 363.4367 1.0000 44,236.6667 52.6500 1.0000

Average 1.2829 110.2952 8.3344 12,069.8681 235.9944 4.6352

Standard deviation 0.5076 200.5849 18.2363 24,719.6405 465.7421 4.8015

The symbol bold represents the best value which is normalized to 1 in each case.

Table 18 Summarized
normalized average MARE
values for all benchmark
problems

ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

20 1000 1020 1.2185 2.0746 2.2251 9.4320 6.1034 1.0000

30 1000 1030 1.0000 4.7806 4.1481 91.0848 26.2443 1.2709

40 1000 1040 1.0000 15.8639 2.1654 853.3269 32.3197 11.8702

50 1000 1050 1.0000 19.4058 3.6045 1793.9642 22.3338 12.3697

60 1000 1060 1.0000 85.9733 6.4965 9408.2688 183.9539 3.6131

Average 1.0437 25.6196 3.7279 2431.2154 54.1910 6.0248

Standard deviation 0.0874 30.8707 1.5847 3547.2903 65.4600 5.0615

The symbol bold represents the best value which is normalized to 1 in each case.
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Real function EM-MROWF

(ndes = 45)

(a)

(ndes = 400)

(b)

(ndes = 360)

(c)

Fig. 6 Plots of benchmark functions: (a) Branin-Hoo, (b) Camelback, (c) Goldstein-price, (d) 2-DMulti-modal, (e) Rosenbrock, (f) Haupt, (g) Crane, (h)
Peak, (i) Waving, (j) Rastrigin
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(ndes = 40)

(d)

(ndes = 55)

(e)

(ndes = 145)

(f)

(ndes = 900)

(g)

Fig. 6 (continued)
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(ndes = 400)

(h)

(ndes = 225)

(i)

(ndes = 625)

(j)
Fig. 6 (continued)
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of the cross section (R) and wall thickness (t), as illus-
trated in Fig. 4b. In this study, the ranges of the design
variables were chosen as [60 mm, 100 mm] and [1 mm,
3 mm] for R and t, respectively. Using numerical simu-
lations, the three responses, EA, PCF and SEA, were
obtained for design points and test points, as given in
Tables 2 and 3, respectively. The metamodels of the three
responses are established in the next section.

4.2.2 Airbag cushion problem

Airbag is recognized as effective cushion equipment and is
nowwidely used for the occupant protection in vehicles. In this
study, the FEmodel of a driver’s airbag, as shown in Fig. 5, was
created by LS-DYNA (Hallquist 1998a, b) and used to simulate
the impact between the driver’s head and the airbag. In the
driver’s airbag system, the mass of the inflation gas and the
vent area have a big effect on the cushion property. In order
to investigate the cushion property of the driver’s airbag, the
peak acceleration apeak of the head was employed as the indi-
cator. The input mass of the inflation gas and the vent area were
chosen as the design variables. In this work, the input mass of
the inflation gas of a standard driver’s airbag (LS-PrePost
Online Document 2012) was scaled by a parameter λ which
changed from 0.5 to 1.5. The vent area A changed from 0 to
628 mm2 (i.e. the radiuses of the two vent holes of the airbag
were from 0 to 10 mm). Using FE simulations, the responses

apeak were obtained for design points and test points, as given in
Tables 4 and 5, respectively. The metamodel of the response is
established in the next section.

5 Results and discussion

In this section, the EMs and the individual metamodels (i.e.,
PR, RBF and KRG) for the benchmark problems, thin-walled
column crash problem and airbag cushion problem were con-
structed. To evaluate to prediction performances, RMSE and
MARE values were calculated using the test points.

5.1 Benchmark problems

5.1.1 Test 1: Prediction performance with various number
of design points

In order to compare the prediction performance of the EMs
and the individual metamodels, the normalized RMSE and
MARE values of these metamodels with different number of
design points for the ten benchmark problems were calculated
using (9) and (10), respectively. The numbers of the design
points and test points generated for these benchmark problems
were summarized in Table 6. In this test, the number of design
points ndeswas set to 20, 30, 40, 50 and 60, the corresponding
normalized RMSE results were listed in Tables 7, 8, 9, 10 and

Table 19 Normalized RMSE
values for Test 2 ID nvar ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

1 3 90 1000 1090 1.0000 1.0607 1.0756 6.8580 1.4900 1.0756

2 4 120 1000 1120 1.0000 1.1408 1.0017 1.7377 1.0017 2.2586

3 5 150 1000 1150 1.0000 1.0056 1.0041 1.1078 1.0698 1.5154

4 6 180 1000 1180 1.0000 1.0256 1.0130 1.1234 1.1641 1.7998

5 7 210 1000 1210 1.0000 1.0061 1.0334 1.1246 1.1125 1.7432

6 8 240 1000 1240 1.0000 1.0507 1.0162 1.0904 1.1562 1.9385

Average 1.0000 1.0483 1.0240 2.1736 1.1657 1.7219

Standard deviation 0.0000 0.0462 0.0253 2.1074 0.1550 0.3656

The symbol bold represents the best value which is normalized to 1 in each case.

Table 20 Normalized MARE
values for Test 2 ID nvar ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

1 3 90 1000 1090 1.0000 1.6021 4.7891 184.0687 6.0928 4.7891

2 4 120 1000 1120 1.0000 2.4451 1.0000 17.2275 1.0000 2.7933

3 5 150 1000 1150 1.0000 1.2381 1.2697 1.8374 1.0000 1.2811

4 6 180 1000 1180 1.0000 1.9379 1.5761 2.8941 1.0000 2.4218

5 7 210 1000 1210 1.0000 1.2166 1.1830 1.3739 1.3251 1.7689

6 8 240 1000 1240 1.0000 1.1849 1.1635 2.3255 1.6223 3.0165

Average 1.0000 1.6041 1.8302 34.9545 2.0067 2.6784

Standard deviation 0.0000 0.4616 1.3346 66.9156 1.8416 1.1127

The symbol bold represents the best value which is normalized to 1 in each case.
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11, respectively. And, the normalized average RMSE values
for the ten benchmark problemswere summarized in Table 12.
All the RMSE values listed in these tables were normalized by
setting the best (the lowest) value to 1. In each table, the
overall performance for all 10 test problems was estimated
using the average normalized RMSE value shown in the pen-
ultimate row. Generally, the smaller the average normalized
RMSE, the better the overall performance of the metamodel.
In addition, in each table, the standard deviations of the three
kinds of the EMs were calculated and given in the last row of
the table. As we know, the smaller the standard deviation, the
more robust the performance of the metamodel. In addition,
the normalized MARE results for the cases of ndes = 20, 30,
40, 50 and 60 were given in Tables 13, 14, 15, 16 and 17,
respectively. The normalized average MARE values for the
ten benchmark problems were summarized in Table 18.

From Table 7 and Table 13, it can be found that the average
value and the standard deviation of EM-MROWF for the case of
ndes = 20 both were the second-smallest for the normalized
RMSE and MARE, respectively. And, from Table 8 and
Table 14, Table 9 and Table 15, Table 10 and Table 16, and
Table 11 and Table 17, the average value and the standard devi-
ation of EM-MROWF for the cases of ndes = 30, 40, 50 and 60
both were the smallest for the normalized RMSE and MARE.
From the summarized results given in Table 12 and Table 18, it
can be seen that EM-MROWFperformed best in 4 cases out of 5
test cases for all the ten benchmark problems. In addition, from
Table 12 and Table 18, we found that the average value and the
standard deviation of EM-MROWF both were the smallest for

the normalized RMSE andMARE, respectively. Generally, from
the comparison results of Test 1, it can be found that the proposed
EM-MROWF was the most accurate and robust metamodel for
the ten benchmark problems.

It should be pointed out that the adjacent region of the EM-
MROWF is not strictly continuous, but there is a transition
process for two adjacent regions in this study. The weight fac-
tors of the adjacent region were set as the average values of the
weight factors of the two adjacent regions. Thus, the transition
of the two adjacent regions was relatively smooth. Figure 6
shows the plots of the real functions and the response surfaces
of the proposed EMs for the benchmark functions. From each
Figure, it can be seen that the response surface of the EM-
MROWF (ndes was chosen as the value when the metamodel
was accurate enough) agreed with the real function well and the
transition of the adjacent regions was smooth. Thus, the adja-
cent region of the EM-MROWF performed well.

5.1.2 Test 2: Prediction performance with various number
of design variables

In order to compare the prediction performance of the EMs
described in Sections 2 and 3 as nvar varied, normalized
values of the EMs and the individual metamodels for the
Rosenbrock function (20) with different nvar were calculat-
ed using (9) and (10). In this test, nvar was set to 3, 4, 5, 6,
7 and 8. The number of the design points ndes was set to
30nvar. The results of Test 2 are summarized in Table 19
and Table 20. All the RMSE and MARE values listed in

Table 21 Normalized RMSE values for the engineering application problems

ID Response nvar ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

1 SEA 2 20 20 40 1.0000 1.1952 1.1459 1.1459 1.9799 1.0457

2 EA 2 20 20 40 1.0000 1.2412 1.2431 1.5259 2.6747 1.2736

3 PCF 2 20 20 40 1.0000 1.0241 1.0561 1.2422 1.2123 1.0304

4 apeak 2 20 20 40 1.0000 1.0250 1.0242 1.0341 1.0517 1.0055

Average 1.0000 1.1214 1.1173 1.2370 1.7297 1.0888

Standard deviation 0.0000 0.0982 0.0852 0.1823 0.6487 0.1076

The symbol bold represents the best value which is normalized to 1 in each case.

Table 22 Normalized MARE values for the engineering application problems

ID Response nvar ndes ntest ntotal EM-MROWF GOEL ACAR PRS RBF KRG

1 SEA 2 20 20 40 1.0000 1.5334 1.2751 1.2751 3.6687 1.4179

2 EA 2 20 20 40 1.0000 4.6280 4.4653 4.4653 7.8274 3.7270

3 PCF 2 20 20 40 1.1820 1.0000 1.1820 1.1505 1.1982 1.7096

4 apeak 2 20 20 40 1.0000 1.0381 1.0364 1.0495 1.0455 1.0000

Average 1.0455 2.0499 1.9897 1.9851 3.4350 1.9636

Standard deviation 0.0788 1.5033 1.4318 1.4342 2.7414 1.0489

The symbol bold represents the best value which is normalized to 1 in each case.

On the ensemble of metamodels with multiple regional optimized weight factors 261



Tables 19 and 20 were normalized by setting the best (the
lowest) value to one. From Tables 19 and 20, it can be seen
that the proposed EM-MROWF was the most accurate and
robust metamodel for Test 2.

5.2 Engineering application problems

Tables 21 and 22 summarizes the normalized RMSEs and
MAREs of the EMs as well as the individual metamodels
for the three responses (SEA, EA and PCF) of the thin-
walled column crash problem and one response (the peak
acceleration apeak) of the head in the airbag cushion problem,
respectively. From Table 21, EM-MROWF had the best pre-
diction performance in 4 cases. And, from Table 22, out of the
4 cases, EM-MROWF had the best prediction performance in
3 cases. Based on the average normalized RMSE and MARE
shown in the penultimate row of Tables 21 and 22, we found
that the overall prediction performance of EM-MROWF was
the best for the two engineering application problems. As
shown in the last row of Tables 21 and 22, the standard devi-
ation of EM-MROWF was found to be the smallest. This
indicated that EM-MROWF was the most robust one among
the investigated metamodels. Therefore, based on the compar-
ison results of the two engineering application problems, it
was found that the accuracy and the robustness of EM-
MROWF was the best.

In a word, it can be found that EM-MROWF was the most
accurate and robust EM among the three average ensemble of
metamodels and the three individual metamodels for the bench-
mark problems as well as the engineering application problems.

6 Conclusions

In this study, a new ensemble of metamodels (EM), i.e., EM
with multiple regional optimized weight factors (EM-
MROWF), was proposed and evaluated. This new EM is dif-
ferent from the commonly used EMs in which it divides the
design space into subdomains and assigns each subdomain
with a set of optimized weight factors. In each of the divided
region, a set of optimized weight factors is determined by
minimizing the GMSE in that region. Ten benchmark prob-
lems and two engineering application problems (i.e., a thin-
walled column crash problem and an airbag cushion problem)
were employed to evaluate the prediction performance of the
EM-MROWF.

In order to show the usefulness of the EM-MROWF, the
prediction performance of EM-MROWF was compared to
those of the two existing EMs and the individual metamodels.
All the comparison results for the ten benchmark problems
and two engineering application problems showed that EM-
MROWF had the best prediction performance for both accu-
racy and robustness. Thus, EM-MROWF was an effective

metamodeling method and could be used in practical engi-
neering.
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