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Abstract
The uncertainties of input variables are quantified as probabilistic distribution functions using parametric or nonparametric
statistical modeling methods for reliability analysis or reliability-based design optimization. However, parametric statistical
modeling methods such as the goodness-of-fit test and the model selection method are inaccurate when the number of data is
very small or the input variables do not have parametric distributions. To deal with this problem, kernel density estimation with
bounded data (KDE-bd) and KDE with estimated bounded data (KDE-ebd), which randomly generates bounded data within
given input variable intervals for given data and applies them to generate density functions, are proposed in this study. Since the
KDE-bd and KDE-ebd use input variable intervals, they attain better convergence to the population distribution than the original
KDE does, especially for a small number of given data. The KDE-bd can even deal with a problem that has one data with input
variable bounds. To verify the proposed method, statistical simulation tests were carried out for various numbers of data using
multiple distribution types and then the KDE-bd and KDE-ebd were compared with the KDE. The results showed the KDE-bd
and KDE-ebd to bemore accurate than the original KDE, especially when the number of data is less than 10. It is alsomore robust
than the original KDE regardless of the quality of given data, and is therefore more useful even if there is insufficient data for
input variables.

Keywords Kernel density estimation . Nonparametric statistical modeling . Interval approach . Nonparametric distribution .
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1 Introduction

Uncertain quantification of random input variables is an im-
portant issue in the reliability analysis and reliability-based
design optimization of physical systems. Accurate uncertainty
quantification yields accurate reliability analysis results, and
thus creates accurate design optimization results (Noh et al.
2010). Moreover, statistical model validation and calibration
has recently been developed to improve the accuracy of com-
puter aided engineering (CAE) analysis. In these processes,
accurate statistical modeling of random input and output var-
iables is required to verify the CAE analysis results and im-
prove their accuracy (Youn et al. 2011).

To quantify the uncertainties in random input variables,
various statistical modeling methods have been proposed.
The uncertainties can be quantified as probabilistic distribu-
tions or input variable intervals. A parametric method such as
the goodness-of-fit (GOF) test and model selection method is
the most commonly used statistical modeling method. In ad-
dition, the sequential statistical modeling (SSM) method that
combines the GOF tests and model selection methods has
been proposed (Kang et al. 2016). The GOF tests, such as
the Kolmogorov-Smirnov (K-S) test and Anderson-Darling
(A-D) test, determine the appropriateness of a candidate dis-
tribution for a given data set by accepting or rejecting a null
hypothesis that a candidate distribution is a true model to
represent the given data (Ayyub and McCuen 2012;
Anderson and Darling 1952). A model selection method, such
as the Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), and Bayesian method, determines
relative appropriateness of candidate distributions by selecting
the best fitted distribution for the given data set among several
candidate distributions (Akaike 1974; Schwarz 1978;
Burnham and Anderson 2004). The SSM method first
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assesses the absolute fit of candidate models by a GOF test,
and then selects the best fit distribution by using a model
selection method among the selected candidate distributions
accepted by the GOF test. If the number of given data is
sufficient, i.e., larger than 30, and the data follows specific
parametric distributions and the parametric method is accu-
rate. However, if it is not, a nonparametric modeling method
or interval approach needs to be used (Kang et al. 2017).

The nonparametric modeling method estimates a probabi-
listic distribution by only using given data without statistical
parameters. Kernel density estimation (KDE) is the most com-
monly used nonparametric statistical modeling method. The
KDE generates kernel functions based on the data with an
optimal bandwidth, which is a smoothing parameter of the
kernel functions, and then a KDE function is obtained by
combining the kernel functions of all data. If input variables
have nonparametric distributions and sufficient data is provid-
ed, the KDE is recommended to represent the given data set.
However, in real applications, only a few of the data are ap-
plicable, and thus, it is difficult to use the existing parametric
or nonparametric statistical modeling methods. Even though
some input variables such as material properties are known to
follow specific distributions, the distribution types and param-
eters can be different according to the dimensions or
manufacturing process. Jang et al. (Jang et al. 2015) used the
KDE to carry out the reliability-based design optimization of
electric power steering motor and Cho et al. (Cho et al. 2016)
used the nonparametric approach for uncertainty quantifica-
tion in multidisciplinary design optimization. However, these
methods have a limitation in expressing distribution functions
when data is very limited and cannot deal with given data and
information of intervals together.

Due to the lack of data, which is often common in engi-
neering fields, an interval approach that quantifies uncer-
tainties using input variables is often used. The interval ap-
proach such as the Dempster-Shafer theory, possibility theory,
probability bounds approach (probability box theory), or a
uniform distribution is most often used (Verma et al. 2010).
These methods estimate intervals of input variables or given
data, and then use them to create a reliability analysis or de-
sign. However, the empirical distributions obtained from the
Dempster-Shafer theory cannot be used in numerical reliabil-
ity analysis methods such as the first-order reliability method
(FORM) or second-order reliability method (SORM) (Yao
et al. 2013; Shah et al. 2015). Surrogate models for the empir-
ical distributions have been applied in reliability analysis to
overcome the problem of discretization, but there are still ap-
proximation errors (Agarwal et al. 2004; Zhang et al. 2014).
Since the probability box method uses distributions with low-
er and upper bounds of estimated parameters, it requires more
numbers for the reliability analysis than using one distribution
with the estimated parameters only (Tucker and Ferson 2003;
Karanki et al. 2009; Betrie et al. 2014, 2016). The interval

approaches such as Dempster-Shafer theory and Probability
bounds have been used for uncertainty quantifications, safety
assessments, and design optimizations (Yao et al. 2013; Shah
et al. 2015; Agarwal et al. 2004; Zhang et al. 2014; Tucker and
Ferson 2003; Karanki et al. 2009; Betrie et al. 2014, 2016).
However, these methods cannot overcome the imprecise prob-
ability for the output response, which is always expressed as
its lower and upper bounds. To overcome the problem of the
interval approach, the uniform distribution is often used, but it
only includes the intervals of the input variables and the data
distribution cannot be used to create a distribution function.
Thus, a statistical modeling method that can use information
from both given data and intervals of input variables is neces-
sary in real engineering fields.

To overcome the limitations of the probabilistic approach
and interval approach, the KDE-bd and KDE-ebd are pro-
posed. This method combines the nonparametric statistical
modeling method (KDE) and the interval approach using
bounded data. In the proposed methods, a kernel density func-
tion is generated by combining kernel functions for each data
set where the data includes given experimental data and
bounded data. If the intervals of input variables are known,
the bounded data are sampled from the given intervals, and the
KDE-bd is used to generate the KDE functions by using the
given and bounded data together. However, if intervals are
unknown, the KDE-ebd is used to generate the KDE functions
by using both the given data and the bounded data sampled
from the estimated intervals. When the number of given data
is very small, the density functions using the KDE-bd and
KDE-ebd have moderate slopes and heavy tails because the
shapes of the KDE functions are affectedmore by the bounded
data than the given data. As the amount of data increases, the
bounded data will not be used and the given data will mostly
determine the shapes of the KDE functions, and thus, they
become similar to the population distribution.

To verify the proposed method, various types of distribu-
tions are assumed to be true models in order to create sample
data with various sizes that are randomly generated for a sta-
tistical simulation test. The simulation results using the pro-
posed method are compared with those that used the original
KDE. In real applications, 80 experimental data points of the
compressive strength of aluminum-lithium are used to verify
the validity of the proposed methods. A simple reliability
analysis problem is used to show how the input models ob-
tained from the KDE-bd and KDE-ebd affect the reliability
analysis results by comparing them with those from the orig-
inal KDE and uniform distributions.

In Section 2, the interval approach and KDE are discussed
inmore detail, and the maximum likelihood estimation (MLE)
method is explained as a way of estimating bounds for gener-
ating bounded data in KDE-bd and KDE-ebd. Section 3 de-
scribes the KDE-bd and KDE-ebd process, and Section 4 pre-
sents statistical simulation results of the KDE, KDE-bd and
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KDE-ebd in two cases, case I: given data with bounds and
case II: given data without bounds. Finally, the KDE-bd and
KDE-ebd are compared with the KDE and verified for accu-
racy of statistical modeling and reliability analysis through
numerical examples in Section 5.

2 Statistical modeling methods

2.1 Various statistical modeling methods

The statistical modeling methods can be categorized as prob-
abilistic, interval, parametric, or nonparametric approaches.
Table 1 shows the categorized statistical modeling methods
including the KDE-bd and KDE-ebd. The parametric ap-
proach uses parametric statistical models to model the data.
The GOF test determines whether a specific statistical model
fits the data or not, while the model selection method finds the
best fitted model for the given data. The SSM uses the GOF
test to select candidate models that satisfy absolute appropri-
ateness, and then uses the model selection method to identify
the best fitted distribution among the selected candidate
distributions.

The p-box method generates bounds for the estimated cu-
mulative distribution function (CDF) by using the lower and
upper bounds of estimated parameters from the given data
where the distribution type is known or can be identified from
the probabilistic and parametric approach. The Dempster-
Shafer theory assigns basic probability, which is given by
the users’ experience, to each piece of data and finds the
bounds of the probability using the plausibility and belief
functions (Verma et al. 2010). The basic probability assign-
ment for each piece of data yields empirical CDF values, so
that the lower and upper bounds of the CDFs are also empir-
ical values.

Similarly, the interval representation deals with the un-
certainty in the input variables using the interval numbers,
which are the absolute bounds of the uncertain variables
that one wants to explore in the analysis (Verma et al.
2010). The parametric or nonparametric approach can be
classified as either a probabilistic or interval approach,

which means that it cannot generate a statistical model
to use both the given data and bound information togeth-
er. On the other hand, the KDE-bd and KDE-ebd can use
both the data and input variable bounds to generate a
statistical model.

2.2 Kernel density estimation

The KDE is a nonparametric statistical modeling method
that does not use parametric probability density functions
(PDF) but only uses given data to create a statistical
model. In other words, the KDE does not require statis-
tical moments or specific probability density functions to
estimate a probabilistic distribution. A kernel density
function is obtained by combining kernel functions gen-
erated by each value. Since the KDE uses only data, it is
useful when a parametric PDF cannot represent a distri-
bution of given data. The KDE function is defined as
(Silverman 1986; Wand and Jones 1994)

f̂ ¼ 1

n⋅h
∑
n

i¼1
K

x−X i

h

� �
ð1Þ

A simpler formula for (1) can be calculated by applying the
rescaling notation Kh(t) = (1/h)K(t/h). This equation is defined
as (Silverman 1986; Wand and Jones 1994)

f̂ ¼ 1

n
∑
n

i¼1
Kh x−X ið Þ ð2Þ

where Xi is given data, f̂ is an estimated kernel density
function, and K(∙) is a kernel function satisfying

∫þ∞
−∞K xð Þdx ¼ 1. h is a positive value and named as a band-
width or smoothing parameter of the kernel function. If h
becomes small, the kernel function becomes sharp. If h
becomes large, the kernel function becomes smooth. The
types of kernel functions and the bandwidth h are impor-
tant factors that determine the accuracy of estimated ker-
nel density functions. An inappropriate bandwidth yields
under-smoothing or over-smoothing, and thus, an opti-
mum bandwidth must be determined (Wand and Jones
1994). In this study, a second-order Gaussian kernel

Table 1 Various statistical
modeling methods Probabilistic approach Interval approach

Parametric approach Goodness-of-fit (GOF) test, Model selection method,
Sequential statistical modeling (SSM)

Probability bounds
approach (p-box)

Nonparametric
approach

Goodness-of-fit (GOF) test,

Kernel density estimation (KDE)

Dempster-Shafer theory,

Interval representation

*Kernel density estimation with bounded data (KDE-bd)

*Kernel density estimation with estimated bounded data (KDE-ebd)

*Proposed methods in this study
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function that has symmetric and non-negative kernels is
used to obtain estimated kernel density functions because
its mathematical formula is simple, and it is the most
commonly used in the kernel density estimation (Chen
2015; Hansen 2009; Sheather 2004; Guidoum 2015).
Moreover, since the bandwidth mostly affects the accura-
cy of the estimated kernel density functions more than any
type of kernel function (Silverman 1986; Wand and Jones
1994; Chen 2015; Guidoum 2015), the Gaussian kernel
makes it simple to calculate the optimum bandwidth and
is preferred to other types of kernel functions (Silverman
1986; Wand and Jones 1994; Chen 2015). The original
and rescaled Gaussian kernel function is expressed as

K tð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp −
1

2
t2

� �
ð3Þ

Kh tð Þ ¼ 1ffiffiffiffiffiffi
2π

p
h
exp −

1

2

t
h

� �2
� �

ð4Þ

The optimal bandwidth (h∗) of the Gaussian kernel is
calculated using Silverman’s rule of thumb as follows
(Silverman 1986).

h* ¼ 4

3

� �1=5

σ̂̂n−1=5 ð5Þ

where n is the number of data samples, and σ̂ is the
estimated standard deviation of the data. Silverman’s
rule of thumb is sensitive to outliers, so that sample
standard deviation, which is defined as the square root
of variance of data values from its mean, is not appro-
priate for use. In this study, a corrected standard devia-
tion, which is known as more robust (Analytical
Methods Committee 1989), was used as follows.

σ̂̂¼ Median X i−Median X ið Þj jð Þ
0:6745

ð6Þ

The Silverman’s rule of thumb is describe in detail in
Appendix 1.

2.3 Maximum likelihood estimation

The MLE is the most commonly used method to estimate
statistical parameters of a distribution function using the
concept of likelihood. The likelihood of a set of data is
the probability of acquiring samples given the selected
probability distribution functions. This method calculates
the parameters of a chosen probability distribution model
by maximizing the value of the likelihood function. The
likelihood function is calculated by multiplying each

probability density function by each sample. For conve-
nience, the log-likelihood function is the most commonly
used and is expressed as

lnL θ;X 1;…;X n
	 
 ¼ ∑

n

i¼1
ln f X ijθð Þ ð7Þ

where f(⋅) is a probability density function of the chosen
distribution models and θ is the parameter vector.

Estimated parameters using theMLEmethod are expressed
as

θ̂mle

n o
⊆ argmaxℓ θ;X ið Þ

θ∈Θ

� �
ð8Þ

where θ̂mle is the estimated parameter and ℓ is the log-
likelihood function.

The MLE method can also be used to identify a prob-
ability distribution function, as well as to estimate param-
eters. Statistical modeling using the MLE method first
calculates the maximum likelihood function values for
all candidate models, and then a distribution model that
has the largest value of likelihood is chosen as the most
appropriate model.

3 Kernel density estimation with and
without bounded data

A kernel density function can represent any type of distribu-
tion, but sometimesmay have a very irregular shape especially
for extremely small data, e.g., less than 10, which often occurs
in real engineering fields. In addition, the distribution types
and input variable parameters are usually unknown, and only
the lower and upper bounds are known, which could be very
important information, especially when there are few data.
However, the original KDE cannot use the bound information
because it only uses data to generate an estimated kernel den-
sity function.

In addition to the original KDE, there are various types of
KDE that use bounded support such as the reflection method
(Schuster 1985), boundary kernel method (Gasser and Müller
1979), pseudo data method (Cowling and Hall 1996), transfor-
mation method (Marron and Ruppert 1994), and generalized
reflection method (Karunamuni and Alberts 2005a, 2005b;
Karunamuni and Zhang 2008). These methods use bounded
support to define the domain of a true density function and then
generates a kernel density function only within the defined
domain (Karunamuni and Zhang 2008). These methods have
been developed to prevent long tailed density functions being
distributed in the incorrect domains, and they are classified
based on the manner in which their kernel density functions
are generated. The KDE with the bounded support is intended
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to allow the kernel density functions to be defined within the
domain of input variables, but not for improving accuracy or
ensuring conservativeness of modeling data distribution. If the
bounded support region is similar to the data distribution re-
gion, the kernel density function may have very high densities
near the bounded support, which can make the density function
significantly differ from the true density function. The KDE
with wide bounded support behaves like the original KDE
and the one with narrow bounded support cannot be used to
accurately model the data distribution. Thus, a new KDE needs
to be developed to accurately and conservatively model the true
density function for insufficient data by using both the data and
bound information of input variables.

In this study, the KDE-bd method that combines the
nonparametric-probabilistic approach (KDE) and the interval
representation using input variable intervals is proposed. This
method can be categorized as the KDE-bd method and the
KDE-ebd method based on whether the input variable inter-
vals are given or estimated from the given data. That is, if the
intervals are known, the KDE-bd is used; otherwise, KDE-ebd
is used. The proposed KDE-bd/ebd uses the boundary infor-
mation of the data to make the kernel density function to be
well fit to the data distribution as well as yielding conservative
density functions, and thus, the estimated density function can
bemore accurate than KDEwith bounded support in the entire
domain and more robust than the original KDE. Detailed ex-
planations of the KDE-bd and KDE-ebd are given in
Section 3.1.

3.1 KDE-bd and KDE-ebd process

The KDE-bd randomly generates bounded data from a
uniform distribution with given lower and upper input
variable bounds and the KDE-ebd does the same but with
the estimated lower and upper input variable bounds using
given data. In the KDE-bd and KDE-ebd, the bounded
data are added to the original data, and then the total data
are used to generate estimated kernel density functions.
The kernel density function is obtained by summing ker-
nel functions generated on each sample of total data,
where the optimum bandwidth (h*) is calculated from
the total data, unlike the bandwidth of the original KDE
which does so only from the original data. The estimated
kernel density function of KDE-bd and KDE-ebd is de-
fined as

f̂ h ¼
1

nþ mð Þ⋅h ∑
nþm

k¼1
K

x− XBDkð Þ
h

� �
ð9Þ

where XBDk is the total data for k = 1,… ,n + m ,
XBDk = {Xi,BDj}, Xi is the ith given data for i = 1,..,n,
and BDj is the jth bounded data for j = 1,…, m.

Figure 1 shows the KDE-bd and KDE-ebd process. In Step
(1), if the lower and upper bounds of the input variables, bdL and
bdU, are given, they are selected as the two parameters, l and u,
of a uniform distribution; otherwise, estimated parameters and
their lower and upper bounds are calculated using MLE corre-

sponding to the significance level, and thus, â and b̂ become a
minimum and maximum value of given data, respectively.

The point estimators, â and b̂, are expressed as

â̂; b̂
n o

⊆ argmax

â;b̂∈Θ

1

xu−xl

� �n

∏
n

i¼1
I xl ≤ x≤ xuf g xið Þ

8><
>:

9>=
>; ð10Þ

where I xl ≤ x≤ xuf g is an indicator function which has 1 if
xl ≤ x ≤ xu and has 0 otherwise, and the interval

Fig. 1 KDE-bd and KDE-ebd process
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estimators of â and b̂ with a significance level (ACI and
BCI) are expressed as

ACI ¼ â̂L; â̂Uf g ¼ b̂−
b̂−â
α1=n

; â̂

" #
ð11Þ

BCI ¼ b̂L; b̂U
n o

¼ b̂; â̂þ b̂−â
α1=n

" #
ð12Þ

where the estimated parameters, l and u, become âL and b̂U
respectively; n is the number of given data; α is the signifi-
cance level.

If the significance level α is low, the range of the boundary
region is wide and the estimated density function has a long
tail, resulting in conservative results in reliability analysis. If
the significance level is high, the range of the boundary region
is narrow and the estimated density function has a short tail,
resulting in less conservative results compared to those using a
low significance level.When the number of data is very small,

the parameters of the uniform distribution, â; b̂
h i

, can provide

a very narrow range of bounded data if the data are densely
distributed. Thus, the bounded data can be generated near the
mode or mean, resulting in a narrower tail of the density func-
tion than the original KDE, which can produce unconservative
results in reliability analysis. However, if the confidence in-
tervals of the estimated parameters of the uniform distribution,

âL; b̂U
h i

, are used to determine the boundary region for gen-

erating bounded data, the bounded data is widely distributed
and the tail of the density function is thick and long.
Accordingly, more conservative reliability results can be ob-
tained. If the users need a density function more fit to the
original data rather than the conservative density function,
they can use a higher significance level to narrow the bound-
ary region for sampling bounded data. However, a higher
significance level does not necessarily guarantee accurate es-
timation of the density functions. A higher significance level
generally yields more accurate density estimation than the
lower significance level, but it may decrease the accuracy of
estimating the density function because the estimated bounds
could be too narrow especially for insufficient data.

In Step (2), bounded data are randomly generated from
a uniform distribution with l and u. If the number of the
original data is one or two, the initial number of bounded
data is two or one, respectively. This is because the total
number of data should be greater than or equal to three,
due to the calculation of the intersection area for k-2, k-1,
and kth data; otherwise, the initial number of the bounded
data is zero. After adding each bounded data to the orig-
inal data, the kernel density functions fk, fk-1, and fk-2 are
generated, where i is the number of given data, j is the added
number of bounded data, and k is the number of total data.

Whenever the bounded data are added, the kernel density
function is generated and the intersection areas, IAk,k-1 and
IAk,k-2, between the updated kernel function (fk), k-1th,
and k-2th kernel density function (fk-1 and fk-2) are calcu-
lated. If all intersection areas, IAk,k-1 and IAk,k-2, are larger
than the critical intersection area IAc, then the additional
bounded data do not affect the density estimation; thus,
additional bounded data will not be generated to estimate
the density function and Step (2) is terminated. Figure 2
shows how the final number of bounded data is deter-
mined. As in Fig. 2, if fk (dotted line), fk-1 (solid line),
and fk-2 (dash-dot line) are similar, the bounded data are
not updated, and thus, Step (2) moves to Step (3). In Step
(3), an estimated kernel density function is finally obtained
using the final bounded and given data. An appropriate
amount of bounded data can increase the intersection areas,
but too much or too little bounded data can decrease the
intersection areas. Therefore, it is necessary to determine
the number of bounded data necessary to create an accurate
density function model.

In this paper, fk is compared with fk-1 and fk-2 by calculating
IAk,k-1 and IAk,k-2, but it is also possible to compare fk with fk-1
and fk-1 with fk-2 by calculating IAk,k-1 and IAk-1,k-2. However,
since the updated density functions, fk and fk-1, are only com-
pared with the previously updated density functions, fk-1 and
fk-2, respectively, fk could satisfy the convergence criterion
even if it does not tend to converge to the finally updated
function obtained from original data and sufficient bounded
data. If fk and fk-1 are only compared, fk could quickly satisfy
the convergence criterion even though fk is somewhat different
from the finally updated function. Thus, the number of bound-
ed data may not be enough to represent the conservativeness
of the density function using KDE-bd/ebd. If fk is compared
with many previously updated density functions, fk-1, fk-2, fk-3
and so on, then it is difficult to satisfy the convergence crite-
rion and it may require a large number of bounded data. Thus,
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in this paper, fk, fk-1, fk-2 were only compared, and IAk,k-1 and
IAk,k-2 were used to determine the reasonable number of
bounded data.

Figure 3 shows the effect of the bounded data on the
estimation of the kernel density functions. The kernel den-
sity functions using KDE (dash-dot line) are very irregular
for small data samples such as n = 3 and n = 10, while
density functions using KDE-bd (solid line) are smooth,
due to the effect of the bounded data. When the number of
original data is very small, since the estimated kernel den-
sity functions are sensitive to the additional data, a large
number of the bounded data are required in the KDE-bd

and KDE-ebd calculation process. However, as the num-
ber of original data increases, less bounded data is re-
quired, and then, the kernel density functions estimated
from the total data finally converge to specific density
functions and the bounded data is no longer required.

Figure 4 shows how to calculate the intersection
areas, IAk, k − 1 and IAk, k − 2. The intersection areas are
calculated using an area metric method to evaluate the
coincidence rate between the two kernel density func-
tions being compared. In this method, the intersection
areas are obtained by calculating the overlapped area of
the two kernel density functions, which can range from
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0 to 1. If two kernel density functions coincide, the
intersection area is 1. If the two functions do not overlap,
the intersection area is 0. First, an overlapped function (fk,
k − 1) is defined from the two kernel density functions, fk
and fk − 1. Second, the closed interval [a, b] is uniformly
divided into p subintervals where [a, b] encompasses the
domain of the overlapped area, and then, the overlapped
subinterval (a = xo<,…, <xp = b) along the x-axis of the
two kernel functions is obtained.

Finally, IAk,k-1 and IAk,k-2 are calculated using the
Riemann integral of the overlapped function (Kang
et al. 2016). The intersection area IAk,k-1 is defined as
(Jung et al. 2017)

IAk;k−1 ¼ ∑
p

l¼1
f k;k−1 xlð Þ⋅ xl−xl−1ð Þ ð13Þ

f k;k−1 xlð Þ ¼ min f k xlð Þ; f k−1 xlð Þf g ð14Þ

4 Statistical simulation test

In the simulation tests, Birnbaum-Saunders (BS), general-
ized extreme value (GEV), log-normal (LOGN), logistic
(LOG), normal (NORM), Rayleigh (RAY), and Weibull
(WBL), which have different numbers of parameters and
distinct shapes, are assumed as true models. Figure 5
shows the PDFs of the true models and the numbers next
to the distribution name indicate the distribution parame-
ters. In Fig. 5, the WBL distribution has a very narrow
range over the random variable X and a large peak densi-
ty, which makes it difficult to distinguish from other dis-
tributions, and thus, a larger size of other PDFs, except

WBL distribution, is shown in the upper right hand corner
of Fig. 5.

For the simulation tests, the KDE-bd requires random
variable intervals that mostly cover the domain of the
distribution. In general, the lower and upper bounds of
the intervals are determined through extensive experience
or accumulated knowledge of engineers or companies
through fieldwork. In this study, the intervals are defined
as confidence intervals according to the Guide to the
Expression of Uncertainty in Measurement (GUM) pub-
lished by ISO. The GUM introduces the expression of
uncertainty as a measurement, and it recommends that
the uncertainty of a measurement be expressed simply as
Y = y ±U, where Y is the estimated value attributable to
the measurand, y is the mean value of the test, and U is
the expanded uncertainty related to y (Gabauer 2000).
This expression means confidence intervals at some prob-
ability level ranging from y −U to y +U. A confidence
interval of 95% is generally used (Gabauer 2000; Cox
and Harris 2003).

In this study, the lower and upper values for the bounds
are calculated from the 2.5 and 97.5-percentiles of the
cumulative distribution function (CDF) of true models.
Table 2 shows the lower and upper bounds corresponding
to the 2.5 and 97.5-percentiles based on distribution types.
If the bounds of X are known, the bounded data for the
KDE-bd are expressed as

Bounded data ¼ X LjF xð Þ¼0:025≤BDj≤XU jF xð Þ¼0:975

� � ð15Þ

If they are unknown, the estimated bounded data for the
KDE-ebd are expressed as

Estimated Bounded data ¼ max X ið Þ−max X ið Þ−min X ið Þ
α1=n

≤BDj≤min X ið Þ þ max X ið Þ−min X ið Þ
α1=n

 �
ð16Þ

where Xi is the given data, and BDj is the bounded data that are
randomly generated from the given or estimated bounds for a
uniform distribution based on given data sample used in the
MLE.

To verify the performance of KDE-bd and KDE-ebd, each
method is compared to the original KDE by randomly gener-
ating samples n = 1, 3, 5, 7, 10, 20, 30, and 50 with 1000
repetitions and by separately considering two cases, Case I:
the given data with given bounds and Case II: the given data
without given bounds. The generated samples are used to
generate the kernel density functions using KDE, KDE-bd,
and KDE-ebd, and then the intersection areas between the
estimated kernel density functions and true PDFs are calculat-
ed to estimate accuracies of three methods.

4.1 Case I: the given data with information of bounds

In this section, the accuracy of the original KDE and KDE-bd
are compared using intersection areas where both experimen-
tal data and input variable intervals are given. Tables 3, 4, and
5 show the average intersection areas between the estimated
kernel density functions and the various true PDFs for the
various numbers of sampled data when the true models are
NORM, RAY, and GEV distributions. If the critical intersec-
tion area, IAc, is too high, a large number of bounded data are
required and the estimated kernel density functions using the
bounded data become too smooth, and thus, their intersection
areas could be too low. On the other hand, if IAc is too low, a
small number of bounded data are required and the estimated
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kernel density functions become nonlinear, and thus, their
intersection areas could be too low. In this study, IAc was
chosen as 0.95, which is known as a reasonable convergence
criterion for the area metric (Jung et al. 2017). In Tables 3, 4
and 5, BDn indicates the average number of bounded data
generated from the given confidence intervals for a critical
intersection area of 0.95. All of the numbers in KDE, and
IAs using KDE-bd, indicate the intersection areas between
the true PDF and estimated kernel density function. The bold
font indicates that the intersection areas calculated from the
KDE-bd are larger than those from the original KDE. The
underlined values indicate the cases that the intersections cal-
culated from the KDE-bd and the original KDE are same.

First, the true model is assumed to be a NORM distribution.
As shown in Table 3, as n increases, the intersection areas using
the original KDE and KDE-bd increase and become close to
one. The intersection areas using the KDE-bd are always larger
than those using the KDE when n ≤ 30. The intersection areas
using the KDE increase considerably as n increases when
n ≤ 20, since the estimated kernel density functions are much

affected by the additional data. The intersection areas increase
slightly when n > 20 because the estimated density functions
converge into a true density function and are less affected by
the additional number of data. The intersection areas using
KDE-bd also increase as n increases, but the rate of increase
is slower than when the KDE was used, and the BDn decreases
slightly until n ≤ 10. Then, the BDn rapidly decreases from
n = 7 to 20 because the estimated functions become quite robust
for additional bounded data, and then, the BDn finally con-
verges to zero at n = 50, where the intersection areas using
KDE-bd become the same as those using the original KDE.

Figure 6 shows the change of the estimated density func-
tions as more bounded data are added to the given data when

Table 3 Comparison of intersection areas in KDE and KDE-bd: X ~
NORM (50, 10)

n KDE KDE-bd

IA BDn

1 – 0.7794 12.418

3 0.5845 0.7946 10.612

5 0.7142 0.8083 8.742

7 0.7699 0.8153 7.055

10 0.8104 0.8305 4.741

20 0.8602 0.8627 0.714

30 0.8844 0.8846 0.087

50 0.9047 0.9047 0

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper

Table 2 Bounds of true models

True models Lower (XL ∣ F(x) = 0.025) Upper (XU ∣ F(x) = 0.975)

BS (50,0.4) 23.2575 107.2489

GEV (0,5,50) 43.5077 68.4101

LOG (50,3) 39.0240 61.0138

LOGN (3,0.2) 13.5776 29.7307

NORM (50,10) 30.4609 69.5776

RAY (50) 11.2470 135.7597

WBL (30,50) 27.8742 30.7940

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

f(
x

)

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 BS(50,0.4)

GEV(0,5,50)

LOG(50,3)

LOGN(3,0.2)

NORM(50,10)

RAY(50)

WBL(30,50)

zoom in

Fig. 5 PDFs of true distributions

Kernel density estimation with bounded data 103



the true model is the NORM distribution with n = 3. In Fig. 6,
the right legend depicts the density function of population
(fPOP) and the updated kernel density functions (fk-5~fk) using
the data from (k-5) to (k), and the left legend shows the com-
bined given and added bounded data from (k-5) to (k). As the
bounded data are added, the updated kernel density functions
become smoother and tends to converge to the true density
function, and IAk,k-1 and IAk,k-2 become larger than IAc.
Finally, the bounded data increases up to kth data (k = 16)
and the final density function is estimated using (k) bounded
data by combining the original given data, n = 3.

When the number of data is only one, the KDE-bd is very
similar to the true population using the bounds, while the KDE
yields a very inaccurate density function using only one data.

Because its accuracy is too low for n = 1, the results using
KDE are not shown in this paper. Figure 7 shows the estimat-
ed kernel density functions using KDE andKDE-bdwhen n =
1. The estimated density functions using KDE have very nar-
row density function shapes, and thus, the intersection area
between the estimated density function (KDE in Fig. 7) and
the true PDF (POP in Fig. 7) is very small. However, the
estimated density function using the KDE-bd is similar to
the true PDF shape when compared to the one using KDE,
due to the additional bounded data.

Second, the RAY distribution is assumed to be the true
model. The intersection areas using KDE and KDE-bd in-
crease as n increases, while the BDn in KDE-bd decreases as
in the NORM distribution, as shown in Table 4. However, the
overall estimation accuracies using both methods for the RAY
distribution are lower than those for the NORM distribution.
This is because both methods use the Gaussian kernels and
Silverman’s rule of thumb, which uses a normal assumption
for the true density function, and thus, the estimated functions
fit well into symmetric distributions. In other words, since the

10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

x

f(
x

)

f
POP

f
k-5

f
k-4

f
k-3

f
k-2

f
k-1

f
k

Given Data

(k-5)-th data

(k-4)-th data

(k-3)-th data

(k-2)-th data

(k-1)-th data

(k)-th data

Fig. 6 Estimated density functions according to more bounded data with
n = 3

20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x
)

Data

POP

KDE

KDE-bd

Fig. 7 Kernel density functions with n = 1

Table 5 Comparison of intersection areas in KDE and KDE-bd: X ~
GEV(0, 5, 50)

n KDE KDE-bd

IA BDn

1 – 0.6920 12.501

3 0.5659 0.7131 10.567

5 0.6974 0.7324 8.891

7 0.7550 0.7629 7.303

10 0.7921 0.7956 5.232

20 0.8452 0.8457 0.873

30 0.8685 0.8687 0.121

50 0.8886 0.8886 0

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper

Table 4 Comparison of intersection areas in KDE and KDE-bd: X ~
RAY(50)

n KDE KDE-bd

IA BDn

1 – 0.7506 12.375

3 0.5840 0.7650 10.656

5 0.7031 0.7782 8.709

7 0.7552 0.7895 7.030

10 0.8034 0.8200 4.848

20 0.8518 0.8541 0.806

30 0.8750 0.8752 0.093

50 0.8961 0.8961 0.002

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper
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RAY distributions are skewed, the estimated density functions
are less accurate. For skewed distributions, different kernels
and bandwidth selection methods need to be used to calculate
appropriate optimal bandwidth for accurately modeling the
true density function. In addition to the Silverman’s rule of
thumb, the optimal bandwidth can be calculated by minimiz-
ing the objective function, which measures the error between
the true density function and the KDE density function, using
mean integrated squared error (MISE) and asymptotic MISE
(AMISE) or modified functions of these measures. Most
bandwidth selection methods such as biased cross-validation
(BCV), unbiased cross-validation (UCV), complete cross-
validation (CCV), and direct plug-in (DPI) uses the deriva-
tives of the kernel functions to calculate the optimal band-
width, and they are classified on the manner in which the true
density functions are defined (Wand and Jones 1994; Scott
and Terrell 1987; Hardle et al. 1990; Jones and Kappenman
1992; Sheather and Jones 1991).

Depending on the shape of the true density function, it is
necessary to use themost appropriate kernel functions and band-
width selection. However, the true density function is usually
unknown; therebymaking it difficult to select appropriate kernel
types and bandwidth. Among various kernel types, the reason
for using the Gaussian is because the Gaussian kernel can be
used to easily calculate the bandwidth and the most widely used
in KDE. In addition, it can be widely used to model various
shapes of distributions without knowing the true model. Even
though the Gaussian kernel assumes that the true model is the
normal distribution, kernel functions still can approximate the
data distribution through summation of kernel function values
evaluated at each data and the effect of the kernel function de-
creases with increasing the number of data. Even though the
modeling accuracy of KDE slightly decreases for the skewed
distribution, the KDE-bd is still more accurate than the original
KDE in comparison with intersection areas using the KDE.

Third, the GEV distribution is assumed to be the true model.
As n increases, a similar tendency is observed as in the NORM
and RAY distributions. The estimation accuracies using both
methods are the lowest out of the three true distributions be-
cause the GEV distribution has very high skewness and kurto-
sis. However, the obtained intersection areas are not much dif-
ferent from those in the NORM or RAY distributions, and thus,
KDE-bd is still more accurate and recommended over the KDE.

4.2 Case II: the given data without information
of bounds

In this section, the accuracy of KDE and KDE-ebd are com-
pared through the intersection areas when the intervals are
unknown and only the experimental data are given.
Tables 6, 7 and 8 show the average intersection areas when
NORM, RAY, and GEV distributions are based on various
numbers of data with 1000 repetitions, where IAc is 0.95, same

to Case I. The estimated intervals are used as uniform distri-
bution parameters with α = 0.1 to compromise the accuracy
and conservativeness of the estimated density functions, and
they are used to define the lower and upper bounds of the
bounded data and their average values are presented in
Tables 6, 7 and 8. The intersection areas of KDE-ebd are
calculated for n ≥ 3 since the estimated confidence intervals
can be obtained for n ≥ 2.

First, when the NORM distribution is chosen as the true
model, the intersection areas using KDE and KDE-ebd are
shown in Table 6 and have the same intersection areas as the
KDE, which are the same as in Case I. The intersection areas
increase as n increases, while the BDn in KDE-ebd decreases,
similar to Case I. The estimated intervals using KDE-ebd

Table 6 Comparison of intersection areas in KDE and KDE-ebd: X ~
NORM (50, 10)

n KDE KDE-ebd

IA BDn Estimated intervals [l, u]

1 – – – –

3 0.5845 0.6360 10.376 [23.53, 76.53]

5 0.7142 0.7181 8.616 [25.57, 74.32]

7 0.7699 0.7513 7.176 [25.56, 74.04]

10 0.8104 0.8007 4.990 [26.49, 73.25]

20 0.8602 0.8597 0.756 [26.54, 73.38]

30 0.8844 0.8842 0.089 [26.15, 73.55]

50 0.9047 0.9047 0 [25.36, 74.58]

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper

Table 7 Comparison of intersection areas in KDE and KDE-ebd: X ~
RAY(50)

n KDE KDE-ebd

IA BDn Estimated intervals [l, u]

1 – – – –

3 0.5840 0.6148 10.446 [−25.58, 152.35]
5 0.7031 0.6908 8.878 [−17.03, 151.15]
7 0.7552 0.7377 7.193 [−10.055, 146.02]
10 0.8034 0.7910 5.033 [−6.27, 144.01]
20 0.8518 0.8519 0.838 [−0.07, 147.00]
30 0.8750 0.8747 0.108 [1.23, 150.27]

50 0.8961 0.8961 0.004 [2.23, 155.43]

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper
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become narrow based on the increase in the number of data,
unlike the intervals using KDE-bd, which do not vary with the
number of data. The intersection areas using KDE-ebd are
larger than those using KDE for n ≤ 5, but they are slightly
lower than those using KDE for n > 5, until n = 30 and they
finally become the same for n = 50. The estimated intervals for
the input variable X cover a wide range of the domain of X for
a small amount of data, and thus, the KDE-ebd are more
similar to the true model than the KDE. However, as the num-
ber of data increases, KDE fits the data distribution better than
the KDE-ebd, meaning that the estimated model using KDE
are more similar to the true model than the KDE-ebd.

Second, when the true model is the RAY distribution, the
intersection areas using KDE and KDE-ebd are presented in
Table 7. The intersection areas using KDE-ebd are larger
than those using KDE when n = 3, but they become slightly
smaller as n increases, until n = 30. Both results finally be-
come the same when n = 50 similar to the results in the
NORM distribution. Since the RAY distribution has a large
variation shown in Fig. 5, the estimated intervals are wide.
Similar to Case I, the RAY distribution is slightly skewed to
the left and the intersection areas for RAY distributions are
smaller than those of the NORM distribution.

Third, when the true model is the GEV distribution, the
intersection areas using both methods are denoted in
Table 8. A tendency similar to the NORM and RAY distribu-
tion is observed for the GEV distribution. Similar to Case 1,
the GEV distribution has the lowest intersection areas among
the three truemodels, owing to its nonlinear shape, but had the
largest intersection with the RAY distribution. The KDE-ebd
has better accuracy than the KDEwhen n = 3, but it has slight-
ly lower accuracy until n = 20; however, both methods have
similar accuracies when n ≥ 30.

Consequently, to summarize the three methods, KDE-bd is
themost accurate among the threemethods in the NORM, RAY,
and GEV distributions, based on the KDE-ebd and KDE calcu-
lated with all differing numbers of data, as long as the given
intervals are appropriate enough to mostly cover the domain of
the input variables. Even though the KDE-ebd has lower accu-
racy than KDE when 5 ≤ n ≤ 20, its accuracy is similar with the
KDE and it has a heavy tail in the kernel density function owing
to a wide range of intervals, which makes the reliability analysis
results using KDE-ebd more conservative than the KDE. In
Section 5, it will be explained how density functions are esti-
mated using KDE, KDE-bd, and KDE-ebd and how the esti-
mated density functions yield reliability analysis results.

The KDE-bd and KDE-ebd were tested only for
unimodal distributions, but they are also applicable for
multimodal distributions like the original KDE. However,
in order to model an accurate multimodal distribution, suf-
ficient data is required and the KDE-bd/ebd becomes the
same as the original KDE. If the data is very limited, it is
difficult to distinguish whether the true model follows a
unimodal or multimodal distribution from the data; thus,
both original KDE and KDE-bd/ebd are difficult to accu-
rately model multimodal distributions. However, when the
true model is known as the multimodal distribution and
given data are very insufficient, the KDE-bd/ebd might
more smooth out the nonlinearity of the shape of the mul-
timodal distribution compared to the original KDE.
Nevertheless, it is still better to use the KDE-bd/ebd than
the original KDE because the KDE-bd/ebd provides more
conservative density estimation and yields more conserva-
tive statistical analysis results than the original KDE. If it
is necessary to accurately model the data following the
multimodal distribution, the KDE-ebd can be used by
sampling the bounded data from non-uniform distribu-
tions that more fit to the original data than the uniform
distribution. Likewise, if boundary information near the
multiple modes is given, the KDE-bd also can provide
an accurate density function even for insufficient data.
The KDE-bd/ebd for modeling multimodal distributions
will be tested in the future research.

4.3 Comparison of the three methods

To compare the three methods, statistical simulations were
carried out for BS, LOG, LOGN, and WBL distributions
as well as NORM, RAY, and GEV distributions. Figure 8
shows the average intersection areas between estimated
kernel density functions and the seven true models after
1000 repetitions for IAc = 0.95, using the KDE, KDE-ebd
and KDE-bd. In Fig. 8, the upper left box in each row
indicates the true models. The intersection areas are
shown when n = 1, 3, 5, 7, 10, 20, 30, and 50, where a
high amount of intersection indicates that the estimated

Table 8 Comparison of intersection areas in KDE and KDE-ebd:
Population ~ GEV (0, 5, 50)

n KDE KDE-ebd

IA BDn Estimated intervals [l, u]

1 – – – –

3 0.5659 0.6150 10.358 [35.96, 70.29]

5 0.6974 0.6794 8.766 [37.85, 69.49]

7 0.7550 0.7256 7.408 [39.41, 68.96]

10 0.7921 0.7651 5.317 [39.90, 69.81]

20 0.8452 0.8425 0.999 [40.93, 70.97]

30 0.8685 0.8683 0.127 [41.12, 72.15]

50 0.8886 0.8886 0 [41.29, 73.57]

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper
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kernel density functions coincide well with the true PDFs.
The average intersection areas using KDE-bd had the
highest agreement with those using the true model,
followed by KDE-ebd or KDE depending on the number
of data. The KDE-bd is always the best method because
the KDE-bd uses both given bounds and data for the input
variables, whereas others only use data. Specifically, the
KDE-bd can be only used when n = 1 and the KDE-bd
and KDE-ebd are more accurate than the KDE for very
small data, n ≤ 10 and n ≤ 3, respectively.

Comparing the accuracy of KDE-bd and KDE-ebd for dif-
ferent distribution types, the performance of the KDE-bd and
KDE-ebd in the NORM, LOG, and LOGN distributions are
superior to the others, since these models have low skewness
and kurtosis, especially the NORM and LOG that have
symmetricity (zero skewness). The KDE-bd and KDE-ebd have
the lowest performance for the GEV distribution among all true
models, since the GEV distribution has the highest skewness
and kurtosis. Consequently, the KDE-bd andKDE-ebd aremore
accurate methods than the original KDE, especially for extreme-
ly small data. TheKDE-bd can even deal with the special case of
one data with given bounds of input variables.

Figure 9 depicts the range of intersection areas for the seven
true distributions. The minimum, mean, and maximum inter-
section areas using three methods with 1000 repetitions are
presented together. The mean values are expressed as triangle,

cross, and circle markers for KDE, KDE-ebd and KDE-bd,
respectively, and the minimum and maximum values are
expressed as a horizontal bar. For all true distributions, the
average intersection areas using the KDE-bd are much larger
than those using KDE, and those using the KDE-ebd are slight-
ly larger than KDE when n ≤ 3 and smaller when n ≥ 5. The
ranges of the intersection areas using the KDE-bd are much
narrower than those using the KDE. Those using KDE-ebd
are slightly narrower than those of KDE when n ≤ 20. The
minimum intersection areas using the KDE-bd and KDE-ebd
are larger than those using the KDE. Thus, the KDE-bd and
KDE-ebd are robust methods regardless of the quality of data
when compared to the original KDE. The KDE-bd is especially
the most accurate and robust method if appropriate bounds are
given. As mentioned in Section 4.2, for the GEV distribution,
the KDE-ebd is slightly less accurate than the KDE, but the
KDE-ebd is more robust regardless of data quality and also
has heavier tails than the KDE, and thus, the KDE-ebd is supe-
rior to the KDE in terms of accuracy and robustness.

For skewed distributions such as GEV and RAY distribu-
tions, the average intersection areas using KDE-ebd are slight-
ly lower than those using KDE. However, the minimum inter-
section area calculated using KDE-ebd is higher than that
calculated using KDE, and the min and max range of the
intersection areas using KDE-ebd is narrower than that using
KDE. In other words, KDE-ebd is less sensitive to the number
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(a) BS distribution (b) GEV distribution

(c) LOG distribution (d) LOGN distribution

(e) NORM distribution (f) RAY distribution
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Fig. 9 Range of intersection areas according to sample size
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and quality of data compared to KDE. In general, the skew-
ness of the data is not accurately estimated because the
estimated density function using KDE-ebd has long tails
due to the bounded data, which are randomly sampled
from a uniform distribution. Instead, the long and thick
tails of the density function could yield conservative re-
sults in reliability analysis and the accuracy of modeling
the skewed distribution can be improved as the number of
data increases. Because any statistical modeling methods
have limitations in modeling the skewness of the distribu-
tion for insufficient data, more robust and conservative
KDE-be/ebd is more suitable for modeling skewed distri-
butions compared to the KDE.

5 Numerical examples

5.1 Compressive strength example

In this section, a numerical example is presented to demon-
strate how the KDE, KDE-bd, and KDE-ebd methods are
applied to model the density functions of 80 experimental data
of the compressive strength of aluminum-lithium (Al-Li) alloy
specimens (Montgomery and Runger 2003). In general, sta-
tistical models for input variables are unknown for real appli-
cations, and 80 data are not common. However, this example
can be shown to compare and verify the statistical models
using three methods by assuming that there are only a few
data values, which are randomly generated from 80 data.

Figure 10 shows the histogram and estimated kernel den-
sity functions using KDE for 80 compressive strengths of Al-
Li alloy which have a mean of 162.6625 and standard devia-
tion of 33.7732, and is assumed as a population distribution in

this example. For KDE-bd, the bounds of the compressive
strength are defined by the assumed population, and it is the
lower and upper bounds with 2.5-and 97.5-percentiles of
CDFs of populations, 88.75 and 236.4, respectively.

To verify the performance of KDE-bd and KDE-ebd, both
methods are compared with the original KDE by randomly
sampling n = 1, 3, 5, 7, 10, 20, 30, 50, 80 from 80 total data
with 1000 repetitions except n = 80, which was only repeated
once. Based on the assumed true model, the intersection areas
are calculated by comparing the estimated density functions
with those obtained from n = 80. Table 9 shows average inter-
section areas between estimated kernel density functions and
the true kernel density function for IAc = 0.95. As n increases,
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Fig. 10 Histogram and KDE
function of 80 compressive
strength

Table 9 Intersection areas according to sample size: compressive
strength of Al-Li alloy

n KDE KDE-ebd KDE-bd

IA BDn IA BDn

1 – – – 0.7510 12.436

3 0.5934 0.6459 10.495 0.7678 10.627

5 0.7059 0.7045 8.881 0.7854 8.840

7 0.7707 0.7536 7.267 0.8070 7.501

10 0.8116 0.7958 5.523 0.8288 5.301

20 0.8740 0.8730 1.002 0.8757 0.918

30 0.9043 0.9042 0.152 0.9043 0.152

50 0.9402 0.9402 0 0.9402 0

80 1 1 1 1 0

The bold font indicates that the KDE-bd or KDE-ebd is more accurate
than the original KDE. The underlined entry indicates that the KDE-bd or
KDE-ebd has the same accuracy to the KDE. The italicized entry indi-
cates that the KDE-bd or KDE-ebd is less accurate than the KDE. The
meaning of each entry is explained in the paper
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the intersection areas increase while the number of bounded
data (BDn) decreases. Intersection areas using KDE-ebd are
larger than those using KDE when n ≤ 3, but smaller until n =
20, where both results become the same when n ≥ 30.
Intersection areas using KDE-bd are larger than KDE when
n ≤ 20 and then become the same when n ≥ 30. Therefore, the
KDE-bd method is the most accurate regardless of n, and
KDE-ebd is better than the original KDE when n ≤ 3. All
methods yield similar results when n ≥ 30. Since the density
function obtained from 80 data entries is assumed as the true
model, the intersection area becomes 1.0 when n = 80.

Figure 11 depicts the range of intersection areas. The range
of the intersection areas using KDE-bd is the narrowest, follow-
ed by KDE-ebd and KDE. Although the average intersection
area using KDE-ebd was slightly smaller than those fromKDE,
the ranges of the intersection areas using KDE-ebd are smaller
than those using KDE. Accordingly, the density functions
using KDE-ebd show a higher agreement with the popu-
lation distribution at a higher rate than those using KDE.
Although this example seems to be similar to the simula-
tion tests, it is meaningful to apply the KDE-bd and KDE-
ebd to real experimental data because the real experimen-
tal data may include measurement error, bias, or outliers.
Since the obtained results in this example are similar to
those in Section 4, the KDE-bd and KDE-ebd are still
applicable to the real experimental data.

Figure 12 shows the original data, the population distribu-
tion function (POP), and the estimated kernel density func-
tions using the three methods when n = 3. In Fig. 12, the KDE
has a very irregular density function shape compared to KDE-
ebd and KDE-bd, and the KDE-ebd has the widest density
function shape due to the lower and upper bounds of the
estimated confidence intervals. Thus, the KDE-bd is the most
accurate and robust if there are given data with the bounds of
the input variable. However, if the bounds of the input variable

are unknown, the KDE-ebd needs to be used as an alternative
method to KDE-bd. Even though the density function using
KDE-ebd is different from the population distribution func-
tion, it is better than KDE because it has heavy tails and can
show more conservative results in the reliability analysis than
the KDE shown in Fig. 12.

5.2 A Cantilever example

In this section, a cantilever example was used to show how
density functions using KDE, KDE-bd, and KDE-ebd affect
reliability analysis results, shown in Fig. 13 (Eldred et al.
2007). The Young’s modulus, geometric dimensions, and ex-
ternal loads of the beam are given as SI unit in Table 10.

The performance function for this problem gD(x) is
defined as

gD xð Þ ¼ 4L3

Ewt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
t2

� �2

þ X
w2

� �2
s

−D0 ð17Þ

If the true model is used to carry out the reliability analysis,
the exact probability of failure is 0.0693. If data are not given,
it is common to use a uniform distribution. The two parame-
ters for the uniform distribution are determined using
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Table 10 Properties of geometric dimensions

Variables Symbol Value Dist. type COV

Length [m] L 2.54 – –

Width [m] w 0.0635 – –

Thickness [m] t 0.0889 – –

Displacement tolerance [m] D0 0.0546 – –

Young’s modulus [GPa] E 13.885 NORM 0.05

Horizontal load [N] X 2224.11 NORM 0.2

Vertical load [N] Y 4448.22 NORM 0.1
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confidence intervals with a confidence level of 95%, and a
corresponding probability of failure calculated to be 0.1031.
Figure 14 shows the ranges of the probabilities of failure using
KDE, KDE-bd, KDE-ebd and a uniform distribution, where
the parameters are determined using the lower and upper
bounds of the estimated confidence intervals, and the horizon-
tal dotted line that indicates the exact probability of failure.
The boxplot depicts graphically grouped data for the quartiles
of the data (Tukey 1977; Frigge et al. 1989). In the boxplot,
the lower and upper bounds of the boxes indicate 1st quartile
(Q1) and 3rd quartile (Q3), respectively. The centerlines of the
boxes indicate the 2nd quartile (median), and the vertical
dashed lines indicate the range of the data where the most data
(over 98–99%) fall into the region bounded by [Q1 − 1.5 ×

IQR, Q3 + 1.5 × IQR] where IQR = Q3 − Q1 and the point
symbols indicate the outliers of the data.

In Fig. 14, the average probabilities of failure using
KDE converged most quickly to the exact probability fail-
ure, followed by the KDE-bd and KDE-ebd. Since the
KDE-bd uses both the data and the bounds of the input
variable, the ranges of the probabilities of failure are
narrower than those using KDE. On the other hand, the
probabilities of failure using the uniform distribution did
not converge to the exact probability of failure even for a
large number of data. This is because the lower and upper
bounds of the estimated confidence intervals for the uni-
form distribution do not become narrow as the number of
data increase and the data are widely spread. The KDE-ebd
shows similar results to the uniform distribution for n ≤ 7,
but the ranges of the probabilities of failure converged to
the exact probability of failure, while those using the uni-
form distribution did not. This is because the uniform dis-
tribution only uses the data to estimate its parameters
whereas the KDE-ebd uses both the given data and bound-
ed data to generate a density function. As the number of
data increases, the effect of the given data on the estimation
of the density function increases more than that of the
bounded data and the density function becomes more sim-
ilar with the true density function. In addition, the KDE-
bd/ebd well describes the true density function using con-
tinuous and smooth kernel functions whereas the uniform
distribution has a constant probability only on the interval
and the CDF of the uniform distribution has discontinuous
slopes at the lower and upper bounds of the interval.
Accordingly, if the true model has a smooth and continu-
ous probability curve, the uniform distribution will be rath-
er different from the true model even if the number of data
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Fig. 14 Range of probability of failure according to the number of data

Fig. 13 A cantilever beam

Table 11 Percentiles of
underestimating and
overestimating the exact
probability of failure

n

Methods

3 5 7 10 20 30 50 100

KDE Under 0.478 0.364 0.351 0.318 0.255 0.249 0.193 0.180

Over 0.522 0.636 0.649 0.682 0.745 0.751 0.807 0.820

KDE-bd Under 0.068 0.088 0.131 0.178 0.238 0.247 0.194 0.178

Over 0.932 0.912 0.869 0.822 0.762 0.753 0.806 0.822

KDE-ebd Under 0.117 0.124 0.171 0.194 0.238 0.246 0.195 0.179

Over 0.883 0.876 0.829 0.806 0.762 0.754 0.805 0.821

UNI Under 0.138 0.144 0.15 0.154 0.105 0.079 0.031 0.009

Over 0.862 0.856 0.85 0.846 0.895 0.921 0.969 0.991
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is enough. Since the KDE-bd/ebd can yield conservative
density estimation for insufficient data and accurate desti-
ny estimation for sufficient data, it will provide more de-
sirable statistical analysis results than the uniform
distribution.

Because of the heavy tail part of the density function
estimated using the KDE-ebd, the KDE-ebd yields wide
ranges of probabilities of failure. As the number of data
increases, their ranges become narrower. It can be said that
the KDE is better than the KDE-ebd in terms of the median
values of the probabilities of failure, but the percentiles of
underestimating the exact probability of failure using
KDE-ebd are smaller than those using KDE, which means
that KDE-bd and KDE-ebd have more conservative reli-
ability analysis results than KDE.

Table 11 shows the percentiles of underestimating and
overestimating the exact probability of failure for various
numbers of data. The KDE underestimates the exact probabil-
ity of failure with 47.8% accuracy, whereas the KDE-bd,
KDE-ebd, and the uniform distribution do so with 6.8%,
11.7%, and 13.8%, respectively, when n = 3. As n increases,
the percentiles of underestimating the exact probability of fail-
ure using KDE decrease and those using other methods in-
crease. Finally, all methods yield similar percentile values of
underestimating or overestimating the exact probability of
failure. However, notice that the uniform distribution is still
not converged and is too conservative in estimating the prob-
abilities of failure.

6 Conclusions

In this study, the KDE-bd and KDE-ebd methods were
proposed for estimating statistical input distributions. The
KDE-bd and KDE-ebd combine the nonparametric statis-
tical modeling method (KDE) and the interval approach
using bounded data. To verify the accuracy of the KDE-
bd and KDE-ebd, intersection areas using KDE, KDE-bd,
and KDE-ebd were compared by performing statistical
simulation tests for various distribution types and number
of data. As a result, it was demonstrated that the KDE-bd
and KDE-ebd methods were more accurate than the origi-
nal KDE method, especially if there is a lack of data, in
which case the estimated density functions converge to the
population distribution as the number of data increases.
Through numerical examples, it was shown that the
KDE-bd and KDE-ebd estimate conservative density func-
tions with heavy tails and thus yield more conservative
reliability analysis results than the original KDE.

As a result, the following guideline of using KDE methods
based on the number of data and information of boundary
conditions can be proposed to estimate probabilistic density
functions. If only the input variable intervals are given, only a

uniform distribution can be used. If n = 1 and input variable
intervals are given, the KDE-bd is recommended more than
the uniform distribution. If n is greater than 2 and the intervals
are known, the KDE-bd is still strongly recommended, but the
KDE-ebd can also be used when the given intervals are unde-
termined. If n is greater than 2 and the bounds are unknown,
the KDE-ebd is the most recommended.

The proposed methods can provide more accurate and
conservative statistical models for reliability analysis, but
such nonparametric methods can only be used limitedly in
sampling-based reliability methods such as Monte-Carlo
simulation (MCS) and importance sampling (IS).
Accordingly, in future research, an integrated statistical
modeling method combining parametric and nonparamet-
ric modeling will be further investigated in order to be
applied to numerical reliability methods such as the first-
order reliability method (FORM) and the second-order re-
liability method (SORM).
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Appendix 1: Silverman’s rule of thumb

The Silverman’s rule of thumb is a method which minimizes
an objective function, mean integrated squared error (MISE),
and it is probably the most popular one among the bandwidth
selection methods (Schindler 2011). It assumes that true den-
sity is normally distributed therefore Silverman’s rule will
compute a bandwidth close to optimal if a random variable
X is reasonably close to the normal distribution (Silverman
1986; Hansen 2009). It defines according to various kernel
functions as follows (Hansen 2009).

h ¼ σ̂̂Cν kð Þn−1= 2νþ1ð Þ ð18Þ
whereCν(k) is the constant from Table 12, and ν is the order of
the kernel.

Table 12 Constants of
Silverman’s rule
(Hansen 2009)

Kernel ν = 2 ν = 4 ν = 6

Epanechnikov 2.34 3.03 3.53

Biweight 2.78 3.39 3.84

Triweight 3.15 3.72 4.13

Gaussian 1.06 1.08 1.08
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