
https://doi.org/10.1007/s00158-017-1875-1

RESEARCH PAPER

Structural shape optimization using Cartesian grids and automatic
h -adaptive mesh projection
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Abstract
We present a novel approach to 3D structural shape optimization that leans on an Immersed Boundary Method. A boundary
tracking strategy based on evaluating the intersections between a fixed Cartesian grid and the evolving geometry sorts
elements as internal, external and intersected. The integration procedure used by the NURBS-Enhanced Finite Element
Method accurately accounts for the nonconformity between the fixed embedding discretization and the evolving structural
shape, avoiding the creation of a boundary-fitted mesh for each design iteration, yielding in very efficient mesh generation
process. A Cartesian hierarchical data structure improves the efficiency of the analyzes, allowing for trivial data sharing
between similar entities or for an optimal reordering of the matrices for the solution of the system of equations, among other
benefits. Shape optimization requires the sufficiently accurate structural analysis of a large number of different designs,
presenting the computational cost for each design as a critical issue. The information required to create 3D Cartesian h-
adapted mesh for new geometries is projected from previously analyzed geometries using shape sensitivity results. Then, the
refinement criterion permits one to directly build h-adapted mesh on the new designs with a specified and controlled error
level. Several examples are presented to show how the techniques here proposed considerably improve the computational
efficiency of the optimization process.

Keywords Cartesian grids · h-refinement · Shape optimization · NEFEM

1 Introduction

The structural shape optimization problem can be tackled
as the minimization of a real function f , which depends on
some variables and is subjected to several constraints. The
generic form of such problem is:

minimize f (a)

where a = {am} m = 1, . . . , q

verifying gn(a) ≤ 0 n = 1, . . . , r

and hl(a) = 0 l = 1, . . . , s (1)

being f the objective function, am are the design variables,
gn are inequality constraints and the values hl define
equality constraints. The vector a defines a specific
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structural shape and the task consists in finding the a values
which define the optimum design.

The algorithms for the solution of (1) are, normally,
iterative. Among the optimization algorithms we will
mainly focus in this paper on the gradient-based algorithms
because of their fast convergence to the optimal solution.
These methods require the computation of the objective
function, the constraints and their derivatives (sensitivities)
with respect to the design variables for each geometry
considered during the process. In addition, in every step of
that process, it is necessary to evaluate the values, and their
sensitivities, for f and g. In this work, these calculations are
done through Finite Element Analysis (FEA).

There are different approaches and many codes to solve
the optimization problem. However, some problems in this
context, identified long time ago (Braibant and Fleury 1984;
Haftka and Grandhi 1986), still remain unsolved, like the
incorporation of robust parametrization techniques for the
definition of each design and the unwanted variations in the
structural response due to mesh-dependency effects. Also,
in many optimization processes based on the use of FEA,
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there is no control on the accuracy of the numerical solution.
As a result, when the process comes to an end there is
no guarantee on the practicability of the final outcome;
sometimes analyzes with higher accuracy levels would
expose that the final design is unfeasible, contravening one
or more of the constraints imposed. The control of the error
related with the Finite Element (FE) computation and its
impact on the solution of the optimization problem was
analyzed in Ródenas et al. (2011).

Two main concepts evolved to bypass these drawbacks.
On the one hand, the design update procedure can be
assigned to geometry model (Bennett and Botkin 1985;
Chang and Choi 1992). In this case, the nodal coordinates
manipulation within the FE discretization is avoided, thus
removing impracticable patterns that cannot be defined by
any combination of design variables. Another idea would
be to improve the geometrical accuracy of the models by
integrating CAD representations with the FEM solvers, as
in the case of Isogeometric Analysis (IGA) (Hughes et al.
2005; Nguyen et al. 2015). However, in its finite element
form, generating an analysis-suitable solid discretization is
an open topic (Zhang et al. 2013; Escobar et al. 2014; Liu
et al. 2014). Some works on IGA shape optimization can be
found in Cho and Ha (2009), Ha et al. (2010), Qian (2010),
Li and Qian (2011), and Lian et al. (2016).

On the other hand, the FE model could be updated
through the optimization procedure to improve the accuracy
of the numerical simulation results or to enhance the
element quality (Kikuchi et al. 1986; Yao and Choi 1989;
Riehl and Steinmann 2014). This may, for instance, take
the form of adaptive mesh refinement based on error
estimation in energy norm (Zienkiewicz and Zhu 1987)
or goal oriented adaptivity (González-Estrada et al. 2014).
However, when it comes to complicated geometries or to
large shape changes, these strategies may still necessitate
computationally expensive re-meshing algorithms.

From this perspective, so-called Immersed Boundary
(IB) discretization techniques seem the most appropriate
choice for structural shape optimization. The main notion
behind these methods is to extend the structural analysis
problem to an easy-to-mesh approximation domain that
encloses the physical domain boundary. Then, it suffices
to generate a discretization based on the approximation
domain subdivision, rather than a geometry-conforming
FE mesh. Moreover, when the structural component is
allowed to evolve, the physical points move through the
fixed discretization created from the embedding domain
where there will be no mesh distortion. There are plenty of
alternatives within the IB scope. Among many other names
used to describe these techniques where the mesh does
not match the domain’s geometry, we have the Immersed
Boundary Method (IBM) (Peskin 1977) and the Immersed
Finite Element Method (IFEM) (Zhang et al. 2004).

These methods have been studied by a number of authors
for very different problems including, of course, shape
optimization (Haslinger and Jedelsky 1996; Kunisch and
Peichl 1996; Kim and Chang 2005; Najafi et al. 2015; Riehl
and Steinmann 2016).

Nevertheless, the attractive advantages of IB approaches
come together with numerical challenges. Basically, the
computational effort has moved from the use of expensive
meshing algorithms toward the use of, for example,
elaborated numerical integration schemes to be able to
capture the mismatch between the geometrical domain
boundary and the embedding FE mesh. All intersected
elements have to be integrated properly in order to account
for the volume fractions interior to the physical domain. The
domain integration for these methods have been investigated
in the literature.

The first intuition, is to homogenize the material proper-
ties within intersected elements based on the actual volume
fraction of these elements covered by the domain. This
approach is straight forward and could be computation-
ally efficient but it provides low accuracy for the structural
analysis (Garcı́a-Ruı́z and Steven 1999; Dunning et al.
2011).

A more selective approach is employed in the Finite
Cell framework (Parvizian et al. 2007; Düster et al. 2008;
Schillinger and Ruess 2015). Therein, for all intersected
elements, a number of integration points are provided
employing hierarchical octree data structures (Meagher
1980; Jackins and Tanimoto 1980; Doctor and Torborg
1981) for their distribution. Then, only the integration
points interior to the physical domain are considered in the
respective integral contribution. However, regardless of the
number of integration points, the exact representation of the
geometry is not possible.

Still, the highest level of accuracy and optimal con-
vergence rate, for the embedding domain structural analy-
sis, is obtained only when proper integration schemes are
used along the intersected elements. Very recently, several
methodologies to perform high-order integration in embed-
ded methods have emerged, such as the so-called ‘smart
octrees’ tailored for Finite Cell approaches (Kudela et al.
2016) or techniques used where the geometry is defined
implicitly by level sets (Fries and Omerović 2016). Even
in the first of these approaches, where the isoparamen-
tric reoriented elements only provide an approximated FE
description of the boundary, the exact geometry is not taken
into account at the integration stage.

A step further to improve accuracy and retain the optimal
convergence rate of the FE solution is to consider the
exact geometry when integrating. In the embedded domain
framework this can be realized by the use of a separate
element-wise tetrahedralization that is used for integration
purposes only. The present contribution is concerned with
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the formulation and implementation of this last approach
for structural shape optimization in an embedding domain
setting. The methodology is based in the Cartesian grid
FEM (cgFEM) successfully implemented in 2D (Nadal
et al. 2013; Nadal 2014) and 3D (Marco et al. 2015,
2017b) problems. The Cartesian grid FEM relies on an
explicit geometry description using parametric surfaces
(i.e. NURBS or T-spline) and includes NURBS-enhanced
integration techniques (Sevilla et al. 2011a, c; Marco et al.
2015) in order to consider exactly the boundary description
of the embedded domain. Stabilization terms are added at
the elements cut by the Dirichlet and Neumann boundaries
to ensure the appropriate satisfaction of these boundary
conditions to maintain the optimal convergence rate of the
FE solution and to provide control of the variation of the
solution in the vicinity of the boundary (Tur et al. 2015).

In order to calculate the sensitivities of the magnitudes
that take part in the shape optimization analysis, a
formulation for the derivation of design sensitivities in
the discrete setting is used (Marco et al. 2017a). This
formulation takes into account the derivatives of the
stabilized formulation implemented for the imposition of
boundary conditions (Tur et al. 2015).

In this paper we propose a structural shape optimization
method that will benefit from the accuracy of cgFEM
but also from the computational efficiency due to a
data structure that allows sharing information between
the different geometries analyzed during the procedure.
Last, this work presents a strategy that provides an h-
adapted mesh for every design without performing a
complete adaptive procedure. It is based on the calculation
of the sensitivities of the magnitudes present during the
refinement step with respect to the design variables. This
sensitivity analysis can be performed only once on a
reference geometry, and then utilized to project the results
of the analysis to other designs just before being analyzed.
This procedure is useful for moderate shape modifications
during the whole optimization process. Alternatively, the
shape sensitivity analysis can be performed also for other
geometries obtained during the optimization process if
required. The projection of information allows to generate
appropriate h-adapted meshes in one preprocess step which,
compared to standard re-meshing operations, significantly
reduces the computational cost of mesh generation. This
method is inspired by a similar strategy that was developed
and used in the context of gradient-based (Bugeda and
Oliver 1993) and evolutionary (Bugeda et al. 2008)
optimization methods, oriented to standard body-fitted
FEM.

The paper is organized as follows: A brief review of
basic features of the cgFEM methodology will be shown in
Section 2, including how to take advantage of them in shape
optimization. Section 3 will present the formulation used

for the structural and for the sensitivity analysis. Section 4
will be devoted to explain our strategy for h-adaptive mesh
projection. Numerical results showing the behavior of the
proposed technique will be presented in Section 6. This
contribution ends with the conclusions in Section 7.

2 Cartesian grids for optimization

This work has been developed as a logical continuation
of Marco et al. (2015) and Marco et al. (2017b) where a
new FEA methodology called cgFEM was presented. This
methodology was implemented in a FE code for the analysis
of structural 3D components called FEAVox, where the
main novelty was the ability to perform accurate numerical
integration in non-conforming meshes independent of the
geometry.

The foundations of mesh generation in cgFEM consists
in defining an embedding domain � such that an open
bounded domain �Phys fulfills �Phys ⊂ �. Let us
assume that the embedding domain is a cube, although
rectangular cuboids could also be considered. In Fig. 1 we
can appreciate the embedding domain � interacting with
�Phys.

The discretization of the embedding domain is based
on a sequence of uniformly refined Cartesian meshes to
mesh the domain � where the different levels of the
Cartesian meshes are connected by predefined hierarchical
relations. There are plenty of techniques that follow these
principles, all of them based, in one way or another, on the
octree concept (Meagher 1980; Jackins and Tanimoto 1980;
Doctor and Torborg 1981).

The first step of the analysis consists of creating the
analysis mesh taking a set of non-overlapped elements of
different sizes from the different levels of the Cartesian grid
pile (see Fig. 2). In order to enforce C0 continuity between
adjacent elements of different levels multipoint constraints
(MPCs) (Abel and Shephard 1979; Farhat et al. 1998) are
used.

Fig. 1 Immersed Boundary Method environment. Domain �Phys

within the embedding domain �
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Fig. 2 Components of an immersed boundary environment

During the creation of the FE analysis mesh used to
solve the boundary value problem we have to classify the
elements of the Cartesian grid in three groups: boundary,
internal and external elements. In order to do that, we need
to know the relative position of the domain of interest with
respect to the embedding domain. In Marco et al. (2015,
2017b we proposed a robust procedure to find intersections,
between the surfaces of the boundary and the axes of the
Cartesian grids, based on ray-tracing techniques (Kajiya
1982; Toth 1985; Sweeney and Bartels 1986; Nishita et al.
1990; Barth and Stürzlinger 1993).

Internal elements are standard FE elements whose affin-
ity with respect to the embedding domain � is exploited in
order to save computational cost. Regarding the integration
of intersected elements in cgFEM, we proposed a strategy
in Marco et al. (2015) to perform the integration over the
internal part of these elements. In order to achieve this, we
generate a tetrahedralization into each boundary element.
This submesh of tetrahedrons will be used only during the
integration step. Numerical integration over the intersected
elements is then accomplished by integrating over each sub-
domain of the tetrahedralization. In order to perform the
integration over the subdomains, we proposed a NURBS-
Enhanced integration strategy (Sevilla et al. 2011a, c)

that takes into account the exact geometry defined by the
CAD model.

This methodology was designed to incorporate the exact
boundary of the computational domain into body-fitted FE
simulations and the advantages with respect to the classical
FEM were demonstrated for a variety of problems, see
Sevilla et al. (2011b).

Let �Phys a tetrahedral face lying on the boundary
parametrized by the NURBS S, and v1, v2, v3 its three
vertices, see Fig. 3. A straight-sided triangle �Param in the
parametric space of the surface is defined by the parametric
coordinates of the vertices S−1(v1), S−1(v2), and S−1(v3).
The transformation to a curved face, �Phys, is defined
as the image of the straight-sided triangle �Param by the
NURBS parametrization S,

�Phys := S(�Param) (2)

With this definition of curved faces, a curved tetrahedral
subdomain with a face on a NURBS surface ϒPhys

corresponds to a convex linear combination of the curved
NURBS face and the remaining internal vertex mapped as

� : �Param × [0, 1] −→ ϒPhys

(ξ, η, ζ ) �−→ �(ξ, η, ζ ) := (1 − ζ )S(ξ, η) + ζv4,

where v4 is the internal vertex of ϒPhys.
A convenient property of this strategy are the ability to

decouple the directions of the surface definition, �Param in
the mapping �, with respect to the interior direction ζ .

Given these parametrizations, it is possible to perform
the numerical integration over all the curved tetrahedral
subdomains that form �

phys
B . To this end, we consider

tensor products of triangle quadratures for the curved
faces and one-dimensional Gaussian quadratures for interior
directions, see Fig. 4. Analogous steps have to be made to
integrate subdomains with only one edge on the boundary
(Sevilla et al. 2011a; Marco et al. 2015).

Fig. 3 Curved faces
parametrization

(a) Parametric space of a NURBS. (b) NURBS in the physical space.
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Fig. 4 Curved subdomain parametrization

2.1 Data sharing

It is worth noting that considering hierarchical relationships
within the data structure suggests an automatic improve-
ment of the mesh refinement thus positively affecting the
efficiency of the FE implementation. Nodal coordinates,
mesh topology, hierarchical relations, neighborhood pat-
terns, and other geometric information are algorithmically
evaluated when required.

In addition, all internal elements share the same stiffness
matrix, for constant material properties and linear elasticity
problems, which is only calculated once on a reference
element. Then, a scale factor related to the mesh level is
used to adapt the stiffness to the actual element size. As we
can imagine, this implies a major increase in efficiency of
the generation of the numerical model. Figure 5a shows a
cross section of a model of a quarter of a cylinder, Fig. 5b
presents a coarse analysis mesh and Fig. 5c shows the mesh
obtained after its h-adaptive refinement. For both meshes we
only have to evaluate one element for the domain colored in
green, which represents all the internal elements.

On the other hand, each boundary element is trimmed
differently, so each of these elements will require a
particular evaluation of the element matrices. Contrasting
with many h-adaptive FE codes, where the previous meshes
are discarded and new ones are created, the use of Cartesian
grids together with the hierarchical data structure allows
recycling calculations performed in previous meshes.

In this context, the so-called vertical data sharing by
means of which the matrices of elements present in different
meshes of the same h-adaptive process will not be re-
evaluated. Figure 5c represents the resulting mesh of a h-
adaptive process where the blue colored elements represent
elements evaluated in previous meshes that do not require
to be re-evaluated. Hence, the only element matrices to be
evaluated for the analysis of the mesh shown in Fig. 5c
correspond to the yellow elements.

Within the context of the traditional FEM, each geom-
etry requires a different body-fitted mesh, therefore, the
elements of different geometries are, generally, completely
different and unrelated. This situation makes very difficult
to enable an efficient exchange of information between dif-
ferent geometries. However, cgFEM provides a framework
to define an operation, called horizontal data sharing, to
further improve the computational efficiency of the opti-
mization process by allowing the transfer of information
between elements of different geometries. This data shar-
ing just requires all geometries to be defined using the same
embedding domain to ensure that the Cartesian grid pile
is the same for all geometries, making the inter-geometries
data transfer possible.

The different components of a parametric definition
of the boundary of the models to be analyzed can be
subdivided into three types:

1. Fixed part. This is the part of the boundary that remains
fixed in all the geometries (such as the internal curve of
the cylinder represented in Fig. 6a).

2. Moving part with fixed intersection pattern. These sur-
faces or curves can be changed by the optimization
algorithm, but those changes do not imply a modifica-
tion of the intersection with the surrounding elements.
In Fig. 6a we can see two curves type 2 corresponding
with planes of symmetry of the model.

3. Free moving part. This part of the geometry could
freely change during the optimization analysis without
a predictable pattern. The outer curve in Fig. 6a is a
good example of this kind of entity.

The horizontal data sharing consists of reusing, on
the one hand, the computations attached to the elements

Fig. 5 Vertical data sharing
example. a Model of a quarter of
a cylinder. b Coarse mesh i. c
h-adapted mesh i + 1

(a) (b) (c)
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Fig. 6 Horizontal data sharing
example. a Different type of
entities. b Individual j + 1. c
Individual j , mesh i. d
Individual j , mesh i + 1

(a) (b)

(c) (d)

intersected by the fixed part of the boundary in the different
geometries analyzed during the optimization process. For
instance, in Fig. 6b we can see a h-adapted mesh of a
geometry, j+1, that represents a perturbation of the original
model, j , shown in Fig. 5a. In Fig. 6c and d we can verify
how the blue elements used in the mesh in Fig. 6b are
inherited from separated meshes of a different individual
evaluated previously. Dark blue represents the elements
intersected by entities type 1 and light blue the elements
intersected by type 2 entities. As in the vertical sharing, the
green elements will be evaluated as explained before and the
yellow elements will be the only elements evaluated for this
individual. Observe that the horizontal data sharing implies
a significant reduction of calculations. For example, the
number of elements that need integration (yellow elements)
for the mesh shown in Fig. 6b is considerably lower than the
total number of elements in the mesh.

2.2 Nested domain reordering

Solving large sparse linear systems is the most time-
consuming computation in shape optimization using FEM.

In this contribution we are interested in direct solvers.
Matrix reordering plays an important role on the perfor-
mance of these solvers. In fact, it is common to reorder

the system matrix before proceeding to its factorization as
it can increase the sparsity of the factorization, making the
overall process faster and reducing the storage cost. Find-
ing the optimal ordering is usually not possible although
heuristic methods can be used to obtain good reorderings at
a reasonable computational cost.

This section is intended to show how the hierarchical
data structure inherent to the Cartesian grids, thus directly
related to the mesh topology, can be used to directly obtain a
reordering of the system matrix that speeds up the Cholesky
factorization process. The Nested Domain Decomposition
(NDD) technique is a domain decomposition technique
specially tailored for h-adaptive FE analysis codes with
refinement based on element subdivision. The technique
simply consists in recursively subdividing the domain of
the problem using the hierarchical structure of the mesh.
This technique was first described in Ródenas et al. (2005)
and applied in an implementation of a FEM that used
geometry-conforming meshes. Later, NDD was adapted to
a Cartesian grid environment in 2D (Nadal et al. 2013).
In this paper, we will use a 3D generalization of NDD.
The technique consist in subdividing the domain of the
problem considering that each element of a uniform grid of
the lowest levels of the Cartesian grid pile (normally the
Level-1 grid, with 2×2×2 elements). Then, the degrees of

66



Structural shape optimization using Cartesian grids and automatic...

Fig. 7 Nested Domain
Decomposition environment. a
Body within the embedding
domain �Phys ⊂ �. b Level 1
subdivision. c Example of 3D
mesh to be reordered

(a) (b) (c)

freedom of the nodes of the mesh to be analyzed falling
into a subdomain will be allocated together in the stiffness
matrix. The nodes falling on the interface of the subdomains
will not be reordered and will simply be moved to the end
of the matrix producing the typical arrowhead type structure
of the domain decomposition techniques. This idea is then
recursively applied into each original subdomain producing
a nested arrowhead-type structure. This reordering will
provide a considerable reduction of the computational cost
associated to the resolution of the system of equations.

Figures 7, 8 and 9 graphically show the process.
The embedding domain, Fig. 7a, is subdivided into 8
subdomains or regions as shown in Fig. 7b. Each subdomain
is represented in a different color. We can easily identify
those subdomains with the elements of the first refinement
level. Thus, the nested reordering in cgFEM will be made
up by grouping the nodes according to the corresponding
element in the hierarchical structure. Figure 7c shows an
example of an analysis mesh where we are going to apply
the nested reordering.

For the sake of clarity we will use a 2D representation
of the process. Figure 8a shows the domain subdivision
considering the Level-1 grid. The nodes are subdivided into
9 different categories. Only 5 of theses categories are shown
in the 2D representation of Fig. 8. The colored ones indicate
the nodes falling into each one of the elements of the
Level-1 grid. Black nodes are those falling on the interface
between the Level-1 elements. The stiffness matrix will be
reordered, grouping all nodes of the same color, as shown in
Fig. 9b. This grouping creates an arrowhead-type structure
made up of blocks. It can be noticed that the blocks on the

diagonal (two of them clearly shown shadowed in blue and
red) show an structure similar to the structure of the original
non-reordered stiffness matrix shown in Fig. 9a.

Level-2 reordering, Fig. 8b, indicates that each of the
Level-1 subdomains is again reordered in the same way.
For instance, the red subdomain in Fig. 8a is subdivided
into 8 subdomains (only 4 are shown in 2D) separated by
their interface, represented in black, as shown in Fig. 8b.
Interfaces of previous levels are represented by white nodes.
The same process is followed for the next levels, using
the elements of the corresponding level of the hierarchical
structure.

In the process, each node of the mesh is given a code
with as many digits as levels of the Cartesian grid pile used.
The i-th digit of the code contains the subdomain number
(1 to 8) of the node considering the Level-i grid, or 9 if the
node is on the interface between the Level-i subdomains,
as in Fig. 8a to c for levels 1 to 3. Once the code of each
node has been obtained a simple ‘alphabetical’ reordering
of the codes provides the NDD reordering of the nodes.
The degrees of freedom of the matrix will then be reordered
considering nodal reordering.

The result of the NDD reordering generates the nested
arrowhead-type structure of the stiffness matrix represented
in Fig. 9c. This nested structure could also be used to
define efficient domain decomposition solvers or iterative
solvers, as in Ródenas et al. (2007a) where we showed initial
implementations of these types of solvers. However, in this
contribution we have just used this technique to reorder
the system of equations to improve the performance of the
Cholesky factorization.

Fig. 8 Nested Domain
Decomposition scheme. a
Level-1 decomposition, b
Level-2 decomposition and c
Level-3 decomposition

(a) (b) (c)

67



O. Marco et al.

(a) (b) (c)

Fig. 9 Nested Domain Decomposition output. a Original stiffness matrix, b level 1 decomposition reordering and c last reordering (level 4)

In the section devoted to numerical examples we will
show the performance of this method in comparison with
other common procedures.

3 Structural and shape sensitivity analyzes

Let us consider a bounded domain �Phys ∈ R
3. The

contour can be separated into two non-overlapping parts,
	N and 	D, where Neumann and Dirichlet conditions
are respectively imposed. The objective is to find the
displacement field u ∈ U that satisfy the internal
equilibrium equation in the domain and the Neumann and
Dirichlet boundary conditions, which can be formulated as
follows:

∇σ (u) + tv = 0 in �Phys

σ (u) n = ts on 	N

u = g on 	D

ε (u) = D σ (u) (3)

In the above expression displacements u belong to
U ≡ [H 1(�)]d , tv ∈ [L2(�)]d are the volume forces,
ts ∈ [L2(�)]d are the tractions imposed on the Neumann
boundary, g are the displacements imposed on the Dirichlet
boundary and n is the unit vector normal to the surface.
In linear elasticity, the strain tensor is defined from the
displacement field by

ε (u) =
(
∇u + ∇Tu

)
/2 (4)

The constitutive equation, that relates the stresses with
the strains by means of the tensor D, can be expressed in the
case of isotropic materials using two constants, the Young’s

modulus E and the Poisson’s ratio ν. This relationship can
be written as

ε = (σ − ν (tr (σ ) I − σ )) /E (5)

The next property concerning the constitutive equation
will be used below.

Proposition 1 The scalar product of the tractions can be
bounded by the energy per unit volume with a constant CE ,
which depends on the material properties, as

‖(u)‖2 ≤ CE ((u) : ε(u)) with CE = E

1 − 2ν
(6)

The weak form of the elastic problem allows different
approaches to imposing the Dirichlet boundary conditions.
The most usual procedure is to impose a constraint in the
space of virtual displacement V . The equilibrium between
the virtual work of the elastic forces and the virtual work of
the external forces applied is written as:

a (u, v) = c (v) ∀v ∈ V (7)

where

a (u, v) =
∫

�Phys

σ (u) : ε (v) d�

c(v) =
∫

�Phys

v · tv d� +
∫

	N

v · ts d	 (8)

This method is very simple and effective in the context of
the body-fitted FEM. However, this method is not valid for
Cartesian meshes, since it is very difficult to get a null field
on the Dirichlet boundary when the contour of the geometry
does not match with the faces of the elements.

For this reason it seems more appropriate to use another
formulation, for instance, to define the elastic problem as a
minimization problem with constraints. This means finding
the displacement field u that minimizes the total potential
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energy, subject to the constraints imposed by Dirichlet
boundary conditions:

min

(
1

2
a(v, v) − c(v)

)
with v = g in 	D (9)

One approach to solve this minimization problem is
to use the Lagrange multipliers method. Besides the
displacement field, a new field of Lagrange multipliers λ

associated with the reaction forces is added. The Lagrange

multipliers belong to the Hilbert space M = [H− 1
2 (	D)]d .

Formally, the problem is to find the saddle point [u, λ] ∈
U × M of the following Lagrangian

L (v)μ = 1

2
a(v, v)+b(μ, v−g)−c(v) with b(μ, u) =

∫

	D

μ·u d	

(10)

The spaces of the finite element solution are denoted
as U h ⊂ U for displacements and M h ⊂ M for
multipliers. Substituting the FE fields in (10) and optimizing
the Lagrangian we obtain the following system of equations:

a(uh, vh) + b(λh, vh) = c(vh) ∀vh ∈ U h

a(μh, uh) = b(μh, g) ∀μh ∈ M h (11)

where vh and μh are the variations of the displacement and
multiplier fields and [uh, λh] is the solution.

In practice, the natural choices of the Lagrange multiplier
field do not satisfy InfSup condition because they introduce
too many constraints. To alleviate this situation, stabilized
methods impose additional conditions on the Lagrange
multipliers without modifying the problem solution, at least
in the limit, when the element size approaches zero, in order
to have more freedom to choose the Lagrange multiplier
field.

In this contribution we use an approach derived from the
following Lagrangian:

LS

(
vhμh

)
= L

(
vhμh

)
− 1

2

h

k

∫

	D

∥∥∥μh + T (ûh)

∥∥∥
2
d	

(12)

where T (ûh) is the smoothed traction that depends on the
FE solution computed from a previous iteration, ûh. The
penalty constant can be defined again as k = κCE .

In our formulation we use the recovered tractions on
	D evaluated from the recovered stress field σ ∗ (Ródenas
et al. 2007b) to stabilize, solving the problem iteratively
by updating the stress field value (Tur et al. 2014, 2015),
σ ∗(ûh) the FE recovered stress field being calculated for an
FE solution from a previous iteration ûh. The traction on the
boundary is defined as T(ûh) = σ ∗(ûh) · n where n is the
unit vector normal to the boundary.

The proposed formulation can be simplified by elimi-
nating the Lagrange multipliers and obtaining a modified
penalty method: Find the displacement field uh ∈ U h such
that

a
(
uh, vh

)+ k

h

∫
	D

uh · vh d	 =
c
(
vh
)+ k

h

∫
	D

g · vh + ∫
	D

T (ûh) · vh d	 ∀vh ∈ U h

(13)

The second term on the left hand side of (13) is a penalty
term with a constant k/h. The last term on the right hand
side is the virtual work of reaction forces. This term acts as
a correction of the penalty term and is necessary for the FE
solution to converge to the exact solution when the mesh is
refined.

The problem (13) can be written in matrix form as:
⋃ne

e=1

(
ke + ke

D

) {ue} = ⋃ne

e=1

(
feq + feg + fes

)
(14)

The stiffness matrix of each element is computed by

ke =
∫

�e
Phys

BT DB|J|d� (15)

where

�e
Phys is the domain in local element coordinates,

B is the nodal strains-displacements matrix,
D is the elasticity tensor,
|J| is the determinant of the matrix J, which represents

the Jacobian matrix of transformation of the global
coordinates (x, y, z) to the local element coordinates
(ξ, η, τ ).

The vector fq is the standard FE vector due to point
forces, volumetric forces, forces distributed over the
Neumann surface of the element, evaluated assembling the
contribution feq of every element e on the domain:

feq =
∫

	e
N

NT t|J|d	 +
∫

�e

Ntb|J|d� (16)

where vectors t and b correspond to the surface and body
loads, respectively.

The global stiffness matrix is obtained by the contribu-
tion of the classical stiffness matrix of each element ke

and a stabilization term ke
D for all the boundary elements

containing the Dirichlet boundary.
The stabilization term is computed as:

ke
D =

∫

	e
D

κ∗

h
CT C|J|d	 (17)

where

	e
D is the portion of the Dirichlet boundary within the
element,
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κ∗ is the penalty constant, being κ∗ = κ · CE and κ > 0,
h is the element size,
C is the matrix of finite element interpolation if Dirich-

let conditions are applied on the three displacement
components x, y and z.

C=N=
[

N1 0 0 N2 0 0 N3 0 0 . . . Nnnod 0 0
0 N1 0 0 N2 0 0 N3 0 . . . 0 Nnnod 0
0 0 N1 0 0 N2 0 0 N3 . . . 0 0 Nnnod

]

with nnod as the number of nodes per element.
Otherwise C = SN, where Sii = ∑

d δid would be
a diagonal matrix, d is the direction in which Dirichlet
boundary conditions are applied and δ is the Dirac delta
function.

On the other side of the equation, the equivalent force
vector f is evaluated by adding the contribution of the
standard FE vector of equivalent forces on nodes fq , the
stabilization term of the Dirichlet boundary fg and the
stabilizing stress component fs .

The vector fg is due to the non-homogeneous Dirichlet
condition uh = g on 	D and it is evaluated assembling the
contribution of every element on the Dirichlet boundary:

feg =
∫

	e
D

κ∗

h
CT g|J|d	 (18)

Finally, fs is the stabilizing term which depends on the
stress field. As mentioned above, in our formulation we use
the recovered tractions on 	D evaluated from the recovered
stress field σ ∗(ûh). The traction on the boundary is defined
as T(ûh) = σ ∗(ûh) · n where n is the unit vector normal to
the boundary, then

fes =
∫

	e
D

CT T(ûh)|J|d	 (19)

Regarding the structural sensitivity analysis, the differ-
entiation of the previous system of equations is needed,
including the components due to the imposition of the
boundary conditions. In this work we use a formulation
presented in Marco et al. (2017a) that is based on the analyt-
ical discrete method (Kibsgaard 1992; Poldneff et al. 1993;
Pandey and Bakshi 1999; Moita et al. 2000) consisting in
obtaining analytical expressions of the sensitivities of the
external forces and stiffness matrix. A detailed review and
comparison of the different sensitivity analysis approaches
can be found in van Keulen et al. (2005).

The derivative of (14) with respect to any design variable
am allows to obtain the sensitivity of the calculation

ne⋃
e=1

((
∂ke

∂am

+ ∂ke
D

∂am

){
ue
}+ (

ke + ke
D

) { ∂ue

∂am

})

=
ne⋃

e=1

(
∂feq
∂am

+ ∂feg
∂am

+ ∂fes
∂am

)
(20)

First, starting with K and considering that the derivative
of material properties matrix, D, with respect to design
variables is zero

∂ke

∂am

=
∫

�e
Phys

[
∂BT

∂am

DB + BT D
∂B
∂am

]
|J|d�

+
∫

�e
Phys

[
BT DB

∂|J|
∂am

]
d� (21)

where

∂|J|
∂am

, ∂B
∂am

are the sensitivities of |J| and B with respect
to the design variable am, which are functions of the
velocity field, Vm, that represents the partial derivatives
of the location of material points, P, with respect to the
design variables: Vm = ∂P

∂am
(see Marco et al. (2017a)).

The derivatives of the terms introduced by the stabiliza-
tion method will be

∂ke
D

∂am
= ∫

	e
D

κ∗
h
CT C ∂|J|

∂am
d	

∂feg
∂am

= ∫
	e

D

κ∗
h
CT g

∂|J|
∂am

d	

∂fes
∂am

= ∫
	e

D

[
CT ∂T(ûh)

∂am
|J| + CT T(ûh)

∂|J|
∂am

]
d	

(22)

As mentioned above, the traction on the boundary is
defined as T(ûh) = σ ∗(ûh) · n where n is the unit vector
normal to the boundary and its derivative can be written as

∂T(ûh)

∂am

= ∂σ ∗

∂am

n + σ ∗ ∂n
∂am

(23)

3.1 Objective function and constraints

Although we will consider that the objective function is the
volume, other magnitudes could also be considered. This
volume can be obtained adding the volume of each finite
element present in the mesh, computed as:

V =
ne⋃

e=1

Ve =
ne⋃

e=1

∫

�e
Phys

d� =
ne⋃

e=1

∫

�e
Phys

|J| dξdηdτ (24)

Applying the techniques discussed above to differentiate
the components of the system of equations we obtain

∂Ve

∂am

=
∫

�e
Phys

|J|
∂am

dξdηdτ (25)

where |J|
∂am

can be evaluated as:

|J|
∂am

=|J| · trace

(
J−1 J

∂am

)
with

J
∂am

=
nnod∑

i

⎧⎨
⎩

Ni,ξ

Ni,η

Ni,τ

⎫⎬
⎭

∂

∂am

{xi, yi, zi} (26)

70



Structural shape optimization using Cartesian grids and automatic...

In the last expression, all the components are evaluated as
part of the shape sensitivity analysis. The derivatives of the
nodal coordinates with respect to the design variables are
the so-called velocity field whose definition will be given in
Section 4.

In our study, the constraints are expressed in terms of
stresses. To evaluate the stresses we consider the general
expression for the calculation of stresses in continuous
isoparametric elements
σ = DBue

h (27)

ue
h being the vector of nodal displacements of element e. Taking

the derivative with respect to the design variable am, it yields
∂σ

∂am

= DB
∂ue

∂am

+ D
∂B
∂am

ue (28)

where all terms on the right can be evaluated using the
development of the preceding sections. Once we have
evaluated both σ and ∂σ

∂am
we can apply the construction of

the smoothing field based on a recovery technique shown in
(Ródenas et al. 2007b).

3.2 Error estimator

The error associated with the FE discretization is evaluated
in this work using the Zienkiewicz and Zhu (1987) error
estimator as:

‖ees‖2 =
∫

�Phys

(σ h − σ ∗)T D−1(σ h − σ ∗)d� (29)

where σ ∗ is a smoothed continuous stress field obtained
by the recovery technique (Ródenas et al. 2007b; Nadal
et al. 2013). The resulting expression for the sensitivity
analysis of the error estimator already presented in Bugeda
and Oliver (1993):

∂‖ees‖2

∂am

=
∫

�Phys

(σ h − σ ∗)T D−1
(

2

(
∂(σ h − σ ∗)

∂am

)

+ (σ h − σ ∗)
|J|

∂ |J|
∂am

)
|J| d� (30)

where ∂(σh−σ ∗)
∂am

will be approximated as follows:

∂(σ h − σ ∗)
∂am

= ∂σ h

∂am

−
(

∂σ

∂am

)∗
(31)

being
(

∂σ
∂am

)∗
obtained through the same recovery proce-

dure applied previously to σ ∗.
Equation (30) was also derived in Fuenmayor et al.

(1997) for the definition of an estimator for the discretiza-
tion error in shape sensitivity analysis. In order to use an
h-refinement strategy, it will also be necessary to compute
the energy norm and its sensitivity with respect to each
design variable. This can be evaluated considering:

‖ues‖2 ≈ uT Ku + ‖ees‖2 (32)

∂‖ues‖2

∂am

≈ ∂uT

∂am

Ku+uT ∂K
∂am

u+uT K
∂u
∂am

+ ∂‖ees‖2

∂am

(33)

4 Automatic h-adaptivemesh projection

In this contribution we use a gradient-based algo-
rithm (Nocedal and Wright 2006) which uses first-order
sensitivities of the objective function and constraints to eval-
uate the solution of (1). Using this information and the
values of the design variables for the j -th geometry obtained
during the iterative process (aj ), see Fig. 10a, the algorithm
generates the modified values of aj defining an improved
design (aj+1) using

aj+1 = aj + αS(a)j (34)

where S(a)j is the search direction vector and α is the
step-length parameter.

After the definition of the (j + 1)-th geometry to be
analyzed, see Fig. 10b, it is necessary to construct the

Fig. 10 Design evolution during
optimization. a Reference design
(j ). b Perturbed design (j + 1)

(a) (b)
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Fig. 11 Mesh projection
procedure. a Cartesian reference
analysis mesh, �j,�. b
Projected (non-Cartesian) mesh
on geometry j + 1

(a) (b)

new analysis mesh. There have been previous developments
about this using standard body-fitted FE meshes (Bugeda
and Oliver 1993; Bugeda et al. 2008). In these references
the information required to define a new mesh was projected
from one geometry to another making use of the following
expression:

Mj+1 ≈ Mj +
∑(

∂Mj

∂am

)
· �am (35)

where M represents any magnitude that has to be projected
from geometry j to geometry j +1. The generation of an h-
adapted mesh used in these references was based on the use
of a mesh optimality criterion, in these cases the criterion
used was the minimization of the number of elements in
the mesh to be created that would produce the prescribed
estimated error in energy norm. This criterion is equivalent
to the equidistribution of the error in energy norm on the
elements of the new mesh (Fuenmayor and Oliver 1996). In
the following, we use a 3D generalization of this criterion
presented in Marco et al. (2017b).

Let’s assume that �j,def is mesh n of an h-adaptive
analysis that corresponds to the geometry j +1 and we want

to evaluate mesh n + 1 (the new mesh) of the h-adaptive
sequence, then:

hn+1
e,n ≈ hn

e

[
1

Mn

]1/2(p+1) [‖en+1‖
‖en‖

] d

2p2+pd
[‖en+1‖

‖en‖e

] 2
2p+d

(36)

where

hn
e is the size of the element e of the mesh n,

hn+1
e,n is the new element size of the mesh n + 1 obtained

by the subdivision of element e in the mesh n,
Mn is the number of elements in the mesh n,
‖en+1‖ is the global error in energy norm of the mesh

n + 1,
‖en‖ is the global error in energy norm of the mesh n,
‖en‖e is the error of the element e of the mesh n,
p is the polynomial degree of the shape functions used,
d is the dimension of the problem (2 for 2D, 3 for 3D

problems).

To use this expression we have to replace ‖en‖e in
(36) by the projection given in (39), evaluate ‖e‖n as the

Fig. 12 Mesh projection
procedure. a Perturbed
integration points. b Projected
Cartesian mesh, �j+1,�

(a) (b)

72



Structural shape optimization using Cartesian grids and automatic...

Fig. 13 Model of a cylinder
under internal pressure. a Front
view with boundary conditions.
b 3D model representation. c
Example of analysis mesh

(a) (b) (c)

summation of all the projected errors in elements from (39),
and evaluate ‖en+1‖ as

‖en+1‖ = γ

100
‖uj+1

es ‖ (37)

where γ is the prescribed percentage of relative error in
energy norm and ‖uj+1

es ‖ is the global projected energy
norm.

Hence, once a new design has been defined, the pro-
jection starts with the previous analysis mesh, defined as
�j,� in Fig. 11a, using the previously computed coordinate
sensitivities. The projected position rj+1 for each node of
the mesh is given by:

rj+1 = rj +
∑
m

(
a

j+1
m − a

j
m

)( ∂rj

∂a
j
m

)
(38)

Remark 1 The velocity field at nodes, ∂r
∂am

, can be defined
using different strategies. As the location of the nodes of
the Cartesian grid is always maintained we could simply
consider that ∂r

∂am
= 0 in the internal nodes, thus ∂r

∂am
=

0 only on the varying portion of the boundary. However,
this velocity field is not suitable for projection purposes
since we need information also in the internal elements to
be able to properly deform the mesh. To overcome this,
we design a velocity field based on the physical approach
(Belegundu et al. 1991) were we solve a FE problem in the
entire domain imposing, as displacements, the velocity field
calculated on the boundary. The resulting displacement field
is then interpreted as the required velocity field. This kind
of procedure is more expensive than the first one, but this

computational cost can be alleviated by using a coarse FE
mesh for projecting the information.

Likewise, the estimated error in energy norm and the
estimated energy norm at each element required in (36) can
also be estimated by projection using the expressions

‖ees‖2
e,j+1 ≈ ‖ees‖2

e,j +
∑
m

(
a

j+1
m − a

j
m

) ∂‖ees‖2
e

∂am

(39)

‖ues‖2
e,j+1 ≈ ‖ues‖2

e,j +
∑
m

(
a

j+1
m − a

j
m

) ∂‖ues‖2
e

∂am

(40)

These projections give an approximation to the values
of the estimated error in energy norm and the energy norm
that would be obtained if the next design were computed
with the previous Cartesian mesh �j,� projected to the new
geometry, represented as �j+1,def in Fig. 11b.

As in a standard remeshing procedure, we have an h-
adapted mesh for geometry j + 1 and, thanks to the
extrapolation procedure, the values of energy norm and its
estimated error at each element. Hence, without any further
computation on geometry j + 1, the projected estimated
error and energy norm allow us to estimate the quality of the
results that would be obtained through the FE analysis of
geometry j +1 with a mesh (Fig. 11b) equivalent to the one
used in the previous design j (Fig. 11a). If the target error
prescribed for the FE analysis is lower than the projected
error of the (j + 1)-th geometry, the mesh must be h-refined
using (36).

Up to this point, the mesh projection presented is compa-
rable to the strategies used for body-fitted meshes (Bugeda

Fig. 14 2D view of 3D uniform
meshes with different element
size
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Fig. 15 Behavior of different
reordering techniques. Left:
reordering times. Right:
speed-up in the solution of the
system of equations with respect
to the reference (no reordering)

and Oliver 1993; Bugeda et al. 2008). As we can eas-
ily observe in Fig. 11b, this kind of projection yields in
a discretization that is not compatible with the hierarchi-
cal Cartesian structure of cgFEM, thus losing most of the
advantages related to its use.

In this paper we propose a projection strategy that will
allow to generate an h-adapted analysis mesh of the new
design j + 1 keeping the Cartesian structure intact.

This strategy simply requires to project the element size,
evaluated using (36) for the elements of �j+1,def (Fig. 11b),
to the embedding domain �. To do this we assign this
element size to the Gauss points of each element and project
all the integration points of �j+1,def to �. These projected
integration points containing element size information can
be trivially located into the elements of a uniform Cartesian
grid of the prescribed level. Then these Cartesian elements
are recursively refined until the size of each element is
smaller than the minimum element sizes defined by the
Gauss points contained in the element, leading to an h-
adapted Cartesian grid (see Fig. 12b).

From this perspective, projection, through sensitivity
analysis, can transform a posteriori error estimation into
a preprocess tool able to generate an h-adapted mesh for
the new design, recycling calculations obtained on previous
stages of the optimization process.

5 Algorithm for constrained optimization

For the numerical examples in this contribution, we consider
general problems of shape optimization as outlined in
(1). We will use a sequential quadratic programming

Table 1 Thick-wall infinite cylinder defined by 1 design variable.
Design variable data

Design variable Initial value Data range

Rext 17 [9 − 20]

(SQP) approach (Powell 1983), considered an active-
set method (Gill et al. 1984), given by the MATLAB
implementation (MATLAB version 8.3.0.532 (R2014a)
2014). SQP approaches are one of the most effective
methods for non-linearly constrained optimization and
generates steps by solving quadratic subproblems (Nocedal
and Wright 2006).

The formulation of a quadratic programming subproblem
for the problem description in (1) is based on a quadratic
approximation of the Lagrangian function

L (a, λ) = f (a) +
r∑

n=1

λj · gn(a) (41)

To model this problem we now linearize the inequality
constraints of (1) to obtain

minimize f (at ) + ∇f (at )
T p∇2

aaLtp
verifying ∇gn(at )p + gn(at ) ≤ 0 n = 1, . . . , r

(42)

The new iterate is given by (at + pt , λt+1) where pt

and λt+1 are the solution and the corresponding Lagrange
multiplier.

Fig. 16 Evolution of the error in the objective function (volume) with
respect to the analytical solution. Uniform meshes
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Table 2 Computational results for uniform meshes. Average values of
computational cost and estimated discretization error in energy norm

Type of mesh Computational cost (s) Estimated discretization error

Unif Level3 9.05 7.99%

Unif Level4 25.13 2.41%

Unif Level5 229.81 0.67%

In this approach the set of active constraints At =
{gn(at ) = 0} at the solution of (42) constitutes our guess of
the active set at the solution of the nonlinear program. If the
SQP method is able to correctly identify this optimal active
set (and not change its guess at a subsequent iteration) then
it will act like a Newton method for equality-constrained
optimization and will converge rapidly (Nocedal and Wright
2006). For details on the MATLAB implementation we
recommend (MATLAB version 8.3.0.532 (R2014a) 2014).

6 Numerical examples

In this Section we will show three numerical analyzes.
The first one will be used to show the performance of
the direct solver used to evaluate solution of the systems
of equations when applying different reorderings to the
matrices. The remaining two problems will be devoted
to assess the optimization methodology presented in this
contribution. The last two optimization analyzes will test the
accuracy of the cgFEM implementation coupled with the
optimization algorithm using an academical problem with
different number of design variables.

The model proposed for this study is a thick-wall infinite
cylinder loaded with internal pressure. The geometrical
model for this problem is represented in Fig. 13. A linear-
elasticity analysis is performed on a domain given by a CAD
model that uses NURBS to represent the boundary. Only
1/4 of the section is modeled together with the appropriate
symmetries. The internal and external surfaces are of radius
r and R, with Rint = 5 and Rext = 20. Young’s modulus is

Table 3 Thick-wall cylinder defined by 1 design variable. Computa-
tional results for h-adapted and projected meshes

Type of mesh Computational cost (s) Estimated discretization error

hAdapMeshing 52.23 0.87%

ProjMeshing 39.53 0.99%

E = 1000, Poisson’s ratio is ν = 0.3 and the applied load
is P = 1.

The exact solution for displacements and stresses is given
by:

ur = P(1 + ν)

E(k2 − 1)

(
r (1 − 2ν) + R2

ext

r

)
, uy = 0 (43)

σr = P

k2 − 1

(
1− R2

ext

r2

)
, σφ = P

k2 − 1

(
1 + R2

ext

r2

)
, σy = ν

(
σr + σφ

)

(44)

where k = Rext/Rint , r = √
x2 + z2.

For the optimization analyzes we will substitute the
constant Rext for a unique design variable or we will define
a set of design variables to define arbitrary external surfaces.

6.1 Performance of the direct solver

As explained in Section 2.2, the solution of the system
of equations with direct solvers is a time consuming task
that can be lightened using a proper reordering of the
matrices involved. To solve the linear system of equations
in (13), we have run the tests in MATLAB 2014a, using
the standard backslash solver provided in this compilation.
In this example, we will compare four different reordering
strategies:

– Nested Domain Decomposition (NDD): in this case, we
use the NDD reordering presented in Section 2.2.

– Reference: this strategy consists in solving the system
without any previous reordering.

Fig. 17 Evolution of
magnitudes for h-adapted and
projected meshes. Left: error in
the objective function (volume)
with respect to the analytical
solution. Right: von Mises stress
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Fig. 18 Model of a cylinder
under internal pressure defined
by 4 design variables. a Front
view with boundary conditions.
b 3D model representation

(a) (b)

– Approximate Minimum Degree (AMD) permutation: if
the degree of a node in a graph is the number of
connections to that node, the AMD algorithm (Amestoy
et al. 1996) generates an ordering based on how these
degrees are altered during Cholesky factorization.

– Symmetric AMD permutation (SYM-AMD) (MATLAB
version 8.3.0.532 (R2014a) 2014): this algorithm
performs an AMD reordering taking into account the
symmetry of the matrix.

– Column AMD permutation (COL-AMD) (Davis et al.
2004): this algorithm returns the column approximate
minimum degree permutation vector of the matrix. This
is the default algorithm used by MATLAB.

For the analysis we will study a set of uniformly refined
meshes of 20-node tri-quadratic elements. The meshes used
in this simulation can be seen in Fig. 14.

On the left plot of Fig. 15, we can observe the com-
putational cost related with the reordering of the degrees
of freedom present in the meshes. This computational cost
takes into account both, finding the reordered indexes and
the reordering process. The right plot shows the computa-
tional cost related to the solution of the system of equations
in terms of the speed-up achieved with respect to the refer-
ence, i.e., with no reordering. This means that a value larger
than 1 represents the reduction of cost with respect with the
reference calculation with no reordering.

From Fig. 15 we can extract the several conclusions.
We can notice how, for small problems (two first
meshes), the differences in computational cost between the
different alternatives are not significant. However, for larger

problems we can clearly observe how the computational
cost related to NDD reordering is clearly superior to the
alternatives studied.

So, when using NDD, the time devoted to reorder the
system of equations and to solve it is reduced, allowing for
the solution of larger systems of equations with the same
resources. The reason behind this positive performance of
the proposed reordering technique can be that the NDD
reordering could represent an optimal reordering, as it takes
into account the topology of the mesh.

6.2 Thick-wall infinite cylinder loaded with internal
pressure defined by 1 design variable

Let us consider Rext as the design variable that defines the
cylinder presented in Fig. 13. Our objective in this problem
is to minimize the volume of the model under internal
pressure P applied on the circular internal surface, with
unknown external surface, where the Von Mises stresses
must be below the yield stress Sy . For the parameters
defined above and for Sy = 2, the optimal analytical
solution corresponds to b = 13.681300358237177 and
the corresponding volume is V = 2547.485744735241
(Table 1).

The first analysis consist of using sets of uniform meshes
of 20-node tri-quadratic elements with different element size.
We will use meshes of levels 3, 4 and 5 that correspond with
the three last levels of refinement represented in Fig. 14. By
doing this, we will evaluate how varying the discretization
affects the accuracy and the computational cost.

Table 4 Thick-wall infinite
cylinder defined by 4 design
variables. Design variables data

Design variable Initial value Data range Constraints on the design variables

a1 17 [10 − 20] None

a2 16 [8 − 17] a2 ≤ a4 − 1

a3 16 [8 − 17] a3 ≤ a1 − 1

a4 17 [10 − 20] None
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Fig. 19 Evolution of magnitudes for h-adapted and projected meshes. Left: error in the objective function (volume) with respect to the analytical
solution. Right: von Mises stress

In Fig. 16 we can observe the evolution of the relative
error in volume evaluated as ηV (%) = |Vh−V |

V
·100 where Vh

is the volume integrated with the FE mesh and V is the exact
volume of the model. The plot shows the convergence of the
optimization process to a clearly suboptimal solution when
using coarse meshes. In order to get closer to the theoretical
optimal solution finer meshes have to be used, however this
decision will involve an increase of the computational cost.

In Table 2 we can see the average discretization estimated
error in energy norm per individual and the average
computational cost per individual. We observe how, in order
to reduce the discretization error, the computational cost
of each individual increases significantly. This conclusion
justifies the use of h-adaptive meshes.

We repeat the analysis but using h-adapted meshes and
the projection technique presented in Section 4. In Fig. 17
we can observe the behavior of h-adapted meshes with
tri-quadratic elements (hAdapMeshing) and projected h-
adapted meshes with the same elements (ProjMeshing).

Table 3 shows the details of the analyzes in terms of
average computational cost and estimated discretization
error of the meshes. In this case, the h-adapted meshes
achieve a level of accuracy similar to the accuracy obtained
with the level 5 uniform mesh, but in a fraction of the time.
In addition, the projected meshes cut the computational cost
of the h-adaptive process in around 25%.

6.3 Thick-wall infinite cylinder loaded with internal
pressure defined by 4 design variables

In this example we modify the previous model introducing
several design variables. The initial shape is shown in
Fig. 18. The shape optimization problem consists of finding
the best shape for the external boundary defined by four

design variables, corresponding to coordinates of the points
used to define the external boundary.

The mechanical properties for this problem correspond
to those exposed at the beginning of the section. The initial
values of the design variables and their allowed data range
and constraints are shown in Table 4.

Figure 19 shows the evolution of the relative error
in volume for an optimization process performed using
standard h-refined meshes and another carried out using
projected meshes. We can observe a common convergence
path regardless of the different discretizations used.

In Table 5 we can see the average discretization estimated
error in energy norm per individual and the computational
cost per individual. The computational costs include the
simulations performed to evaluate the sensitivities. We
observe that for a comparable level of discretization error
we save close to 20% of time when using mesh projection.

Figure 20 shows several of the individuals analyzed
during the process including the first and the last one (51).
In addition, the theoretical optimal solution has been drawn
to clarify the evolution of the procedure.

6.4 Connecting rod defined by 8 design variables

The objective of this problem is to minimize the volume
of a connecting rod without violating the given maximum

Table 5 Thick-wall cylinder defined by 4 design variables. Computa-
tional results for h-adapted and projected meshes

Type of mesh Computational cost (s) Estimated discretization error

hAdapMeshing 151.81 1.22%

ProjMeshing 124.90 1.46%
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Fig. 20 Samples of individuals
from the optimization procedure.
The index indicate the number
of model during the process

Fig. 21 Front view of the
connecting rod problem with
boundary conditions

Fig. 22 3D model representation
showing the 8 design variables

Table 6 Connecting roddefined by 8 design variable. Design variables data

Design variable Initial value Data range

a1, a5 7 [1 − 7]
a2, a6 7 [1 − 7]
a3, a7 7 [1.2 − 7]
a4, a8 7 [2 − 7]

Table 7 Connecting rod defined by 8 design variable. Computational
results for h-adapted and projected meshes

Type of mesh Computational cost (s) Estimated discretization error

hAdapMeshing 607.84 2.83%

ProjMeshing 471.02 2.62%
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Fig. 23 Von Mises stress fields:
(left) initial configuration results
and (right) configuration
obtained using projected meshes

von Mises stress. Because of the symmetry, only a fourth
of the component is modeled. The geometry of the initial
design and the boundary conditions are shown in Fig. 21.
The geometry parameters are AB = 11, C = 4, AD = 20,
DE = 4, F = 1.5, DG = 7, HG = 5.5. The Young’s
modulus is E = 105, and Poisson’s ratio ν = 0.333. The
pressure is P = 100 in the normal direction of the half arc
as shown in Fig. 21.

The design boundary is the surface HG. The end point
H is fixed while eight points are used to interpolate HG.
The vertical positions of the eight interpolation points on the
design surface are set as design variables (see Fig. 22). The
allowable von Mises stress is σV M = 900.

The initial values of the design variables and their
allowed data range are shown in Table 6.

Table 7 shows the average discretization estimated error
in energy norm per individual and the computational
cost per individual. We observe for this problem how
the optimization procedure based in mesh projection cuts
slightly more of a 20% of the time per individual.

Figure 23 shows the von Mises stress fields for the initial
configuration of the model opposed to the field obtained
for the optimal solution provided by the shape optimization
algorithm.

7 Conclusions

Several tools to make gradient-based optimization proce-
dures have been proposed. First, information sharing pro-
cedures that can be easily applied reducing the number of
calculations needed. Also, the Nested Domain Decompo-
sition reordering technique has been developed and tested
for a 3D code. The NDD provides an optimal reordering
of the global system of equations with minimum computa-
tional cost in comparison with other techniques. In addition,
the speed-up shown during the resolution of the systems of
equations is significant, allowing the efficient usage of the
computational resources. Finally, an h-adaptive mesh pro-
jection strategy has been adapted to the immersed boundary
environment. The projection avoids the need to generate a

suitable discretization after following a full refinement pro-
cess. The discretizations generated with this procedure has
been demonstrated as effective, in terms of convergence,
than the standard h-refined meshes, but with an important
reduction of the computational cost per individual.
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Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ
(2013) Efficient finite element methodology based on cartesian
grids: application to structural shape optimization . Abstr Appl
Anal 2013:1–19

Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-
based shape optimization scheme using an interface-enriched
generalized FEM. Comput Methods Appl Mech Eng 296:1–17

Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric
analysis: An overview and computer implementation aspects.
Math Comput Simul 117:89–116

Nishita T, Sederberg TW, Kakimoto M (1990) Ray Tracing Trimmed
Rational Surface Patches. SIGGRAPH Comput Graph 24(4):337–
345

Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn.
Springer-Verlag, New York

Pandey PC, Bakshi P (1999) Analytical response sensitivity computation
using hybrid finite elements. Comput Struct 71(5):525–534
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